executor.py 52.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
Zeng Jinle 已提交
17
import logging
18 19
import os
import multiprocessing
C
chengduo 已提交
20
import sys
21
import warnings
D
dzhwinter 已提交
22
import numpy as np
S
rename  
sneaxiy 已提交
23
from .wrapped_decorator import signature_safe_contextmanager
24
import six
25
from .data_feeder import convert_dtype
H
Huihuang Zheng 已提交
26
from .framework import Program, default_main_program, Variable, convert_np_dtype_to_dtype_
27
from . import core
28 29
from . import compiler
from .. import compat as cpt
30
from .trainer_factory import TrainerFactory
31
from .trainer_factory import FetchHandlerMonitor
32

T
Tink_Y 已提交
33
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
34

Y
Yu Yang 已提交
35
g_scope = core.Scope()
F
flame 已提交
36 37
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
38

Y
Yu Yang 已提交
39

Y
Yang Yu 已提交
40
def global_scope():
Y
yuyang18 已提交
41 42 43 44
    """
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

C
chengduo 已提交
45 46 47
    Returns:
        Scope: The global/default scope instance.

48 49 50 51 52 53 54 55
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          numpy.array(fluid.global_scope().find_var("data").get_tensor())
Y
yuyang18 已提交
56
    """
Y
Yang Yu 已提交
57 58 59
    return g_scope


60
def _switch_scope(scope):
Y
Yang Yu 已提交
61 62 63 64 65 66
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
67
@signature_safe_contextmanager
Y
Yang Yu 已提交
68
def scope_guard(scope):
Y
yuyang18 已提交
69
    """
70 71 72 73 74 75 76 77 78 79 80 81
    This function switches scope through python `with` statement.
    Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
    similar to brackets in programming languages.
    If this function is not invoked, all variables and variable names are recorded in the default global scope.
    When users need to create variables with the same name,
    they need to switch scopes through this function
    if they do not want the mapping of variables with the same name to be overwritten.
    After switching through the `with` statement,
    all variables created in the `with` block will be assigned to a new scope.

    Parameters:
        scope: The new scope.
Y
yuyang18 已提交
82

83 84
    Returns:
        None
L
lujun 已提交
85

Y
yuyang18 已提交
86
    Examples:
87 88
        .. code-block:: python

89
            import paddle.fluid as fluid
L
lujun 已提交
90
            import numpy
Y
yuyang18 已提交
91

L
lujun 已提交
92 93 94 95
            new_scope = fluid.Scope()
            with fluid.scope_guard(new_scope):
                 fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
96
    """
L
lujun 已提交
97

98
    ex = _switch_scope(scope)
Y
Yang Yu 已提交
99
    yield
100
    _switch_scope(ex)
Y
Yang Yu 已提交
101 102


D
dzhwinter 已提交
103
def as_numpy(tensor):
104 105 106
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
107

108
    Examples:
109 110 111 112 113 114 115 116 117 118
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
119 120 121 122 123 124 125

    Args:
       tensor(Variable): a instance of Tensor

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
126 127
    if isinstance(tensor, core.LoDTensorArray):
        return [as_numpy(t) for t in tensor]
D
dzhwinter 已提交
128 129 130 131
    if isinstance(tensor, list):
        return [as_numpy(t) for t in tensor]
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
132
    if len(lod) > 0:
D
dzhwinter 已提交
133
        raise RuntimeError("Some of your fetched tensors hold LoD information. \
134 135 136
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
            return LoDTensor itself directly.")
Q
qingqing01 已提交
137 138 139 140
    if tensor._is_initialized():
        return np.array(tensor)
    else:
        return None
D
dzhwinter 已提交
141 142


H
Huihuang Zheng 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
      
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
    
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
167 168
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


196
def check_feed_shape_type(var, feed, num_places=1):
H
Huihuang Zheng 已提交
197 198
    """
    Returns True if the variable doesn't require feed check or it is compatible
T
tianshuo78520a 已提交
199
    with the shape and have same dtype as the fed value.
H
Huihuang Zheng 已提交
200 201 202

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
203 204
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
205 206 207 208
       is compatible with any number.
    
    Args:
        var (Variable): the Variable object
T
tianshuo78520a 已提交
209
        feed (LoDTensor): the fed value, which must be a LoDTensor
210 211
        num_places: an integer value indicating the number of places.
            ParallelExecutor will divide data into devices (CPU/GPU) evenly.
H
Huihuang Zheng 已提交
212 213 214 215 216 217 218
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
219 220
        diff_shape = core.diff_tensor_shape(feed, var.desc, num_places)
        if diff_shape is not None:
221
            raise ValueError(
T
tianshuo78520a 已提交
222 223
                'The fed Variable %r should have dimensions = %d, shape = '
                '%r, but received fed shape %r on each device' %
224
                (var.name, len(var.shape), var.shape, diff_shape))
H
Huihuang Zheng 已提交
225
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
226 227 228 229 230
            var_dtype_format = convert_dtype(var.dtype) if isinstance(
                var.dtype, core.VarDesc.VarType) else var.dtype
            feed_dtype_format = convert_dtype(feed._dtype()) if isinstance(
                feed._dtype(), core.VarDesc.VarType) else feed._dtype()
            raise ValueError(
T
tianshuo78520a 已提交
231 232
                'The data type of fed Variable %r must be %r, but received %r' %
                (var.name, var_dtype_format, feed_dtype_format))
H
Huihuang Zheng 已提交
233 234 235
    return True


236 237 238 239 240 241 242 243 244 245 246 247
def has_feed_operators(block, feed_targets, feed_holder_name):
    """ Check whether the block already has feed operators.

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
248 249
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
250 251 252
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
253
        A boolean value that indicates whether a block has feed operators
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
                raise Exception("'feed_targets' does not have {} variable".
                                format(feed_target_name))
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
            "Feed operators in program desc do not match 'feed_targets'")
    return feed_count > 0


def has_fetch_operators(block, fetch_targets, fetch_holder_name):
    """ Check whether the block already has fetch operators.
X
xuwei06 已提交
276

277 278 279 280 281 282 283 284 285
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
286 287 288
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
289

X
xuwei06 已提交
290 291 292
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
    """

    fetch_count = 0
    for op in block.ops:
        if op.desc.type() == 'fetch':
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
                    var.desc.name() for var in fetch_targets
            ]:
                raise Exception("'fetch_targets' does not have {} variable".
                                format(fetch_target_name))
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
            "Fetch operators in program desc do not match 'fetch_targets'")
    return fetch_count > 0


W
Wu Yi 已提交
314
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
315
    """
C
chengduoZH 已提交
316 317 318
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
319
    Args:
320 321 322 323
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
324 325 326 327
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
328 329 330 331 332 333
    Returns:
       LodTensor|numpy.ndarray
    """
    assert isinstance(name, str)
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
334
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
335

Y
Yibing Liu 已提交
336
    var = scope.find_var(name)
337 338 339 340
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
        " program.")
X
xuwei06 已提交
341 342 343 344 345 346
    tensor = var.get_tensor()
    if return_numpy:
        tensor = as_numpy(tensor)
    return tensor


X
polish  
Xin Pan 已提交
347 348 349 350 351 352 353 354 355
def _to_name_str(var):
    if isinstance(var, Variable):
        return var.desc.name()
    elif isinstance(var, str):
        return var
    elif isinstance(var, six.string_types):
        return str(var)
    else:
        raise TypeError(str(var) + " should be Variable or str")
Q
qiaolongfei 已提交
356 357


358 359 360 361
def _get_strong_program_cache_key(program, feed, fetch_list):
    return str(id(program)) + _get_program_cache_key(feed, fetch_list)


X
polish  
Xin Pan 已提交
362 363 364
def _get_program_cache_key(feed, fetch_list):
    feed_var_names = list(feed.keys())
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
365 366 367 368

    return str(feed_var_names + fetch_var_names)


W
Wu Yi 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
def _as_lodtensor(data, place):
    """
        Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
        For higher dimensional sequence data, please use LoDTensor directly.

        Examples:
            >>> import paddle.fluid as fluid
            >>> place = fluid.CPUPlace()
            >>> exe = fluid.executor(place)
            >>> data = np.array(size=(100, 200, 300))
            >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
            >>>     ...

        Args:
            data(numpy.ndarray): a instance of array

        Returns:
            LoDTensor
        """
    if isinstance(data, list):
        raise RuntimeError("Some of your feed data hold LoD information. \
                They can not be completely cast from a list of Python \
                ndarray to LoDTensor. Please convert data to LoDTensor \
                directly before feeding the data.\
                ")
    # single tensor case
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


400
class FetchHandler(object):
D
Dong Daxiang 已提交
401 402 403
    def __init__(self, var_dict=None, period_secs=60):
        assert var_dict != None
        self.var_dict = var_dict
404 405
        self.period_secs = period_secs

D
Dong Daxiang 已提交
406 407 408 409 410
    def handler(self, res_dict):
        for key in res_dict:
            if type(res_dict[key]) is np.ndarray:
                sys.stdout.write("{}[0]: {} ".format(key, res_dict[key][0]))
        sys.stdout.write("\n")
411 412 413 414

    @staticmethod
    def help():
        print("""
D
Dong Daxiang 已提交
415 416 417 418 419 420 421 422
class FetchHandlerExample(FetchHandler):
    def handler(self, res_dict):
        print(res_dict["auc"])
        print("auc: {}, {}".format(res_dict["auc"], time.ctime()))

auc = Variable()
var_dict = {"auc": auc}
handler = FetchHandlerExample(var_dict=var_dict)
423 424 425
""")


Y
Yu Yang 已提交
426
class Executor(object):
427
    """
428
    An Executor in Python, supports single/multiple-GPU running,
C
chengduo 已提交
429 430 431 432 433 434 435 436 437
    and single/multiple-CPU running. When construction the Executor,
    the device is required.

    Args:
        place(fluid.CPUPlace()|fluid.CUDAPlace(n)): This parameter represents
            the executor run on which device.

    Returns:
        Executor
S
Fix doc  
sneaxiy 已提交
438

439
    Examples:
S
Fix doc  
sneaxiy 已提交
440 441
        .. code-block:: python

442 443 444 445 446 447 448 449 450 451 452 453
          import paddle.fluid as fluid
          import paddle.fluid.compiler as compiler
          import numpy
          import os

          use_cuda = True
          place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
C
chengduo 已提交
454
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

          # Run the startup program once and only once.
          # Not need to optimize/compile the startup program.
          startup_program.random_seed=1
          exe.run(startup_program)

          # Run the main program directly without compile.
          x = numpy.random.random(size=(10, 1)).astype('float32')
          loss_data, = exe.run(train_program,
                               feed={"X": x},
                               fetch_list=[loss.name])

          # Or, compiled the program and run. See `CompiledProgram`
          # for more detail.
          # NOTE: If you use CPU to run the program, you need
          # to specify the CPU_NUM, otherwise, fluid will use
          # all the number of the logic core as the CPU_NUM,
          # in that case, the batch size of the input should be
          # greater than CPU_NUM, if not, the process will be
          # failed by an exception.
          if not use_cuda:
              os.environ['CPU_NUM'] = str(2)

          compiled_prog = compiler.CompiledProgram(
              train_program).with_data_parallel(
              loss_name=loss.name)
          loss_data, = exe.run(compiled_prog,
                               feed={"X": x},
                               fetch_list=[loss.name])
487 488
    """

D
dzhwinter 已提交
489 490
    def __init__(self, place):
        self.place = place
Q
qiaolongfei 已提交
491
        self.program_caches = dict()
492
        self.ctx_caches = dict()
493 494
        self.scope_caches = dict()
        self.var_caches = dict()
495 496 497
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
498
        self._closed = False
D
dzhwinter 已提交
499

500 501 502
    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

503 504 505
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
506 507 508 509 510 511
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

512 513 514
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

515 516 517
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

Q
Qiao Longfei 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
    def _add_feed_fetch_ops(self, program, feed, fetch_list, feed_var_name,
                            fetch_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                out = global_block.var(name)
W
Wu Yi 已提交
544
                global_block._prepend_op(
Q
Qiao Longfei 已提交
545 546 547 548 549 550 551 552
                    type='feed',
                    inputs={'X': [feed_var]},
                    outputs={'Out': [out]},
                    attrs={'col': i})

        # append fetch_operators
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name):
            for i, var in enumerate(fetch_list):
M
minqiyang 已提交
553 554 555
                assert isinstance(var, Variable) or isinstance(
                    var, six.string_types), (
                        "Wrong type for fetch_list[%s]: %s" % (i, type(var)))
Q
Qiao Longfei 已提交
556 557 558 559 560 561 562 563 564 565
                global_block.append_op(
                    type='fetch',
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i})

        return tmp_program

    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
566 567
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
568 569 570 571
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
                if not isinstance(cur_feed, core.LoDTensor):
W
Wu Yi 已提交
572
                    cur_feed = _as_lodtensor(cur_feed, self.place)
H
Huihuang Zheng 已提交
573 574
                var = global_block.var(feed_target_name)
                check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
575 576 577 578 579 580 581 582
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
M
minqiyang 已提交
583
            for i in six.moves.range(len(fetch_list))
Q
Qiao Longfei 已提交
584 585 586
        ]
        return outs

S
Fix doc  
sneaxiy 已提交
587 588 589 590 591 592
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
593 594
    def close(self):
        """
C
chengduo 已提交
595 596 597
        Close the executor. This interface is used for distributed training (PServers mode).
        This executor can not be used after calling the interface, because
        this interface releases resources associated with the current Trainer.
Y
Yancey1989 已提交
598

C
chengduo 已提交
599 600
        Returns:
            None
601 602 603 604 605 606 607 608 609 610

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              cpu = fluid.CPUPlace()
              exe = fluid.Executor(cpu)
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
611
        """
612 613
        if not self._closed:
            self._default_executor.close()
Y
Yancey1989 已提交
614
            self._closed = True
Y
Yancey1989 已提交
615

X
fix  
Xin Pan 已提交
616
    def _run_parallel(self, program, scope, feed, fetch_list, fetch_var_name,
Z
Zhen Wang 已提交
617
                      return_numpy, return_merged):
618
        exe = program._executor
H
Huihuang Zheng 已提交
619 620 621 622 623
        # TODO(zhenghuihuang): quantization uses Graph in CompiledProgram
        # instead of program. We will add support for checking Vars in Graph
        need_check_feed = program._program is not None
        if need_check_feed:
            global_block = program._program.global_block()
624 625 626 627 628 629
        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
                if not isinstance(feed_tensor, core.LoDTensor):
                    feed_tensor = core.LoDTensor()
630
                    # always set to CPU place, since the tensor need to be split
631
                    # it is fast in CPU
632 633 634
                    assert isinstance( feed[feed_name], np.ndarray ), \
                        "The input({}) should be numpy.array, but not {}.".format(
                        feed_name, type(feed[feed_name]))
635
                    feed_tensor.set(feed[feed_name], core.CPUPlace())
H
Huihuang Zheng 已提交
636 637
                if need_check_feed:
                    var = global_block.var(feed_name)
638
                    check_feed_shape_type(var, feed_tensor, exe.device_count())
639 640
                feed_tensor_dict[feed_name] = feed_tensor

641
            exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict)
642 643 644 645 646 647 648 649 650 651 652
        elif isinstance(feed, list) or isinstance(feed, tuple):
            res = list()
            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
                    if not isinstance(tensor, core.LoDTensor):
                        tmp = core.LoDTensor()
653 654 655
                        assert isinstance(each[feed_name], np.ndarray), \
                            "The input({}) should be numpy.array, but not {}.".format(
                            feed_name, type(each[feed_name]))
X
fix  
Xin Pan 已提交
656
                        tmp.set(tensor, program._places[i])
657
                        tensor = tmp
H
Huihuang Zheng 已提交
658 659 660
                    if need_check_feed:
                        var = global_block.var(feed_name)
                        check_feed_shape_type(var, tensor)
661 662
                    res_dict[feed_name] = tensor
                res.append(res_dict)
663
            exe.feed_tensors_into_local_scopes(res)
664

X
polish  
Xin Pan 已提交
665
        fetch_var_names = list(map(_to_name_str, fetch_list))
Z
Zhen Wang 已提交
666
        tensors = exe.run(fetch_var_names, return_merged)._move_to_list()
667
        return as_numpy(tensors) if return_numpy else tensors
668

Y
Yu Yang 已提交
669
    def run(self,
Y
Yu Yang 已提交
670
            program=None,
671 672
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
673
            feed_var_name='feed',
Y
Yu Yang 已提交
674
            fetch_var_name='fetch',
D
dzhwinter 已提交
675
            scope=None,
676
            return_numpy=True,
Z
Zhen Wang 已提交
677 678
            use_program_cache=False,
            return_merged=True):
679
        """
C
chengduo 已提交
680 681 682 683 684
        Run the specified :code:`Program` or :code:`CompiledProgram`. It should be noted that the executor
        will execute all the operators in :code:`Program` or :code:`CompiledProgram` without pruning some
        operators of the :code:`Program` or :code:`CompiledProgram` according to fetch_list. And you could
        specify the scope to store the :code:`Variables` during the executor running if the scope
        is not set, the executor will use the global scope, i.e. :code:`fluid.global_scope()`.
685

