executor.py 114.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
Zeng Jinle 已提交
15
import logging
16 17
import os
import multiprocessing
C
chengduo 已提交
18
import sys
19
import warnings
D
dzhwinter 已提交
20
import numpy as np
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
22
import six
23
from .data_feeder import convert_dtype
24
from .framework import Program, default_main_program, Variable, Operator
25
from .framework import convert_np_dtype_to_dtype_, _apply_pass
L
Leo Chen 已提交
26

27
from . import core
28
from . import unique_name
29
from . import compiler
30
from .trainer_factory import TrainerFactory
31
from .trainer_factory import FetchHandlerMonitor
32
import copy
33
from . import framework
34
from .incubate.checkpoint import auto_checkpoint as acp
35
from .compiler import _prune_feed_ops
36

R
Ruibiao Chen 已提交
37 38
from functools import lru_cache

T
Tink_Y 已提交
39
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
40

Y
Yu Yang 已提交
41
g_scope = core.Scope()
F
flame 已提交
42 43
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
44

Y
Yu Yang 已提交
45

Y
Yang Yu 已提交
46
def global_scope():
Y
yuyang18 已提交
47
    """
48 49
    :api_attr: Static Graph

Y
yuyang18 已提交
50 51 52
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

C
chengduo 已提交
53 54 55
    Returns:
        Scope: The global/default scope instance.

56 57 58
    Examples:
        .. code-block:: python

59
          import paddle
60 61
          import numpy

62 63
          paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
          numpy.array(paddle.static.global_scope().find_var("data").get_tensor())
Y
yuyang18 已提交
64
    """
Y
Yang Yu 已提交
65 66 67
    return g_scope


68
def _switch_scope(scope):
Y
Yang Yu 已提交
69 70 71 72 73 74
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
75
@signature_safe_contextmanager
Y
Yang Yu 已提交
76
def scope_guard(scope):
Y
yuyang18 已提交
77
    """
78

79 80 81 82 83 84 85 86 87 88 89 90
    This function switches scope through python `with` statement.
    Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
    similar to brackets in programming languages.
    If this function is not invoked, all variables and variable names are recorded in the default global scope.
    When users need to create variables with the same name,
    they need to switch scopes through this function
    if they do not want the mapping of variables with the same name to be overwritten.
    After switching through the `with` statement,
    all variables created in the `with` block will be assigned to a new scope.

    Parameters:
        scope: The new scope.
Y
yuyang18 已提交
91

92 93
    Returns:
        None
L
lujun 已提交
94

Y
yuyang18 已提交
95
    Examples:
96

97 98
        .. code-block:: python

99
            import paddle
L
lujun 已提交
100
            import numpy
101
            paddle.enable_static()
Y
yuyang18 已提交
102

103 104 105
            new_scope = paddle.static.Scope()
            with paddle.static.scope_guard(new_scope):
                 paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
L
lujun 已提交
106
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
107
    """
L
lujun 已提交
108

109
    ex = _switch_scope(scope)
110 111 112 113
    try:
        yield
    finally:
        _switch_scope(ex)
Y
Yang Yu 已提交
114 115


116
def as_numpy(tensor, copy=False):
117 118 119
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
120

121
    Examples:
122 123 124 125 126 127 128 129 130 131
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
132 133 134

    Args:
       tensor(Variable): a instance of Tensor
135
       copy(bool, optional): Whether to use deep copy.
136 137 138 139

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
140
    if isinstance(tensor, core.LoDTensorArray):
141
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
142
    if isinstance(tensor, list):
143
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
144 145
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
146
    if len(lod) > 0:
D
dzhwinter 已提交
147
        raise RuntimeError("Some of your fetched tensors hold LoD information. \
148 149 150
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
            return LoDTensor itself directly.")
Q
qingqing01 已提交
151
    if tensor._is_initialized():
152 153 154 155
        if copy:
            return np.array(tensor)
        else:
            return np.asarray(tensor)
Q
qingqing01 已提交
156 157
    else:
        return None
D
dzhwinter 已提交
158 159


H
Huihuang Zheng 已提交
160 161 162 163
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
164

H
Huihuang Zheng 已提交
165 166
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
167

H
Huihuang Zheng 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
184 185
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


213
def check_feed_shape_type(var, feed, num_places=1):
H
Huihuang Zheng 已提交
214 215
    """
    Returns True if the variable doesn't require feed check or it is compatible
T
tianshuo78520a 已提交
216
    with the shape and have same dtype as the fed value.
H
Huihuang Zheng 已提交
217 218 219

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
220 221
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
222
       is compatible with any number.
223

H
Huihuang Zheng 已提交
224 225
    Args:
        var (Variable): the Variable object
T
tianshuo78520a 已提交
226
        feed (LoDTensor): the fed value, which must be a LoDTensor
227 228
        num_places: an integer value indicating the number of places.
            ParallelExecutor will divide data into devices (CPU/GPU) evenly.
H
Huihuang Zheng 已提交
229 230 231 232 233 234 235
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
236 237
        diff_shape = core.diff_tensor_shape(feed, var.desc, num_places)
        if diff_shape is not None:
238
            raise ValueError(
T
tianshuo78520a 已提交
239 240
                'The fed Variable %r should have dimensions = %d, shape = '
                '%r, but received fed shape %r on each device' %
241
                (var.name, len(var.shape), var.shape, diff_shape))
H
Huihuang Zheng 已提交
242
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
243 244 245 246 247
            var_dtype_format = convert_dtype(var.dtype) if isinstance(
                var.dtype, core.VarDesc.VarType) else var.dtype
            feed_dtype_format = convert_dtype(feed._dtype()) if isinstance(
                feed._dtype(), core.VarDesc.VarType) else feed._dtype()
            raise ValueError(
T
tianshuo78520a 已提交
248 249
                'The data type of fed Variable %r must be %r, but received %r' %
                (var.name, var_dtype_format, feed_dtype_format))
H
Huihuang Zheng 已提交
250 251 252
    return True


253 254 255 256 257 258 259 260 261 262 263 264
def has_feed_operators(block, feed_targets, feed_holder_name):
    """ Check whether the block already has feed operators.

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
265 266
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
267 268 269
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
270
        A boolean value that indicates whether a block has feed operators
271 272 273 274 275 276 277 278 279 280
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
281 282 283
                raise Exception(
                    "'feed_targets' does not have {} variable".format(
                        feed_target_name))
284 285 286 287 288 289 290 291
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
            "Feed operators in program desc do not match 'feed_targets'")
    return feed_count > 0


292 293 294 295
def has_fetch_operators(block,
                        fetch_targets,
                        fetch_holder_name,
                        fetch_op='fetch'):
296
    """ Check whether the block already has fetch operators.
X
xuwei06 已提交
297

298 299 300 301 302 303 304 305 306
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
307 308 309
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
310
        fetch_op: the operator name of fetch
311

X
xuwei06 已提交
312 313 314
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
315 316 317 318
    """

    fetch_count = 0
    for op in block.ops:
319
        if op.desc.type() == fetch_op:
320 321 322 323 324 325
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
                    var.desc.name() for var in fetch_targets
            ]:
326 327 328
                raise Exception(
                    "'fetch_targets' does not have {} variable".format(
                        fetch_target_name))
329 330 331 332 333 334 335 336
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
            "Fetch operators in program desc do not match 'fetch_targets'")
    return fetch_count > 0


R
Ruibiao Chen 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
def _add_feed_fetch_ops(program,
                        feed,
                        fetch_list,
                        feed_var_name,
                        fetch_var_name,
                        use_fetch_v2=False):
    tmp_program = program.clone()

    global_block = tmp_program.global_block()

    if feed_var_name in global_block.vars:
        feed_var = global_block.var(feed_var_name)
    else:
        feed_var = global_block.create_var(
            name=feed_var_name,
            type=core.VarDesc.VarType.FEED_MINIBATCH,
            persistable=True)

    if fetch_var_name in global_block.vars:
        fetch_var = global_block.var(fetch_var_name)
    else:
        fetch_var = global_block.create_var(
            name=fetch_var_name,
            type=core.VarDesc.VarType.FETCH_LIST,
            persistable=True)

    # prepend feed operators
    if not has_feed_operators(global_block, feed, feed_var_name):
        for i, name in enumerate(feed):
            if global_block.has_var(name):
                out = global_block.var(name)
                global_block._prepend_op(type='feed',
                                         inputs={'X': [feed_var]},
                                         outputs={'Out': [out]},
                                         attrs={'col': i})
            else:
                warnings.warn(
                    "The variable %s is not found in program. It is not declared or is pruned."
                    % name)

    if use_fetch_v2:
        fetch_op = 'fetch_v2'
    else:
        fetch_op = 'fetch'

    # append fetch_operators
    if not has_fetch_operators(global_block, fetch_list, fetch_var_name,
                               fetch_op):
        for i, var in enumerate(fetch_list):
            assert isinstance(var, Variable) or isinstance(
                var, six.string_types), ("Wrong type for fetch_list[%s]: %s" %
                                         (i, type(var)))
            global_block.append_op(type=fetch_op,
                                   inputs={'X': [var]},
                                   outputs={'Out': [fetch_var]},
                                   attrs={'col': i})

    return tmp_program


def _apply_inplace_addto_pass(program, enable_inplace, enable_addto,
                              skip_var_names):
    use_cuda = True if core.is_compiled_with_cuda() else False

    attrs = {"use_cuda": use_cuda, "mem_opt_skip_vars": skip_var_names}
    attr_types = {"use_cuda": "bool", "mem_opt_skip_vars": "list[str]"}

    empty_startup_program = Program()
    if enable_inplace:
        pass_name = "buffer_shared_inplace_pass"
        _apply_pass(program, empty_startup_program, pass_name, attrs,
                    attr_types)
    if enable_addto and use_cuda:
        pass_name = "inplace_addto_op_pass"
        _apply_pass(program, empty_startup_program, pass_name, attrs,
                    attr_types)


W
Wu Yi 已提交
415
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
416
    """
C
chengduoZH 已提交
417 418 419
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
420
    Args:
421 422 423 424
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
425 426 427 428
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
429 430 431
    Returns:
       LodTensor|numpy.ndarray
    """
432
    assert isinstance(name, six.string_types)
X
xuwei06 已提交
433 434
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
435
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
436

437
    var = scope.find_var(_to_name_str(name))
438 439 440 441
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
        " program.")
X
xuwei06 已提交
442 443
    tensor = var.get_tensor()
    if return_numpy:
444
        tensor = as_numpy(tensor, copy=True)
X
xuwei06 已提交
445 446 447
    return tensor


X
polish  
Xin Pan 已提交
448
def _to_name_str(var):
449

450 451 452 453 454 455 456 457
    def _to_str(var):
        if isinstance(var, Variable):
            return var.desc.name()
        elif isinstance(var, str):
            return var
        elif isinstance(var, six.string_types):
            return str(var)
        elif isinstance(var, Operator):
458
            return str(id(var))
459 460 461 462 463 464 465 466 467 468
        else:
            raise TypeError(str(var) + " should be Variable, Operator or str")

    # NOTEz(zhiqiu): The item in fetch_list may be tuple returned by Optimizer.minimize(),
    # see comments in _split_optimize_ops_in_fetch_list for more details.
    if isinstance(var, tuple):
        var = var[0]
    if isinstance(var, list):
        s = [_to_str(item) for item in var]
        return ','.join(s)
X
polish  
Xin Pan 已提交
469
    else:
470
        return _to_str(var)
Q
qiaolongfei 已提交
471 472


473
def _is_enable_standalone_executor():
474 475 476
    return framework._enable_standalone_executor_ is None or framework._enable_standalone_executor_ in [
        1, '1', True, 'True', 'true'
    ]
477 478


479 480 481 482 483 484
def _is_dy2st_enable_standalone_executor():
    return framework._dy2st_enable_standalone_executor_ in [
        1, '1', True, 'True', 'true'
    ]


485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
def _prepare_fleet_executor():
    from ..distributed.fleet.proto import fleet_executor_desc_pb2
    trainer_endpoints_str = os.getenv("PADDLE_TRAINER_ENDPOINTS", "")
    trainer_endpoints = trainer_endpoints_str.split(',')
    fleet_exe_desc = fleet_executor_desc_pb2.FleetExecutorDesc()
    cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
    fleet_exe_desc.cur_rank = cur_rank
    nrank = len(trainer_endpoints)
    for rank, endpoint in enumerate(trainer_endpoints):
        rank_info = fleet_executor_desc_pb2.RankInfo()
        rank_info.rank = rank
        rank_info.ip_port = endpoint
        fleet_exe_desc.cluster_info.append(rank_info)
    fleet_exe = core.FleetExecutor(fleet_exe_desc.SerializeToString())
    return fleet_exe


L
Leo Chen 已提交
502 503 504 505 506
def _get_strong_program_cache_key_for_new_exe(program, feed, fetch_list):
    return program.desc.cached_hash_str() + _get_program_cache_key(
        feed, fetch_list)


507
def _get_strong_program_cache_key(program, feed, fetch_list):
L
Leo Chen 已提交
508
    # TODO(zhiqiu): use hash_str to generate cache key as above
509 510 511 512 513 514 515 516
    def _get_varname_from_block(block):
        block_str = []
        for var_name in list(block.vars.keys()):
            block_str.append(var_name)
        return "\n".join(block_str)

    inner_program = program._program if isinstance(
        program, compiler.CompiledProgram) else program
517 518
    return _get_varname_from_block(inner_program.blocks[0]) + str(
        id(program)) + _get_program_cache_key(feed, fetch_list)
519 520


X
polish  
Xin Pan 已提交
521
def _get_program_cache_key(feed, fetch_list):
522 523 524 525 526 527
    feed_var_names = []
    if isinstance(feed, dict):
        feed_var_names = list(feed.keys())
    elif isinstance(feed, list) or isinstance(feed, tuple):
        for i, each in enumerate(feed):
            feed_var_names += list(each.keys())
X
polish  
Xin Pan 已提交
528
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
529 530 531
    return str(feed_var_names + fetch_var_names)


532
def _as_lodtensor(data, place, dtype=None):
W
Wu Yi 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545
    """
        Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
        For higher dimensional sequence data, please use LoDTensor directly.

        Examples:
            >>> import paddle.fluid as fluid
            >>> place = fluid.CPUPlace()
            >>> exe = fluid.executor(place)
            >>> data = np.array(size=(100, 200, 300))
            >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
            >>>     ...

        Args:
546
            data(numpy.ndarray|list|tuple|scalar): a instance of array, scalar, list or tuple
547
            data(core.Place): the place of created tensor
548
            dtype(core.VarDesc.VarType|str): the expected data type of created tensor
W
Wu Yi 已提交
549 550 551 552

        Returns:
            LoDTensor
        """
553
    #NOTE(zhiqiu): convert python builtin, like float, int, and list, to numpy ndarray
554
    if not isinstance(data, np.ndarray):
555 556 557
        assert dtype is not None, 'The dtype should be given when feed data is not np.ndarray'
        dtype = convert_dtype(dtype) if isinstance(
            dtype, core.VarDesc.VarType) else dtype
558 559
        if np.isscalar(data):
            data = np.array([data]).astype(dtype)
560 561
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
562
            if data.dtype == np.object_:
563 564 565 566 567 568 569 570 571 572
                raise TypeError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                    "this means the input data contains nested lists with different lengths. "
                    "Please consider using 'fluid.create_lod_tensor' to convert it to a LoD-Tensor."
                )
            data = data.astype(dtype)
        else:
            raise TypeError(
                "Convert data of type {} to Tensor is not supported".format(
                    type(data)))
573

574
    # convert numpy.ndarray to tensor
W
Wu Yi 已提交
575 576 577 578 579
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


580
class FetchHandler(object):
581

D
Dong Daxiang 已提交
582 583 584
    def __init__(self, var_dict=None, period_secs=60):
        assert var_dict != None
        self.var_dict = var_dict
585 586
        self.period_secs = period_secs

D
Dong Daxiang 已提交
587 588 589 590 591
    def handler(self, res_dict):
        for key in res_dict:
            if type(res_dict[key]) is np.ndarray:
                sys.stdout.write("{}[0]: {} ".format(key, res_dict[key][0]))
        sys.stdout.write("\n")
592 593 594 595

    @staticmethod
    def help():
        print("""
D
Dong Daxiang 已提交
596 597 598 599 600 601 602 603
class FetchHandlerExample(FetchHandler):
    def handler(self, res_dict):
        print(res_dict["auc"])
        print("auc: {}, {}".format(res_dict["auc"], time.ctime()))

auc = Variable()
var_dict = {"auc": auc}
handler = FetchHandlerExample(var_dict=var_dict)
604 605 606
""")


607
class _StandaloneExecutor(object):
608

609
    def __init__(self, place, main_program, scope):
610 611 612
        self._place = core.Place()
        self._place.set_place(place)
        self._main_program = main_program
613
        self._scope = scope
614 615
        self._new_exe = self._create_new_executor()

616
    def run(self, scope, feed_names, fetch_list, return_numpy=True):
617 618
        """
        Args:
619
            feed_names(list): This parameter represents the input names of the model.
620
            fetch_list(list): This parameter represents the Tensors that need to be returned
621
                after the model runs. The default is None.
622 623 624 625 626 627
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
        """
        fetch_list = self._check_fetch(fetch_list)

628 629
        tensors = self._new_exe.run(scope, feed_names,
                                    fetch_list)._move_to_list()
630 631 632 633 634 635
        if return_numpy:
            return as_numpy(tensors, copy=True)
        else:
            return tensors

    def _create_new_executor(self):
L
Leo Chen 已提交
636
        new_exe = core.StandaloneExecutor(self._place, self._main_program.desc)
637 638 639 640 641

        return new_exe

    def _update_feed(self, feed):
        """
642
        Update the feed dict, remove the feed item which is pruned in program.
643 644

        Notes: This is a very low level API. Users should not use this API
645
        directly.
646 647 648 649 650 651 652 653 654

        Args:
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        if feed is None:
            feed = {}
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

        if not isinstance(feed, dict):
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))

        global_block = self._main_program.global_block()
        for feed_name in list(feed.keys()):
            if not global_block.has_var(feed_name):
                feed.pop(feed_name)
                warnings.warn(
                    "The variable %s is not found in program. It is not declared or is pruned."
                    % feed_name)
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691

        return feed

    def _check_fetch(self, fetch_list):
        if fetch_list is None:
            fetch_list = []

        res = []
        for fetch_var in fetch_list:
            if isinstance(fetch_var, Variable):
                fetch_var = fetch_var.name
            elif not isinstance(fetch_var, str):
                raise TypeError(
                    "Required fetch_var shall be str|Variable, but received {}".
                    format(type(fetch_var).__name__))

            res.append(fetch_var)
        return res


class _ExecutorCache(object):
692

R
Ruibiao Chen 已提交
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
    class _CachedData(object):

        def __init__(self, program, feed, fetch_list, feed_var_name,
                     fetch_var_name, place, scope):
            self.program = program
            self.feed = feed
            self.fetch_list = fetch_list
            self.feed_var_name = feed_var_name
            self.fetch_var_name = fetch_var_name
            self.place = place
            self.scope = scope

            # NOTE(Ruibiao): Not all changeable item is considered for key at present,
            # ONLY: program, feed, and fetch_list
            if isinstance(self.program, compiler.CompiledProgram):
708 709 710 711 712
                if not self.program._program:
                    # The program holds no _program, maybe it is constructed by graph.
                    # Convert graph to program in order to generate key.
                    self.program._program = framework.IrGraph(
                        self.program._graph).to_program()
R
Ruibiao Chen 已提交
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
                self.key = hash(
                    _get_strong_program_cache_key_for_new_exe(
                        self.program._program, feed, fetch_list))
            else:
                self.key = hash(
                    _get_strong_program_cache_key_for_new_exe(
                        self.program, feed, fetch_list))

        def __eq__(self, other):
            return isinstance(
                other, _ExecutorCache._CachedData) and self.key == other.key

        def __hash__(self):
            return self.key

    def __init__(self):
        # NOTE(Ruibiao): Wrap the lru_cache in constructor so that the cache is local to
        # the _ExecutorCache instance, otherwise a global cache may not be released after
        # the Executor instance deleted
        self._get_cached_program_and_executor = lru_cache(maxsize=8)(
            self._get_program_and_executor)

    def clear(self):
        self._get_cached_program_and_executor.cache_clear()

    def get_program_and_executor(self, program, feed, fetch_list, feed_var_name,
                                 fetch_var_name, place, scope):
        return self._get_cached_program_and_executor(
            self._CachedData(program, feed, fetch_list, feed_var_name,
                             fetch_var_name, place, scope))

    def _get_program_and_executor(self, cached_data):
        program = cached_data.program
        inner_program = program._program if isinstance(
            program, compiler.CompiledProgram) else program
        feed = cached_data.feed
        fetch_list = cached_data.fetch_list
        feed_var_name = cached_data.feed_var_name
        fetch_var_name = cached_data.fetch_var_name
        place = cached_data.place
        scope = cached_data.scope

        # To apply IR pass, compile the Program to IrGraph and convert it back to Program
        if isinstance(program, compiler.CompiledProgram) or isinstance(
                program._graph, compiler.CompiledProgram):
            compiled_program = program if isinstance(
                program, compiler.CompiledProgram) else program._graph
            build_strategy = compiled_program._build_strategy
            # print(f"Program before convert:\n {inner_program}", flush=True)
            compiled_program._compile(scope, place)
            ir_graph = framework.IrGraph(compiled_program._graph)
            converted_program = ir_graph.to_program()

            if hasattr(inner_program, 'lr_sheduler'):
                converted_program.lr_sheduler = inner_program.lr_sheduler

            inner_program = converted_program
            # print(f"Program after convert:\n {inner_program}", flush=True)
        else:
            build_strategy = None
            from paddle.incubate.autograd import prim_enabled, prim2orig
            if prim_enabled() and program == default_main_program():
                prim2orig()

            inner_program = program

        program = _add_feed_fetch_ops(program=inner_program,
                                      feed=feed,
                                      fetch_list=fetch_list,
                                      feed_var_name=feed_var_name,
                                      fetch_var_name=fetch_var_name,
                                      use_fetch_v2=True)

