parallel_executor.cc 11.8 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
C
chengduoZH 已提交
16
#include <string>
17
#include <tuple>
Q
qiaolongfei 已提交
18
#include <vector>
C
chengduo 已提交
19
#include "paddle/fluid/framework/ir/graph_helper.h"
Y
Yu Yang 已提交
20

X
clean  
Xin Pan 已提交
21
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
22

Y
Yu Yang 已提交
23
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
24
#include "paddle/fluid/platform/nccl_helper.h"
Y
Yu Yang 已提交
25
#endif
Y
Yang Yang 已提交
26

Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
28
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
yuyang18 已提交
29
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
30
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
31
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
32

Y
Yang Yang 已提交
33
namespace paddle {
Y
Yu Yang 已提交
34 35
namespace framework {

Y
Yu Yang 已提交
36 37 38
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
39
      : places_(places) {}
Y
Yu Yang 已提交
40 41 42 43

  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
  Scope *global_scope_;
Y
Yu Yang 已提交
44
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
45

Y
Yu Yang 已提交
46
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
47
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
48
#endif
C
chengduoZH 已提交
49 50
  bool own_local_scope_;
  bool use_cuda_;
51
  bool use_all_reduce_;
Y
Yu Yang 已提交
52 53
};

54 55 56 57
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
58
ParallelExecutor::ParallelExecutor(
59
    const std::vector<platform::Place> &places,
Y
Yu Yang 已提交
60
    const std::unordered_set<std::string> &params,
61 62
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
yuyang18 已提交
63
    Scope *scope, const std::vector<Scope *> &local_scopes,
64
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
65
    size_t num_trainers, size_t trainer_id)
Y
Yu Yang 已提交
66
    : member_(new ParallelExecutorPrivate(places)) {
S
sneaxiy 已提交
67 68
  is_alive_.test_and_set();

Y
Yu Yang 已提交
69
  member_->global_scope_ = scope;
70
  member_->use_cuda_ = exec_strategy.use_cuda_;
71 72 73 74 75 76 77 78
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;

  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
  }
Y
Yu Yang 已提交
79

80
  // Step 1. Bcast the params to devs.
Y
Yu Yang 已提交
81
  // Create local scopes
82
  if (local_scopes.empty()) {
C
chengduoZH 已提交
83
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
84 85
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
86
      member_->local_scopes_.emplace_back(&scope->NewScope());
87 88
    }
  } else {
C
chengduoZH 已提交
89
    member_->own_local_scope_ = false;
90 91
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
92
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
93
    }
Y
Yu Yang 已提交
94 95
  }

C
chengduoZH 已提交
96
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
97 98
// