Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
fc701369
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fc701369
编写于
12月 17, 2021
作者:
Y
Yuang Liu
提交者:
GitHub
12月 17, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[fleet_executor] run time graph on python side (#38164)
上级
e097a748
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
279 addition
and
8 deletion
+279
-8
paddle/fluid/distributed/fleet_executor/fleet_executor.cc
paddle/fluid/distributed/fleet_executor/fleet_executor.cc
+17
-0
paddle/fluid/distributed/fleet_executor/task_node.cc
paddle/fluid/distributed/fleet_executor/task_node.cc
+23
-1
paddle/fluid/distributed/fleet_executor/task_node.h
paddle/fluid/distributed/fleet_executor/task_node.h
+7
-2
paddle/fluid/pybind/bind_fleet_executor.cc
paddle/fluid/pybind/bind_fleet_executor.cc
+8
-1
python/paddle/distributed/fleet/fleet_executor_utils.py
python/paddle/distributed/fleet/fleet_executor_utils.py
+203
-0
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+19
-3
python/paddle/fluid/tests/unittests/test_fleet_executor.py
python/paddle/fluid/tests/unittests/test_fleet_executor.py
+2
-1
未找到文件。
paddle/fluid/distributed/fleet_executor/fleet_executor.cc
浏览文件 @
fc701369
...
...
@@ -17,6 +17,9 @@
#include "paddle/fluid/distributed/fleet_executor/message_bus.h"
#include "paddle/fluid/distributed/fleet_executor/runtime_graph.h"
#include "paddle/fluid/distributed/fleet_executor/task_node.h"
#include "paddle/fluid/framework/executor_gc_helper.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
...
...
@@ -38,16 +41,30 @@ void FleetExecutor::Init(
const
platform
::
Place
&
place
,
const
std
::
vector
<
TaskNode
*>&
task_nodes
,
const
std
::
unordered_map
<
int64_t
,
int64_t
>&
task_id_to_rank
)
{
if
(
task_nodes
.
size
()
==
0
)
{
LOG
(
INFO
)
<<
"fleet executor will use c++ side scheduler construction."
;
runtime_graph_
=
std
::
make_shared
<
RuntimeGraph
>
(
program_desc
,
exe_desc_
);
}
else
{
LOG
(
INFO
)
<<
"fleet executor has been set dependency on python side."
;
// TODO(fleet_exe devs): the unused_vars should be got from run time graph
std
::
vector
<
std
::
unique_ptr
<
framework
::
OperatorBase
>>
ops
;
for
(
auto
task_node
:
task_nodes
)
{
for
(
auto
op
:
task_node
->
ops
())
{
ops
.
emplace_back
(
std
::
unique_ptr
<
framework
::
OperatorBase
>
(
op
));
}
}
auto
unused_vars
=
framework
::
GetUnusedVars
(
program_desc
.
Block
(
0
),
ops
,
{});
runtime_graph_
=
std
::
make_shared
<
RuntimeGraph
>
();
std
::
unordered_map
<
int64_t
,
TaskNode
*>
interceptor_id_to_task
;
for
(
auto
task_node
:
task_nodes
)
{
task_node
->
SetUnusedVars
(
unused_vars
);
int64_t
interceptor_id
=
task_node
->
task_id
();
interceptor_id_to_task
.
emplace
(
interceptor_id
,
task_node
);
}
runtime_graph_
->
SetInterceptorIdToRank
(
task_id_to_rank
);
runtime_graph_
->
SetInterceptorIdToNode
(
interceptor_id_to_task
);
for
(
auto
&
unique_op
:
ops
)
{
unique_op
.
release
();
}
}
root_scope_
=
scope
;
place_
=
place
;
...
...
paddle/fluid/distributed/fleet_executor/task_node.cc
浏览文件 @
fc701369
...
...
@@ -13,6 +13,7 @@
// limitations under the License.
#include "paddle/fluid/distributed/fleet_executor/task_node.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
...
...
@@ -39,7 +40,28 @@ TaskNode::TaskNode(const framework::ProgramDesc& program, int64_t rank,
}
}
TaskNode
::
TaskNode
(
int32_t
role
,
const
std
::
vector
<
OperatorBase
*>&
ops
,
TaskNode
::
TaskNode
(
int32_t
role
,
const
std
::
vector
<
framework
::
OpDesc
*>&
op_descs
,
int64_t
rank
,
int64_t
task_id
,
int64_t
max_run_times
,
int64_t
max_slot_nums
)
:
role_
(
role
),
rank_
(
rank
),
task_id_
(
task_id
),
max_run_times_
(
max_run_times
),
max_slot_nums_
(
max_slot_nums
)
{
if
(
op_descs
.
empty
())
{
return
;
}
for
(
const
auto
&
desc
:
op_descs
)
{
ops_vec_
.
emplace_back
(
framework
::
OpRegistry
::
CreateOp
(
*
desc
));
}
for
(
const
auto
&
op
:
ops_vec_
)
{
ops_
.
emplace_back
(
op
.
get
());
}
}
TaskNode
::
TaskNode
(
int32_t
role
,
const
std
::
vector
<
framework
::
OperatorBase
*>&
ops
,
int64_t
rank
,
int64_t
task_id
,
int64_t
max_run_times
,
int64_t
max_slot_nums
)
:
ops_
(
ops
),
...
...
paddle/fluid/distributed/fleet_executor/task_node.h
浏览文件 @
fc701369
...
...
@@ -25,6 +25,7 @@
namespace
paddle
{
namespace
framework
{
class
OperatorBase
;
class
OpDesc
;
}
namespace
distributed
{
...
...
@@ -33,8 +34,12 @@ class TaskNode final {
using
OperatorBase
=
paddle
::
framework
::
OperatorBase
;
TaskNode
(
int32_t
role
,
int64_t
rank
,
int64_t
task_id
,
int64_t
max_run_times
,
int64_t
max_slot_nums
);
TaskNode
(
int32_t
role
,
const
std
::
vector
<
OperatorBase
*>&
ops
,
int64_t
rank
,
int64_t
task_id
,
int64_t
max_run_times
,
int64_t
max_slot_nums
);
TaskNode
(
int32_t
role
,
const
std
::
vector
<
framework
::
OpDesc
*>&
op_descs
,
int64_t
rank
,
int64_t
task_id
,
int64_t
max_run_times
,
int64_t
max_slot_nums
);
TaskNode
(
int32_t
role
,
const
std
::
vector
<
framework
::
OperatorBase
*>&
ops
,
int64_t
rank
,
int64_t
task_id
,
int64_t
max_run_times
,
int64_t
max_slot_nums
);
TaskNode
(
const
paddle
::
framework
::
ProgramDesc
&
program
,
int64_t
rank
,
int64_t
max_run_times
,
int64_t
max_slot_nums
);
~
TaskNode
()
=
default
;
...
...
paddle/fluid/pybind/bind_fleet_executor.cc
浏览文件 @
fc701369
...
...
@@ -28,6 +28,7 @@ namespace pybind {
using
paddle
::
distributed
::
FleetExecutor
;
using
paddle
::
distributed
::
TaskNode
;
using
paddle
::
framework
::
OpDesc
;
void
BindFleetExecutor
(
py
::
module
*
m
)
{
py
::
class_
<
FleetExecutor
>
(
*
m
,
"FleetExecutor"
)
...
...
@@ -38,9 +39,15 @@ void BindFleetExecutor(py::module* m) {
py
::
class_
<
TaskNode
>
(
*
m
,
"TaskNode"
)
.
def
(
py
::
init
<
const
framework
::
ProgramDesc
&
,
int64_t
,
int64_t
,
int64_t
>
())
.
def
(
py
::
init
<
int32_t
,
const
std
::
vector
<
framework
::
OpDesc
*>&
,
int64_t
,
int64_t
,
int64_t
,
int64_t
>
())
.
def
(
"task_id"
,
&
TaskNode
::
task_id
)
.
def
(
"add_upstream_task"
,
&
TaskNode
::
AddUpstreamTask
)
.
def
(
"add_downstream_task"
,
&
TaskNode
::
AddDownstreamTask
);
.
def
(
"add_downstream_task"
,
&
TaskNode
::
AddDownstreamTask
)
.
def
(
"set_run_pre_steps"
,
&
TaskNode
::
SetRunPerSteps
)
.
def
(
"set_run_at_offset"
,
&
TaskNode
::
SetRunAtOffset
)
.
def
(
"set_type"
,
&
TaskNode
::
SetType
)
.
def
(
"role"
,
&
TaskNode
::
role
);
}
}
// namespace pybind
}
// namespace paddle
python/paddle/distributed/fleet/fleet_executor_utils.py
0 → 100644
浏览文件 @
fc701369
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle.distributed.fleet.meta_optimizers.common
import
OpRole
,
OP_ROLE_KEY
from
paddle.fluid
import
core
class
CoordSys
:
"""
This class is used to mapping rank to (mp rank, sharding rank, pp rank, dp rank).
"""
def
__init__
(
self
,
dist_opt
):
self
.
dp_degree
=
dist_opt
.
get
(
'dp_degree'
,
1
)
self
.
pp_degree
=
dist_opt
.
get
(
'pp_degree'
,
1
)
self
.
sharding_degree
=
dist_opt
.
get
(
'sharding_degree'
,
1
)
self
.
mp_degree
=
dist_opt
.
get
(
'mp_degree'
,
1
)
def
_invalide_coord
(
self
,
coord
):
"""
Test the input coord is valid or not.
:param coord: The coord to be tested
:return: False if valid, True if invalid.
"""
return
coord
[
'mp_idx'
]
<
0
or
coord
[
'mp_idx'
]
>=
self
.
mp_degree
or
\
coord
[
'sharding_idx'
]
<
0
or
coord
[
'sharding_idx'
]
>=
self
.
sharding_degree
or
\
coord
[
'pp_idx'
]
<
0
or
coord
[
'pp_idx'
]
>=
self
.
pp_degree
or
\
coord
[
'dp_idx'
]
<
0
or
coord
[
'dp_idx'
]
>=
self
.
dp_degree
def
coord_to_rank
(
self
,
coord
):
"""
Map the input coord to it's corresponding rank.
:param coord: The coord to be converted
:return: The rank corresponding with the coord
"""
if
self
.
_invalide_coord
(
coord
):
return
-
1
return
int
(
coord
[
'dp_idx'
]
*
self
.
pp_degree
*
self
.
sharding_degree
*
self
.
mp_degree
+
\
coord
[
'pp_idx'
]
*
self
.
sharding_degree
*
self
.
mp_degree
+
\
coord
[
'sharding_idx'
]
*
self
.
mp_degree
+
coord
[
'mp_idx'
])
def
rank_to_coord
(
self
,
rank
):
"""
Map the input rank to it's corresponding coord
:param rank: The rank to be converted
:return: The coord corresponding with the rank
"""
mp_idx
=
rank
%
self
.
mp_degree
rank
//=
self
.
mp_degree
sharding_idx
=
rank
%
self
.
sharding_degree
rank
//=
self
.
sharding_degree
pp_idx
=
rank
%
self
.
pp_degree
rank
//=
self
.
pp_degree
dp_idx
=
rank
%
self
.
dp_degree
return
{
'mp_idx'
:
int
(
mp_idx
),
'sharding_idx'
:
int
(
sharding_idx
),
'pp_idx'
:
int
(
pp_idx
),
'dp_idx'
:
int
(
dp_idx
)
}
def
is_optimizer_op
(
op_role
):
return
op_role
==
int
(
OpRole
.
Optimize
)
def
is_lr_sched_op
(
op_role
):
return
op_role
==
int
(
OpRole
.
Optimize
.
LRSched
)
def
is_forward_op
(
op_role
):
return
(
op_role
==
int
(
OpRole
.
Forward
))
or
\
(
op_role
==
(
int
(
OpRole
.
Forward
)
^
int
(
OpRole
.
Loss
)))
def
is_backward_op
(
op_role
):
return
(
op_role
==
int
(
OpRole
.
Backward
))
or
\
(
op_role
==
(
int
(
OpRole
.
Backward
)
^
int
(
OpRole
.
Loss
)))
def
one_f_one_b
(
program
,
cur_rank
,
max_run_times
,
dist_opt
,
nrank
):
"""
Split the program to support 1f1b pipeline scheduler.
This funct will split the program based on the op_role.
The program will be split into four parts: lr_sched, fwd, bwd, opt.
And will create task nodes based on the four parts of the program.
:param program: The origin program.
:param cur_rank: Current rank (can be got from fleet.worker_index()).
:param max_run_times: Max run times for a micro batch. AKA number of micro steps.
:param dist_opt: The fleet_opt configured by user.
:param nrank: Number of workers (can be got from fleet.worker_num()).
:return:
task_nodes (list): four task nodes for current rank
task_id_to_rank (dict): task nodes' ids to it's corresponding rank
"""
print
(
"fleet executor will use python side 1f1b scheduler."