786 787 788 789 790 791 792 793 794 795
        if os.environ.get('FLAGS_CONVERT_GRAPH_TO_PROGRAM', None) in [
                1, '1', True, 'True', 'true'
        ] and not program._is_start_up_program_:
            if program.num_blocks > 1:
                # If there are multiple blocks in the program, subblock will not be executed with the new executor in temporary
                logging.warning("There are more than 1 block in program.")
            elif program.num_blocks == 1:
                logging.warning("There are 1 block in program.")
            else:
                logging.warning("There are no block in program.")
R
Ruibiao Chen 已提交
796 797 798 799 800 801 802 803 804 805 806 807 808 809

        # standalone executor will apply buffer_shared_inplace_pass and
        # inplace_addto_op_pass to program according to build_strategy
        enable_inplace = True if build_strategy is None or build_strategy.enable_inplace else False
        enable_addto = True if build_strategy is not None and build_strategy.enable_addto else False
        if enable_inplace or enable_addto:
            # inplace should skip feed and fetch var
            skip_var_names = eval(_get_program_cache_key(feed, fetch_list))
            _apply_inplace_addto_pass(program, enable_inplace, enable_addto,
                                      skip_var_names)

        new_program = program.clone()
        new_exe = _StandaloneExecutor(place, new_program, scope)
        return new_program, new_exe
810 811


Y
Yu Yang 已提交
812
class Executor(object):
813
    """
814 815
    :api_attr: Static Graph

816
    An Executor in Python, supports single/multiple-GPU running,
817
    and single/multiple-CPU running.
C
chengduo 已提交
818 819

    Args:
820
        place(paddle.CPUPlace()|paddle.CUDAPlace(n)|str|None): This parameter represents
821 822 823 824
            which device the executor runs on. When this parameter is None, PaddlePaddle
            will set the default device according to its installation version. If Paddle
            is CPU version, the default device would be set to `CPUPlace()` . If Paddle is
            GPU version, the default device would be set to `CUDAPlace(0)` . Default is None.
825
            If ``place`` is string, it can be ``cpu``, and ``gpu:x``, where ``x``
826 827
            is the index of the GPUs. Note: users only pass one Place or None to initialize
            Executor when using multiple-cards. Other APIs will override the cards. See
828
            `document for multiple-cards <https://www.paddlepaddle.org.cn/documentation/docs/en/develop/guides/01_paddle2.0_introduction/update_en.html#stand-alone-multi-card-launch>`_
C
chengduo 已提交
829 830 831

    Returns:
        Executor
S
Fix doc  
sneaxiy 已提交
832

833
    Examples:
S
Fix doc  
sneaxiy 已提交
834 835
        .. code-block:: python

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
            import paddle
            import numpy
            import os

            # Executor is only used in static graph mode
            paddle.enable_static()

            # Set place explicitly.
            # use_cuda = True
            # place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            # exe = paddle.static.Executor(place)

            # If you don't set place, PaddlePaddle sets the default device.
            exe = paddle.static.Executor()

            train_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(train_program, startup_program):
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)

            # Run the startup program once and only once.
            # Not need to optimize/compile the startup program.
            exe.run(startup_program)

            # Run the main program directly without compile.
            x = numpy.random.random(size=(10, 1)).astype('float32')
            loss_data, = exe.run(train_program, feed={"X": x}, fetch_list=[loss.name])

            # Or, compiled the program and run. See `CompiledProgram`
            # for more details.
            # NOTE: If you use CPU to run the program or Paddle is
            # CPU version, you need to specify the CPU_NUM, otherwise,
            # PaddlePaddle will use all the number of the logic core as
            # the CPU_NUM, in that case, the batch size of the input
            # should be greater than CPU_NUM, if not, the process will be
            # failed by an exception.

            # Set place explicitly.
            # if not use_cuda:
            #     os.environ['CPU_NUM'] = str(2)

            # If you don't set place and PaddlePaddle is CPU version
            os.environ['CPU_NUM'] = str(2)

            compiled_prog = paddle.static.CompiledProgram(
                train_program).with_data_parallel(loss_name=loss.name)
            loss_data, = exe.run(compiled_prog, feed={"X": x}, fetch_list=[loss.name])

887 888
    """

889 890
    def __init__(self, place=None):
        if place is None:
891 892
            expected_place = framework._current_expected_place()
            self.place = expected_place
893
        else:
894
            self.place = framework._get_paddle_place(place)
Q
qiaolongfei 已提交
895
        self.program_caches = dict()
896
        self.ctx_caches = dict()
897
        self.trainer_caches = dict()
898 899
        self.scope_caches = dict()
        self.var_caches = dict()
900
        self.pruned_program_caches = dict()
901 902 903
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
904
        self._closed = False
905
        self.pruned_program_scope_caches = dict()
906
        self._prepare_to_run_called = False
D
dzhwinter 已提交
907

908 909 910
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_executor__")

911 912
        # NOTE: Whether to use experimental executor `StandaloneExecutor`.
        self._enable_interpreter_core = _is_enable_standalone_executor()
R
Ruibiao Chen 已提交
913
        self._executor_cache = _ExecutorCache()
914

915
        self._fleet_executor = None
916 917 918
        # TODO(liyurui): This option will be removed and always true when the functionality
        # of fleet executor with standalone executor is ready.
        self._fleet_executor_with_standalone = False
919

R
Ruibiao Chen 已提交
920 921 922 923 924 925
    def __del__(self):
        # NOTE(Ruibiao): The manually call of clear is required. Because in Python, executor_cache
        # may not immediately destructed after Executor instance deleted (so does not the _StandaloneExecutor),
        # that brings errors to mkl-dnn unit tests (see ClearMKLDNNCache in interpretercore.cc for why).
        self._executor_cache.clear()

926 927 928
    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

929 930 931
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

932 933 934
    def _get_trainer_cache(self, program_cache_key):
        return self.trainer_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
935 936 937 938 939 940
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

941 942 943 944 945 946 947 948 949 950 951 952
    def _get_pruned_program_cache(self, program_cache_key):
        return self.pruned_program_caches.get(program_cache_key, None)

    def _add_pruned_program_cache(self, program_cache_key, program):
        self.pruned_program_caches[program_cache_key] = program

    def _get_pruned_program_scope_cache(self, program_cache_key):
        return self.pruned_program_scope_caches.get(program_cache_key, None)

    def _add_pruned_program_scope_cache(self, program_cache_key, program):
        self.pruned_program_scope_caches[program_cache_key] = program

953 954 955
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

956 957 958
    def _add_trainer_cache(self, trainer_cache_key, ctx):
        self.trainer_caches[trainer_cache_key] = ctx

959 960 961
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

962 963 964 965 966 967 968
    # just for testing, will be removed later
    @lru_cache()
    def _log_force_set_program_cache(self, use_program_cache):
        logging.warning(
            f"use_program_cache is force set to {use_program_cache} by FLAGS_FORCE_USE_PROGRAM_CACHE"
        )

Q
Qiao Longfei 已提交
969 970
    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
971 972
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
973 974 975
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
H
Huihuang Zheng 已提交
976
                var = global_block.var(feed_target_name)
S
Steffy-zxf 已提交
977 978 979 980 981
                if var.dtype != core.VarDesc.VarType.STRINGS:
                    if not isinstance(cur_feed, core.LoDTensor):
                        cur_feed = _as_lodtensor(cur_feed, self.place,
                                                 var.dtype)
                    check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
982 983 984 985 986 987 988 989
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
M
minqiyang 已提交
990
            for i in six.moves.range(len(fetch_list))
Q
Qiao Longfei 已提交
991 992 993
        ]
        return outs

994 995
    @classmethod
    def _split_optimize_ops_in_fetch_list(cls, fetch_list):
996 997 998 999 1000 1001 1002 1003 1004 1005 1006
        """
        Split optimize_ops from fetch_list, which provided to specify program prunning.
        Args:
            fetch_list(list): The original fetch_list.
            Possible types of fetch_list are:
                fetch_list = ['loss']
                fetch_list = [[sgd, sgd], 'loss']
                fetch_list = [([sgd, sgd], [(param, grad)]), 'loss']

        Returns:
            optimize_ops(list): The optimize operators splited from fetch_list.
1007
            fetch_list(list):  The updated fetch_list which does not contain optimize operators.
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
        """
        _optimize_ops = []
        _fetch_list = []

        def _get_targets(_optimize_ops, _fetch_list, item):
            if isinstance(item, Operator):
                if item._is_optimize_op():
                    _optimize_ops.append(item)
                else:
                    raise TypeError(
                        "The operator in fetch_list is not an optimize_op")
            elif isinstance(item, Variable) or isinstance(
                    item, str) or isinstance(item, six.string_types):
                _fetch_list.append(item)
            else:
                raise TypeError(
1024
                    "The item in fetch_list should be str, variable or optimize_op, but received %s.",
1025 1026
                    type(item))

1027
        for index, item in enumerate(fetch_list):
1028 1029 1030 1031 1032 1033 1034
            # NOTE(zhiqiu): to support (optimizer_ops, param_and_grads) and optimizer_ops in fetch_list
            # we should handle tuple and list in fetch_list.
            # TODO(zhiqiu): find a better way to handle that.
            if isinstance(item, list):
                for i in item:
                    _get_targets(_optimize_ops, _fetch_list, i)
            elif isinstance(item, tuple):
1035 1036
                if not isinstance(item[0], (list, tuple)):
                    raise TypeError(
1037 1038 1039
                        "Requires fetch_list[{}][0] shall be one of (list, tuple) when type(fetch_list[{}]) is `tuple`, but received fetch_list[{}][0]'s type is `{}`."
                        .format(index, index, index,
                                type(item[0]).__name__))
1040 1041 1042 1043 1044 1045 1046
                for i in item[0]:
                    _get_targets(_optimize_ops, _fetch_list, i)
            else:
                _get_targets(_optimize_ops, _fetch_list, item)

        return _fetch_list, _optimize_ops

1047 1048
    @classmethod
    def _prune_program(cls,
1049 1050 1051 1052 1053 1054
                       program,
                       feed=None,
                       fetch_list=None,
                       optimize_ops=None):
        """
        Prune operators and variables which are not needed to generate
1055 1056 1057
        :code:`fetch_list` and optimize operators.
        Prune operators and variables which are needed
        to generate variables to be feeded.
1058 1059

        Notes: This is a very low level API. Users should not use this API
1060
        directly.
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110

        Args:
            program(Program): the origin program
            feed(list|dict): feed dict or list.
            fetch_list(list|Variable): A list of variables need to be fetched
            optimize_ops(list[Operator]): A list of optimizer operators

        Returns:
            Program:  A new, pruned program.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                origin_program = program._program
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph, which can't be pruned yet."
                )
                return
        else:
            origin_program = program

        feed_names = []
        if isinstance(feed, dict):
            feed_names = list(feed.keys())
        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                feed_names += list(each.keys())

