executor.py 47.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
Zeng Jinle 已提交
17
import logging
18 19
import os
import multiprocessing
C
chengduo 已提交
20
import sys
21
import warnings
D
dzhwinter 已提交
22
import numpy as np
S
rename  
sneaxiy 已提交
23
from .wrapped_decorator import signature_safe_contextmanager
24
import six
25
from .data_feeder import convert_dtype
H
Huihuang Zheng 已提交
26
from .framework import Program, default_main_program, Variable, convert_np_dtype_to_dtype_
27
from . import core
28 29
from . import compiler
from .. import compat as cpt
30
from .trainer_factory import TrainerFactory
31
from .trainer_factory import FetchHandlerMonitor
32

T
Tink_Y 已提交
33
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
34

Y
Yu Yang 已提交
35
g_scope = core.Scope()
F
flame 已提交
36 37
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
38

Y
Yu Yang 已提交
39

Y
Yang Yu 已提交
40
def global_scope():
Y
yuyang18 已提交
41 42 43 44
    """
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

C
chengduo 已提交
45 46 47
    Returns:
        Scope: The global/default scope instance.

48 49 50 51 52 53 54 55
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          numpy.array(fluid.global_scope().find_var("data").get_tensor())
Y
yuyang18 已提交
56
    """
Y
Yang Yu 已提交
57 58 59
    return g_scope


60
def _switch_scope(scope):
Y
Yang Yu 已提交
61 62 63 64 65 66
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
67
@signature_safe_contextmanager
Y
Yang Yu 已提交
68
def scope_guard(scope):
Y
yuyang18 已提交
69
    """
70 71 72 73 74 75 76 77 78 79 80 81
    This function switches scope through python `with` statement.
    Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
    similar to brackets in programming languages.
    If this function is not invoked, all variables and variable names are recorded in the default global scope.
    When users need to create variables with the same name,
    they need to switch scopes through this function
    if they do not want the mapping of variables with the same name to be overwritten.
    After switching through the `with` statement,
    all variables created in the `with` block will be assigned to a new scope.

    Parameters:
        scope: The new scope.
Y
yuyang18 已提交
82

83 84
    Returns:
        None
L
lujun 已提交
85

Y
yuyang18 已提交
86
    Examples:
87 88
        .. code-block:: python

89
            import paddle.fluid as fluid
L
lujun 已提交
90
            import numpy
Y
yuyang18 已提交
91

L
lujun 已提交
92 93 94 95
            new_scope = fluid.Scope()
            with fluid.scope_guard(new_scope):
                 fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
96
    """
L
lujun 已提交
97

98
    ex = _switch_scope(scope)
Y
Yang Yu 已提交
99
    yield
100
    _switch_scope(ex)
Y
Yang Yu 已提交
101 102


D
dzhwinter 已提交
103
def as_numpy(tensor):
104 105 106
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
107

108
    Examples:
109 110 111 112 113 114 115 116 117 118
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
119 120 121 122 123 124 125

    Args:
       tensor(Variable): a instance of Tensor

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
126 127
    if isinstance(tensor, core.LoDTensorArray):
        return [as_numpy(t) for t in tensor]
D
dzhwinter 已提交
128 129 130 131
    if isinstance(tensor, list):
        return [as_numpy(t) for t in tensor]
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
132
    if len(lod) > 0:
D
dzhwinter 已提交
133
        raise RuntimeError("Some of your fetched tensors hold LoD information. \
134 135 136
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
            return LoDTensor itself directly.")
Q
qingqing01 已提交
137 138 139 140
    if tensor._is_initialized():
        return np.array(tensor)
    else:
        return None
D
dzhwinter 已提交
141 142


H
Huihuang Zheng 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
      
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
    
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
    2. Each non-negative number of the two dimentions are same.
    3. For negative number or 'None' in a dimention, it means unknown so it
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


196
def check_feed_shape_type(var, feed, num_places=1):
H
Huihuang Zheng 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209
    """
    Returns True if the variable doesn't require feed check or it is compatible
    with the shape and have same dtype as the feeded value.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
    2. Each non-negative number of the two dimentions are same.
    3. For negative number or 'None' in a dimention, it means unknown so it
       is compatible with any number.
    