)
coord_sys
=
CoordSys
(
dist_opt
)
coord
=
coord_sys
.
rank_to_coord
(
cur_rank
)
max_slot_times
=
int
(
max_run_times
-
coord
[
'pp_idx'
])
num_of_functionality
=
4
def
create_task_node
(
role
,
ops
,
offset
,
node_type
):
task_id
=
int
(
cur_rank
*
num_of_functionality
+
offset
)
print
(
"Creating task node with role:"
,
role
,
"and with id:"
,
task_id
)
node
=
core
.
TaskNode
(
role
,
ops
,
cur_rank
,
task_id
,
max_run_times
,
max_slot_times
)
node
.
set_type
(
node_type
)
return
node
lr_ops
,
fwd_ops
,
bwd_ops
,
opt_ops
=
[],
[],
[],
[]
for
op
in
program
.
block
(
0
).
ops
:
# split the program based on the op_role
op_role
=
int
(
op
.
all_attrs
()[
OP_ROLE_KEY
])
if
is_lr_sched_op
(
op_role
):
lr_ops
.
append
(
op
.
desc
)
elif
is_optimizer_op
(
op_role
):
opt_ops
.
append
(
op
.
desc
)
elif
is_forward_op
(
op_role
):
fwd_ops
.
append
(
op
.
desc
)
elif
is_backward_op
(
op_role
):
bwd_ops
.
append
(
op
.
desc
)
else
:
raise
"The op role: "
+
str
(
op_role
)
+
" isn't one of LRSched, Forward, Backward or Optimizer."
# Create task nodes.
# The lr_sched and opt should be 'amplifier interceptor.
# The fwd and bwd should be 'compute interceptor'.
lr_task_node
=
create_task_node
(
int
(
OpRole
.
Optimize
.
LRSched
),
lr_ops
,
0
,
"Amplifier"
)
lr_task_node
.
set_run_pre_steps
(
max_run_times
)
fwd_task_node
=
create_task_node
(
int
(
OpRole
.
Forward
),
fwd_ops
,
1
,
"Compute"
)
bwd_task_node
=
create_task_node
(
int
(
OpRole
.
Backward
),
bwd_ops
,
2
,
"Compute"
)
opt_task_node
=
create_task_node
(
int
(
OpRole
.
Optimize
),
opt_ops
,
3
,
"Amplifier"
)
opt_task_node
.
set_run_pre_steps
(
max_run_times
)
opt_task_node
.
set_run_at_offset
(
max_run_times
-
1
)
task_nodes
=
[
lr_task_node
,
fwd_task_node
,
bwd_task_node
,
opt_task_node
]
# Generated the dependency based on this graph:
# lr(1:m) -> forward -> backward -> (m:1)optimize
# ↑ ↓
# lr(1:m) -> forward -> backward -> (m:1)optimize
# ↑ ↓
# lr(1:m) -> forward -> backward -> (m:1)optimize
upstream_coord
,
downstream_coord
=
coord
.
copy
(),
coord
.
copy
()
upstream_coord
[
'pp_idx'
]
=
upstream_coord
[
'pp_idx'
]
-
1
downstream_coord
[
'pp_idx'
]
=
downstream_coord
[
'pp_idx'
]
+
1
pp_upstream
=
coord_sys
.
coord_to_rank
(
upstream_coord
)
pp_downstream
=
coord_sys
.
coord_to_rank
(
downstream_coord
)
first_stage
=
(
pp_upstream
==
-
1
)
last_stage
=
(
pp_downstream
==
-
1
)
for
i
in
range
(
num_of_functionality
):
task_node
=
task_nodes
[
i
]
task_role
=
task_node
.
role
()
cur_id
=
int
(
cur_rank
*
num_of_functionality
+
i
)
prev_id
=
cur_id
-
1
next_id
=
cur_id
+
1
upstream_id
=
int
(
pp_upstream
*
num_of_functionality
+
i
)
downstream_id
=
int
(
pp_downstream
*
num_of_functionality
+
i
)
pp_buff_size
=
int
(
dist_opt
[
'pp_degree'
]
-
coord
[
'pp_idx'
])
ups
=
[]
downs
=
[]
if
not
is_lr_sched_op
(
task_role
):
buf_size
=
pp_buff_size
if
is_backward_op
(
task_role
)
else
2
ups
.
append
((
prev_id
,
buf_size
))
if
not
is_optimizer_op
(
task_role
):
buf_size
=
pp_buff_size
if
is_forward_op
(
task_role
)
else
2
downs
.
