executor.py 114.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
Zeng Jinle 已提交
15
import logging
16 17
import os
import multiprocessing
C
chengduo 已提交
18
import sys
19
import warnings
D
dzhwinter 已提交
20
import numpy as np
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
22
import six
23
from .data_feeder import convert_dtype
24
from .framework import Program, default_main_program, Variable, Operator
25
from .framework import convert_np_dtype_to_dtype_, _apply_pass
L
Leo Chen 已提交
26

27
from . import core
28
from . import unique_name
29
from . import compiler
30
from .trainer_factory import TrainerFactory
31
from .trainer_factory import FetchHandlerMonitor
32
import copy
33
from . import framework
34
from .incubate.checkpoint import auto_checkpoint as acp
35
from .compiler import _prune_feed_ops
36

R
Ruibiao Chen 已提交
37 38
from functools import lru_cache

T
Tink_Y 已提交
39
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
40

Y
Yu Yang 已提交
41
g_scope = core.Scope()
F
flame 已提交
42 43
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
44

Y
Yu Yang 已提交
45

Y
Yang Yu 已提交
46
def global_scope():
Y
yuyang18 已提交
47
    """
48 49
    :api_attr: Static Graph

Y
yuyang18 已提交
50 51 52
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

C
chengduo 已提交
53 54 55
    Returns:
        Scope: The global/default scope instance.

56 57 58
    Examples:
        .. code-block:: python

59
          import paddle
60 61
          import numpy

62 63
          paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
          numpy.array(paddle.static.global_scope().find_var("data").get_tensor())
Y
yuyang18 已提交
64
    """
Y
Yang Yu 已提交
65 66 67
    return g_scope


68
def _switch_scope(scope):
Y
Yang Yu 已提交
69 70 71 72 73 74
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
75
@signature_safe_contextmanager
Y
Yang Yu 已提交
76
def scope_guard(scope):
Y
yuyang18 已提交
77
    """
78

79 80 81 82 83 84 85 86 87 88 89 90
    This function switches scope through python `with` statement.
    Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
    similar to brackets in programming languages.
    If this function is not invoked, all variables and variable names are recorded in the default global scope.
    When users need to create variables with the same name,
    they need to switch scopes through this function
    if they do not want the mapping of variables with the same name to be overwritten.
    After switching through the `with` statement,
    all variables created in the `with` block will be assigned to a new scope.

    Parameters:
        scope: The new scope.
Y
yuyang18 已提交
91

92 93
    Returns:
        None
L
lujun 已提交
94

Y
yuyang18 已提交
95
    Examples:
96

97 98
        .. code-block:: python

99
            import paddle
L
lujun 已提交
100
            import numpy
101
            paddle.enable_static()
Y
yuyang18 已提交
102

103 104 105
            new_scope = paddle.static.Scope()
            with paddle.static.scope_guard(new_scope):
                 paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
L
lujun 已提交
106
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
107
    """
L
lujun 已提交
108

109
    ex = _switch_scope(scope)
110 111 112 113
    try:
        yield
    finally:
        _switch_scope(ex)
Y
Yang Yu 已提交
114 115


116
def as_numpy(tensor, copy=False):
117 118 119
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
120

121
    Examples:
122 123 124 125 126 127 128 129 130 131
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
132 133 134

    Args:
       tensor(Variable): a instance of Tensor
135
       copy(bool, optional): Whether to use deep copy.
136 137 138 139

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
140
    if isinstance(tensor, core.LoDTensorArray):
141
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
142
    if isinstance(tensor, list):
143
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
144 145
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
146
    if len(lod) > 0:
147 148
        raise RuntimeError(
            "Some of your fetched tensors hold LoD information. \
149 150
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
151 152
            return LoDTensor itself directly."
        )
Q
qingqing01 已提交
153
    if tensor._is_initialized():
154 155 156 157
        if copy:
            return np.array(tensor)
        else:
            return np.asarray(tensor)
Q
qingqing01 已提交
158 159
    else:
        return None
D
dzhwinter 已提交
160 161


H
Huihuang Zheng 已提交
162 163 164 165
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
166

H
Huihuang Zheng 已提交
167 168
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
169

H
Huihuang Zheng 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
186 187
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


215
def check_feed_shape_type(var, feed, num_places=1):
H
Huihuang Zheng 已提交
216 217
    """
    Returns True if the variable doesn't require feed check or it is compatible
T
tianshuo78520a 已提交
218
    with the shape and have same dtype as the fed value.
H
Huihuang Zheng 已提交
219 220 221

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
222 223
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
224
       is compatible with any number.
225

H
Huihuang Zheng 已提交
226 227
    Args:
        var (Variable): the Variable object
T
tianshuo78520a 已提交
228
        feed (LoDTensor): the fed value, which must be a LoDTensor
229 230
        num_places: an integer value indicating the number of places.
            ParallelExecutor will divide data into devices (CPU/GPU) evenly.
H
Huihuang Zheng 已提交
231 232 233 234 235 236 237
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
238 239
        diff_shape = core.diff_tensor_shape(feed, var.desc, num_places)
        if diff_shape is not None:
240
            raise ValueError(
T
tianshuo78520a 已提交
241
                'The fed Variable %r should have dimensions = %d, shape = '
242 243 244
                '%r, but received fed shape %r on each device'
                % (var.name, len(var.shape), var.shape, diff_shape)
            )
H
Huihuang Zheng 已提交
245
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
246 247 248 249 250 251 252 253 254 255
            var_dtype_format = (
                convert_dtype(var.dtype)
                if isinstance(var.dtype, core.VarDesc.VarType)
                else var.dtype
            )
            feed_dtype_format = (
                convert_dtype(feed._dtype())
                if isinstance(feed._dtype(), core.VarDesc.VarType)
                else feed._dtype()
            )
256
            raise ValueError(
257 258 259
                'The data type of fed Variable %r must be %r, but received %r'
                % (var.name, var_dtype_format, feed_dtype_format)
            )
H
Huihuang Zheng 已提交
260 261 262
    return True


263
def has_feed_operators(block, feed_targets, feed_holder_name):
264
    """Check whether the block already has feed operators.
265 266 267 268 269 270 271 272 273 274

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
275 276
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
277 278 279
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
280
        A boolean value that indicates whether a block has feed operators
281 282 283 284 285 286 287 288 289 290
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
291 292
                raise Exception(
                    "'feed_targets' does not have {} variable".format(
293 294 295
                        feed_target_name
                    )
                )
296 297 298 299
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
300 301
            "Feed operators in program desc do not match 'feed_targets'"
        )
302 303 304
    return feed_count > 0


305 306 307 308
def has_fetch_operators(
    block, fetch_targets, fetch_holder_name, fetch_op='fetch'
):
    """Check whether the block already has fetch operators.
X
xuwei06 已提交
309

310 311 312 313 314 315 316 317 318
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
319 320 321
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
322
        fetch_op: the operator name of fetch
323

X
xuwei06 已提交
324 325 326
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
327 328 329 330
    """

    fetch_count = 0
    for op in block.ops:
331
        if op.desc.type() == fetch_op:
332 333 334 335
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
336
                var.desc.name() for var in fetch_targets
337
            ]:
338 339
                raise Exception(
                    "'fetch_targets' does not have {} variable".format(
340 341 342
                        fetch_target_name
                    )
                )
343 344 345 346
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
347 348
            "Fetch operators in program desc do not match 'fetch_targets'"
        )
349 350 351
    return fetch_count > 0


352 353 354
def _add_feed_fetch_ops(
    program, feed, fetch_list, feed_var_name, fetch_var_name, use_fetch_v2=False
):
R
Ruibiao Chen 已提交
355 356 357 358 359 360 361 362 363 364
    tmp_program = program.clone()

    global_block = tmp_program.global_block()

    if feed_var_name in global_block.vars:
        feed_var = global_block.var(feed_var_name)
    else:
        feed_var = global_block.create_var(
            name=feed_var_name,
            type=core.VarDesc.VarType.FEED_MINIBATCH,
365 366
            persistable=True,
        )
R
Ruibiao Chen 已提交
367 368 369 370 371 372 373

    if fetch_var_name in global_block.vars:
        fetch_var = global_block.var(fetch_var_name)
    else:
        fetch_var = global_block.create_var(
            name=fetch_var_name,
            type=core.VarDesc.VarType.FETCH_LIST,
374 375
            persistable=True,
        )
R
Ruibiao Chen 已提交
376 377 378 379 380 381

    # prepend feed operators
    if not has_feed_operators(global_block, feed, feed_var_name):
        for i, name in enumerate(feed):
            if global_block.has_var(name):
                out = global_block.var(name)
382 383 384 385 386 387
                global_block._prepend_op(
                    type='feed',
                    inputs={'X': [feed_var]},
                    outputs={'Out': [out]},
                    attrs={'col': i},
                )
R
Ruibiao Chen 已提交
388 389 390
            else:
                warnings.warn(
                    "The variable %s is not found in program. It is not declared or is pruned."
391 392
                    % name
                )
R
Ruibiao Chen 已提交
393 394 395 396 397 398 399

    if use_fetch_v2:
        fetch_op = 'fetch_v2'
    else:
        fetch_op = 'fetch'

    # append fetch_operators
400 401 402
    if not has_fetch_operators(
        global_block, fetch_list, fetch_var_name, fetch_op
    ):
R
Ruibiao Chen 已提交
403 404
        for i, var in enumerate(fetch_list):
            assert isinstance(var, Variable) or isinstance(
405 406 407 408 409 410 411 412
                var, str
            ), "Wrong type for fetch_list[%s]: %s" % (i, type(var))
            global_block.append_op(
                type=fetch_op,
                inputs={'X': [var]},
                outputs={'Out': [fetch_var]},
                attrs={'col': i},
            )
R
Ruibiao Chen 已提交
413 414 415 416

    return tmp_program


417 418 419
def _apply_inplace_addto_pass(
    program, enable_inplace, enable_addto, skip_var_names
):
R
Ruibiao Chen 已提交
420 421 422 423 424 425 426 427
    use_cuda = True if core.is_compiled_with_cuda() else False

    attrs = {"use_cuda": use_cuda, "mem_opt_skip_vars": skip_var_names}
    attr_types = {"use_cuda": "bool", "mem_opt_skip_vars": "list[str]"}

    empty_startup_program = Program()
    if enable_inplace:
        pass_name = "buffer_shared_inplace_pass"
428 429 430
        _apply_pass(
            program, empty_startup_program, pass_name, attrs, attr_types
        )
R
Ruibiao Chen 已提交
431 432
    if enable_addto and use_cuda:
        pass_name = "inplace_addto_op_pass"
433 434 435
        _apply_pass(
            program, empty_startup_program, pass_name, attrs, attr_types
        )
R
Ruibiao Chen 已提交
436 437


W
Wu Yi 已提交
438
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
439
    """
C
chengduoZH 已提交
440 441 442
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
443
    Args:
444 445 446 447
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
448 449 450 451
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
452 453 454
    Returns:
       LodTensor|numpy.ndarray
    """
455
    assert isinstance(name, str)
X
xuwei06 已提交
456 457
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
458
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
459

460
    var = scope.find_var(_to_name_str(name))
461 462 463
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
464 465
        " program."
    )
X
xuwei06 已提交
466 467
    tensor = var.get_tensor()
    if return_numpy:
468
        tensor = as_numpy(tensor, copy=True)
X
xuwei06 已提交
469 470 471
    return tensor


X
polish  
Xin Pan 已提交
472
def _to_name_str(var):
473 474 475 476 477
    def _to_str(var):
        if isinstance(var, Variable):
            return var.desc.name()
        elif isinstance(var, str):
            return var
478
        elif isinstance(var, str):
479 480
            return str(var)
        elif isinstance(var, Operator):
481
            return str(id(var))
482 483 484 485 486 487 488 489 490 491
        else:
            raise TypeError(str(var) + " should be Variable, Operator or str")

    # NOTEz(zhiqiu): The item in fetch_list may be tuple returned by Optimizer.minimize(),
    # see comments in _split_optimize_ops_in_fetch_list for more details.
    if isinstance(var, tuple):
        var = var[0]
    if isinstance(var, list):
        s = [_to_str(item) for item in var]
        return ','.join(s)
X
polish  
Xin Pan 已提交
492
    else:
493
        return _to_str(var)
Q
qiaolongfei 已提交
494 495


496
def _is_enable_standalone_executor():
497 498 499 500 501
    return (
        framework._enable_standalone_executor_ is None
        or framework._enable_standalone_executor_
        in [1, '1', True, 'True', 'true']
    )
502 503


504 505
def _is_dy2st_enable_standalone_executor():
    return framework._dy2st_enable_standalone_executor_ in [
506 507 508 509 510
        1,
        '1',
        True,
        'True',
        'true',
511 512 513
    ]


514 515
def _prepare_fleet_executor():
    from ..distributed.fleet.proto import fleet_executor_desc_pb2
516

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
    trainer_endpoints_str = os.getenv("PADDLE_TRAINER_ENDPOINTS", "")
    trainer_endpoints = trainer_endpoints_str.split(',')
    fleet_exe_desc = fleet_executor_desc_pb2.FleetExecutorDesc()
    cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
    fleet_exe_desc.cur_rank = cur_rank
    nrank = len(trainer_endpoints)
    for rank, endpoint in enumerate(trainer_endpoints):
        rank_info = fleet_executor_desc_pb2.RankInfo()
        rank_info.rank = rank
        rank_info.ip_port = endpoint
        fleet_exe_desc.cluster_info.append(rank_info)
    fleet_exe = core.FleetExecutor(fleet_exe_desc.SerializeToString())
    return fleet_exe


L
Leo Chen 已提交
532 533
def _get_strong_program_cache_key_for_new_exe(program, feed, fetch_list):
    return program.desc.cached_hash_str() + _get_program_cache_key(
534 535
        feed, fetch_list
    )
L
Leo Chen 已提交
536 537


538
def _get_strong_program_cache_key(program, feed, fetch_list):
L
Leo Chen 已提交
539
    # TODO(zhiqiu): use hash_str to generate cache key as above
540 541 542 543 544 545
    def _get_varname_from_block(block):
        block_str = []
        for var_name in list(block.vars.keys()):
            block_str.append(var_name)
        return "\n".join(block_str)

546 547 548 549 550 551 552 553 554 555
    inner_program = (
        program._program
        if isinstance(program, compiler.CompiledProgram)
        else program
    )
    return (
        _get_varname_from_block(inner_program.blocks[0])
        + str(id(program))
        + _get_program_cache_key(feed, fetch_list)
    )
556 557


X
polish  
Xin Pan 已提交
558
def _get_program_cache_key(feed, fetch_list):
559 560 561 562 563 564
    feed_var_names = []
    if isinstance(feed, dict):
        feed_var_names = list(feed.keys())
    elif isinstance(feed, list) or isinstance(feed, tuple):
        for i, each in enumerate(feed):
            feed_var_names += list(each.keys())
X
polish  
Xin Pan 已提交
565
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
566 567 568
    return str(feed_var_names + fetch_var_names)


569
def _as_lodtensor(data, place, dtype=None):
W
Wu Yi 已提交
570
    """
571 572
    Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
W
Wu Yi 已提交
573

574 575 576 577 578 579 580
    Examples:
        >>> import paddle.fluid as fluid
        >>> place = fluid.CPUPlace()
        >>> exe = fluid.executor(place)
        >>> data = np.array(size=(100, 200, 300))
        >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
        >>>     ...
W
Wu Yi 已提交
581

582 583 584 585
    Args:
        data(numpy.ndarray|list|tuple|scalar): a instance of array, scalar, list or tuple
        data(core.Place): the place of created tensor
        dtype(core.VarDesc.VarType|str): the expected data type of created tensor
W
Wu Yi 已提交
586

587 588 589 590
    Returns:
        LoDTensor
    """
    # NOTE(zhiqiu): convert python builtin, like float, int, and list, to numpy ndarray
591
    if not isinstance(data, np.ndarray):
592 593 594 595 596 597 598 599
        assert (
            dtype is not None
        ), 'The dtype should be given when feed data is not np.ndarray'
        dtype = (
            convert_dtype(dtype)
            if isinstance(dtype, core.VarDesc.VarType)
            else dtype
        )
600 601
        if np.isscalar(data):
            data = np.array([data]).astype(dtype)
602 603
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
604
            if data.dtype == np.object_:
605 606 607 608 609 610 611 612 613
                raise TypeError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                    "this means the input data contains nested lists with different lengths. "
                    "Please consider using 'fluid.create_lod_tensor' to convert it to a LoD-Tensor."
                )
            data = data.astype(dtype)
        else:
            raise TypeError(
                "Convert data of type {} to Tensor is not supported".format(
614 615 616
                    type(data)
                )
            )
617

618
    # convert numpy.ndarray to tensor
W
Wu Yi 已提交
619 620 621 622 623
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


624
class FetchHandler(object):
D
Dong Daxiang 已提交
625 626 627
    def __init__(self, var_dict=None, period_secs=60):
        assert var_dict != None
        self.var_dict = var_dict
628 629
        self.period_secs = period_secs

D
Dong Daxiang 已提交
630 631 632 633 634
    def handler(self, res_dict):
        for key in res_dict:
            if type(res_dict[key]) is np.ndarray:
                sys.stdout.write("{}[0]: {} ".format(key, res_dict[key][0]))
        sys.stdout.write("\n")
635 636 637

    @staticmethod
    def help():
638 639
        print(
            """
D
Dong Daxiang 已提交
640 641 642 643 644 645 646 647
class FetchHandlerExample(FetchHandler):
    def handler(self, res_dict):
        print(res_dict["auc"])
        print("auc: {}, {}".format(res_dict["auc"], time.ctime()))

auc = Variable()
var_dict = {"auc": auc}
handler = FetchHandlerExample(var_dict=var_dict)
648 649
"""
        )
650 651


652
class _StandaloneExecutor(object):
653
    def __init__(self, place, main_program, scope):
654 655 656
        self._place = core.Place()
        self._place.set_place(place)
        self._main_program = main_program
657
        self._scope = scope
658 659
        self._new_exe = self._create_new_executor()

660
    def run(self, scope, feed_names, fetch_list, return_numpy=True):
661 662
        """
        Args:
663
            feed_names(list): This parameter represents the input names of the model.
664
            fetch_list(list): This parameter represents the Tensors that need to be returned
665
                after the model runs. The default is None.
666 667 668 669 670 671
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
        """
        fetch_list = self._check_fetch(fetch_list)

672 673 674
        tensors = self._new_exe.run(
            scope, feed_names, fetch_list
        )._move_to_list()
675 676 677 678 679 680
        if return_numpy:
            return as_numpy(tensors, copy=True)
        else:
            return tensors

    def _create_new_executor(self):
L
Leo Chen 已提交
681
        new_exe = core.StandaloneExecutor(self._place, self._main_program.desc)
682 683 684 685 686

        return new_exe

    def _update_feed(self, feed):
        """
687
        Update the feed dict, remove the feed item which is pruned in program.
688 689

        Notes: This is a very low level API. Users should not use this API
690
        directly.
691 692 693 694 695 696 697 698 699

        Args:
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        if feed is None:
            feed = {}
700 701 702 703 704 705
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

        if not isinstance(feed, dict):
            raise TypeError(
706 707 708
                "feed requires dict as its Parameter. But you passed in %s"
                % (type(feed))
            )
709 710 711 712 713 714 715

        global_block = self._main_program.global_block()
        for feed_name in list(feed.keys()):
            if not global_block.has_var(feed_name):
                feed.pop(feed_name)
                warnings.warn(
                    "The variable %s is not found in program. It is not declared or is pruned."
716 717
                    % feed_name
                )
718 719 720 721 722 723 724 725 726 727 728 729 730

        return feed

    def _check_fetch(self, fetch_list):
        if fetch_list is None:
            fetch_list = []

        res = []
        for fetch_var in fetch_list:
            if isinstance(fetch_var, Variable):
                fetch_var = fetch_var.name
            elif not isinstance(fetch_var, str):
                raise TypeError(
731 732 733 734
                    "Required fetch_var shall be str|Variable, but received {}".format(
                        type(fetch_var).__name__
                    )
                )
735 736 737 738 739 740

            res.append(fetch_var)
        return res


class _ExecutorCache(object):
R
Ruibiao Chen 已提交
741
    class _CachedData(object):
742 743 744 745 746 747 748 749 750 751
        def __init__(
            self,
            program,
            feed,
            fetch_list,
            feed_var_name,
            fetch_var_name,
            place,
            scope,
        ):
R
Ruibiao Chen 已提交
752 753 754 755 756 757 758 759 760 761 762
            self.program = program
            self.feed = feed
            self.fetch_list = fetch_list
            self.feed_var_name = feed_var_name
            self.fetch_var_name = fetch_var_name
            self.place = place
            self.scope = scope

            # NOTE(Ruibiao): Not all changeable item is considered for key at present,
            # ONLY: program, feed, and fetch_list
            if isinstance(self.program, compiler.CompiledProgram):
763 764 765 766
                if not self.program._program:
                    # The program holds no _program, maybe it is constructed by graph.
                    # Convert graph to program in order to generate key.
                    self.program._program = framework.IrGraph(
767 768
                        self.program._graph
                    ).to_program()
R
Ruibiao Chen 已提交
769 770
                self.key = hash(
                    _get_strong_program_cache_key_for_new_exe(
771 772 773
                        self.program._program, feed, fetch_list
                    )
                )
R
Ruibiao Chen 已提交
774 775 776
            else:
                self.key = hash(
                    _get_strong_program_cache_key_for_new_exe(
777 778 779
                        self.program, feed, fetch_list
                    )
                )
R
Ruibiao Chen 已提交
780 781

        def __eq__(self, other):
782 783 784 785
            return (
                isinstance(other, _ExecutorCache._CachedData)
                and self.key == other.key
            )
R
Ruibiao Chen 已提交
786 787 788 789 790 791 792 793 794

        def __hash__(self):
            return self.key

    def __init__(self):
        # NOTE(Ruibiao): Wrap the lru_cache in constructor so that the cache is local to
        # the _ExecutorCache instance, otherwise a global cache may not be released after
        # the Executor instance deleted
        self._get_cached_program_and_executor = lru_cache(maxsize=8)(
795 796
            self._get_program_and_executor
        )
R
Ruibiao Chen 已提交
797 798 799 800

    def clear(self):
        self._get_cached_program_and_executor.cache_clear()

801 802 803 804 805 806 807 808 809 810
    def get_program_and_executor(
        self,
        program,
        feed,
        fetch_list,
        feed_var_name,
        fetch_var_name,
        place,
        scope,
    ):
R
Ruibiao Chen 已提交
811
        return self._get_cached_program_and_executor(
812 813 814 815 816 817 818 819 820 821
            self._CachedData(
                program,
                feed,
                fetch_list,
                feed_var_name,
                fetch_var_name,
                place,
                scope,
            )
        )
R
Ruibiao Chen 已提交
822 823 824

    def _get_program_and_executor(self, cached_data):
        program = cached_data.program
825 826 827 828 829
        inner_program = (
            program._program
            if isinstance(program, compiler.CompiledProgram)
            else program
        )
R
Ruibiao Chen 已提交
830 831 832 833 834 835 836 837 838
        feed = cached_data.feed
        fetch_list = cached_data.fetch_list
        feed_var_name = cached_data.feed_var_name
        fetch_var_name = cached_data.fetch_var_name
        place = cached_data.place
        scope = cached_data.scope

        # To apply IR pass, compile the Program to IrGraph and convert it back to Program
        if isinstance(program, compiler.CompiledProgram) or isinstance(
839 840 841 842 843 844 845
            program._graph, compiler.CompiledProgram
        ):
            compiled_program = (
                program
                if isinstance(program, compiler.CompiledProgram)
                else program._graph
            )
R
Ruibiao Chen 已提交
846 847 848 849 850 851 852 853 854 855 856 857 858 859
            build_strategy = compiled_program._build_strategy
            # print(f"Program before convert:\n {inner_program}", flush=True)
            compiled_program._compile(scope, place)
            ir_graph = framework.IrGraph(compiled_program._graph)
            converted_program = ir_graph.to_program()

            if hasattr(inner_program, 'lr_sheduler'):
                converted_program.lr_sheduler = inner_program.lr_sheduler

            inner_program = converted_program
            # print(f"Program after convert:\n {inner_program}", flush=True)
        else:
            build_strategy = None
            from paddle.incubate.autograd import prim_enabled, prim2orig
860

R
Ruibiao Chen 已提交
861 862 863 864 865
            if prim_enabled() and program == default_main_program():
                prim2orig()

            inner_program = program

866 867 868 869 870 871 872 873
        program = _add_feed_fetch_ops(
            program=inner_program,
            feed=feed,
            fetch_list=fetch_list,
            feed_var_name=feed_var_name,
            fetch_var_name=fetch_var_name,
            use_fetch_v2=True,
        )
R
Ruibiao Chen 已提交
874

875 876 877 878 879
        if (
            os.environ.get('FLAGS_CONVERT_GRAPH_TO_PROGRAM', None)
            in [1, '1', True, 'True', 'true']
            and not program._is_start_up_program_
        ):
880 881 882 883 884 885 886
            if program.num_blocks > 1:
                # If there are multiple blocks in the program, subblock will not be executed with the new executor in temporary
                logging.warning("There are more than 1 block in program.")
            elif program.num_blocks == 1:
                logging.warning("There are 1 block in program.")
            else:
                logging.warning("There are no block in program.")
R
Ruibiao Chen 已提交
887 888 889

        # standalone executor will apply buffer_shared_inplace_pass and
        # inplace_addto_op_pass to program according to build_strategy
890 891 892 893 894 895 896 897 898 899
        enable_inplace = (
            True
            if build_strategy is None or build_strategy.enable_inplace
            else False
        )
        enable_addto = (
            True
            if build_strategy is not None and build_strategy.enable_addto
            else False
        )
R
Ruibiao Chen 已提交
900 901 902
        if enable_inplace or enable_addto:
            # inplace should skip feed and fetch var
            skip_var_names = eval(_get_program_cache_key(feed, fetch_list))
903 904 905
            _apply_inplace_addto_pass(
                program, enable_inplace, enable_addto, skip_var_names
            )
R
Ruibiao Chen 已提交
906 907 908 909

        new_program = program.clone()
        new_exe = _StandaloneExecutor(place, new_program, scope)
        return new_program, new_exe
910 911


Y
Yu Yang 已提交
912
class Executor(object):
913
    """
914 915
    :api_attr: Static Graph

916
    An Executor in Python, supports single/multiple-GPU running,
917
    and single/multiple-CPU running.
C
chengduo 已提交
918 919

    Args:
920
        place(paddle.CPUPlace()|paddle.CUDAPlace(n)|str|None): This parameter represents
921 922 923 924
            which device the executor runs on. When this parameter is None, PaddlePaddle
            will set the default device according to its installation version. If Paddle
            is CPU version, the default device would be set to `CPUPlace()` . If Paddle is
            GPU version, the default device would be set to `CUDAPlace(0)` . Default is None.
925
            If ``place`` is string, it can be ``cpu``, and ``gpu:x``, where ``x``
926 927
            is the index of the GPUs. Note: users only pass one Place or None to initialize
            Executor when using multiple-cards. Other APIs will override the cards. See
928
            `document for multiple-cards <https://www.paddlepaddle.org.cn/documentation/docs/en/develop/guides/01_paddle2.0_introduction/update_en.html#stand-alone-multi-card-launch>`_
C
chengduo 已提交
929 930 931

    Returns:
        Executor
S
Fix doc  
sneaxiy 已提交
932

933
    Examples:
S
Fix doc  
sneaxiy 已提交
934 935
        .. code-block:: python

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
            import paddle
            import numpy
            import os

            # Executor is only used in static graph mode
            paddle.enable_static()

            # Set place explicitly.
            # use_cuda = True
            # place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            # exe = paddle.static.Executor(place)

            # If you don't set place, PaddlePaddle sets the default device.
            exe = paddle.static.Executor()

            train_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(train_program, startup_program):
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)

            # Run the startup program once and only once.
            # Not need to optimize/compile the startup program.
            exe.run(startup_program)

            # Run the main program directly without compile.
            x = numpy.random.random(size=(10, 1)).astype('float32')
            loss_data, = exe.run(train_program, feed={"X": x}, fetch_list=[loss.name])

            # Or, compiled the program and run. See `CompiledProgram`
            # for more details.
            # NOTE: If you use CPU to run the program or Paddle is
            # CPU version, you need to specify the CPU_NUM, otherwise,
            # PaddlePaddle will use all the number of the logic core as
            # the CPU_NUM, in that case, the batch size of the input
            # should be greater than CPU_NUM, if not, the process will be
            # failed by an exception.

            # Set place explicitly.
            # if not use_cuda:
            #     os.environ['CPU_NUM'] = str(2)

            # If you don't set place and PaddlePaddle is CPU version
            os.environ['CPU_NUM'] = str(2)

            compiled_prog = paddle.static.CompiledProgram(
                train_program).with_data_parallel(loss_name=loss.name)
            loss_data, = exe.run(compiled_prog, feed={"X": x}, fetch_list=[loss.name])

987 988
    """

989 990
    def __init__(self, place=None):
        if place is None:
991 992
            expected_place = framework._current_expected_place()
            self.place = expected_place
993
        else:
994
            self.place = framework._get_paddle_place(place)
Q
qiaolongfei 已提交
995
        self.program_caches = dict()
996
        self.ctx_caches = dict()
997
        self.trainer_caches = dict()
998 999
        self.scope_caches = dict()
        self.var_caches = dict()
1000
        self.pruned_program_caches = dict()
1001 1002 1003
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
1004
        self._closed = False
1005
        self.pruned_program_scope_caches = dict()
1006
        self._prepare_to_run_called = False
D
dzhwinter 已提交
1007

1008
        self._auto_checkpoint_name = unique_name.generate(
1009 1010
            "__auto_checkpoint_executor__"
        )
1011

1012 1013
        # NOTE: Whether to use experimental executor `StandaloneExecutor`.
        self._enable_interpreter_core = _is_enable_standalone_executor()
R
Ruibiao Chen 已提交
1014
        self._executor_cache = _ExecutorCache()
1015

1016
        self._fleet_executor = None
1017 1018 1019
        # TODO(liyurui): This option will be removed and always true when the functionality
        # of fleet executor with standalone executor is ready.
        self._fleet_executor_with_standalone = False
1020

R
Ruibiao Chen 已提交
1021 1022 1023 1024 1025 1026
    def __del__(self):
        # NOTE(Ruibiao): The manually call of clear is required. Because in Python, executor_cache
        # may not immediately destructed after Executor instance deleted (so does not the _StandaloneExecutor),
        # that brings errors to mkl-dnn unit tests (see ClearMKLDNNCache in interpretercore.cc for why).
        self._executor_cache.clear()

1027 1028 1029
    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

1030 1031 1032
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

1033 1034 1035
    def _get_trainer_cache(self, program_cache_key):
        return self.trainer_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
1036 1037 1038 1039 1040 1041
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
    def _get_pruned_program_cache(self, program_cache_key):
        return self.pruned_program_caches.get(program_cache_key, None)

    def _add_pruned_program_cache(self, program_cache_key, program):
        self.pruned_program_caches[program_cache_key] = program

    def _get_pruned_program_scope_cache(self, program_cache_key):
        return self.pruned_program_scope_caches.get(program_cache_key, None)

    def _add_pruned_program_scope_cache(self, program_cache_key, program):
        self.pruned_program_scope_caches[program_cache_key] = program

1054 1055 1056
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

1057 1058 1059
    def _add_trainer_cache(self, trainer_cache_key, ctx):
        self.trainer_caches[trainer_cache_key] = ctx

1060 1061 1062
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

1063 1064 1065 1066 1067 1068 1069
    # just for testing, will be removed later
    @lru_cache()
    def _log_force_set_program_cache(self, use_program_cache):
        logging.warning(
            f"use_program_cache is force set to {use_program_cache} by FLAGS_FORCE_USE_PROGRAM_CACHE"
        )

Q
Qiao Longfei 已提交
1070 1071
    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
1072 1073
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
1074 1075 1076
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
H
Huihuang Zheng 已提交
1077
                var = global_block.var(feed_target_name)
S
Steffy-zxf 已提交
1078 1079
                if var.dtype != core.VarDesc.VarType.STRINGS:
                    if not isinstance(cur_feed, core.LoDTensor):
1080 1081 1082
                        cur_feed = _as_lodtensor(
                            cur_feed, self.place, var.dtype
                        )
S
Steffy-zxf 已提交
1083
                    check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
1084 1085 1086 1087 1088 1089 1090 1091
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
1092
            for i in range(len(fetch_list))
Q
Qiao Longfei 已提交
1093 1094 1095
        ]
        return outs

1096 1097
    @classmethod
    def _split_optimize_ops_in_fetch_list(cls, fetch_list):
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
        """
        Split optimize_ops from fetch_list, which provided to specify program prunning.
        Args:
            fetch_list(list): The original fetch_list.
            Possible types of fetch_list are:
                fetch_list = ['loss']
                fetch_list = [[sgd, sgd], 'loss']
                fetch_list = [([sgd, sgd], [(param, grad)]), 'loss']

        Returns:
            optimize_ops(list): The optimize operators splited from fetch_list.
1109
            fetch_list(list):  The updated fetch_list which does not contain optimize operators.
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
        """
        _optimize_ops = []
        _fetch_list = []

        def _get_targets(_optimize_ops, _fetch_list, item):
            if isinstance(item, Operator):
                if item._is_optimize_op():
                    _optimize_ops.append(item)
                else:
                    raise TypeError(
1120 1121 1122 1123 1124 1125 1126
                        "The operator in fetch_list is not an optimize_op"
                    )
            elif (
                isinstance(item, Variable)
                or isinstance(item, str)
                or isinstance(item, str)
            ):
1127 1128 1129
                _fetch_list.append(item)
            else:
                raise TypeError(
1130
                    "The item in fetch_list should be str, variable or optimize_op, but received %s.",
1131 1132
                    type(item),
                )
1133

1134
        for index, item in enumerate(fetch_list):
1135 1136 1137 1138 1139 1140 1141
            # NOTE(zhiqiu): to support (optimizer_ops, param_and_grads) and optimizer_ops in fetch_list
            # we should handle tuple and list in fetch_list.
            # TODO(zhiqiu): find a better way to handle that.
            if isinstance(item, list):
                for i in item:
                    _get_targets(_optimize_ops, _fetch_list, i)
            elif isinstance(item, tuple):
1142 1143
                if not isinstance(item[0], (list, tuple)):
                    raise TypeError(
1144 1145 1146 1147
                        "Requires fetch_list[{}][0] shall be one of (list, tuple) when type(fetch_list[{}]) is `tuple`, but received fetch_list[{}][0]'s type is `{}`.".format(
                            index, index, index, type(item[0]).__name__
                        )
                    )
1148 1149 1150 1151 1152 1153 1154
                for i in item[0]:
                    _get_targets(_optimize_ops, _fetch_list, i)
            else:
                _get_targets(_optimize_ops, _fetch_list, item)

        return _fetch_list, _optimize_ops

1155
    @classmethod
1156 1157 1158
    def _prune_program(
        cls, program, feed=None, fetch_list=None, optimize_ops=None
    ):
1159 1160
        """
        Prune operators and variables which are not needed to generate
1161 1162 1163
        :code:`fetch_list` and optimize operators.
        Prune operators and variables which are needed
        to generate variables to be feeded.
1164 1165

        Notes: This is a very low level API. Users should not use this API
1166
        directly.
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216

        Args:
            program(Program): the origin program
            feed(list|dict): feed dict or list.
            fetch_list(list|Variable): A list of variables need to be fetched
            optimize_ops(list[Operator]): A list of optimizer operators

        Returns:
            Program:  A new, pruned program.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                origin_program = program._program
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph, which can't be pruned yet."
                )
                return
        else:
            origin_program = program

        feed_names = []
        if isinstance(feed, dict):
            feed_names = list(feed.keys())
        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                feed_names += list(each.keys())

        # if optimize_ops is [], all optimize ops in the program is used.
        if not optimize_ops:
            for block in origin_program.blocks:
                for op in block.ops:
                    if op._is_optimize_op():
                        optimize_ops.append(op)

        targets = fetch_list + optimize_ops
        pruned_program = origin_program._prune_with_input(feed_names, targets)

        if compiled:
            # for compiled program, update the underlying program, re-generate graph,
            # and reset the flag so it can be compiled again.
            program._program = pruned_program
            program._graph = core.Graph(pruned_program.desc)
            program._compiled = False
        else:
            program = pruned_program

        return program

1217 1218
    @classmethod
    def _update_feed(cls, program, feed):
1219
        """
1220
        Update the feed dict, remove the feed item which is pruned in program.
1221 1222

        Notes: This is a very low level API. Users should not use this API
1223
        directly.
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239

        Args:
            program(Program): the pruned program.
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                global_block = program._program.global_block()
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph."
                )
1240
                return feed
1241 1242 1243 1244 1245 1246 1247 1248 1249
        else:
            global_block = program.global_block()

        if isinstance(feed, dict):
            for feed_name in list(feed.keys()):
                if not global_block.has_var(feed_name):
                    feed.pop(feed_name)
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
1250 1251
                        % feed_name
                    )
1252 1253 1254 1255 1256 1257 1258 1259

        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                for feed_name in list(each.keys()):
                    if not global_block.has_var(feed_name):
                        each.pop(feed_name)
                        warnings.warn(
                            "The variable %s is not found in program. It is not declared or is pruned."
1260 1261
                            % feed_name
                        )
1262 1263
        return feed

S
Fix doc  
sneaxiy 已提交
1264 1265 1266 1267 1268 1269
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
1270 1271
    def close(self):
        """
C
chengduo 已提交
1272 1273 1274
        Close the executor. This interface is used for distributed training (PServers mode).
        This executor can not be used after calling the interface, because
        this interface releases resources associated with the current Trainer.
Y
Yancey1989 已提交
1275

C
chengduo 已提交
1276 1277
        Returns:
            None
1278 1279 1280 1281

        Examples:
            .. code-block:: python

1282
              import paddle
1283

1284 1285
              cpu = paddle.CPUPlace()
              exe = paddle.static.Executor(cpu)
1286 1287
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
1288
        """
1289
        if not self._closed:
Y
Yancey1989 已提交
1290
            self._closed = True
1291 1292 1293 1294
            for k, trainer_instance in self.trainer_caches.items():
                self._default_executor.release_trainer(trainer_instance)
                del trainer_instance
            self._default_executor.close()
Y
Yancey1989 已提交
1295

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
    def _run_parallel(
        self,
        program,
        scope,
        feed,
        fetch_list,
        fetch_var_name,
        return_numpy,
        return_merged,
    ):
1306
        from paddle.optimizer.lr import LRScheduler
1307

1308
        exe = program._executor
H
Huihuang Zheng 已提交
1309 1310 1311 1312 1313
        # TODO(zhenghuihuang): quantization uses Graph in CompiledProgram
        # instead of program. We will add support for checking Vars in Graph
        need_check_feed = program._program is not None
        if need_check_feed:
            global_block = program._program.global_block()
1314 1315 1316 1317
        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
1318
                var = global_block.var(feed_name) if need_check_feed else None
1319
                if not isinstance(feed_tensor, core.LoDTensor):
1320
                    # always set to CPU place, since the tensor need to be split
1321
                    # it is fast in CPU
1322 1323 1324 1325 1326
                    feed_tensor = _as_lodtensor(
                        feed[feed_name],
                        core.CPUPlace(),
                        var.dtype if var else None,
                    )
H
Huihuang Zheng 已提交
1327
                if need_check_feed:
1328
                    check_feed_shape_type(var, feed_tensor, exe.device_count())
1329
                feed_tensor_dict[feed_name] = feed_tensor
1330
            exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict)
1331 1332 1333 1334 1335 1336

        elif isinstance(feed, list) or isinstance(feed, tuple):
            res = list()
            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
1337 1338
                        "Each element of feed list should be a dict"
                    )
1339 1340 1341
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
1342 1343 1344
                    var = (
                        global_block.var(feed_name) if need_check_feed else None
                    )
1345
                    if not isinstance(tensor, core.LoDTensor):
1346 1347 1348 1349 1350
                        tensor = _as_lodtensor(
                            each[feed_name],
                            program._places[i],
                            var.dtype if var else None,
                        )
H
Huihuang Zheng 已提交
1351 1352
                    if need_check_feed:
                        check_feed_shape_type(var, tensor)
1353 1354
                    res_dict[feed_name] = tensor
                res.append(res_dict)
1355

1356
            exe.feed_tensors_into_local_scopes(res)
1357

1358 1359
        if hasattr(program._program, 'lr_sheduler'):
            lr_sheduler = program._program.lr_sheduler
1360
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
1361 1362 1363
            lr_value = lr_sheduler()
            lr_var = program._program.global_block().vars[lr_sheduler._var_name]
            lr_tensor = _as_lodtensor(lr_value, core.CPUPlace(), lr_var.dtype)
1364 1365 1366 1367 1368 1369
            if core.is_cuda_graph_capturing():
                warnings.warn(
                    "Caution!!! When capturing CUDA Graph, the learning rate scheduler would not "
                    "take any effect! Please set the learning rate manually before each batch!"
                )
            else:
1370
                exe.feed_and_split_tensor_into_local_scopes(
1371 1372
                    {lr_sheduler._var_name: lr_tensor}
                )
1373

X
polish  
Xin Pan 已提交
1374
        fetch_var_names = list(map(_to_name_str, fetch_list))
Z
Zhen Wang 已提交
1375
        tensors = exe.run(fetch_var_names, return_merged)._move_to_list()
1376
        return as_numpy(tensors) if return_numpy else tensors
1377

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
    def run(
        self,
        program=None,
        feed=None,
        fetch_list=None,
        feed_var_name='feed',
        fetch_var_name='fetch',
        scope=None,
        return_numpy=True,
        use_program_cache=False,
        return_merged=True,
        use_prune=False,
    ):
1391
        """
C
chengduo 已提交
1392 1393 1394
        Run the specified :code:`Program` or :code:`CompiledProgram`. It should be noted that the executor
        will execute all the operators in :code:`Program` or :code:`CompiledProgram` without pruning some
        operators of the :code:`Program` or :code:`CompiledProgram` according to fetch_list. And you could
1395 1396
        specify the scope to store the :code:`Tensor` during the executor running if the scope
        is not set, the executor will use the global scope, i.e. :code:`paddle.static.global_scope()`.
1397

C
chengduo 已提交
1398 1399 1400
        Args:
            program(Program|CompiledProgram): This parameter represents the :code:`Program` or
                :code:`CompiledProgram` to be executed. If this parameter is not provided, that
1401
                parameter is None, the program will be set to :code:`paddle.static.default_main_program()`.
C
chengduo 已提交
1402
                The default is None.
1403
            feed(list|dict): This parameter represents the input Tensors of the model.
C
chengduo 已提交
1404
                If it is single card training, the feed is dict type, and if it is multi-card
1405
                training, the parameter feed can be dict or list of Tensors. If the
C
chengduo 已提交
1406 1407 1408 1409 1410 1411 1412
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
1413
            fetch_list(list): This parameter represents the Tensors that need to be returned
1414
                after the model runs. The default is None.
1415
            feed_var_name(str): This parameter represents the name of the input Tensor of
C
chengduo 已提交
1416
                the feed operator. The default is "feed".
1417
            fetch_var_name(str): This parameter represents the name of the output Tensor of
C
chengduo 已提交
1418
                the fetch operator. The default is "fetch".
1419
            scope(Scope): the scope used to run this program, you can switch
1420 1421 1422
                it to different scope. default is :code:`paddle.static.global_scope()`
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
C
chengduo 已提交
1423 1424 1425
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
            use_program_cache(bool): This parameter indicates whether the input :code:`Program` is cached.
                If the parameter is True, the model may run faster in the following cases:
1426 1427
                the input program is :code:`paddle.static.Program`, and the parameters(program, feed Tensor name
                and fetch_list Tensor) of this interface remains unchanged during running.
C
chengduo 已提交
1428
                The default is False.
1429
            return_merged(bool): This parameter indicates whether fetched Tensors (the Tensors
Z
Zhen Wang 已提交
1430 1431
                specified in the fetch list) should be merged according to the execution device dimension.
                If :code:`return_merged` is False, the type of the return value is a two-dimensional list
1432 1433 1434 1435 1436 1437 1438 1439
                of :code:`Tensor` / :code:`LoDTensorArray` ( :code:`return_numpy` is False) or a two-dimensional
                list of :code:`numpy.ndarray` ( :code:`return_numpy` is True). If :code:`return_merged` is True,
                the type of the return value is an one-dimensional list of :code:`Tensor` / :code:`LoDTensorArray`
                ( :code:`return_numpy` is False) or an one-dimensional list of :code:`numpy.ndarray`
                ( :code:`return_numpy` is True). Please see Examples 2 for more details. If the lengths of fetched
                results are variant, please set :code:`return_merged` as False, which denotes that the fetched
                results will not be merged. The default is True, but it is just for the compatibility, and may
                use False as default value in the future version.
1440
            use_prune(bool): This parameter indicates whether the input :code:`Program` will be pruned.
1441
                If the parameter is True, the program will be pruned accroding to the given feed and fetch_list,
1442 1443
                which means the operators and variables in program that generate :code:`feed` and are not
                needed to generate :code:`fetch_list` will be pruned. The default is False, which means the
1444
                program will not pruned and all the operators and variables will be executed during running.
1445
                Note that if the tuple returned from :code:`Optimizer.minimize()` is passed to :code:`fetch_list`,
1446
                :code:`use_prune` will be overrided to True, and the program will be pruned.
1447

C
chengduo 已提交
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
        Returns:

            List: The fetched result list.

        NOTES:
            1. If it is multi-card running and the feed parameter is dict type, the input data
               will be evenly sent to different cards. For example, using two GPUs to run the model,
               the input sample number is 3, that is, [0, 1, 2], the sample number on GPU0 is 1,
               that is, [0], and the sample number on GPU1 is 2, that is, [1, 2].
               If the number of samples is less than the number of devices, the program will
               throw an exception, so when running the model, you should make sure that the
               number of samples of the last batch of the data set should be greater than the
               number of CPU cores or GPU cards, if it is less than, it is recommended that
               the batch be discarded.
            2. If the number of CPU cores or GPU cards available is greater than 1, the fetch
1463 1464
               results are spliced together in dimension 0 for the same Tensor values
               (Tensors in fetch_list) on different devices.
1465

1466
        Examples:
1467
            .. code-block:: python
1468
                :name: code-example-1
1469

1470 1471
                import paddle
                import numpy
1472

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
                # First create the Executor.
                paddle.enable_static()
                place = paddle.CPUPlace()  # paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)

                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                adam = paddle.optimizer.Adam()
                adam.minimize(loss)
                i = paddle.zeros(shape=[1], dtype='int64')
                array = paddle.fluid.layers.array_write(x=loss, i=i)
1485

1486 1487
                # Run the startup program once and only once.
                exe.run(paddle.static.default_startup_program())
1488

1489 1490 1491 1492 1493
                x = numpy.random.random(size=(10, 1)).astype('float32')
                loss_val, array_val = exe.run(feed={'X': x},
                                              fetch_list=[loss.name, array.name])
                print(array_val)
                # [array([0.02153828], dtype=float32)]
Z
Zhen Wang 已提交
1494 1495

            .. code-block:: python
1496
                :name: code-example-2
Z
Zhen Wang 已提交
1497

1498
                # required: gpu
1499
                import paddle
Z
Zhen Wang 已提交
1500 1501 1502
                import numpy as np

                # First create the Executor.
1503 1504 1505
                paddle.enable_static()
                place = paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)
Z
Zhen Wang 已提交
1506

1507
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
Z
Zhen Wang 已提交
1508
                class_dim = 2
1509 1510 1511
                prediction = paddle.static.nn.fc(data, class_dim)
                loss = paddle.mean(prediction)
                adam = paddle.optimizer.Adam()
Z
Zhen Wang 已提交
1512 1513 1514
                adam.minimize(loss)

                # Run the startup program once and only once.
1515 1516 1517 1518 1519
                exe.run(paddle.static.default_startup_program())
                build_strategy = paddle.static.BuildStrategy()
                binary = paddle.static.CompiledProgram(
                    paddle.static.default_main_program()).with_data_parallel(
                        loss_name=loss.name, build_strategy=build_strategy)
Z
Zhen Wang 已提交
1520 1521 1522 1523
                batch_size = 6
                x = np.random.random(size=(batch_size, 1)).astype('float32')

                # Set return_merged as False to fetch unmerged results:
1524 1525 1526 1527
                unmerged_prediction, = exe.run(binary,
                                               feed={'X': x},
                                               fetch_list=[prediction.name],
                                               return_merged=False)
Z
Zhen Wang 已提交
1528 1529 1530 1531
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (2, 3, class_dim). The first dimension value of the printed result is the number of used
                # GPU cards, and the second dimension value is the quotient of batch_size and the
                # number of used GPU cards.
1532 1533
                print("The unmerged prediction shape: {}".format(
                    np.array(unmerged_prediction).shape))
Z
Zhen Wang 已提交
1534 1535 1536
                print(unmerged_prediction)

                # Set return_merged as True to fetch merged results:
1537 1538 1539 1540
                merged_prediction, = exe.run(binary,
                                             feed={'X': x},
                                             fetch_list=[prediction.name],
                                             return_merged=True)
Z
Zhen Wang 已提交
1541 1542
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (6, class_dim). The first dimension value of the printed result is the batch_size.
1543 1544
                print("The merged prediction shape: {}".format(
                    np.array(merged_prediction).shape))
Z
Zhen Wang 已提交
1545
                print(merged_prediction)
1546

Z
Zhen Wang 已提交
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
                # Out:
                # The unmerged prediction shape: (2, 3, 2)
                # [array([[-0.37620035, -0.19752218],
                #        [-0.3561043 , -0.18697084],
                #        [-0.24129935, -0.12669306]], dtype=float32), array([[-0.24489994, -0.12858354],
                #        [-0.49041364, -0.25748932],
                #        [-0.44331917, -0.23276259]], dtype=float32)]
                # The merged prediction shape: (6, 2)
                # [[-0.37789783 -0.19921964]
                #  [-0.3577645  -0.18863106]
                #  [-0.24274671 -0.12814042]
                #  [-0.24635398 -0.13003758]
                #  [-0.49232286 -0.25939852]
                #  [-0.44514108 -0.2345845 ]]
1561

1562
        """
1563 1564
        # Temporary FLAGS, just for testing the performance of program cache
        force_use_program_cache = os.environ.get(
1565 1566
            'FLAGS_FORCE_USE_PROGRAM_CACHE', None
        )
1567 1568
        if force_use_program_cache is not None:
            use_program_cache = force_use_program_cache in [
1569 1570 1571 1572 1573
                1,
                '1',
                True,
                'True',
                'true',
1574
            ]
1575
            self._log_force_set_program_cache(use_program_cache)
1576

C
chengduo 已提交
1577
        try:
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
            res = self._run_impl(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache,
                use_prune=use_prune,
                return_merged=return_merged,
            )
1590 1591
            core.update_autotune_status()
            return res
C
chengduo 已提交
1592
        except Exception as e:
1593
            six.reraise(*sys.exc_info())
C
chengduo 已提交
1594

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
    def _run_impl(
        self,
        program,
        feed,
        fetch_list,
        feed_var_name,
        fetch_var_name,
        scope,
        return_numpy,
        use_program_cache,
        return_merged,
        use_prune,
    ):
Y
Yancey1989 已提交
1608 1609 1610
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
1611
        use_default_main_program = program is None
1612 1613
        if program is None:
            program = default_main_program()
1614

1615
        fetch_list = self._check_fetch_list(fetch_list)
1616 1617

        if isinstance(program, Program) and program._pipeline_opt:
L
LiYuRio 已提交
1618
            if "fleet_opt" in program._pipeline_opt:
1619 1620 1621
                # Move prepare here for port conflict with nccl in startup program
                if self._fleet_executor is None:
                    self._fleet_executor = _prepare_fleet_executor()
1622 1623 1624 1625
                return self._run_using_fleet_executor(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
1626 1627
                    with_standalone_executor=self._fleet_executor_with_standalone,
                )
1628 1629 1630
            if "startup_program" in program._pipeline_opt:
                program = program._pipeline_opt["startup_program"]
            else:
1631 1632 1633 1634 1635
                return self._run_pipeline(
                    program,
                    fetch_list=fetch_list,
                    use_program_cache=use_program_cache,
                )
1636 1637

        if isinstance(program, Program) and program._heter_pipeline_opt:
1638
            # print("program._heter_pipeline_opt: {}".format(
1639
            #    program._heter_pipeline_opt))
1640
            ## change default executor
1641 1642 1643 1644 1645 1646
            heter_place = program._heter_pipeline_opt["heter_place"]
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
            # TODO(zhangminxu): support heterps pipeline training using exe.run
1647
            if "startup_program" in program._heter_pipeline_opt:
1648
                # print("get startup_program from _pipeline_opt")
1649 1650
                program = program._heter_pipeline_opt["startup_program"]

1651 1652 1653 1654
        if (
            isinstance(program, Program)
            and len(program.global_block().ops) == 0
        ):
C
chengduo 已提交
1655
            if use_default_main_program:
1656 1657 1658 1659
                error_info = (
                    "Now you are using default_main_program, "
                    "but there are no operators in the program to be executed. "
                    "Please ensure you create model correctly or you can pass "
1660
                    "the Program or the CompiledProgram manually."
1661
                )
1662
            else:
1663 1664 1665
                error_info = (
                    "There are no operators in the program to be executed. "
                    "If you pass Program manually, please use fluid.program_guard "
1666
                    "to ensure the current Program is being used."
1667
                )
C
chengduo 已提交
1668
            warnings.warn(error_info)
1669

1670 1671
        if scope is None:
            scope = global_scope()
1672

1673 1674 1675 1676
        # use_prune can be overrided by putting optimize_ops in fetch_list
        _origin_fetch_list = fetch_list
        _origin_program = program
        fetch_list, optimize_ops = self._split_optimize_ops_in_fetch_list(
1677 1678
            fetch_list
        )
1679 1680 1681
        if optimize_ops:
            use_prune = True
        if use_prune:
1682 1683 1684
            cache_key = _get_strong_program_cache_key(
                program, feed, _origin_fetch_list
            )
1685 1686 1687 1688
            cached_pruned_program = self._get_pruned_program_cache(cache_key)
            if cached_pruned_program is None:
                if isinstance(program, compiler.CompiledProgram):
                    program_scope_cache = self._get_pruned_program_scope_cache(
1689 1690
                        str(id(_origin_program))
                    )
1691 1692 1693 1694
                    # copy the original program, so it can be cached.
                    program = copy.copy(program)
                    # share the local scopes for same original CompiledProgram.
                    program._share_vars_from = program_scope_cache
1695 1696 1697 1698 1699 1700
                    if (
                        self._get_pruned_program_scope_cache(
                            str(id(_origin_program))
                        )
                        is None
                    ):
1701
                        self._add_pruned_program_scope_cache(
1702 1703 1704 1705 1706
                            str(id(_origin_program)), program
                        )
                pruned_program = self._prune_program(
                    program, feed, fetch_list, optimize_ops
                )
1707 1708 1709 1710 1711 1712 1713
                self._add_pruned_program_cache(cache_key, pruned_program)
            else:
                pruned_program = cached_pruned_program

            feed = self._update_feed(pruned_program, feed)
            program = pruned_program

1714
        def _can_use_interpreter_core(program, place):
1715
            if core.is_compiled_with_mlu():
1716 1717
                return False

1718
            use_standalone_executor_for_distribution = os.environ.get(
1719 1720
                'FLAGS_CONVERT_GRAPH_TO_PROGRAM', None
            ) in [1, '1', True, 'True', 'true']
1721

1722 1723 1724
            compiled = isinstance(
                program, compiler.CompiledProgram
            ) or isinstance(program._graph, compiler.CompiledProgram)
1725
            if compiled:
1726 1727 1728 1729 1730
                compiled_program = (
                    program
                    if isinstance(program, compiler.CompiledProgram)
                    else program._graph
                )
1731

1732
                # Unsupported case 1: data parallel
1733 1734 1735
                if (
                    compiled_program._is_data_parallel
                    and len(
1736
                        compiled_program._get_places(
1737 1738 1739 1740 1741
                            place, compiled_program._places
                        )
                    )
                    != 1
                ):
1742 1743
                    warnings.warn(
                        "Standalone executor is not used for data parallel",
1744 1745
                        UserWarning,
                    )
1746
                    return False
1747

1748
                # Unsupported case 2: parallel graph
P
pangyoki 已提交
1749
                if core.globals()['FLAGS_enable_parallel_graph'] in [
1750 1751 1752 1753 1754
                    1,
                    '1',
                    True,
                    'True',
                    'true',
P
pangyoki 已提交
1755
                ]:
1756 1757
                    warnings.warn(
                        "Standalone executor is not used for parallel graph",
1758 1759
                        UserWarning,
                    )
P
pangyoki 已提交
1760 1761
                    return False

1762
                # Unsupported case 3: inference
1763
                if compiled_program._is_inference:
1764 1765
                    warnings.warn(
                        "Standalone executor is not used for inference",
1766 1767
                        UserWarning,
                    )
1768
                    return False
1769