    Args:
        var (Variable): the Variable object
        feed (LoDTensor): the feeded value, which must be a LoDTensor
210 211
        num_places: an integer value indicating the number of places.
            ParallelExecutor will divide data into devices (CPU/GPU) evenly.
H
Huihuang Zheng 已提交
212 213 214 215 216 217 218
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
219 220 221 222 223 224 225 226
        feed_shape = feed.shape()
        if six.PY2:
            feed_shape[0] = long(feed_shape[0] /
                                 num_places) if len(feed.lod()) == 0 else -1
        else:
            feed_shape[0] = int(feed_shape[0] /
                                num_places) if len(feed.lod()) == 0 else -1
        if not dimension_is_compatible_with(feed_shape, var.shape):
227 228
            raise ValueError(
                'The feeded Variable %r should have dimensions = %d, shape = '
229 230
                '%r, but received feeded shape %r on each device' %
                (var.name, len(var.shape), var.shape, feed_shape))
H
Huihuang Zheng 已提交
231
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
232 233 234 235 236 237 238
            var_dtype_format = convert_dtype(var.dtype) if isinstance(
                var.dtype, core.VarDesc.VarType) else var.dtype
            feed_dtype_format = convert_dtype(feed._dtype()) if isinstance(
                feed._dtype(), core.VarDesc.VarType) else feed._dtype()
            raise ValueError(
                'The data type of feeded Variable %r must be %r, but received %r'
                % (var.name, var_dtype_format, feed_dtype_format))
H
Huihuang Zheng 已提交
239 240 241
    return True


242 243 244 245 246 247 248 249 250 251 252 253
def has_feed_operators(block, feed_targets, feed_holder_name):
    """ Check whether the block already has feed operators.

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
254 255
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
256 257 258
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
259
        A boolean value that indicates whether a block has feed operators
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
                raise Exception("'feed_targets' does not have {} variable".
                                format(feed_target_name))
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
            "Feed operators in program desc do not match 'feed_targets'")
    return feed_count > 0


def has_fetch_operators(block, fetch_targets, fetch_holder_name):
    """ Check whether the block already has fetch operators.
X
xuwei06 已提交
282

283 284 285 286 287 288 289 290 291
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
292 293 294
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
295

X
xuwei06 已提交
296 297 298
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
    """

    fetch_count = 0
    for op in block.ops:
        if op.desc.type() == 'fetch':
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
                    var.desc.name() for var in fetch_targets
            ]:
                raise Exception("'fetch_targets' does not have {} variable".
                                format(fetch_target_name))
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
            "Fetch operators in program desc do not match 'fetch_targets'")
    return fetch_count > 0


W
Wu Yi 已提交
320
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
321
    """
C
chengduoZH 已提交
322 323 324
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
325
    Args:
326 327 328 329
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
330 331 332 333
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
334 335 336 337 338 339
    Returns:
       LodTensor|numpy.ndarray
    """
    assert isinstance(name, str)
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
340
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
341

Y
Yibing Liu 已提交
342
    var = scope.find_var(name)
343 344 345 346
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
        " program.")
X
xuwei06 已提交
347 348 349 350 351 352
    tensor = var.get_tensor()
    if return_numpy:
        tensor = as_numpy(tensor)
    return tensor


X
polish  
Xin Pan 已提交
353 354 355 356 357 358 359 360 361
def _to_name_str(var):
    if isinstance(var, Variable):
        return var.desc.name()
    elif isinstance(var, str):
        return var
    elif isinstance(var, six.string_types):
        return str(var)
    else:
        raise TypeError(str(var) + " should be Variable or str")
Q
qiaolongfei 已提交
362 363


364 365 366 367
def _get_strong_program_cache_key(program, feed, fetch_list):
    return str(id(program)) + _get_program_cache_key(feed, fetch_list)


X
polish  
Xin Pan 已提交
368 369 370
def _get_program_cache_key(feed, fetch_list):
    feed_var_names = list(feed.keys())
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
371 372 373 374

    return str(feed_var_names + fetch_var_names)


W
Wu Yi 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
def _as_lodtensor(data, place):
    """
        Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
        For higher dimensional sequence data, please use LoDTensor directly.

        Examples:
            >>> import paddle.fluid as fluid
            >>> place = fluid.CPUPlace()
            >>> exe = fluid.executor(place)
            >>> data = np.array(size=(100, 200, 300))
            >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
            >>>     ...

        Args:
            data(numpy.ndarray): a instance of array

        Returns:
            LoDTensor
        """
    if isinstance(data, list):
        raise RuntimeError("Some of your feed data hold LoD information. \
                They can not be completely cast from a list of Python \
                ndarray to LoDTensor. Please convert data to LoDTensor \
                directly before feeding the data.\
                ")
    # single tensor case
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


406
class FetchHandler(object):
D
Dong Daxiang 已提交
407 408 409
    def __init__(self, var_dict=None, period_secs=60):
        assert var_dict != None
        self.var_dict = var_dict
410 411
        self.period_secs = period_secs

D
Dong Daxiang 已提交
412 413 414 415 416
    def handler(self, res_dict):
        for key in res_dict:
            if type(res_dict[key]) is np.ndarray:
                sys.stdout.write("{}[0]: {} ".format(key, res_dict[key][0]))
        sys.stdout.write("\n")
417 418 419 420

    @staticmethod
    def help():
        print("""
D
Dong Daxiang 已提交
421 422 423 424 425 426 427 428
class FetchHandlerExample(FetchHandler):
    def handler(self, res_dict):
        print(res_dict["auc"])
        print("auc: {}, {}".format(res_dict["auc"], time.ctime()))

auc = Variable()
var_dict = {"auc": auc}
handler = FetchHandlerExample(var_dict=var_dict)
429 430 431
""")


Y
Yu Yang 已提交
432
class Executor(object):
433
    """
434
    An Executor in Python, supports single/multiple-GPU running,
C
chengduo 已提交
435 436 437 438 439 440 441 442 443
    and single/multiple-CPU running. When construction the Executor,
    the device is required.

    Args:
        place(fluid.CPUPlace()|fluid.CUDAPlace(n)): This parameter represents
            the executor run on which device.

    Returns:
        Executor
S
Fix doc  
sneaxiy 已提交
444

445
    Examples:
S
Fix doc  
sneaxiy 已提交
446 447
        .. code-block:: python

448 449 450 451 452 453 454 455 456 457 458 459
          import paddle.fluid as fluid
          import paddle.fluid.compiler as compiler
          import numpy
          import os

          use_cuda = True
          place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
C
chengduo 已提交
460
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

          # Run the startup program once and only once.
          # Not need to optimize/compile the startup program.
          startup_program.random_seed=1
          exe.run(startup_program)

          # Run the main program directly without compile.
          x = numpy.random.random(size=(10, 1)).astype('float32')
          loss_data, = exe.run(train_program,
                               feed={"X": x},
                               fetch_list=[loss.name])

          # Or, compiled the program and run. See `CompiledProgram`
          # for more detail.
          # NOTE: If you use CPU to run the program, you need
          # to specify the CPU_NUM, otherwise, fluid will use
          # all the number of the logic core as the CPU_NUM,
          # in that case, the batch size of the input should be
          # greater than CPU_NUM, if not, the process will be
          # failed by an exception.
          if not use_cuda:
              os.environ['CPU_NUM'] = str(2)

          compiled_prog = compiler.CompiledProgram(
              train_program).with_data_parallel(
              loss_name=loss.name)
          loss_data, = exe.run(compiled_prog,
                               feed={"X": x},
                               fetch_list=[loss.name])
493 494
    """

D
dzhwinter 已提交
495 496
    def __init__(self, place):
        self.place = place
Q
qiaolongfei 已提交
497
        self.program_caches = dict()
498
        self.ctx_caches = dict()
499 500
        self.scope_caches = dict()
        self.var_caches = dict()
501 502 503
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
504
        self._closed = False
D
dzhwinter 已提交
505

506 507 508
    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

509 510 511
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
512 513 514 515 516 517
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

518 519 520
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

521 522 523
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

Q
Qiao Longfei 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
    def _add_feed_fetch_ops(self, program, feed, fetch_list, feed_var_name,
                            fetch_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                out = global_block.var(name)
W
Wu Yi 已提交
550
                global_block._prepend_op(
Q
Qiao Longfei 已提交
551 552 553 554 555 556 557 558
                    type='feed',
                    inputs={'X': [feed_var]},
                    outputs={'Out': [out]},
                    attrs={'col': i})

        # append fetch_operators
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name):
            for i, var in enumerate(fetch_list):
M
minqiyang 已提交
559 560 561
                assert isinstance(var, Variable) or isinstance(
                    var, six.string_types), (
                        "Wrong type for fetch_list[%s]: %s" % (i, type(var)))
Q
Qiao Longfei 已提交
562 563 564 565 566 567 568 569 570 571
                global_block.append_op(
                    type='fetch',
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i})

        return tmp_program

    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
572 573
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
574 575 576 577
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
                if not isinstance(cur_feed, core.LoDTensor):
W
Wu Yi 已提交
578
                    cur_feed = _as_lodtensor(cur_feed, self.place)
H
Huihuang Zheng 已提交
579 580
                var = global_block.var(feed_target_name)
                check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
581 582 583 584 585 586 587 588
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
M
minqiyang 已提交
589
            for i in six.moves.range(len(fetch_list))
Q
Qiao Longfei 已提交
590 591 592
        ]
        return outs

S
Fix doc  
sneaxiy 已提交
593 594 595 596 597 598
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
599 600
    def close(self):
        """
C
chengduo 已提交
601 602 603
        Close the executor. This interface is used for distributed training (PServers mode).
        This executor can not be used after calling the interface, because
        this interface releases resources associated with the current Trainer.
Y
Yancey1989 已提交
604

C
chengduo 已提交
605 606
        Returns:
            None
607 608 609 610 611 612 613 614 615 616

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              cpu = fluid.CPUPlace()
              exe = fluid.Executor(cpu)
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
617
        """
618 619
        if not self._closed:
            self._default_executor.close()
Y
Yancey1989 已提交
620
            self._closed = True
Y
Yancey1989 已提交
621

X
fix  
Xin Pan 已提交
622
    def _run_parallel(self, program, scope, feed, fetch_list, fetch_var_name,
X
polish  
Xin Pan 已提交
623
                      return_numpy):
624
        exe = program._executor
H
Huihuang Zheng 已提交
625 626 627 628 629
        # TODO(zhenghuihuang): quantization uses Graph in CompiledProgram
        # instead of program. We will add support for checking Vars in Graph
        need_check_feed = program._program is not None
        if need_check_feed:
            global_block = program._program.global_block()
630 631 632 633 634 635
        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
                if not isinstance(feed_tensor, core.LoDTensor):
                    feed_tensor = core.LoDTensor()
636
                    # always set to CPU place, since the tensor need to be split
637
                    # it is fast in CPU
638 639 640
                    assert isinstance( feed[feed_name], np.ndarray ), \
                        "The input({}) should be numpy.array, but not {}.".format(
                        feed_name, type(feed[feed_name]))
641
                    feed_tensor.set(feed[feed_name], core.CPUPlace())
H
Huihuang Zheng 已提交
642 643
                if need_check_feed:
                    var = global_block.var(feed_name)
644
                    check_feed_shape_type(var, feed_tensor, exe.device_count())
645 646
                feed_tensor_dict[feed_name] = feed_tensor

647
            exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict)
648
        elif isinstance(feed, list) or isinstance(feed, tuple):
X
fix  
Xin Pan 已提交
649
            if len(feed) != len(program._places):
650 651 652 653 654 655 656 657 658 659 660 661 662 663
                raise ValueError(
                    "Feed a list of tensor, the list should be the same size as places"
                )

            res = list()
            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
                    if not isinstance(tensor, core.LoDTensor):
                        tmp = core.LoDTensor()
664 665 666
                        assert isinstance(each[feed_name], np.ndarray), \
                            "The input({}) should be numpy.array, but not {}.".format(
                            feed_name, type(each[feed_name]))
X
fix  
Xin Pan 已提交
667
                        tmp.set(tensor, program._places[i])
668
                        tensor = tmp
H
Huihuang Zheng 已提交
669 670 671
                    if need_check_feed:
                        var = global_block.var(feed_name)
                        check_feed_shape_type(var, tensor)
672 673
                    res_dict[feed_name] = tensor
                res.append(res_dict)
674
            exe.feed_tensors_into_local_scopes(res)
675