C
chengduo 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
        Args:
            program(Program|CompiledProgram): This parameter represents the :code:`Program` or
                :code:`CompiledProgram` to be executed. If this parameter is not provided, that
                parameter is None, the program will be set to :code:`fluid.default_main_program()`.
                The default is None.
            feed(list|dict): This parameter represents the input variables of the model.
                If it is single card training, the feed is dict type, and if it is multi-card
                training, the parameter feed can be dict or list type variable. If the
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
            fetch_list(list): This parameter represents the variables that need to be returned
                after the model runs. The default is None.
            feed_var_name(str): This parameter represents the name of the input variable of
                the feed operator. The default is "feed".
            fetch_var_name(str): This parameter represents the name of the output variable of
                the fetch operator. The default is "fetch".
            scope(Scope): the scope used to run this program, you can switch 
                it to different scope. default is :code:`fluid.global_scope()`
            return_numpy(bool): This parameter indicates whether convert the fetched variables
                (the variable specified in the fetch list) to numpy.ndarray. if it is False,
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
            use_program_cache(bool): This parameter indicates whether the input :code:`Program` is cached.
                If the parameter is True, the model may run faster in the following cases:
                the input program is :code:`fluid.Program`, and the parameters(program, feed variable name
                and fetch_list variable) of this interface remains unchanged during running.
                The default is False.
Z
Zhen Wang 已提交
717 718 719 720 721 722 723 724 725 726 727
            return_merged(bool): This parameter indicates whether fetched variables (the variables
                specified in the fetch list) should be merged according to the execution device dimension.
                If :code:`return_merged` is False, the type of the return value is a two-dimensional list
                of :code:`Tensor` ( :code:`return_numpy` is False) or a two-dimensional list of
                :code:`numpy.ndarray` ( :code:`return_numpy` is True). If :code:`return_merged` is True,
                the type of the return value is an one-dimensional list of :code:`Tensor` ( :code:`return_numpy`
                is False) or an one-dimensional list of :code:`numpy.ndarray` ( :code:`return_numpy` is True).
                Please see Examples 2 for more details. If the lengths of fetched results are variant, please
                set :code:`return_merged` as False, which denotes that the fetched results will not be merged.
                The default is True, but it is just for the compatibility, and may use False as default value
                in the future version.
C
chengduo 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
                
        Returns:

            List: The fetched result list.

        NOTES:
            1. If it is multi-card running and the feed parameter is dict type, the input data
               will be evenly sent to different cards. For example, using two GPUs to run the model,
               the input sample number is 3, that is, [0, 1, 2], the sample number on GPU0 is 1,
               that is, [0], and the sample number on GPU1 is 2, that is, [1, 2].
               If the number of samples is less than the number of devices, the program will
               throw an exception, so when running the model, you should make sure that the
               number of samples of the last batch of the data set should be greater than the
               number of CPU cores or GPU cards, if it is less than, it is recommended that
               the batch be discarded.
            2. If the number of CPU cores or GPU cards available is greater than 1, the fetch
               results are spliced together in dimension 0 for the same variable values
               (variables in fetch_list) on different devices.
746

Z
Zhen Wang 已提交
747
        Examples 1:
748 749 750 751 752 753 754 755 756
            .. code-block:: python

              import paddle.fluid as fluid
              import numpy

              # First create the Executor.
              place = fluid.CPUPlace() # fluid.CUDAPlace(0)
              exe = fluid.Executor(place)

C
chengduo 已提交
757
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
758 759 760 761 762 763 764 765 766 767 768
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              adam = fluid.optimizer.Adam()
              adam.minimize(loss)

              # Run the startup program once and only once.
              exe.run(fluid.default_startup_program())

              x = numpy.random.random(size=(10, 1)).astype('float32')
              outs = exe.run(feed={'X': x},
                             fetch_list=[loss.name])
Z
Zhen Wang 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828

        Examples 2:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                # First create the Executor.
                place = fluid.CUDAPlace(0)
                exe = fluid.Executor(place)

                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                class_dim = 2
                prediction = fluid.layers.fc(input=data, size=class_dim)
                loss = fluid.layers.mean(prediction)
                adam = fluid.optimizer.Adam()
                adam.minimize(loss)

                # Run the startup program once and only once.
                exe.run(fluid.default_startup_program())
                build_strategy = fluid.BuildStrategy()
                binary = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(
                    loss_name=loss.name, build_strategy=build_strategy)
                batch_size = 6
                x = np.random.random(size=(batch_size, 1)).astype('float32')

                # Set return_merged as False to fetch unmerged results:
                unmerged_prediction, = exe.run(binary, feed={'X': x},
                    fetch_list=[prediction.name],
                    return_merged=False)
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (2, 3, class_dim). The first dimension value of the printed result is the number of used
                # GPU cards, and the second dimension value is the quotient of batch_size and the
                # number of used GPU cards.
                print("The unmerged prediction shape: {}".format(np.array(unmerged_prediction).shape))
                print(unmerged_prediction)

                # Set return_merged as True to fetch merged results:
                merged_prediction, = exe.run(binary, feed={'X': x},
                    fetch_list=[prediction.name],
                    return_merged=True)
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (6, class_dim). The first dimension value of the printed result is the batch_size.
                print("The merged prediction shape: {}".format(np.array(merged_prediction).shape))
                print(merged_prediction)

                # Out:
                # The unmerged prediction shape: (2, 3, 2)
                # [array([[-0.37620035, -0.19752218],
                #        [-0.3561043 , -0.18697084],
                #        [-0.24129935, -0.12669306]], dtype=float32), array([[-0.24489994, -0.12858354],
                #        [-0.49041364, -0.25748932],
                #        [-0.44331917, -0.23276259]], dtype=float32)]
                # The merged prediction shape: (6, 2)
                # [[-0.37789783 -0.19921964]
                #  [-0.3577645  -0.18863106]
                #  [-0.24274671 -0.12814042]
                #  [-0.24635398 -0.13003758]
                #  [-0.49232286 -0.25939852]
                #  [-0.44514108 -0.2345845 ]]
829
        """
C
chengduo 已提交
830 831 832 833 834 835 836 837 838
        try:
            return self._run_impl(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
Z
Zhen Wang 已提交
839 840
                use_program_cache=use_program_cache,
                return_merged=return_merged)
C
chengduo 已提交
841 842
        except Exception as e:
            if not isinstance(e, core.EOFException):
843 844
                warnings.warn(
                    "The following exception is not an EOF exception.")
845
            six.reraise(*sys.exc_info())
C
chengduo 已提交
846 847

    def _run_impl(self, program, feed, fetch_list, feed_var_name,
Z
Zhen Wang 已提交
848 849
                  fetch_var_name, scope, return_numpy, use_program_cache,
                  return_merged):
Y
Yancey1989 已提交
850 851 852
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
853
        use_default_main_program = program is None
854 855
        if program is None:
            program = default_main_program()
C
chengduo 已提交
856
        if isinstance(program, Program) and \
857
                        len(program.global_block().ops) == 0:
C
chengduo 已提交
858
            if use_default_main_program:
859 860 861 862 863 864 865 866
                error_info = "Now you are using default_main_program, "\
                    "but there are no operators in the program to be executed. "\
                    "Please ensure you create model correctly or you can pass "\
                    "the Program or the CompiledProgram manually."
            else:
                error_info = "There are no operators in the program to be executed. "\
                    "If you pass Program manually, please use fluid.program_guard "\
                    "to ensure the current Program is being used."
C
chengduo 已提交
867
            warnings.warn(error_info)
868

869 870
        if scope is None:
            scope = global_scope()
871 872 873 874 875 876 877 878 879

        if fetch_list is not None:
            if isinstance(fetch_list, Variable) or isinstance(fetch_list, str):
                fetch_list = [fetch_list]
            assert isinstance(fetch_list, tuple) or isinstance(fetch_list, list), \
                "Currently , The fetch_list type only should be list or tuple, \n"\
                "but the input type is {}. For more information please refer to \n"\
                "the executor.run(...).".format(type(fetch_list))
        else:
X
polish  
Xin Pan 已提交
880
            fetch_list = []
881

X
polish  
Xin Pan 已提交
882
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
883

X
polish  
Xin Pan 已提交
884
        # For backward compatibility, run directly.
885
        if not compiled:
C
chengduo 已提交
886
            return self._run_program(
887 888 889 890 891 892 893 894 895 896
                program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache)

        program._compile(scope, self.place)
C
chengduo 已提交
897 898 899
        if program._is_inference:
            return self._run_inference(program._executor, feed)
        else:
900
            return self._run_parallel(
X
fix  
Xin Pan 已提交
901
                program,
902 903 904
                scope=scope,
                feed=feed,
                fetch_list=fetch_list,
X
polish  
Xin Pan 已提交
905
                fetch_var_name=fetch_var_name,
Z
Zhen Wang 已提交
906 907
                return_numpy=return_numpy,
                return_merged=return_merged)
908

C
chengduo 已提交
909
    def _run_program(self, program, feed, fetch_list, feed_var_name,
C
chengduo 已提交
910
                     fetch_var_name, scope, return_numpy, use_program_cache):
911

912 913
        if feed is None:
            feed = {}
S
sneaxiy 已提交
914 915 916 917
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

Q
qiaolongfei 已提交
918
        if not isinstance(feed, dict):
D
dzhwinter 已提交
919 920 921
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))
Y
Yu Yang 已提交
922

923
        assert program is not None, "The program should not be Empty"
Y
Yu Yang 已提交
924
        if not isinstance(program, Program):
D
dzhwinter 已提交
925 926 927
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
                % (type(program)))
Y
Yu Yang 已提交
928