1770
                # Unsupported case 4: CUDA Graph
1771 1772 1773 1774
                if (
                    compiled_program._build_strategy is not None
                    and compiled_program._build_strategy.allow_cuda_graph_capture
                ):
1775 1776
                    warnings.warn(
                        "Standalone executor is not used for CUDA Graph",
1777 1778
                        UserWarning,
                    )
1779 1780
                    return False

1781
                # Unsupported case 5: async mode
1782 1783 1784 1785
                if (
                    compiled_program._build_strategy is not None
                    and compiled_program._build_strategy.async_mode
                ):
1786
                    warnings.warn(
1787
                        "Standalone executor is not used for async mode",
1788 1789
                        UserWarning,
                    )
1790 1791
                    return False

1792 1793
            # delete this code after supporting fleet
            from paddle.distributed.fleet import fleet
1794

1795
            if fleet._role_maker is not None:
1796 1797 1798
                warnings.warn(
                    "Standalone executor is not used for fleet", UserWarning
                )
1799 1800 1801
                return use_standalone_executor_for_distribution

            return True
1802

1803 1804
        # NOTE: This is an experimental feature. If `export FLAGS_USE_STANDALONE_EXECUTOR=1 `,
        # use StandaloneExecutor to run the program.
1805 1806 1807 1808 1809
        if (
            return_merged
            and self._enable_interpreter_core
            and _can_use_interpreter_core(program, self.place)
        ):
1810

1811 1812 1813 1814 1815 1816 1817 1818
            if feed is None:
                feed = {}
            elif isinstance(feed, (list, tuple)):
                assert len(feed) == 1, "Not compiled with data parallel"
                feed = feed[0]
            if not isinstance(feed, dict):
                raise TypeError(
                    "feed requires dict as its Parameter. But you passed in %s"
1819 1820
                    % (type(feed))
                )
1821 1822 1823
            feed = self._update_feed(program, feed)

            program, new_exe = self._executor_cache.get_program_and_executor(
1824 1825 1826 1827 1828 1829 1830 1831
                program,
                feed,
                fetch_list,
                feed_var_name,
                fetch_var_name,
                self.place,
                scope,
            )
1832 1833 1834 1835

            self._feed_data(program, feed, feed_var_name, scope)
            if hasattr(program, 'lr_sheduler'):
                from paddle.optimizer.lr import LRScheduler
1836 1837 1838 1839

                assert isinstance(
                    program.lr_sheduler, LRScheduler
                ), "must be LRScheduler"
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
                lr_sheduler = program.lr_sheduler
                lr_value = lr_sheduler()
                lr_var = program.global_block().vars[lr_sheduler._var_name]
                data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
                tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
                # NOTE(dev): `tensor.set(data, self.place)` always call TensorCopySync that is a blocking behavior. So we use `_copy_from` to replace it.
                cpu_tensor = _as_lodtensor(data, core.CPUPlace())
                # for ipu, tensor is allocated on cpu
                if core.is_compiled_with_ipu():
                    tensor._copy_from(cpu_tensor, tensor._place())
                else:
                    tensor._copy_from(cpu_tensor, self.place)

1853 1854 1855
            return new_exe.run(
                scope, list(feed.keys()), fetch_list, return_numpy
            )
1856

X
polish  
Xin Pan 已提交
1857
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
1858

1859 1860 1861 1862 1863 1864 1865
        # Check if fluid.data() variable no feed data
        if use_prune:
            if compiled:
                global_block = program._program.global_block()
            else:
                global_block = program.global_block()
            for varname in global_block.vars:
1866
                vardesc = global_block.desc.find_var(varname.encode())
1867 1868 1869
                varobj = global_block.vars[varname]

                # Can not check var build by fluid.layers.data(), bucause fluid.layers.data() had not set need_check_feed
1870 1871 1872 1873 1874 1875 1876 1877 1878
                if (
                    vardesc.persistable() == False
                    and vardesc.type() == core.VarDesc.VarType.LOD_TENSOR
                    and vardesc.need_check_feed() == True
                    and varobj.stop_gradient == True
                    and varobj.is_data == True
                    and varobj.belong_to_optimizer == False
                    and varname not in feed
                ):
1879 1880
                    raise ValueError('Need feed data for variable %s' % varname)

1881 1882
        acp._auto_checkpoint(self, program)

X
polish  
Xin Pan 已提交
1883
        # For backward compatibility, run directly.
1884
        if not compiled:
1885
            # In distributed training, the compiled program is saved in Program._graph
1886 1887 1888
            has_compiled_graph = isinstance(
                program._graph, compiler.CompiledProgram
            )
1889

1890 1891 1892 1893 1894
            if has_compiled_graph:
                program._graph._compile(scope, self.place)
                # _graph in program does not support inference since the _graph is optimized
                # through optimizer.minimize function and should not be used as inference graph
                # assert not program._graph._is_inference
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
                return self._run_parallel(
                    program._graph,
                    scope=scope,
                    feed=feed,
                    fetch_list=fetch_list,
                    fetch_var_name=fetch_var_name,
                    return_numpy=return_numpy,
                    return_merged=return_merged,
                )

            return self._run_program(
                program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache,
            )
1915 1916

        program._compile(scope, self.place)
C
chengduo 已提交
1917 1918 1919
        if program._is_inference:
            return self._run_inference(program._executor, feed)
        else:
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
            return self._run_parallel(
                program,
                scope=scope,
                feed=feed,
                fetch_list=fetch_list,
                fetch_var_name=fetch_var_name,
                return_numpy=return_numpy,
                return_merged=return_merged,
            )

    def _run_program(
        self,
        program,
        feed,
        fetch_list,
        feed_var_name,
        fetch_var_name,
        scope,
        return_numpy,
        use_program_cache,
    ):
1941
        from paddle.optimizer.lr import LRScheduler
1942

1943 1944
        if feed is None:
            feed = {}
S
sneaxiy 已提交
1945 1946 1947 1948
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

Q
qiaolongfei 已提交
1949
        if not isinstance(feed, dict):
D
dzhwinter 已提交
1950
            raise TypeError(
1951 1952 1953
                "feed requires dict as its Parameter. But you passed in %s"
                % (type(feed))
            )
Y
Yu Yang 已提交
1954

1955
        assert program is not None, "The program should not be Empty"
Y
Yu Yang 已提交
1956
        if not isinstance(program, Program):
D
dzhwinter 已提交
1957 1958
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
1959 1960
                % (type(program))
            )
Y
Yu Yang 已提交
1961

1962 1963 1964
        if not isinstance(fetch_var_name, str):
            raise TypeError(
                "The name of fetch variable requires string as its Parameter. But you passed in %s"
1965 1966
                % (type(fetch_var_name))
            )
1967

1968
        if use_program_cache:
1969
            cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
Q
Qiao Longfei 已提交
1970
            cached_program = self._get_program_cache(cache_key)
1971
            cached_ctx = self._get_ctx_cache(cache_key)
1972
            cached_scope = self._get_scope_cache(cache_key)
Q
Qiao Longfei 已提交
1973
            if cached_program is None:
R
Ruibiao Chen 已提交
1974
                cached_program = _add_feed_fetch_ops(
Q
Qiao Longfei 已提交
1975 1976 1977 1978
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
1979 1980
                    fetch_var_name=fetch_var_name,
                )
Q
Qiao Longfei 已提交
1981
                self._add_program_cache(cache_key, cached_program)
1982
                fetch_list_str = list(map(_to_name_str, fetch_list))
1983
                cached_ctx = self._default_executor.prepare(
1984 1985
                    cached_program.desc, 0, fetch_list_str, False
                )
1986 1987 1988 1989 1990 1991
                # currently, we cache program, vars, sub_scope here
                # we suppose that in a life cycle of training, a user
                # will not create many programs. So, here the basic
                # rule of caching is to cache all unseen (program, var, scope)
                # when a user use use_program_cache.
                cached_scope = scope.new_scope()
1992 1993 1994
                self._default_executor.create_variables(
                    cached_program.desc, cached_scope, 0
                )
1995
                self._add_ctx_cache(cache_key, cached_ctx)
1996
                self._add_scope_cache(cache_key, cached_scope)
Q
Qiao Longfei 已提交
1997
            program = cached_program
1998
            ctx = cached_ctx
1999
            scope = cached_scope
2000
        else:
2001 2002 2003 2004 2005 2006 2007
            program = _add_feed_fetch_ops(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
            )
Q
Qiao Longfei 已提交
2008 2009

        self._feed_data(program, feed, feed_var_name, scope)
2010
        if hasattr(program, 'lr_sheduler'):
2011 2012 2013
            assert isinstance(
                program.lr_sheduler, LRScheduler
            ), "must be LRScheduler"
2014 2015 2016 2017 2018 2019 2020
            lr_sheduler = program.lr_sheduler
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

2021
        if not use_program_cache:
2022 2023 2024
            self._default_executor.run(
                program.desc, scope, 0, True, True, [fetch_var_name]
            )
2025
        else:
2026 2027 2028
            self._default_executor.run_prepared_ctx(
                ctx, scope, False, False, False
            )
2029
        arr = scope.find_var(fetch_var_name).get_fetch_list()
2030
        tensors = arr._move_to_list()
D
dzhwinter 已提交
2031
        if return_numpy:
2032 2033 2034
            return as_numpy(tensors)
        else:
            return tensors
F
flame 已提交
2035

X
Xin Pan 已提交
2036 2037
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
2038

2039
    def _check_fetch_list(self, fetch_list):
2040
        is_fetch_var = lambda var: isinstance(var, (Variable, str))
2041 2042
        is_tuple_list = lambda var: isinstance(var, (tuple, list))

2043 2044 2045 2046
        if fetch_list is None:
            return []
        if is_fetch_var(fetch_list):
            return [fetch_list]
2047

2048 2049 2050
        assert is_tuple_list(fetch_list), (
            "Currently , The fetch_list type only should be list or tuple, \n"
            "but the input type is {}. For more information please refer to \n"
2051
            "the executor.run(...).".format(type(fetch_list))
2052
        )
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065

        res = []
        for i, var in enumerate(fetch_list):
            if is_fetch_var(var):
                res.append(var)
            # such as [x, 'mean_out', loss]
            elif is_tuple_list(var):
                if all(is_fetch_var(v) for v in var):
                    res.extend(list(var))
                else:
                    res.append(var)
            else:
                raise TypeError(
2066 2067 2068 2069
                    "Require fetch_list[{}] 's type shall be one of (Variable, str), but received {}.".format(
                        i, type(var).__name__
                    )
                )
2070 2071 2072

        return res

2073
    def _dump_debug_info(self, program=None, trainer=None):
Z
ziyoujiyi 已提交
2074 2075
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
            fout.write(str(trainer))
2076
        if program._fleet_opt and "fleet_desc" in program._fleet_opt:
2077 2078 2079
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

2080 2081 2082 2083 2084 2085
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
2086 2087
                % (filelist_length, filelist_length)
            )
2088 2089 2090
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
2091 2092 2093 2094 2095
                % (filelist_length // pipeline_num, filelist_length)
            )
            pipeline_opt["concurrency_list"][0] = (
                filelist_length // pipeline_num
            )
2096 2097 2098
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
    def _prepare_trainer(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
    ):
T
Thunderbrook 已提交
2110
        is_heter = 0
T
Thunderbrook 已提交
2111
        use_ps_gpu = 0
T
Thunderbrook 已提交
2112 2113 2114
        if not program._fleet_opt is None:
            if program._fleet_opt.get("worker_class", "") == "HeterCpuWorker":
                is_heter = 1
T
Thunderbrook 已提交
2115
            if program._fleet_opt.get("trainer", "") == "HeterXpuTrainer":
T
Thunderbrook 已提交
2116
                is_heter = 1
T
Thunderbrook 已提交
2117 2118
            if program._fleet_opt.get("use_ps_gpu", False):
                use_ps_gpu = True
D
dongdaxiang 已提交
2119 2120 2121 2122
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
2123 2124 2125
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
2126
        compiled = isinstance(program, compiler.CompiledProgram)
T
Thunderbrook 已提交
2127 2128 2129
        if is_heter:
            from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
            from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
2130