X
polish  
Xin Pan 已提交
676
        fetch_var_names = list(map(_to_name_str, fetch_list))
677
        tensors = exe.run(fetch_var_names)._move_to_list()
678
        return as_numpy(tensors) if return_numpy else tensors
679

Y
Yu Yang 已提交
680
    def run(self,
Y
Yu Yang 已提交
681
            program=None,
682 683
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
684
            feed_var_name='feed',
Y
Yu Yang 已提交
685
            fetch_var_name='fetch',
D
dzhwinter 已提交
686
            scope=None,
687 688
            return_numpy=True,
            use_program_cache=False):
689
        """
C
chengduo 已提交
690 691 692 693 694
        Run the specified :code:`Program` or :code:`CompiledProgram`. It should be noted that the executor
        will execute all the operators in :code:`Program` or :code:`CompiledProgram` without pruning some
        operators of the :code:`Program` or :code:`CompiledProgram` according to fetch_list. And you could
        specify the scope to store the :code:`Variables` during the executor running if the scope
        is not set, the executor will use the global scope, i.e. :code:`fluid.global_scope()`.
695

C
chengduo 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
        Args:
            program(Program|CompiledProgram): This parameter represents the :code:`Program` or
                :code:`CompiledProgram` to be executed. If this parameter is not provided, that
                parameter is None, the program will be set to :code:`fluid.default_main_program()`.
                The default is None.
            feed(list|dict): This parameter represents the input variables of the model.
                If it is single card training, the feed is dict type, and if it is multi-card
                training, the parameter feed can be dict or list type variable. If the
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
            fetch_list(list): This parameter represents the variables that need to be returned
                after the model runs. The default is None.
            feed_var_name(str): This parameter represents the name of the input variable of
                the feed operator. The default is "feed".
            fetch_var_name(str): This parameter represents the name of the output variable of
                the fetch operator. The default is "fetch".
            scope(Scope): the scope used to run this program, you can switch 
                it to different scope. default is :code:`fluid.global_scope()`
            return_numpy(bool): This parameter indicates whether convert the fetched variables
                (the variable specified in the fetch list) to numpy.ndarray. if it is False,
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
            use_program_cache(bool): This parameter indicates whether the input :code:`Program` is cached.
                If the parameter is True, the model may run faster in the following cases:
                the input program is :code:`fluid.Program`, and the parameters(program, feed variable name
                and fetch_list variable) of this interface remains unchanged during running.
                The default is False.
                
        Returns:

            List: The fetched result list.

        NOTES:
            1. If it is multi-card running and the feed parameter is dict type, the input data
               will be evenly sent to different cards. For example, using two GPUs to run the model,
               the input sample number is 3, that is, [0, 1, 2], the sample number on GPU0 is 1,
               that is, [0], and the sample number on GPU1 is 2, that is, [1, 2].
               If the number of samples is less than the number of devices, the program will
               throw an exception, so when running the model, you should make sure that the
               number of samples of the last batch of the data set should be greater than the
               number of CPU cores or GPU cards, if it is less than, it is recommended that
               the batch be discarded.
            2. If the number of CPU cores or GPU cards available is greater than 1, the fetch
               results are spliced together in dimension 0 for the same variable values
               (variables in fetch_list) on different devices.
745 746 747 748 749 750 751 752 753 754 755

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              import numpy

              # First create the Executor.
              place = fluid.CPUPlace() # fluid.CUDAPlace(0)
              exe = fluid.Executor(place)

C
chengduo 已提交
756
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
757 758 759 760 761 762 763 764 765 766 767
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              adam = fluid.optimizer.Adam()
              adam.minimize(loss)

              # Run the startup program once and only once.
              exe.run(fluid.default_startup_program())

              x = numpy.random.random(size=(10, 1)).astype('float32')
              outs = exe.run(feed={'X': x},
                             fetch_list=[loss.name])
768
        """
C
chengduo 已提交
769 770 771 772 773 774 775 776 777 778 779 780
        try:
            return self._run_impl(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache)
        except Exception as e:
            if not isinstance(e, core.EOFException):
781 782
                warnings.warn(
                    "The following exception is not an EOF exception.")
783
            six.reraise(*sys.exc_info())
C
chengduo 已提交
784 785 786

    def _run_impl(self, program, feed, fetch_list, feed_var_name,
                  fetch_var_name, scope, return_numpy, use_program_cache):
Y
Yancey1989 已提交
787 788 789
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
790
        use_default_main_program = program is None
791 792
        if program is None:
            program = default_main_program()
C
chengduo 已提交
793
        if isinstance(program, Program) and \
794
                        len(program.global_block().ops) == 0:
C
chengduo 已提交
795 796 797 798
            error_info = "The current program is empty."
            if use_default_main_program:
                error_info += " Maybe you should pass the Program or the CompiledProgram manually."
            warnings.warn(error_info)
799

800 801
        if scope is None:
            scope = global_scope()
802 803 804 805 806 807 808 809 810

        if fetch_list is not None:
            if isinstance(fetch_list, Variable) or isinstance(fetch_list, str):
                fetch_list = [fetch_list]
            assert isinstance(fetch_list, tuple) or isinstance(fetch_list, list), \
                "Currently , The fetch_list type only should be list or tuple, \n"\
                "but the input type is {}. For more information please refer to \n"\
                "the executor.run(...).".format(type(fetch_list))
        else:
X
polish  
Xin Pan 已提交
811
            fetch_list = []
812

X
polish  
Xin Pan 已提交
813
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
814

X
polish  
Xin Pan 已提交
815
        # For backward compatibility, run directly.
816
        if not compiled:
C
chengduo 已提交
817
            return self._run_program(
818 819 820 821 822 823 824 825 826 827
                program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache)

        program._compile(scope, self.place)
C
chengduo 已提交
828 829 830
        if program._is_inference:
            return self._run_inference(program._executor, feed)
        else:
831
            return self._run_parallel(
X
fix  
Xin Pan 已提交
832
                program,
833 834 835
                scope=scope,
                feed=feed,
                fetch_list=fetch_list,
X
polish  
Xin Pan 已提交
836
                fetch_var_name=fetch_var_name,
837 838
                return_numpy=return_numpy)

C
chengduo 已提交
839
    def _run_program(self, program, feed, fetch_list, feed_var_name,
C
chengduo 已提交
840
                     fetch_var_name, scope, return_numpy, use_program_cache):
841

842 843
        if feed is None:
            feed = {}
S
sneaxiy 已提交
844 845 846 847
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

Q
qiaolongfei 已提交
848
        if not isinstance(feed, dict):
D
dzhwinter 已提交
849 850 851
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))
Y
Yu Yang 已提交
852

853
        assert program is not None, "The program should not be Empty"
Y
Yu Yang 已提交
854
        if not isinstance(program, Program):
D
dzhwinter 已提交
855 856 857
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
                % (type(program)))
Y
Yu Yang 已提交
858

859
        if use_program_cache:
860
            cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
Q
Qiao Longfei 已提交
861
            cached_program = self._get_program_cache(cache_key)
862
            cached_ctx = self._get_ctx_cache(cache_key)
863
            cached_scope = self._get_scope_cache(cache_key)
Q
Qiao Longfei 已提交
864 865 866 867 868 869 870 871
            if cached_program is None:
                cached_program = self._add_feed_fetch_ops(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
                    fetch_var_name=fetch_var_name)
                self._add_program_cache(cache_key, cached_program)
872
                fetch_list_str = list(map(_to_name_str, fetch_list))
873
                cached_ctx = self._default_executor.prepare(
874 875 876 877 878 879 880
                    cached_program.desc, 0, fetch_list_str, False)
                # currently, we cache program, vars, sub_scope here
                # we suppose that in a life cycle of training, a user
                # will not create many programs. So, here the basic
                # rule of caching is to cache all unseen (program, var, scope)
                # when a user use use_program_cache.
                cached_scope = scope.new_scope()
881 882
                self._default_executor.create_variables(cached_program.desc,
                                                        cached_scope, 0)
883
                self._add_ctx_cache(cache_key, cached_ctx)
884
                self._add_scope_cache(cache_key, cached_scope)
Q
Qiao Longfei 已提交
885
            program = cached_program
886
            ctx = cached_ctx
887
            scope = cached_scope
888
        else:
Q
Qiao Longfei 已提交
889 890 891 892 893 894 895 896
            program = self._add_feed_fetch_ops(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name)

        self._feed_data(program, feed, feed_var_name, scope)
897
        if not use_program_cache:
C
chengduo 已提交
898 899
            self._default_executor.run(program.desc, scope, 0, True, True,
                                       fetch_var_name)
900
        else:
901 902
            self._default_executor.run_prepared_ctx(ctx, scope, False, False,
                                                    False)
903 904
        arr = scope.find_var(fetch_var_name).get_lod_tensor_array()
        tensors = arr._move_to_list()
D
dzhwinter 已提交
905
        if return_numpy:
906 907 908
            return as_numpy(tensors)
        else:
            return tensors
F
flame 已提交
909

X
Xin Pan 已提交
910 911
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
912

913 914
    def _dump_debug_info(self, program=None, trainer=None):
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
H
hutuxian 已提交
915
            fout.write(str(trainer))
916 917 918 919
        if program._fleet_opt:
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
                % (filelist_length, filelist_length))
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
                % (filelist_length // pipeline_num, filelist_length))
            pipeline_opt["concurrency_list"][
                0] = filelist_length // pipeline_num
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

936 937 938 939 940 941 942 943 944
    def _prepare_trainer(self,
                         program=None,
                         dataset=None,
                         scope=None,
                         thread=0,
                         debug=False,
                         fetch_list=None,
                         fetch_info=None,
                         print_period=100):
D
dongdaxiang 已提交
945 946 947 948
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
949 950 951
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
952 953
        compiled = isinstance(program, compiler.CompiledProgram)
        if not compiled:
H
hutuxian 已提交
954 955 956 957 958 959
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._pipeline_opt)
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
960
            trainer._set_program(program)
961
        else:
H
hutuxian 已提交
962 963 964 965 966 967
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._pipeline_opt)
            else:
                trainer = TrainerFactory()._create_trainer(
                    program.program._fleet_opt)
968
            trainer._set_program(program.program)
H
hutuxian 已提交
969

970
        if thread <= 0:
D
dongdaxiang 已提交
971 972
            if dataset.thread_num <= 0:
                raise RuntimeError(
973 974
                    "You should set thread num first, either in Dataset"
                    "or in Executor.train_from_dataset")
D
dongdaxiang 已提交
975
            else:
976
                trainer._set_thread(dataset.thread_num)
977
        else:
978
            trainer._set_thread(thread)
H
hutuxian 已提交
979

980 981
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
982
        return scope, trainer
983

984 985 986 987 988 989 990 991 992 993 994 995 996 997
    def _run_from_dataset(self,
                          program=None,
                          dataset=None,
                          scope=None,
                          thread=0,
                          is_infer=False,
                          debug=False,
                          fetch_list=None,
                          fetch_info=None,
                          print_period=100,
                          fetch_handler=None):
        if dataset is None:
            raise RuntimeError("dataset is need and should be initialized")

H
hutuxian 已提交
998 999 1000
        if program._pipeline_opt is not None and program._pipeline_opt[
                "sync_steps"] != -1:
            # hack for paddlebox: sync_steps(-1) denotes paddlebox
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
            thread = self._adjust_pipeline_resource(program._pipeline_opt,
                                                    dataset, thread)

        dataset._prepare_to_run()

        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
1011 1012 1013 1014
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)
1015 1016 1017 1018 1019

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)
T
tangwei12 已提交
1020
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
1021 1022 1023 1024

        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer._desc(), scope, dataset.dataset)

T
tangwei12 已提交
1025 1026 1027 1028 1029 1030
        if fetch_handler is not None:
            scope0 = trainer_instance.get_worker_scope(0)
            fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
            fetch_monitor.start()
            self._default_executor.run_from_dataset(trainer_instance)
            fetch_monitor.stop()
D
Dong Daxiang 已提交
1031
            self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
1032 1033 1034
        else:

            self._default_executor.run_from_dataset(trainer_instance)
D
Dong Daxiang 已提交
1035
            self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
1036 1037

        dataset._dynamic_adjust_after_train()
1038
        dataset._finish_to_run()
T
tangwei12 已提交
1039

1040 1041
        return None

1042 1043 1044 1045 1046
    def infer_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
1047 1048 1049
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
1050 1051
                           print_period=100,
                           fetch_handler=None):
1052
        """
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
        Infer from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, infer_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current infer task.

        The document of infer_from_dataset is almost the same as train_from_dataset,
        except that in distributed training, push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-threadvery easily.
1064

1065 1066
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
1067
                if not provided, then default_main_program (not compiled) will be used.
1068
            dataset(paddle.fluid.Dataset): dataset created outside this function,
1069 1070
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed. default is None
1071
            scope(Scope): the scope used to run this program, you can switch it to different scope
1072 1073 1074
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
1075
            debug(bool): whether a user wants to run infer_from_dataset, default is False
1076 1077
            fetch_list(Variable List): fetch variable list, each variable will be printed during
                training, default is None
1078 1079
            fetch_info(String List): print information for each variable, default is None
            print_period(int): the number of mini-batches for each print, default is 100
1080
            fetch_handler(FetchHandler): a user define class for fetch output.
1081

1082 1083 1084 1085
        Returns:
            None

        Examples:
1086 1087

            .. code-block:: python
1088

1089
                import paddle.fluid as fluid
1090 1091

                place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu
1092
                exe = fluid.Executor(place)
1093 1094
                x = fluid.layers.data(name="x", shape=[10, 10], dtype="int64")
                y = fluid.layers.data(name="y", shape=[1], dtype="int64", lod_level=1)
1095 1096
                dataset = fluid.DatasetFactory().create_dataset()
                dataset.set_use_var([x, y])
1097 1098
                dataset.set_thread(1)
                filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
1099 1100 1101 1102
                dataset.set_filelist(filelist)
                exe.run(fluid.default_startup_program())
                exe.infer_from_dataset(program=fluid.default_main_program(),
                                       dataset=dataset)        
1103

1104
        """
1105 1106 1107
        return self._run_from_dataset(program, dataset, scope, thread, True,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)
1108 1109 1110 1111 1112 1113 1114 1115 1116

    def train_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
1117 1118
                           print_period=100,
                           fetch_handler=None):
1119 1120 1121 1122 1123 1124 1125 1126
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
1127

1128 1129 1130 1131
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
1132
                if not provided, then default_main_program (not compiled) will be used.
1133
            dataset(paddle.fluid.Dataset): dataset created outside this function,
1134 1135
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed.
1136
            scope(Scope): the scope used to run this program, you can switch it to different scope
1137 1138 1139
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
1140
            debug(bool): whether a user wants to run train_from_dataset 
1141 1142 1143 1144 1145
            fetch_list(Variable List): fetch variable list, each variable will be printed
                during training
            fetch_info(String List): print information for each variable, its length should be equal
                to fetch_list
            print_period(int): the number of mini-batches for each print, default is 100
1146
            fetch_handler(FetchHandler): a user define class for fetch output.
1147 1148 1149

        Returns:
            None
1150
        
1151
        Examples:
1152
        
1153 1154 1155
            .. code-block:: python

              import paddle.fluid as fluid
1156 1157

              place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu
1158
              exe = fluid.Executor(place)
1159 1160
              x = fluid.layers.data(name="x", shape=[10, 10], dtype="int64")
              y = fluid.layers.data(name="y", shape=[1], dtype="int64", lod_level=1)
1161 1162
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_use_var([x, y])
1163 1164
              dataset.set_thread(1)
              filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
1165 1166 1167 1168
              dataset.set_filelist(filelist)
              exe.run(fluid.default_startup_program())
              exe.train_from_dataset(program=fluid.default_main_program(),
                                     dataset=dataset)
1169 1170

        """
1171 1172 1173
        return self._run_from_dataset(program, dataset, scope, thread, False,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)