        # if optimize_ops is [], all optimize ops in the program is used.
        if not optimize_ops:
            for block in origin_program.blocks:
                for op in block.ops:
                    if op._is_optimize_op():
                        optimize_ops.append(op)

        targets = fetch_list + optimize_ops
        pruned_program = origin_program._prune_with_input(feed_names, targets)

        if compiled:
            # for compiled program, update the underlying program, re-generate graph,
            # and reset the flag so it can be compiled again.
            program._program = pruned_program
            program._graph = core.Graph(pruned_program.desc)
            program._compiled = False
        else:
            program = pruned_program

        return program

1111 1112
    @classmethod
    def _update_feed(cls, program, feed):
1113
        """
1114
        Update the feed dict, remove the feed item which is pruned in program.
1115 1116

        Notes: This is a very low level API. Users should not use this API
1117
        directly.
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133

        Args:
            program(Program): the pruned program.
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                global_block = program._program.global_block()
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph."
                )
1134
                return feed
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
        else:
            global_block = program.global_block()

        if isinstance(feed, dict):
            for feed_name in list(feed.keys()):
                if not global_block.has_var(feed_name):
                    feed.pop(feed_name)
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % feed_name)

        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                for feed_name in list(each.keys()):
                    if not global_block.has_var(feed_name):
                        each.pop(feed_name)
                        warnings.warn(
                            "The variable %s is not found in program. It is not declared or is pruned."
                            % feed_name)
        return feed

S
Fix doc  
sneaxiy 已提交
1156 1157 1158 1159 1160 1161
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
1162 1163
    def close(self):
        """
C
chengduo 已提交
1164 1165 1166
        Close the executor. This interface is used for distributed training (PServers mode).
        This executor can not be used after calling the interface, because
        this interface releases resources associated with the current Trainer.
Y
Yancey1989 已提交
1167

C
chengduo 已提交
1168 1169
        Returns:
            None
1170 1171 1172 1173

        Examples:
            .. code-block:: python

1174
              import paddle
1175

1176 1177
              cpu = paddle.CPUPlace()
              exe = paddle.static.Executor(cpu)
1178 1179
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
1180
        """
1181
        if not self._closed:
Y
Yancey1989 已提交
1182
            self._closed = True
1183 1184 1185 1186
            for k, trainer_instance in self.trainer_caches.items():
                self._default_executor.release_trainer(trainer_instance)
                del trainer_instance
            self._default_executor.close()
Y
Yancey1989 已提交
1187

X
fix  
Xin Pan 已提交
1188
    def _run_parallel(self, program, scope, feed, fetch_list, fetch_var_name,
Z
Zhen Wang 已提交
1189
                      return_numpy, return_merged):
1190
        from paddle.optimizer.lr import LRScheduler
1191
        exe = program._executor
H
Huihuang Zheng 已提交
1192 1193 1194 1195 1196
        # TODO(zhenghuihuang): quantization uses Graph in CompiledProgram
        # instead of program. We will add support for checking Vars in Graph
        need_check_feed = program._program is not None
        if need_check_feed:
            global_block = program._program.global_block()
1197 1198 1199 1200
        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
1201
                var = global_block.var(feed_name) if need_check_feed else None
1202
                if not isinstance(feed_tensor, core.LoDTensor):
1203
                    # always set to CPU place, since the tensor need to be split
1204
                    # it is fast in CPU
1205
                    feed_tensor = _as_lodtensor(feed[feed_name],
1206 1207
                                                core.CPUPlace(),
                                                var.dtype if var else None)
H
Huihuang Zheng 已提交
1208
                if need_check_feed:
1209
                    check_feed_shape_type(var, feed_tensor, exe.device_count())
1210
                feed_tensor_dict[feed_name] = feed_tensor
1211
            exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict)
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221

        elif isinstance(feed, list) or isinstance(feed, tuple):
            res = list()
            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
1222 1223
                    var = global_block.var(
                        feed_name) if need_check_feed else None
1224
                    if not isinstance(tensor, core.LoDTensor):
1225
                        tensor = _as_lodtensor(each[feed_name],
1226 1227
                                               program._places[i],
                                               var.dtype if var else None)
H
Huihuang Zheng 已提交
1228 1229
                    if need_check_feed:
                        check_feed_shape_type(var, tensor)
1230 1231
                    res_dict[feed_name] = tensor
                res.append(res_dict)
1232

1233
            exe.feed_tensors_into_local_scopes(res)
1234

1235 1236
        if hasattr(program._program, 'lr_sheduler'):
            lr_sheduler = program._program.lr_sheduler
1237
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
1238 1239 1240
            lr_value = lr_sheduler()
            lr_var = program._program.global_block().vars[lr_sheduler._var_name]
            lr_tensor = _as_lodtensor(lr_value, core.CPUPlace(), lr_var.dtype)
1241 1242 1243 1244 1245 1246
            if core.is_cuda_graph_capturing():
                warnings.warn(
                    "Caution!!! When capturing CUDA Graph, the learning rate scheduler would not "
                    "take any effect! Please set the learning rate manually before each batch!"
                )
            else:
1247 1248
                exe.feed_and_split_tensor_into_local_scopes(
                    {lr_sheduler._var_name: lr_tensor})
1249

X
polish  
Xin Pan 已提交
1250
        fetch_var_names = list(map(_to_name_str, fetch_list))
Z
Zhen Wang 已提交
1251
        tensors = exe.run(fetch_var_names, return_merged)._move_to_list()
1252
        return as_numpy(tensors) if return_numpy else tensors
1253

Y
Yu Yang 已提交
1254
    def run(self,
Y
Yu Yang 已提交
1255
            program=None,
1256 1257
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
1258
            feed_var_name='feed',
Y
Yu Yang 已提交
1259
            fetch_var_name='fetch',
D
dzhwinter 已提交
1260
            scope=None,
1261
            return_numpy=True,
Z
Zhen Wang 已提交
1262
            use_program_cache=False,
1263 1264
            return_merged=True,
            use_prune=False):
1265
        """
C
chengduo 已提交
1266 1267 1268
        Run the specified :code:`Program` or :code:`CompiledProgram`. It should be noted that the executor
        will execute all the operators in :code:`Program` or :code:`CompiledProgram` without pruning some
        operators of the :code:`Program` or :code:`CompiledProgram` according to fetch_list. And you could
1269 1270
        specify the scope to store the :code:`Tensor` during the executor running if the scope
        is not set, the executor will use the global scope, i.e. :code:`paddle.static.global_scope()`.
1271

C
chengduo 已提交
1272 1273 1274
        Args:
            program(Program|CompiledProgram): This parameter represents the :code:`Program` or
                :code:`CompiledProgram` to be executed. If this parameter is not provided, that
1275
                parameter is None, the program will be set to :code:`paddle.static.default_main_program()`.
C
chengduo 已提交
1276
                The default is None.
1277
            feed(list|dict): This parameter represents the input Tensors of the model.
C
chengduo 已提交
1278
                If it is single card training, the feed is dict type, and if it is multi-card
1279
                training, the parameter feed can be dict or list of Tensors. If the
C
chengduo 已提交
1280 1281 1282 1283 1284 1285 1286
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
1287
            fetch_list(list): This parameter represents the Tensors that need to be returned
1288
                after the model runs. The default is None.
1289
            feed_var_name(str): This parameter represents the name of the input Tensor of
C
chengduo 已提交
1290
                the feed operator. The default is "feed".
1291
            fetch_var_name(str): This parameter represents the name of the output Tensor of
C
chengduo 已提交
1292
                the fetch operator. The default is "fetch".
1293
            scope(Scope): the scope used to run this program, you can switch
1294 1295 1296
                it to different scope. default is :code:`paddle.static.global_scope()`
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
C
chengduo 已提交
1297 1298 1299
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
            use_program_cache(bool): This parameter indicates whether the input :code:`Program` is cached.
                If the parameter is True, the model may run faster in the following cases:
1300 1301
                the input program is :code:`paddle.static.Program`, and the parameters(program, feed Tensor name
                and fetch_list Tensor) of this interface remains unchanged during running.
C
chengduo 已提交
1302
                The default is False.
1303
            return_merged(bool): This parameter indicates whether fetched Tensors (the Tensors
Z
Zhen Wang 已提交
1304 1305
                specified in the fetch list) should be merged according to the execution device dimension.
                If :code:`return_merged` is False, the type of the return value is a two-dimensional list
1306 1307 1308 1309 1310 1311 1312 1313
                of :code:`Tensor` / :code:`LoDTensorArray` ( :code:`return_numpy` is False) or a two-dimensional
                list of :code:`numpy.ndarray` ( :code:`return_numpy` is True). If :code:`return_merged` is True,
                the type of the return value is an one-dimensional list of :code:`Tensor` / :code:`LoDTensorArray`
                ( :code:`return_numpy` is False) or an one-dimensional list of :code:`numpy.ndarray`
                ( :code:`return_numpy` is True). Please see Examples 2 for more details. If the lengths of fetched
                results are variant, please set :code:`return_merged` as False, which denotes that the fetched
                results will not be merged. The default is True, but it is just for the compatibility, and may
                use False as default value in the future version.
1314
            use_prune(bool): This parameter indicates whether the input :code:`Program` will be pruned.
1315
                If the parameter is True, the program will be pruned accroding to the given feed and fetch_list,
1316 1317
                which means the operators and variables in program that generate :code:`feed` and are not
                needed to generate :code:`fetch_list` will be pruned. The default is False, which means the
1318
                program will not pruned and all the operators and variables will be executed during running.
1319
                Note that if the tuple returned from :code:`Optimizer.minimize()` is passed to :code:`fetch_list`,
1320
                :code:`use_prune` will be overrided to True, and the program will be pruned.
1321

C
chengduo 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
        Returns:

            List: The fetched result list.

        NOTES:
            1. If it is multi-card running and the feed parameter is dict type, the input data
               will be evenly sent to different cards. For example, using two GPUs to run the model,
               the input sample number is 3, that is, [0, 1, 2], the sample number on GPU0 is 1,
               that is, [0], and the sample number on GPU1 is 2, that is, [1, 2].
               If the number of samples is less than the number of devices, the program will
               throw an exception, so when running the model, you should make sure that the
               number of samples of the last batch of the data set should be greater than the
               number of CPU cores or GPU cards, if it is less than, it is recommended that
               the batch be discarded.
            2. If the number of CPU cores or GPU cards available is greater than 1, the fetch
1337 1338
               results are spliced together in dimension 0 for the same Tensor values
               (Tensors in fetch_list) on different devices.
1339

1340
        Examples:
1341
            .. code-block:: python
1342
                :name: code-example-1
1343

1344 1345
                import paddle
                import numpy
1346

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
                # First create the Executor.
                paddle.enable_static()
                place = paddle.CPUPlace()  # paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)

                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                adam = paddle.optimizer.Adam()
                adam.minimize(loss)
                i = paddle.zeros(shape=[1], dtype='int64')
                array = paddle.fluid.layers.array_write(x=loss, i=i)
1359

1360 1361
                # Run the startup program once and only once.
                exe.run(paddle.static.default_startup_program())
1362

1363 1364 1365 1366 1367
                x = numpy.random.random(size=(10, 1)).astype('float32')
                loss_val, array_val = exe.run(feed={'X': x},
                                              fetch_list=[loss.name, array.name])
                print(array_val)
                # [array([0.02153828], dtype=float32)]
Z
Zhen Wang 已提交
1368 1369

            .. code-block:: python
1370
                :name: code-example-2
Z
Zhen Wang 已提交
1371

1372
                # required: gpu
1373
                import paddle
Z
Zhen Wang 已提交
1374 1375 1376
                import numpy as np

                # First create the Executor.
1377 1378 1379
                paddle.enable_static()
                place = paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)
Z
Zhen Wang 已提交
1380

1381
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
Z
Zhen Wang 已提交
1382
                class_dim = 2
1383 1384 1385
                prediction = paddle.static.nn.fc(data, class_dim)
                loss = paddle.mean(prediction)
                adam = paddle.optimizer.Adam()
Z
Zhen Wang 已提交
1386 1387 1388
                adam.minimize(loss)

                # Run the startup program once and only once.
1389 1390 1391 1392 1393
                exe.run(paddle.static.default_startup_program())
                build_strategy = paddle.static.BuildStrategy()
                binary = paddle.static.CompiledProgram(
                    paddle.static.default_main_program()).with_data_parallel(
                        loss_name=loss.name, build_strategy=build_strategy)
Z
Zhen Wang 已提交
1394 1395 1396 1397
                batch_size = 6
                x = np.random.random(size=(batch_size, 1)).astype('float32')

                # Set return_merged as False to fetch unmerged results:
1398 1399 1400 1401
                unmerged_prediction, = exe.run(binary,
                                               feed={'X': x},
                                               fetch_list=[prediction.name],
                                               return_merged=False)
Z
Zhen Wang 已提交
1402 1403 1404 1405
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (2, 3, class_dim). The first dimension value of the printed result is the number of used
                # GPU cards, and the second dimension value is the quotient of batch_size and the
                # number of used GPU cards.
1406 1407
                print("The unmerged prediction shape: {}".format(
                    np.array(unmerged_prediction).shape))
Z
Zhen Wang 已提交
1408 1409 1410
                print(unmerged_prediction)

                # Set return_merged as True to fetch merged results:
1411 1412 1413 1414
                merged_prediction, = exe.run(binary,
                                             feed={'X': x},
                                             fetch_list=[prediction.name],
                                             return_merged=True)
Z
Zhen Wang 已提交
1415 1416
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (6, class_dim). The first dimension value of the printed result is the batch_size.
1417 1418
                print("The merged prediction shape: {}".format(
                    np.array(merged_prediction).shape))
Z
Zhen Wang 已提交
1419
                print(merged_prediction)
1420

Z
Zhen Wang 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
                # Out:
                # The unmerged prediction shape: (2, 3, 2)
                # [array([[-0.37620035, -0.19752218],
                #        [-0.3561043 , -0.18697084],
                #        [-0.24129935, -0.12669306]], dtype=float32), array([[-0.24489994, -0.12858354],
                #        [-0.49041364, -0.25748932],
                #        [-0.44331917, -0.23276259]], dtype=float32)]
                # The merged prediction shape: (6, 2)
                # [[-0.37789783 -0.19921964]
                #  [-0.3577645  -0.18863106]
                #  [-0.24274671 -0.12814042]
                #  [-0.24635398 -0.13003758]
                #  [-0.49232286 -0.25939852]
                #  [-0.44514108 -0.2345845 ]]
1435

1436
        """
1437 1438 1439 1440 1441 1442 1443
        # Temporary FLAGS, just for testing the performance of program cache
        force_use_program_cache = os.environ.get(
            'FLAGS_FORCE_USE_PROGRAM_CACHE', None)
        if force_use_program_cache is not None:
            use_program_cache = force_use_program_cache in [
                1, '1', True, 'True', 'true'
            ]
1444
            self._log_force_set_program_cache(use_program_cache)
1445

C
chengduo 已提交
1446
        try:
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
            res = self._run_impl(program=program,
                                 feed=feed,
                                 fetch_list=fetch_list,
                                 feed_var_name=feed_var_name,
                                 fetch_var_name=fetch_var_name,
                                 scope=scope,
                                 return_numpy=return_numpy,
                                 use_program_cache=use_program_cache,
                                 use_prune=use_prune,
                                 return_merged=return_merged)
1457 1458
            core.update_autotune_status()
            return res
C
chengduo 已提交
1459
        except Exception as e:
1460
            six.reraise(*sys.exc_info())
C
chengduo 已提交
1461 1462

    def _run_impl(self, program, feed, fetch_list, feed_var_name,
Z
Zhen Wang 已提交
1463
                  fetch_var_name, scope, return_numpy, use_program_cache,
1464
                  return_merged, use_prune):
Y
Yancey1989 已提交
1465 1466 1467
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
1468
        use_default_main_program = program is None
1469 1470
        if program is None:
            program = default_main_program()
1471

1472
        fetch_list = self._check_fetch_list(fetch_list)
1473 1474

        if isinstance(program, Program) and program._pipeline_opt:
L
LiYuRio 已提交
1475
            if "fleet_opt" in program._pipeline_opt:
1476 1477 1478
                # Move prepare here for port conflict with nccl in startup program
                if self._fleet_executor is None:
                    self._fleet_executor = _prepare_fleet_executor()
1479 1480 1481 1482 1483 1484
                return self._run_using_fleet_executor(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    with_standalone_executor=self.
                    _fleet_executor_with_standalone)
1485 1486 1487
            if "startup_program" in program._pipeline_opt:
                program = program._pipeline_opt["startup_program"]
            else:
1488 1489 1490
                return self._run_pipeline(program,
                                          fetch_list=fetch_list,
                                          use_program_cache=use_program_cache)
1491 1492

        if isinstance(program, Program) and program._heter_pipeline_opt:
1493 1494
            #print("program._heter_pipeline_opt: {}".format(
            #    program._heter_pipeline_opt))
1495
            ## change default executor
1496 1497 1498 1499 1500 1501
            heter_place = program._heter_pipeline_opt["heter_place"]
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
            # TODO(zhangminxu): support heterps pipeline training using exe.run
1502
            if "startup_program" in program._heter_pipeline_opt:
1503
                #print("get startup_program from _pipeline_opt")
1504 1505
                program = program._heter_pipeline_opt["startup_program"]

C
chengduo 已提交
1506
        if isinstance(program, Program) and \
1507
                        len(program.global_block().ops) == 0:
C
chengduo 已提交
1508
            if use_default_main_program:
1509 1510 1511 1512 1513 1514 1515 1516
                error_info = "Now you are using default_main_program, "\
                    "but there are no operators in the program to be executed. "\
                    "Please ensure you create model correctly or you can pass "\
                    "the Program or the CompiledProgram manually."
            else:
                error_info = "There are no operators in the program to be executed. "\
                    "If you pass Program manually, please use fluid.program_guard "\
                    "to ensure the current Program is being used."
C
chengduo 已提交
1517
            warnings.warn(error_info)
1518

1519 1520
        if scope is None:
            scope = global_scope()
1521

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
        # use_prune can be overrided by putting optimize_ops in fetch_list
        _origin_fetch_list = fetch_list
        _origin_program = program
        fetch_list, optimize_ops = self._split_optimize_ops_in_fetch_list(
            fetch_list)
        if optimize_ops:
            use_prune = True
        if use_prune:
            cache_key = _get_strong_program_cache_key(program, feed,
                                                      _origin_fetch_list)
            cached_pruned_program = self._get_pruned_program_cache(cache_key)
            if cached_pruned_program is None:
                if isinstance(program, compiler.CompiledProgram):
                    program_scope_cache = self._get_pruned_program_scope_cache(
                        str(id(_origin_program)))
                    # copy the original program, so it can be cached.
                    program = copy.copy(program)
                    # share the local scopes for same original CompiledProgram.
                    program._share_vars_from = program_scope_cache
                    if self._get_pruned_program_scope_cache(
                            str(id(_origin_program))) is None:
                        self._add_pruned_program_scope_cache(
                            str(id(_origin_program)), program)
                pruned_program = self._prune_program(program, feed, fetch_list,
                                                     optimize_ops)
                self._add_pruned_program_cache(cache_key, pruned_program)
            else:
                pruned_program = cached_pruned_program

            feed = self._update_feed(pruned_program, feed)
            program = pruned_program

1554
        def _can_use_interpreter_core(program, place):
1555
            if core.is_compiled_with_mlu():
1556 1557
                return False

1558
            use_standalone_executor_for_distribution = os.environ.get(
1559 1560 1561
                'FLAGS_CONVERT_GRAPH_TO_PROGRAM',
                None) in [1, '1', True, 'True', 'true']

1562 1563 1564
            compiled = isinstance(program,
                                  compiler.CompiledProgram) or isinstance(
                                      program._graph, compiler.CompiledProgram)
1565
            if compiled:
1566 1567
                compiled_program = program if isinstance(
                    program, compiler.CompiledProgram) else program._graph
1568

1569
                # Unsupported case 1: data parallel
1570 1571 1572
                if compiled_program._is_data_parallel and len(
                        compiled_program._get_places(
                            place, compiled_program._places)) != 1:
1573 1574 1575
                    warnings.warn(
                        "Standalone executor is not used for data parallel",
                        UserWarning)
1576
                    return False
1577

1578
                # Unsupported case 2: parallel graph
P
pangyoki 已提交
1579 1580 1581
                if core.globals()['FLAGS_enable_parallel_graph'] in [
                        1, '1', True, 'True', 'true'
                ]:
1582 1583 1584
                    warnings.warn(
                        "Standalone executor is not used for parallel graph",
                        UserWarning)
P
pangyoki 已提交
1585 1586
                    return False

1587
                # Unsupported case 3: inference
1588
                if compiled_program._is_inference:
1589 1590 1591
                    warnings.warn(
                        "Standalone executor is not used for inference",
                        UserWarning)
1592
                    return False
1593

1594
                # Unsupported case 4: CUDA Graph
1595
                if compiled_program._build_strategy is not None and compiled_program._build_strategy.allow_cuda_graph_capture:
1596 1597 1598
                    warnings.warn(
                        "Standalone executor is not used for CUDA Graph",
                        UserWarning)
1599 1600
                    return False

1601
                # Unsupported case 5: async mode
1602
                if compiled_program._build_strategy is not None and compiled_program._build_strategy.async_mode:
1603
                    warnings.warn(
1604
                        "Standalone executor is not used for async mode",
1605
                        UserWarning)
1606 1607
                    return False

1608 1609 1610 1611 1612 1613 1614 1615
            # delete this code after supporting fleet
            from paddle.distributed.fleet import fleet
            if fleet._role_maker is not None:
                warnings.warn("Standalone executor is not used for fleet",
                              UserWarning)
                return use_standalone_executor_for_distribution

            return True
1616

1617 1618
        # NOTE: This is an experimental feature. If `export FLAGS_USE_STANDALONE_EXECUTOR=1 `,
        # use StandaloneExecutor to run the program.
1619
        if return_merged and self._enable_interpreter_core and _can_use_interpreter_core(
1620
                program, self.place):
1621

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
            if feed is None:
                feed = {}
            elif isinstance(feed, (list, tuple)):
                assert len(feed) == 1, "Not compiled with data parallel"
                feed = feed[0]
            if not isinstance(feed, dict):
                raise TypeError(
                    "feed requires dict as its Parameter. But you passed in %s"
                    % (type(feed)))
            feed = self._update_feed(program, feed)

            program, new_exe = self._executor_cache.get_program_and_executor(
                program, feed, fetch_list, feed_var_name, fetch_var_name,
                self.place, scope)

            self._feed_data(program, feed, feed_var_name, scope)
            if hasattr(program, 'lr_sheduler'):
                from paddle.optimizer.lr import LRScheduler
                assert isinstance(program.lr_sheduler,
                                  LRScheduler), "must be LRScheduler"
                lr_sheduler = program.lr_sheduler
                lr_value = lr_sheduler()
                lr_var = program.global_block().vars[lr_sheduler._var_name]
                data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
                tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
                # NOTE(dev): `tensor.set(data, self.place)` always call TensorCopySync that is a blocking behavior. So we use `_copy_from` to replace it.
                cpu_tensor = _as_lodtensor(data, core.CPUPlace())
                # for ipu, tensor is allocated on cpu
                if core.is_compiled_with_ipu():
                    tensor._copy_from(cpu_tensor, tensor._place())
                else:
                    tensor._copy_from(cpu_tensor, self.place)

            return new_exe.run(scope, list(feed.keys()), fetch_list,
                               return_numpy)
1657

X
polish  
Xin Pan 已提交
1658
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
1659

1660 1661 1662 1663 1664 1665 1666
        # Check if fluid.data() variable no feed data
        if use_prune:
            if compiled:
                global_block = program._program.global_block()
            else:
                global_block = program.global_block()
            for varname in global_block.vars:
1667
                vardesc = global_block.desc.find_var(varname.encode())
1668 1669 1670 1671 1672 1673
                varobj = global_block.vars[varname]

                # Can not check var build by fluid.layers.data(), bucause fluid.layers.data() had not set need_check_feed
                if vardesc.persistable() == False and \
                    vardesc.type() == core.VarDesc.VarType.LOD_TENSOR and \
                    vardesc.need_check_feed() == True and \
1674
                    varobj.stop_gradient == True and \
1675 1676 1677 1678 1679
                    varobj.is_data == True and \
                    varobj.belong_to_optimizer == False and \
                    varname not in feed:
                    raise ValueError('Need feed data for variable %s' % varname)

1680 1681
        acp._auto_checkpoint(self, program)

X
polish  
Xin Pan 已提交
1682
        # For backward compatibility, run directly.
1683
        if not compiled:
1684 1685 1686
            # In distributed training, the compiled program is saved in Program._graph
            has_compiled_graph = isinstance(program._graph,
                                            compiler.CompiledProgram)
1687

1688 1689 1690 1691 1692
            if has_compiled_graph:
                program._graph._compile(scope, self.place)
                # _graph in program does not support inference since the _graph is optimized
                # through optimizer.minimize function and should not be used as inference graph
                # assert not program._graph._is_inference
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
                return self._run_parallel(program._graph,
                                          scope=scope,
                                          feed=feed,
                                          fetch_list=fetch_list,
                                          fetch_var_name=fetch_var_name,
                                          return_numpy=return_numpy,
                                          return_merged=return_merged)

            return self._run_program(program,
                                     feed=feed,
                                     fetch_list=fetch_list,
                                     feed_var_name=feed_var_name,
                                     fetch_var_name=fetch_var_name,
                                     scope=scope,
                                     return_numpy=return_numpy,
                                     use_program_cache=use_program_cache)
1709 1710

        program._compile(scope, self.place)
C
chengduo 已提交
1711 1712 1713
        if program._is_inference:
            return self._run_inference(program._executor, feed)
        else:
1714 1715 1716 1717 1718 1719 1720
            return self._run_parallel(program,
                                      scope=scope,
                                      feed=feed,
                                      fetch_list=fetch_list,
                                      fetch_var_name=fetch_var_name,
                                      return_numpy=return_numpy,
                                      return_merged=return_merged)
1721

C
chengduo 已提交
1722
    def _run_program(self, program, feed, fetch_list, feed_var_name,
C
chengduo 已提交
1723
                     fetch_var_name, scope, return_numpy, use_program_cache):
1724
        from paddle.optimizer.lr import LRScheduler
1725 1726
        if feed is None:
            feed = {}
S
sneaxiy 已提交
1727 1728 1729 1730
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

Q
qiaolongfei 已提交
1731
        if not isinstance(feed, dict):
D
dzhwinter 已提交
1732 1733 1734
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))
Y
Yu Yang 已提交
1735

1736
        assert program is not None, "The program should not be Empty"
Y
Yu Yang 已提交
1737
        if not isinstance(program, Program):
D
dzhwinter 已提交
1738 1739 1740
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
                % (type(program)))
Y
Yu Yang 已提交
1741

1742 1743 1744 1745 1746
        if not isinstance(fetch_var_name, str):
            raise TypeError(
                "The name of fetch variable requires string as its Parameter. But you passed in %s"
                % (type(fetch_var_name)))

1747
        if use_program_cache:
1748
            cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
Q
Qiao Longfei 已提交
1749
            cached_program = self._get_program_cache(cache_key)
1750
            cached_ctx = self._get_ctx_cache(cache_key)
1751
            cached_scope = self._get_scope_cache(cache_key)
Q
Qiao Longfei 已提交
1752
            if cached_program is None:
R
Ruibiao Chen 已提交
1753
                cached_program = _add_feed_fetch_ops(
Q
Qiao Longfei 已提交
1754 1755 1756 1757 1758 1759
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
                    fetch_var_name=fetch_var_name)
                self._add_program_cache(cache_key, cached_program)
1760
                fetch_list_str = list(map(_to_name_str, fetch_list))
1761
                cached_ctx = self._default_executor.prepare(
1762 1763 1764 1765 1766 1767 1768
                    cached_program.desc, 0, fetch_list_str, False)
                # currently, we cache program, vars, sub_scope here
                # we suppose that in a life cycle of training, a user
                # will not create many programs. So, here the basic
                # rule of caching is to cache all unseen (program, var, scope)
                # when a user use use_program_cache.
                cached_scope = scope.new_scope()
1769 1770
                self._default_executor.create_variables(cached_program.desc,
                                                        cached_scope, 0)
1771
                self._add_ctx_cache(cache_key, cached_ctx)
1772
                self._add_scope_cache(cache_key, cached_scope)
Q
Qiao Longfei 已提交
1773
            program = cached_program
1774
            ctx = cached_ctx
1775
            scope = cached_scope
1776
        else:
R
Ruibiao Chen 已提交
1777 1778 1779 1780 1781
            program = _add_feed_fetch_ops(program=program,
                                          feed=feed,
                                          fetch_list=fetch_list,
                                          feed_var_name=feed_var_name,
                                          fetch_var_name=fetch_var_name)
Q
Qiao Longfei 已提交
1782 1783

        self._feed_data(program, feed, feed_var_name, scope)
1784 1785
        if hasattr(program, 'lr_sheduler'):
            assert isinstance(program.lr_sheduler,
1786
                              LRScheduler), "must be LRScheduler"
1787 1788 1789 1790 1791 1792 1793
            lr_sheduler = program.lr_sheduler
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

1794
        if not use_program_cache:
C
chengduo 已提交
1795
            self._default_executor.run(program.desc, scope, 0, True, True,
1796
                                       [fetch_var_name])
1797
        else:
1798 1799
            self._default_executor.run_prepared_ctx(ctx, scope, False, False,
                                                    False)
1800
        arr = scope.find_var(fetch_var_name).get_fetch_list()
1801
        tensors = arr._move_to_list()
D
dzhwinter 已提交
1802
        if return_numpy:
1803 1804 1805
            return as_numpy(tensors)
        else:
            return tensors
F
flame 已提交
1806

X
Xin Pan 已提交
1807 1808
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
1809

1810
    def _check_fetch_list(self, fetch_list):
1811 1812
        is_fetch_var = lambda var: isinstance(var,
                                              (Variable, str, six.string_types))
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
        is_tuple_list = lambda var: isinstance(var, (tuple, list))

        if fetch_list is None: return []
        if is_fetch_var(fetch_list): return [fetch_list]

        assert is_tuple_list(fetch_list), \
            "Currently , The fetch_list type only should be list or tuple, \n"\
            "but the input type is {}. For more information please refer to \n"\
            "the executor.run(...).".format(type(fetch_list))

        res = []
        for i, var in enumerate(fetch_list):
            if is_fetch_var(var):
                res.append(var)
            # such as [x, 'mean_out', loss]
            elif is_tuple_list(var):
                if all(is_fetch_var(v) for v in var):
                    res.extend(list(var))
                else:
                    res.append(var)
            else:
                raise TypeError(
1835 1836 1837
                    "Require fetch_list[{}] 's type shall be one of (Variable, str), but received {}."
                    .format(i,
                            type(var).__name__))
1838 1839 1840

        return res

1841
    def _dump_debug_info(self, program=None, trainer=None):
Z
ziyoujiyi 已提交
1842 1843
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
            fout.write(str(trainer))
1844
        if program._fleet_opt and "fleet_desc" in program._fleet_opt:
1845 1846 1847
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
                % (filelist_length, filelist_length))
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
                % (filelist_length // pipeline_num, filelist_length))
            pipeline_opt["concurrency_list"][
                0] = filelist_length // pipeline_num
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

1864 1865 1866 1867 1868 1869 1870 1871 1872
    def _prepare_trainer(self,
                         program=None,
                         dataset=None,
                         scope=None,
                         thread=0,
                         debug=False,
                         fetch_list=None,
                         fetch_info=None,
                         print_period=100):
T
Thunderbrook 已提交
1873
        is_heter = 0
T
Thunderbrook 已提交
1874
        use_ps_gpu = 0
T
Thunderbrook 已提交
1875 1876 1877
        if not program._fleet_opt is None:
            if program._fleet_opt.get("worker_class", "") == "HeterCpuWorker":
                is_heter = 1
T
Thunderbrook 已提交
1878
            if program._fleet_opt.get("trainer", "") == "HeterXpuTrainer":
T
Thunderbrook 已提交
1879
                is_heter = 1
T
Thunderbrook 已提交
1880 1881
            if program._fleet_opt.get("use_ps_gpu", False):
                use_ps_gpu = True
D
dongdaxiang 已提交
1882 1883 1884 1885
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
1886 1887 1888
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
1889
        compiled = isinstance(program, compiler.CompiledProgram)
T
Thunderbrook 已提交
1890 1891 1892 1893 1894
        if is_heter:
            from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
            from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
            fu = FleetUtil()
            ret = fu.split_program_by_device(program)
D
dongdaxiang 已提交
1895
        if not compiled:
H
hutuxian 已提交
1896 1897 1898 1899
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._pipeline_opt)
1900 1901 1902
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._heter_pipeline_opt)
H
hutuxian 已提交
1903 1904
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
1905
                trainer._set_thread_barrier(program._is_distributed)
1906
            trainer._set_program(program)
T
Thunderbrook 已提交
1907 1908
            if is_heter:
                trainer._set_heter_info(ret)
1909
        else:
H
hutuxian 已提交
1910 1911 1912
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._pipeline_opt)
1913 1914 1915
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._heter_pipeline_opt)
H
hutuxian 已提交
1916 1917 1918
            else:
                trainer = TrainerFactory()._create_trainer(
                    program.program._fleet_opt)
1919
            trainer._set_program(program.program)
H
hutuxian 已提交
1920

1921
        if thread <= 0:
T
Thunderbrook 已提交
1922 1923 1924
            if use_ps_gpu:
                trainer._set_thread(len(program._fleet_opt["worker_places"]))
            elif dataset.thread_num <= 0:
D
dongdaxiang 已提交
1925
                raise RuntimeError(
1926 1927
                    "You should set thread num first, either in Dataset"
                    "or in Executor.train_from_dataset")
D
dongdaxiang 已提交
1928
            else:
1929
                trainer._set_thread(dataset.thread_num)
1930
        else:
1931
            trainer._set_thread(thread)
H
hutuxian 已提交
1932

1933 1934
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
1935
        return scope, trainer
1936

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
    def _run_from_dataset(self,
                          program=None,
                          dataset=None,
                          scope=None,
                          thread=0,
                          is_infer=False,
                          debug=False,
                          fetch_list=None,
                          fetch_info=None,
                          print_period=100,
                          fetch_handler=None):
1948 1949 1950 1951
        if program._pipeline_opt is not None:
            import paddle
            if dataset is not None:
                raise RuntimeError("dataset should be None for pipeline mode")
1952
            # The following fake dataset is created to call
1953 1954 1955 1956 1957
            # the _prepare_trainer api, and it is meaningless.
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
1958 1959 1960 1961 1962 1963
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'InMemoryDataset')
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'FileInstantDataset')
1964 1965 1966 1967
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
1968 1969
        elif program._heter_pipeline_opt is not None:
            stage_id = program._heter_pipeline_opt["pipeline_stage"]
1970
            #print("test_fl_stage_id: {}".format(stage_id))
1971
            heter_place = program._heter_pipeline_opt["heter_place"]
1972
            if stage_id != 0:
1973 1974 1975 1976 1977
                if "is_fl_mode" not in program._heter_pipeline_opt:
                    import paddle
                    if dataset is not None:
                        raise RuntimeError(
                            "dataset should be None for heter pipeline mode")
1978
                    # The following fake dataset is created to call
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
                    # the _prepare_trainer api, and it is meaningless.
                    data_vars = []
                    for var in program.global_block().vars.values():
                        if var.is_data:
                            data_vars.append(var)
                    dataset = paddle.fluid.DatasetFactory().create_dataset(
                        'InMemoryDataset')
                    dataset.set_batch_size(1)
                    dataset.set_thread(1)
                    dataset.set_filelist(['None'])
                    dataset.set_use_var(data_vars)
1990 1991 1992 1993
            else:
                if dataset is None:
                    raise RuntimeError(
                        "dataset is need and should be initialized")
1994 1995 1996 1997 1998
            ## change default executor
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
1999 2000 2001
        else:
            if dataset is None:
                raise RuntimeError("dataset is need and should be initialized")
2002 2003

        dataset._prepare_to_run()
2004 2005
        real_fetch_list = []
        if program._pipeline_opt:
2006
            real_program = program._pipeline_opt["section_program"]
2007 2008 2009 2010 2011 2012 2013 2014
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

R
Ruibiao Chen 已提交
2015
            program._pipeline_opt["section_program"] = _add_feed_fetch_ops(
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
                program=program._pipeline_opt["section_program"],
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
                fetch_var_name='fetch')
            main_block = program._pipeline_opt["section_program"].block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
                        core.op_proto_and_checker_maker.OpRole.Optimize)
2029
            fetch_list = None
2030 2031 2032 2033 2034 2035 2036 2037
        scope, trainer = self._prepare_trainer(program=program,
                                               dataset=dataset,
                                               scope=scope,
                                               thread=thread,
                                               debug=debug,
                                               fetch_list=fetch_list,
                                               fetch_info=fetch_info,
                                               print_period=print_period)
2038 2039 2040 2041

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

2042
        if program._pipeline_opt is None:
2043 2044
            if program._heter_pipeline_opt is None:
                self._dump_debug_info(program=program, trainer=trainer)
T
Thunderbrook 已提交
2045 2046 2047
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
2048

T
tangwei12 已提交
2049
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
2050

2051
        if program._heter_pipeline_opt is None:
2052
            trainer_instance = self._default_executor.init_for_dataset(  # -->InitForDataset
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
                program.desc, trainer._desc(), scope, dataset.dataset)
        else:
            # cache trainer instance for heterps pipeline training
            if fetch_list == None:
                fetch_list = []
            cache_key = _get_strong_program_cache_key(program, None, fetch_list)
            trainer_instance = self._get_trainer_cache(cache_key)
            if trainer_instance is None:
                trainer_instance = self._default_executor.init_for_dataset(
                    program.desc, trainer._desc(), scope, dataset.dataset)
2063
                #print("test_fl_ps - trainer_desc: {}\n".format(trainer))
2064 2065 2066
                self._add_trainer_cache(cache_key, trainer_instance)
            else:
                trainer_instance.ResetDataset(dataset.dataset)
2067

T
tangwei12 已提交
2068 2069 2070 2071 2072 2073
        if fetch_handler is not None:
            scope0 = trainer_instance.get_worker_scope(0)
            fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
            fetch_monitor.start()
            self._default_executor.run_from_dataset(trainer_instance)
            fetch_monitor.stop()
2074 2075
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
2076 2077
        else:
            self._default_executor.run_from_dataset(trainer_instance)
2078 2079
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
2080 2081

        dataset._dynamic_adjust_after_train()
2082
        dataset._finish_to_run()
2083 2084 2085 2086
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
T
tangwei12 已提交
2087

2088 2089
        return None

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
    def _prepare_pipeline_ctx(self,
                              program=None,
                              dataset=None,
                              scope=None,
                              thread=0,
                              is_infer=False,
                              debug=False,
                              fetch_list=None,
                              fetch_info=None,
                              print_period=100,
                              fetch_handler=None,
                              use_program_cache=False):
        assert program._pipeline_opt is not None
        assert dataset is None, "dataset should be None for pipeline mode"

        cache_key = _get_strong_program_cache_key(program, None, fetch_list)
        ctx = self._get_ctx_cache(cache_key)
        if use_program_cache and ctx is not None:
            return ctx

        import paddle

        # The following fake dataset is created to call
        # the _prepare_trainer api, and it is meaningless.
        def _get_dataset():
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'InMemoryDataset')
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'FileInstantDataset')
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
            dataset._prepare_to_run()
            return dataset

        dataset = _get_dataset()

        def _get_real_program_fetch_list():
            real_program = program._pipeline_opt["section_program"]
            real_fetch_list = []
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

R
Ruibiao Chen 已提交
2145 2146 2147 2148 2149
            real_program = _add_feed_fetch_ops(program=real_program,
                                               feed=[],
                                               fetch_list=real_fetch_list,
                                               feed_var_name='feed',
                                               fetch_var_name='fetch')
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
            main_block = real_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
                        core.op_proto_and_checker_maker.OpRole.Optimize)
            return real_program, real_fetch_list

        real_program, real_fetch_list = _get_real_program_fetch_list()

        program._pipeline_opt["section_program"] = real_program
        fetch_list = None

2165 2166 2167 2168 2169 2170 2171 2172
        scope, trainer = self._prepare_trainer(program=program,
                                               dataset=dataset,
                                               scope=scope,
                                               thread=thread,
                                               debug=debug,
                                               fetch_list=fetch_list,
                                               fetch_info=fetch_info,
                                               print_period=print_period)
2173 2174 2175 2176 2177 2178 2179

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        # NOTE: only for debug, very slow
        # self._dump_debug_info(program=program, trainer=trainer)

T
Thunderbrook 已提交
2180 2181 2182
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
2183 2184 2185
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)

        trainer_desc = trainer._desc()  # slow, cache
2186 2187 2188 2189
        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer_desc, scope, dataset.dataset)

        ctx = [scope, real_fetch_list, trainer_instance]
2190
        if use_program_cache: self._add_ctx_cache(cache_key, ctx)
2191

2192 2193
        return ctx

2194 2195 2196 2197
    def _prepare_fleet_executor_carrier(self,
                                        carrier_id="",
                                        program=None,
                                        scope=None,
2198 2199
                                        fleet_opt=None,
                                        with_standalone_executor=False):
2200 2201
        num_micro_batches = fleet_opt[
            "num_micro_batches"] if "num_micro_batches" in fleet_opt else 1
2202
        cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
2203
        trainer_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS", "").split(',')
2204
        nrank = len(trainer_endpoints)
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214

        assert 'scheduler' in fleet_opt or 'tasks' in fleet_opt, \
            "Fleet executor need configuration for scheduler, you can choose from 1F1B or Origin. " \
            "Or you can provide a list of task nodes to init fleet executor directly."
        if 'tasks' in fleet_opt:
            assert 'task_id_to_rank' in fleet_opt, "If you provide tasks to init fleet executor," \
                                                   " task_id_to_rank should also be provided."
            print('fleet executor will use user defined task nodes')
            tasks = [task.task_node() for task in fleet_opt['tasks']]
            task_id_to_rank = fleet_opt['task_id_to_rank']
2215
        else:
2216 2217 2218 2219 2220 2221 2222 2223
            scheduler = fleet_opt['scheduler']
            if scheduler == '1F1B':
                from paddle.distributed.fleet.fleet_executor_utils import run1f1b
                if "dist_strategy" not in fleet_opt or \
                   "pp_degree" not in fleet_opt["dist_strategy"] or \
                   fleet_opt["dist_strategy"]["pp_degree"] == 1:
                    warnings.warn("Using 1F1B scheduler with pp_degree == 1.")
                tasks, task_id_to_rank = run1f1b(
2224
                    program, cur_rank, fleet_opt.get('num_micro_batches', 1),
2225 2226
                    fleet_opt.get('dist_strategy', {}), nrank,
                    with_standalone_executor)
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
            elif scheduler == 'Origin':
                from paddle.distributed.fleet.fleet_executor_utils import origin
                if "dist_strategy" in fleet_opt and \
                   "pp_degree" in fleet_opt["dist_strategy"]:
                    assert fleet_opt["dist_strategy"]["pp_degree"] == 1, \
                        "For pipeline mode, the scheduler should be 1F1B instead of Origin."
                if "num_micro_batches" in fleet_opt:
                    assert fleet_opt["num_micro_batches"] == 1, \
                        "For origin scheduler mode, the num micro batches should be 1."
                tasks, task_id_to_rank = origin(program, cur_rank)
            else:
                raise "Fleet_executor only supports 1F1B and Origin scheduler, " \
                      "but received " + str(scheduler) + "."
            # NOTE: have to hold these vars, otherwise will be destructed
            fleet_opt['tasks'] = tasks
            fleet_opt['task_id_to_rank'] = task_id_to_rank
2243 2244
        place = core.Place()
        place.set_place(self.place)
2245 2246
        # NOTE: the last argument is used to force create some vars in root scope,
        # won't be used during train.
2247
        self._fleet_executor.init(carrier_id, program.desc, scope, place,
2248
                                  num_micro_batches, tasks, task_id_to_rank, [])
2249

L
LiYuRio 已提交
2250 2251
    def _run_using_fleet_executor(self,
                                  program=None,
2252 2253 2254
                                  feed=None,
                                  feed_var_name="feed",
                                  fetch_var_name="fetch",
2255 2256
                                  fetch_list=None,
                                  with_standalone_executor=False):
2257 2258
        cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
        cached_program = self._get_program_cache(cache_key)
2259
        cached_scope = self._get_scope_cache(cache_key)
2260 2261 2262 2263
        if cached_scope is None:
            cached_scope = global_scope()
            self._add_scope_cache(cache_key, cached_scope)
        if cached_program is None:
2264 2265
            assert program._pipeline_opt, "program should have _pipeline_opt to start carrier"
            real_feed = [] if feed is None else feed
2266 2267 2268
            real_program = program
            if "section_program" in program._pipeline_opt:
                real_program = program._pipeline_opt["section_program"]
R
Ruibiao Chen 已提交
2269 2270 2271 2272 2273
            cached_program = _add_feed_fetch_ops(program=real_program,
                                                 feed=real_feed,
                                                 fetch_list=fetch_list,
                                                 feed_var_name=feed_var_name,
                                                 fetch_var_name=fetch_var_name)
2274 2275 2276 2277 2278 2279 2280 2281
            main_block = cached_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
                        core.op_proto_and_checker_maker.OpRole.Optimize)
2282
            self._add_program_cache(cache_key, cached_program)
2283
            fleet_opt = program._pipeline_opt["fleet_opt"]
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
            if 'tasks' in fleet_opt:
                # Insert feed/fetch op for cloned program in each task node,
                # these ops has already been inserted into the origin program.
                # To avoid every task nodes all have feed/fetch ops,
                # only insert feed ops into the first task node,
                # then insert fetch ops into the last task node.