T
Thunderbrook 已提交
2131 2132
            fu = FleetUtil()
            ret = fu.split_program_by_device(program)
D
dongdaxiang 已提交
2133
        if not compiled:
H
hutuxian 已提交
2134 2135 2136
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
2137 2138
                    program._pipeline_opt
                )
2139 2140
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
2141 2142
                    program._heter_pipeline_opt
                )
H
hutuxian 已提交
2143 2144
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
2145
                trainer._set_thread_barrier(program._is_distributed)
2146
            trainer._set_program(program)
T
Thunderbrook 已提交
2147 2148
            if is_heter:
                trainer._set_heter_info(ret)
2149
        else:
H
hutuxian 已提交
2150 2151
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
2152 2153
                    program.program._pipeline_opt
                )
2154 2155
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
2156 2157
                    program.program._heter_pipeline_opt
                )
H
hutuxian 已提交
2158 2159
            else:
                trainer = TrainerFactory()._create_trainer(
2160 2161
                    program.program._fleet_opt
                )
2162
            trainer._set_program(program.program)
H
hutuxian 已提交
2163

2164
        if thread <= 0:
T
Thunderbrook 已提交
2165 2166 2167
            if use_ps_gpu:
                trainer._set_thread(len(program._fleet_opt["worker_places"]))
            elif dataset.thread_num <= 0:
D
dongdaxiang 已提交
2168
                raise RuntimeError(
2169
                    "You should set thread num first, either in Dataset"
2170 2171
                    "or in Executor.train_from_dataset"
                )
D
dongdaxiang 已提交
2172
            else:
2173
                trainer._set_thread(dataset.thread_num)
2174
        else:
2175
            trainer._set_thread(thread)
H
hutuxian 已提交
2176

2177 2178
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
2179
        return scope, trainer
2180

2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
    def _run_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
2194 2195
        if program._pipeline_opt is not None:
            import paddle
2196

2197 2198
            if dataset is not None:
                raise RuntimeError("dataset should be None for pipeline mode")
2199
            # The following fake dataset is created to call
2200 2201 2202 2203 2204
            # the _prepare_trainer api, and it is meaningless.
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
2205 2206
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
2207 2208
                    'InMemoryDataset'
                )
2209 2210
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
2211 2212
                    'FileInstantDataset'
                )
2213 2214 2215 2216
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
2217 2218
        elif program._heter_pipeline_opt is not None:
            stage_id = program._heter_pipeline_opt["pipeline_stage"]
2219
            # print("test_fl_stage_id: {}".format(stage_id))
2220
            heter_place = program._heter_pipeline_opt["heter_place"]
2221
            if stage_id != 0:
2222 2223
                if "is_fl_mode" not in program._heter_pipeline_opt:
                    import paddle
2224

2225 2226
                    if dataset is not None:
                        raise RuntimeError(
2227 2228
                            "dataset should be None for heter pipeline mode"
                        )
2229
                    # The following fake dataset is created to call
2230 2231 2232 2233 2234 2235
                    # the _prepare_trainer api, and it is meaningless.
                    data_vars = []
                    for var in program.global_block().vars.values():
                        if var.is_data:
                            data_vars.append(var)
                    dataset = paddle.fluid.DatasetFactory().create_dataset(
2236 2237
                        'InMemoryDataset'
                    )
2238 2239 2240 2241
                    dataset.set_batch_size(1)
                    dataset.set_thread(1)
                    dataset.set_filelist(['None'])
                    dataset.set_use_var(data_vars)
2242 2243 2244
            else:
                if dataset is None:
                    raise RuntimeError(
2245 2246
                        "dataset is need and should be initialized"
                    )
2247 2248 2249 2250 2251
            ## change default executor
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
2252 2253 2254
        else:
            if dataset is None:
                raise RuntimeError("dataset is need and should be initialized")
2255 2256

        dataset._prepare_to_run()
2257 2258
        real_fetch_list = []
        if program._pipeline_opt:
2259
            real_program = program._pipeline_opt["section_program"]
2260 2261 2262 2263 2264 2265 2266 2267
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

R
Ruibiao Chen 已提交
2268
            program._pipeline_opt["section_program"] = _add_feed_fetch_ops(
2269 2270 2271 2272
                program=program._pipeline_opt["section_program"],
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
2273 2274
                fetch_var_name='fetch',
            )
2275 2276 2277 2278 2279 2280 2281
            main_block = program._pipeline_opt["section_program"].block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2282 2283
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2284
            fetch_list = None
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
2295 2296 2297 2298

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

2299
        if program._pipeline_opt is None:
2300 2301
            if program._heter_pipeline_opt is None:
                self._dump_debug_info(program=program, trainer=trainer)
T
Thunderbrook 已提交
2302 2303 2304
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
2305

T
tangwei12 已提交
2306
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
2307

2308
        if program._heter_pipeline_opt is None:
2309 2310 2311 2312 2313
            trainer_instance = (
                self._default_executor.init_for_dataset(  # -->InitForDataset
                    program.desc, trainer._desc(), scope, dataset.dataset
                )
            )
2314 2315 2316 2317 2318 2319 2320 2321
        else:
            # cache trainer instance for heterps pipeline training
            if fetch_list == None:
                fetch_list = []
            cache_key = _get_strong_program_cache_key(program, None, fetch_list)
            trainer_instance = self._get_trainer_cache(cache_key)
            if trainer_instance is None:
                trainer_instance = self._default_executor.init_for_dataset(
2322 2323 2324
                    program.desc, trainer._desc(), scope, dataset.dataset
                )
                # print("test_fl_ps - trainer_desc: {}\n".format(trainer))
2325 2326 2327
                self._add_trainer_cache(cache_key, trainer_instance)
            else:
                trainer_instance.ResetDataset(dataset.dataset)
2328

T
tangwei12 已提交
2329 2330 2331 2332 2333 2334
        if fetch_handler is not None:
            scope0 = trainer_instance.get_worker_scope(0)
            fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
            fetch_monitor.start()
            self._default_executor.run_from_dataset(trainer_instance)
            fetch_monitor.stop()
2335 2336
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
2337 2338
        else:
            self._default_executor.run_from_dataset(trainer_instance)
2339 2340
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
2341 2342

        dataset._dynamic_adjust_after_train()
2343
        dataset._finish_to_run()
2344 2345 2346 2347
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
T
tangwei12 已提交
2348

2349 2350
        return None

2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
    def _prepare_pipeline_ctx(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
        use_program_cache=False,
    ):
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
        assert program._pipeline_opt is not None
        assert dataset is None, "dataset should be None for pipeline mode"

        cache_key = _get_strong_program_cache_key(program, None, fetch_list)
        ctx = self._get_ctx_cache(cache_key)
        if use_program_cache and ctx is not None:
            return ctx

        import paddle

        # The following fake dataset is created to call
        # the _prepare_trainer api, and it is meaningless.
        def _get_dataset():
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
2384 2385
                    'InMemoryDataset'
                )
2386 2387
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
2388 2389
                    'FileInstantDataset'
                )
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
            dataset._prepare_to_run()
            return dataset

        dataset = _get_dataset()

        def _get_real_program_fetch_list():
            real_program = program._pipeline_opt["section_program"]
            real_fetch_list = []
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

2410 2411 2412 2413 2414 2415 2416
            real_program = _add_feed_fetch_ops(
                program=real_program,
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
                fetch_var_name='fetch',
            )
2417 2418 2419 2420 2421 2422 2423
            main_block = real_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2424 2425
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2426 2427 2428 2429 2430 2431 2432
            return real_program, real_fetch_list

        real_program, real_fetch_list = _get_real_program_fetch_list()

        program._pipeline_opt["section_program"] = real_program
        fetch_list = None

2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
2443 2444 2445 2446 2447 2448 2449

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        # NOTE: only for debug, very slow
        # self._dump_debug_info(program=program, trainer=trainer)

T
Thunderbrook 已提交
2450 2451 2452
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
2453 2454 2455
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)

        trainer_desc = trainer._desc()  # slow, cache
2456
        trainer_instance = self._default_executor.init_for_dataset(
2457 2458
            program.desc, trainer_desc, scope, dataset.dataset
        )
2459 2460

        ctx = [scope, real_fetch_list, trainer_instance]
2461 2462
        if use_program_cache:
            self._add_ctx_cache(cache_key, ctx)
2463

2464 2465
        return ctx

2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
    def _prepare_fleet_executor_carrier(
        self,
        carrier_id="",
        program=None,
        scope=None,
        fleet_opt=None,
        with_standalone_executor=False,
    ):
        num_micro_batches = (
            fleet_opt["num_micro_batches"]
            if "num_micro_batches" in fleet_opt
            else 1
        )
2479
        cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
2480
        trainer_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS", "").split(',')
2481
        nrank = len(trainer_endpoints)
2482

2483 2484
        assert 'scheduler' in fleet_opt or 'tasks' in fleet_opt, (
            "Fleet executor need configuration for scheduler, you can choose from 1F1B or Origin. "
2485
            "Or you can provide a list of task nodes to init fleet executor directly."
2486
        )
2487
        if 'tasks' in fleet_opt:
2488 2489 2490 2491
            assert 'task_id_to_rank' in fleet_opt, (
                "If you provide tasks to init fleet executor,"
                " task_id_to_rank should also be provided."
            )
2492 2493 2494
            print('fleet executor will use user defined task nodes')
            tasks = [task.task_node() for task in fleet_opt['tasks']]
            task_id_to_rank = fleet_opt['task_id_to_rank']
2495
        else:
2496 2497
            scheduler = fleet_opt['scheduler']
            if scheduler == '1F1B':
2498 2499 2500 2501 2502 2503 2504 2505 2506
                from paddle.distributed.fleet.fleet_executor_utils import (
                    run1f1b,
                )

                if (
                    "dist_strategy" not in fleet_opt
                    or "pp_degree" not in fleet_opt["dist_strategy"]
                    or fleet_opt["dist_strategy"]["pp_degree"] == 1
                ):
2507 2508
                    warnings.warn("Using 1F1B scheduler with pp_degree == 1.")
                tasks, task_id_to_rank = run1f1b(
2509 2510 2511 2512 2513 2514 2515
                    program,
                    cur_rank,
                    fleet_opt.get('num_micro_batches', 1),
                    fleet_opt.get('dist_strategy', {}),
                    nrank,
                    with_standalone_executor,
                )
2516 2517
            elif scheduler == 'Origin':
                from paddle.distributed.fleet.fleet_executor_utils import origin
2518 2519 2520 2521 2522 2523 2524 2525

                if (
                    "dist_strategy" in fleet_opt
                    and "pp_degree" in fleet_opt["dist_strategy"]
                ):
                    assert (
                        fleet_opt["dist_strategy"]["pp_degree"] == 1
                    ), "For pipeline mode, the scheduler should be 1F1B instead of Origin."
2526
                if "num_micro_batches" in fleet_opt:
2527 2528 2529
                    assert (
                        fleet_opt["num_micro_batches"] == 1
                    ), "For origin scheduler mode, the num micro batches should be 1."
2530 2531
                tasks, task_id_to_rank = origin(program, cur_rank)
            else:
2532 2533 2534
                raise "Fleet_executor only supports 1F1B and Origin scheduler, " "but received " + str(
                    scheduler
                ) + "."
2535 2536 2537
            # NOTE: have to hold these vars, otherwise will be destructed
            fleet_opt['tasks'] = tasks
            fleet_opt['task_id_to_rank'] = task_id_to_rank
2538 2539
        place = core.Place()
        place.set_place(self.place)
2540 2541
        # NOTE: the last argument is used to force create some vars in root scope,
        # won't be used during train.
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
        self._fleet_executor.init(
            carrier_id,
            program.desc,
            scope,
            place,
            num_micro_batches,
            tasks,
            task_id_to_rank,
            [],
        )