929
        if use_program_cache:
930
            cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
Q
Qiao Longfei 已提交
931
            cached_program = self._get_program_cache(cache_key)
932
            cached_ctx = self._get_ctx_cache(cache_key)
933
            cached_scope = self._get_scope_cache(cache_key)
Q
Qiao Longfei 已提交
934 935 936 937 938 939 940 941
            if cached_program is None:
                cached_program = self._add_feed_fetch_ops(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
                    fetch_var_name=fetch_var_name)
                self._add_program_cache(cache_key, cached_program)
942
                fetch_list_str = list(map(_to_name_str, fetch_list))
943
                cached_ctx = self._default_executor.prepare(
944 945 946 947 948 949 950
                    cached_program.desc, 0, fetch_list_str, False)
                # currently, we cache program, vars, sub_scope here
                # we suppose that in a life cycle of training, a user
                # will not create many programs. So, here the basic
                # rule of caching is to cache all unseen (program, var, scope)
                # when a user use use_program_cache.
                cached_scope = scope.new_scope()
951 952
                self._default_executor.create_variables(cached_program.desc,
                                                        cached_scope, 0)
953
                self._add_ctx_cache(cache_key, cached_ctx)
954
                self._add_scope_cache(cache_key, cached_scope)
Q
Qiao Longfei 已提交
955
            program = cached_program
956
            ctx = cached_ctx
957
            scope = cached_scope
958
        else:
Q
Qiao Longfei 已提交
959 960 961 962 963 964 965 966
            program = self._add_feed_fetch_ops(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name)

        self._feed_data(program, feed, feed_var_name, scope)
967
        if not use_program_cache:
C
chengduo 已提交
968 969
            self._default_executor.run(program.desc, scope, 0, True, True,
                                       fetch_var_name)
970
        else:
971 972
            self._default_executor.run_prepared_ctx(ctx, scope, False, False,
                                                    False)
973 974
        arr = scope.find_var(fetch_var_name).get_lod_tensor_array()
        tensors = arr._move_to_list()
D
dzhwinter 已提交
975
        if return_numpy:
976 977 978
            return as_numpy(tensors)
        else:
            return tensors
F
flame 已提交
979

X
Xin Pan 已提交
980 981
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
982

983 984
    def _dump_debug_info(self, program=None, trainer=None):
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
H
hutuxian 已提交
985
            fout.write(str(trainer))
986
        if program._fleet_opt and "fleet_desc" in program._fleet_opt:
987 988 989
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
                % (filelist_length, filelist_length))
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
                % (filelist_length // pipeline_num, filelist_length))
            pipeline_opt["concurrency_list"][
                0] = filelist_length // pipeline_num
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

1006 1007 1008 1009 1010 1011 1012 1013 1014
    def _prepare_trainer(self,
                         program=None,
                         dataset=None,
                         scope=None,
                         thread=0,
                         debug=False,
                         fetch_list=None,
                         fetch_info=None,
                         print_period=100):
D
dongdaxiang 已提交
1015 1016 1017 1018
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
1019 1020 1021
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
1022 1023
        compiled = isinstance(program, compiler.CompiledProgram)
        if not compiled:
H
hutuxian 已提交
1024 1025 1026 1027 1028 1029
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._pipeline_opt)
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
1030
                trainer._set_thread_barrier(program._is_distributed)
1031
            trainer._set_program(program)
1032
        else:
H
hutuxian 已提交
1033 1034 1035 1036 1037 1038
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._pipeline_opt)
            else:
                trainer = TrainerFactory()._create_trainer(
                    program.program._fleet_opt)
1039
            trainer._set_program(program.program)
H
hutuxian 已提交
1040

1041
        if thread <= 0:
D
dongdaxiang 已提交
1042 1043
            if dataset.thread_num <= 0:
                raise RuntimeError(
1044 1045
                    "You should set thread num first, either in Dataset"
                    "or in Executor.train_from_dataset")
D
dongdaxiang 已提交
1046
            else:
1047
                trainer._set_thread(dataset.thread_num)
1048
        else:
1049
            trainer._set_thread(thread)
H
hutuxian 已提交
1050

1051 1052
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
1053
        return scope, trainer
1054

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
    def _run_from_dataset(self,
                          program=None,
                          dataset=None,
                          scope=None,
                          thread=0,
                          is_infer=False,
                          debug=False,
                          fetch_list=None,
                          fetch_info=None,
                          print_period=100,
                          fetch_handler=None):
        if dataset is None:
            raise RuntimeError("dataset is need and should be initialized")

H
hutuxian 已提交
1069 1070 1071
        if program._pipeline_opt is not None and program._pipeline_opt[
                "sync_steps"] != -1:
            # hack for paddlebox: sync_steps(-1) denotes paddlebox
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
            thread = self._adjust_pipeline_resource(program._pipeline_opt,
                                                    dataset, thread)

        dataset._prepare_to_run()

        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
1082 1083 1084 1085
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)
1086 1087 1088 1089 1090

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)
T
tangwei12 已提交
1091
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
1092 1093 1094 1095

        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer._desc(), scope, dataset.dataset)

T
tangwei12 已提交
1096 1097 1098 1099 1100 1101
        if fetch_handler is not None:
            scope0 = trainer_instance.get_worker_scope(0)
            fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
            fetch_monitor.start()
            self._default_executor.run_from_dataset(trainer_instance)
            fetch_monitor.stop()
D
Dong Daxiang 已提交
1102
            self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
1103 1104 1105
        else:

            self._default_executor.run_from_dataset(trainer_instance)
D
Dong Daxiang 已提交
1106
            self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
1107 1108

        dataset._dynamic_adjust_after_train()
1109
        dataset._finish_to_run()
T
tangwei12 已提交
1110

1111 1112
        return None

1113 1114 1115 1116 1117
    def infer_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
1118 1119 1120
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
1121 1122
                           print_period=100,
                           fetch_handler=None):
1123
        """
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
        Infer from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, infer_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current infer task.

        The document of infer_from_dataset is almost the same as train_from_dataset,
        except that in distributed training, push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-threadvery easily.
1135

1136 1137
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
1138
                if not provided, then default_main_program (not compiled) will be used.
1139
            dataset(paddle.fluid.Dataset): dataset created outside this function,
1140 1141
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed. default is None
1142
            scope(Scope): the scope used to run this program, you can switch it to different scope
1143 1144 1145
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
1146
            debug(bool): whether a user wants to run infer_from_dataset, default is False
1147 1148
            fetch_list(Variable List): fetch variable list, each variable will be printed during
                training, default is None
1149 1150
            fetch_info(String List): print information for each variable, default is None
            print_period(int): the number of mini-batches for each print, default is 100
1151
            fetch_handler(FetchHandler): a user define class for fetch output.
1152

1153 1154 1155 1156
        Returns:
            None

        Examples:
1157 1158

            .. code-block:: python
1159

1160
                import paddle.fluid as fluid
1161 1162

                place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu
1163
                exe = fluid.Executor(place)
1164 1165
                x = fluid.layers.data(name="x", shape=[10, 10], dtype="int64")
                y = fluid.layers.data(name="y", shape=[1], dtype="int64", lod_level=1)
1166 1167
                dataset = fluid.DatasetFactory().create_dataset()
                dataset.set_use_var([x, y])
1168 1169
                dataset.set_thread(1)
                filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
1170 1171 1172 1173
                dataset.set_filelist(filelist)
                exe.run(fluid.default_startup_program())
                exe.infer_from_dataset(program=fluid.default_main_program(),
                                       dataset=dataset)        
1174

1175
        """
1176 1177 1178
        return self._run_from_dataset(program, dataset, scope, thread, True,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)
1179 1180 1181 1182 1183 1184 1185 1186 1187

    def train_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
1188 1189
                           print_period=100,
                           fetch_handler=None):
1190 1191 1192 1193 1194 1195 1196 1197
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
1198

1199 1200 1201 1202
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
1203
                if not provided, then default_main_program (not compiled) will be used.
1204
            dataset(paddle.fluid.Dataset): dataset created outside this function,
1205 1206
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed.
1207
            scope(Scope): the scope used to run this program, you can switch it to different scope
1208 1209 1210
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
1211
            debug(bool): whether a user wants to run train_from_dataset 
1212 1213 1214 1215 1216
            fetch_list(Variable List): fetch variable list, each variable will be printed
                during training
            fetch_info(String List): print information for each variable, its length should be equal
                to fetch_list
            print_period(int): the number of mini-batches for each print, default is 100
1217
            fetch_handler(FetchHandler): a user define class for fetch output.
1218 1219 1220

        Returns:
            None
1221
        
1222
        Examples:
1223
        
1224 1225 1226
            .. code-block:: python

              import paddle.fluid as fluid
1227 1228

              place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu
1229
              exe = fluid.Executor(place)
1230 1231
              x = fluid.layers.data(name="x", shape=[10, 10], dtype="int64")
              y = fluid.layers.data(name="y", shape=[1], dtype="int64", lod_level=1)
1232 1233
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_use_var([x, y])
1234 1235
              dataset.set_thread(1)
              filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
1236 1237 1238 1239
              dataset.set_filelist(filelist)
              exe.run(fluid.default_startup_program())
              exe.train_from_dataset(program=fluid.default_main_program(),
                                     dataset=dataset)
1240 1241

        """
1242 1243 1244
        return self._run_from_dataset(program, dataset, scope, thread, False,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)