                # Insert feed ops
                feed_task = fleet_opt['tasks'][0]
                print("Inserting feed ops for task", feed_task.task_id())
                feed_program = feed_task.get_program()
2295 2296 2297
                feed_program = self._add_feed_ops(program=feed_program,
                                                  feed=real_feed,
                                                  feed_var_name=feed_var_name)
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
                feed_task.set_program(feed_program)

                # Insert fetch ops
                fetch_task = fleet_opt['tasks'][-1]
                print("Inserting fetch ops for task", fetch_task.task_id())
                fetch_program = fetch_task.get_program()
                fetch_program = self._add_fetch_ops(
                    program=fetch_program,
                    fetch_list=fetch_list,
                    fetch_var_name=fetch_var_name)
                main_block = fetch_program.block(0)
                for op in main_block.ops:
                    # set the op_role of fetch op to Optimize to avoid
                    # erase the fetched vars by gc for pipeline
                    if op.type == 'fetch':
                        op._set_attr(
                            'op_role',
                            core.op_proto_and_checker_maker.OpRole.Optimize)
                fetch_task.set_program(fetch_program)

2318 2319 2320 2321 2322 2323
            self._prepare_fleet_executor_carrier(
                cache_key,
                program=cached_program,
                scope=cached_scope,
                fleet_opt=fleet_opt,
                with_standalone_executor=with_standalone_executor)
2324

2325
        if feed:
2326 2327 2328
            # NOTE: don't have to traverse programs in task nodes,
            # since they all sub program of cached program and
            # cached program is also added feed fetch var
2329
            self._feed_data(cached_program, feed, feed_var_name, cached_scope)
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341

        from paddle.optimizer.lr import LRScheduler
        if hasattr(program, 'lr_sheduler'):
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(cached_scope,
                                              lr_sheduler._var_name)
            tensor.set(data, self.place)

2342 2343
        self._fleet_executor.run(cache_key)

2344 2345 2346 2347
        if fetch_list:
            arr = cached_scope.find_var(fetch_var_name).get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
L
LiYuRio 已提交
2348 2349
        return None

2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
    def _add_feed_ops(self, program, feed, feed_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                if global_block.has_var(name):
                    out = global_block.var(name)
2368 2369 2370 2371
                    global_block._prepend_op(type='feed',
                                             inputs={'X': [feed_var]},
                                             outputs={'Out': [out]},
                                             attrs={'col': i})
2372 2373 2374 2375 2376 2377 2378
                else:
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % name)

        return tmp_program

2379 2380
    @classmethod
    def _add_fetch_ops(cls,
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
                       program,
                       fetch_list,
                       fetch_var_name,
                       use_fetch_v2=False):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        if use_fetch_v2:
            fetch_op = 'fetch_v2'
        else:
            fetch_op = 'fetch'

        # append fetch_operators
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name,
                                   fetch_op):
            for i, var in enumerate(fetch_list):
                assert isinstance(var, Variable) or isinstance(
2407 2408 2409 2410 2411 2412 2413
                    var,
                    six.string_types), ("Wrong type for fetch_list[%s]: %s" %
                                        (i, type(var)))
                global_block.append_op(type=fetch_op,
                                       inputs={'X': [var]},
                                       outputs={'Out': [fetch_var]},
                                       attrs={'col': i})
2414 2415 2416

        return tmp_program

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
    @classmethod
    def _remove_fetch_ops(cls, program, fetch_op_name='fetch'):
        tmp_program = program.clone()
        global_block = tmp_program.global_block()
        op_num = len(global_block.ops)
        for idx in reversed(range(op_num)):
            if global_block.ops[idx].type == fetch_op_name:
                global_block._remove_op(idx)

        return tmp_program

2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
    def _run_pipeline(self,
                      program=None,
                      dataset=None,
                      scope=None,
                      thread=0,
                      is_infer=False,
                      debug=False,
                      fetch_list=None,
                      fetch_info=None,
                      print_period=100,
                      fetch_handler=None,
                      use_program_cache=False):
2440
        scope, real_fetch_list, trainer_instance = \
2441 2442 2443 2444 2445
            self._prepare_pipeline_ctx(program, dataset, scope, thread,
                                       is_infer, debug, fetch_list, fetch_info,
                                       print_period, fetch_handler,
                                       use_program_cache)

2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
        from paddle.optimizer.lr import LRScheduler
        if hasattr(program, 'lr_sheduler'):
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

2456 2457
        self._default_executor.run_from_dataset(trainer_instance)

2458 2459 2460
        if not use_program_cache:
            self._default_executor.release_trainer(trainer_instance)

2461 2462 2463 2464 2465 2466 2467
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)

        return None

2468 2469 2470 2471 2472
    def infer_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
2473 2474 2475
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
2476 2477
                           print_period=100,
                           fetch_handler=None):
2478
        """
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
        Infer from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, infer_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current infer task.

        The document of infer_from_dataset is almost the same as train_from_dataset,
        except that in distributed training, push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-threadvery easily.
2490

2491 2492
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2493
                if not provided, then default_main_program (not compiled) will be used.
2494
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2495 2496
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed. default is None
2497
            scope(Scope): the scope used to run this program, you can switch it to different scope
2498 2499 2500
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2501
            debug(bool): whether a user wants to run infer_from_dataset, default is False
2502
            fetch_list(Tensor List): fetch Tensor list, each Tensor will be printed during
2503
                training, default is None
2504
            fetch_info(String List): print information for each Tensor, default is None
2505
            print_period(int): the number of mini-batches for each print, default is 100
2506
            fetch_handler(FetchHandler): a user define class for fetch output.
2507

2508 2509 2510 2511
        Returns:
            None

        Examples:
2512 2513

            .. code-block:: python
2514

2515
                import paddle
2516

2517 2518 2519 2520 2521 2522
                paddle.enable_static()
                place = paddle.CPUPlace()  # you can set place = paddle.CUDAPlace(0) to use gpu
                exe = paddle.static.Executor(place)
                x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
                y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
                dataset = paddle.fluid.DatasetFactory().create_dataset()
2523
                dataset.set_use_var([x, y])
2524
                dataset.set_thread(1)
2525 2526
                # you should set your own filelist, e.g. filelist = ["dataA.txt"]
                filelist = []
2527
                dataset.set_filelist(filelist)
2528 2529 2530
                exe.run(paddle.static.default_startup_program())
                exe.infer_from_dataset(program=paddle.static.default_main_program(),
                                       dataset=dataset)
2531

2532
        """
2533 2534 2535
        return self._run_from_dataset(program, dataset, scope, thread, True,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)
2536

T
Thunderbrook 已提交
2537 2538 2539 2540 2541 2542 2543 2544
    def start_heter_trainer(self,
                            program=None,
                            scope=None,
                            debug=False,
                            fetch_list=None,
                            fetch_info=None,
                            print_period=100,
                            fetch_handler=None):
2545 2546 2547 2548 2549 2550 2551 2552
        scope, trainer = self._prepare_trainer(program=program,
                                               dataset=None,
                                               scope=scope,
                                               thread=1,
                                               debug=debug,
                                               fetch_list=fetch_list,
                                               fetch_info=fetch_info,
                                               print_period=print_period)
T
Thunderbrook 已提交
2553

2554
        trainer._set_infer(False)
T
Thunderbrook 已提交
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)

        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer._desc(), scope, None)

        #if fetch_handler is not None:
        #    scope0 = trainer_instance.get_worker_scope(0)
        #    fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
        #    fetch_monitor.start()
        #    self._default_executor.run_from_dataset(trainer_instance)
        #    fetch_monitor.stop()
        #    self._default_executor.release_trainer(trainer_instance)
        #else:

        self._default_executor.run_from_dataset(trainer_instance)
        #self._default_executor.release_trainer(trainer_instance)

        return trainer_instance

2576 2577 2578 2579 2580 2581 2582 2583
    def train_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
2584 2585
                           print_period=100,
                           fetch_handler=None):
2586 2587 2588 2589 2590 2591 2592 2593
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
2594

2595 2596 2597 2598
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2599
                if not provided, then default_main_program (not compiled) will be used.
2600
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2601 2602
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed.
2603
            scope(Scope): the scope used to run this program, you can switch it to different scope
2604 2605 2606
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2607
            debug(bool): whether a user wants to run train_from_dataset
2608
            fetch_list(Tensor List): fetch Tensor list, each variable will be printed
2609
                during training
2610
            fetch_info(String List): print information for each Tensor, its length should be equal
2611 2612
                to fetch_list
            print_period(int): the number of mini-batches for each print, default is 100
2613
            fetch_handler(FetchHandler): a user define class for fetch output.
2614 2615 2616

        Returns:
            None
2617

2618
        Examples:
2619

2620 2621
            .. code-block:: python

2622
              import paddle
2623

2624 2625 2626 2627 2628 2629
              paddle.enable_static()
              place = paddle.CPUPlace() # you can set place = paddle.CUDAPlace(0) to use gpu
              exe = paddle.static.Executor(place)
              x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
              y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
              dataset = paddle.fluid.DatasetFactory().create_dataset()
2630
              dataset.set_use_var([x, y])
2631
              dataset.set_thread(1)
2632 2633
              # you should set your own filelist, e.g. filelist = ["dataA.txt"]
              filelist = []
2634
              dataset.set_filelist(filelist)
2635 2636
              exe.run(paddle.static.default_startup_program())
              exe.train_from_dataset(program=paddle.static.default_main_program(),
2637
                                     dataset=dataset)
2638 2639

        """
2640 2641 2642
        return self._run_from_dataset(program, dataset, scope, thread, False,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)