    def _run_using_fleet_executor(
        self,
        program=None,
        feed=None,
        feed_var_name="feed",
        fetch_var_name="fetch",
        fetch_list=None,
        with_standalone_executor=False,
    ):
2562 2563
        cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
        cached_program = self._get_program_cache(cache_key)
2564
        cached_scope = self._get_scope_cache(cache_key)
2565 2566 2567 2568
        if cached_scope is None:
            cached_scope = global_scope()
            self._add_scope_cache(cache_key, cached_scope)
        if cached_program is None:
2569 2570 2571
            assert (
                program._pipeline_opt
            ), "program should have _pipeline_opt to start carrier"
2572
            real_feed = [] if feed is None else feed
2573 2574 2575
            real_program = program
            if "section_program" in program._pipeline_opt:
                real_program = program._pipeline_opt["section_program"]
2576 2577 2578 2579 2580 2581 2582
            cached_program = _add_feed_fetch_ops(
                program=real_program,
                feed=real_feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
            )
2583 2584 2585 2586 2587 2588 2589
            main_block = cached_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2590 2591
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2592
            self._add_program_cache(cache_key, cached_program)
2593
            fleet_opt = program._pipeline_opt["fleet_opt"]
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
            if 'tasks' in fleet_opt:
                # Insert feed/fetch op for cloned program in each task node,
                # these ops has already been inserted into the origin program.
                # To avoid every task nodes all have feed/fetch ops,
                # only insert feed ops into the first task node,
                # then insert fetch ops into the last task node.

                # Insert feed ops
                feed_task = fleet_opt['tasks'][0]
                print("Inserting feed ops for task", feed_task.task_id())
                feed_program = feed_task.get_program()
2605 2606 2607 2608 2609
                feed_program = self._add_feed_ops(
                    program=feed_program,
                    feed=real_feed,
                    feed_var_name=feed_var_name,
                )
2610 2611 2612 2613 2614 2615 2616 2617 2618
                feed_task.set_program(feed_program)

                # Insert fetch ops
                fetch_task = fleet_opt['tasks'][-1]
                print("Inserting fetch ops for task", fetch_task.task_id())
                fetch_program = fetch_task.get_program()
                fetch_program = self._add_fetch_ops(
                    program=fetch_program,
                    fetch_list=fetch_list,
2619 2620
                    fetch_var_name=fetch_var_name,
                )
2621 2622 2623 2624 2625 2626 2627
                main_block = fetch_program.block(0)
                for op in main_block.ops:
                    # set the op_role of fetch op to Optimize to avoid
                    # erase the fetched vars by gc for pipeline
                    if op.type == 'fetch':
                        op._set_attr(
                            'op_role',
2628 2629
                            core.op_proto_and_checker_maker.OpRole.Optimize,
                        )
2630 2631
                fetch_task.set_program(fetch_program)

2632 2633 2634 2635 2636
            self._prepare_fleet_executor_carrier(
                cache_key,
                program=cached_program,
                scope=cached_scope,
                fleet_opt=fleet_opt,
2637 2638
                with_standalone_executor=with_standalone_executor,
            )
2639

2640
        if feed:
2641 2642 2643
            # NOTE: don't have to traverse programs in task nodes,
            # since they all sub program of cached program and
            # cached program is also added feed fetch var
2644
            self._feed_data(cached_program, feed, feed_var_name, cached_scope)
2645 2646

        from paddle.optimizer.lr import LRScheduler
2647

2648 2649 2650 2651 2652 2653
        if hasattr(program, 'lr_sheduler'):
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
2654 2655 2656
            tensor = core.get_variable_tensor(
                cached_scope, lr_sheduler._var_name
            )
2657 2658
            tensor.set(data, self.place)

2659 2660
        self._fleet_executor.run(cache_key)

2661 2662 2663 2664
        if fetch_list:
            arr = cached_scope.find_var(fetch_var_name).get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
L
LiYuRio 已提交
2665 2666
        return None

2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
    def _add_feed_ops(self, program, feed, feed_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
2678 2679
                persistable=True,
            )
2680 2681 2682 2683 2684 2685

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                if global_block.has_var(name):
                    out = global_block.var(name)
2686 2687 2688 2689 2690 2691
                    global_block._prepend_op(
                        type='feed',
                        inputs={'X': [feed_var]},
                        outputs={'Out': [out]},
                        attrs={'col': i},
                    )
2692 2693 2694
                else:
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
2695 2696
                        % name
                    )
2697 2698 2699

        return tmp_program

2700
    @classmethod
2701 2702 2703
    def _add_fetch_ops(
        cls, program, fetch_list, fetch_var_name, use_fetch_v2=False
    ):
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
2714 2715
                persistable=True,
            )
2716 2717 2718 2719 2720 2721 2722

        if use_fetch_v2:
            fetch_op = 'fetch_v2'
        else:
            fetch_op = 'fetch'

        # append fetch_operators
2723 2724 2725
        if not has_fetch_operators(
            global_block, fetch_list, fetch_var_name, fetch_op
        ):
2726 2727
            for i, var in enumerate(fetch_list):
                assert isinstance(var, Variable) or isinstance(
2728 2729 2730 2731 2732 2733 2734 2735
                    var, str
                ), "Wrong type for fetch_list[%s]: %s" % (i, type(var))
                global_block.append_op(
                    type=fetch_op,
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i},
                )
2736 2737 2738

        return tmp_program

2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
    @classmethod
    def _remove_fetch_ops(cls, program, fetch_op_name='fetch'):
        tmp_program = program.clone()
        global_block = tmp_program.global_block()
        op_num = len(global_block.ops)
        for idx in reversed(range(op_num)):
            if global_block.ops[idx].type == fetch_op_name:
                global_block._remove_op(idx)

        return tmp_program

2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
    def _run_pipeline(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
        use_program_cache=False,
    ):
        scope, real_fetch_list, trainer_instance = self._prepare_pipeline_ctx(
            program,
            dataset,
            scope,
            thread,
            is_infer,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
            use_program_cache,
        )
2777

2778
        from paddle.optimizer.lr import LRScheduler
2779

2780 2781 2782 2783 2784 2785 2786 2787 2788
        if hasattr(program, 'lr_sheduler'):
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

2789 2790
        self._default_executor.run_from_dataset(trainer_instance)

2791 2792 2793
        if not use_program_cache:
            self._default_executor.release_trainer(trainer_instance)

2794 2795 2796 2797 2798 2799 2800
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)

        return None

2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
    def infer_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
2813
        """
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
        Infer from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, infer_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current infer task.

        The document of infer_from_dataset is almost the same as train_from_dataset,
        except that in distributed training, push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-threadvery easily.
2825

2826 2827
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2828
                if not provided, then default_main_program (not compiled) will be used.
2829
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2830 2831
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed. default is None
2832
            scope(Scope): the scope used to run this program, you can switch it to different scope
2833 2834 2835
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2836
            debug(bool): whether a user wants to run infer_from_dataset, default is False
2837
            fetch_list(Tensor List): fetch Tensor list, each Tensor will be printed during
2838
                training, default is None
2839
            fetch_info(String List): print information for each Tensor, default is None
2840
            print_period(int): the number of mini-batches for each print, default is 100
2841
            fetch_handler(FetchHandler): a user define class for fetch output.
2842

2843 2844 2845 2846
        Returns:
            None

        Examples:
2847 2848

            .. code-block:: python
2849

2850
                import paddle
2851

2852 2853 2854 2855 2856 2857
                paddle.enable_static()
                place = paddle.CPUPlace()  # you can set place = paddle.CUDAPlace(0) to use gpu
                exe = paddle.static.Executor(place)
                x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
                y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
                dataset = paddle.fluid.DatasetFactory().create_dataset()
2858
                dataset.set_use_var([x, y])
2859
                dataset.set_thread(1)
2860 2861
                # you should set your own filelist, e.g. filelist = ["dataA.txt"]
                filelist = []
2862
                dataset.set_filelist(filelist)
2863 2864 2865
                exe.run(paddle.static.default_startup_program())
                exe.infer_from_dataset(program=paddle.static.default_main_program(),
                                       dataset=dataset)
2866

2867
        """
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
        return self._run_from_dataset(
            program,
            dataset,
            scope,
            thread,
            True,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
        )

    def start_heter_trainer(
        self,
        program=None,
        scope=None,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=None,
            scope=scope,
            thread=1,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
T
Thunderbrook 已提交
2901

2902
        trainer._set_infer(False)
T
Thunderbrook 已提交
2903 2904 2905 2906 2907
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)

        trainer_instance = self._default_executor.init_for_dataset(
2908 2909
            program.desc, trainer._desc(), scope, None
        )
T
Thunderbrook 已提交
2910

2911
        # if fetch_handler is not None:
T
Thunderbrook 已提交
2912 2913 2914 2915 2916 2917
        #    scope0 = trainer_instance.get_worker_scope(0)
        #    fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
        #    fetch_monitor.start()
        #    self._default_executor.run_from_dataset(trainer_instance)
        #    fetch_monitor.stop()
        #    self._default_executor.release_trainer(trainer_instance)
2918
        # else:
T
Thunderbrook 已提交
2919 2920

        self._default_executor.run_from_dataset(trainer_instance)
2921
        # self._default_executor.release_trainer(trainer_instance)
T
Thunderbrook 已提交
2922 2923 2924

        return trainer_instance

2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
    def train_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
2937 2938 2939 2940 2941 2942 2943 2944
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
2945

2946 2947 2948 2949
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2950
                if not provided, then default_main_program (not compiled) will be used.
2951
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2952 2953
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed.
2954
            scope(Scope): the scope used to run this program, you can switch it to different scope
2955 2956 2957
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2958
            debug(bool): whether a user wants to run train_from_dataset
2959
            fetch_list(Tensor List): fetch Tensor list, each variable will be printed
2960
                during training
2961
            fetch_info(String List): print information for each Tensor, its length should be equal
2962 2963
                to fetch_list
            print_period(int): the number of mini-batches for each print, default is 100
2964
            fetch_handler(FetchHandler): a user define class for fetch output.
2965 2966 2967

        Returns:
            None
2968

2969
        Examples:
2970

2971 2972
            .. code-block:: python

2973
              import paddle
2974

2975 2976 2977 2978 2979 2980
              paddle.enable_static()
              place = paddle.CPUPlace() # you can set place = paddle.CUDAPlace(0) to use gpu
              exe = paddle.static.Executor(place)
              x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
              y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
              dataset = paddle.fluid.DatasetFactory().create_dataset()
2981
              dataset.set_use_var([x, y])
2982
              dataset.set_thread(1)
2983 2984
              # you should set your own filelist, e.g. filelist = ["dataA.txt"]
              filelist = []
2985
              dataset.set_filelist(filelist)
2986 2987
              exe.run(paddle.static.default_startup_program())
              exe.train_from_dataset(program=paddle.static.default_main_program(),
2988
                                     dataset=dataset)
2989 2990

        """
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
        return self._run_from_dataset(
            program,
            dataset,
            scope,
            thread,
            False,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
        )