append
((
next_id
,
buf_size
))
if
is_forward_op
(
task_role
):
if
not
first_stage
:
ups
.
append
((
upstream_id
,
2
))
if
not
last_stage
:
downs
.
append
((
downstream_id
,
2
))
elif
is_backward_op
(
task_role
):
if
not
last_stage
:
ups
.
append
((
downstream_id
,
2
))
if
not
first_stage
:
downs
.
append
((
upstream_id
,
2
))
for
up
in
ups
:
print
(
"Task:"
,
cur_id
,
"'s upstream includes:"
,
up
[
0
])
task_node
.
add_upstream_task
(
up
[
0
],
up
[
1
])
for
down
in
downs
:
print
(
"Task:"
,
cur_id
,
"'s downstream includes:"
,
down
[
0
])
task_node
.
add_downstream_task
(
down
[
0
],
down
[
1
])
task_id_to_rank
=
{}
for
i
in
range
(
nrank
):
for
j
in
range
(
num_of_functionality
):
task_id_to_rank
[
int
(
i
*
num_of_functionality
+
j
)]
=
i
return
task_nodes
,
task_id_to_rank
python/paddle/fluid/executor.py
浏览文件 @
fc701369
...
...
@@ -1964,7 +1964,8 @@ class Executor(object):
trainer_endpoints_str
=
os
.
getenv
(
"PADDLE_TRAINER_ENDPOINTS"
,
""
)
trainer_endpoints
=
trainer_endpoints_str
.
split
(
','
)
fleet_exe_desc
=
fleet_executor_desc_pb2
.
FleetExecutorDesc
()
fleet_exe_desc
.
cur_rank
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
,
0
))
cur_rank
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
,
0
))
fleet_exe_desc
.
cur_rank
=
cur_rank
nrank
=
len
(
trainer_endpoints
)
for
rank
,
endpoint
in
enumerate
(
trainer_endpoints
):
rank_info
=
fleet_executor_desc_pb2
.
RankInfo
()
...
...
@@ -1979,8 +1980,23 @@ class Executor(object):
fleet_exe_desc
.
num_micro_batches
=
fleet_opt
[
"num_micro_batches"
]
num_of_gpu
=
fleet_exe_desc
.
dp_degree
*
fleet_exe_desc
.
mp_degree
*
fleet_exe_desc
.
pp_degree
assert
nrank
==
num_of_gpu
,
"The number of rank is not equal to the number of gpu."
task_id_to_rank
=
fleet_opt
.
get
(
"task_id_to_rank"
,
{})
tasks
=
fleet_opt
.
get
(
"tasks"
,
[])
if
'python_side'
in
fleet_opt
:
strategy
=
fleet_opt
[
'python_side'
]
if
strategy
==
'1F1B'
:
from
paddle.distributed.fleet.fleet_executor_utils
import
one_f_one_b
tasks
,
task_id_to_rank
=
one_f_one_b
(
program
,
cur_rank
,
fleet_opt
.
get
(
'num_micro_batches'
,
1
),
fleet_opt
.
get
(
'dist_strategy'
,
{}),
nrank
)
# NOTE: have to hold these vars, otherwise will be destructed
fleet_opt
[
'tasks'
]
=
tasks
fleet_opt
[
'task_id_to_rank'
]
=
task_id_to_rank
else
:
raise
"Fleet_executor only supports 1F1B scheduler if you choose python side split, "
\
"but received "
+
str
(
strategy
)
+
"."
else
:
task_id_to_rank
=
fleet_opt
.
get
(
"task_id_to_rank"
,
{})
tasks
=
fleet_opt
.
get
(
"tasks"
,
[])
fleet_exe
=
core
.
FleetExecutor
(
fleet_exe_desc
.
SerializeToString
())
place
=
core
.
Place
()
place
.
set_place
(
self
.
place
)
...
...
python/paddle/fluid/tests/unittests/test_fleet_executor.py
浏览文件 @
fc701369
...
...
@@ -33,7 +33,8 @@ class TestFleetExecutor(unittest.TestCase):
strategy
.
pipeline_configs
=
{
"accumulate_steps"
:
1
}
fleet_opt
=
{
"dist_strategy"
:
strategy
.
sharding_configs
,
"num_micro_batches"
:
strategy
.
pipeline_configs
[
"accumulate_steps"
]
"num_micro_batches"
:
strategy
.
pipeline_configs
[
"accumulate_steps"
],
"python_side"
:
"1F1B"
}
return
fleet_opt
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录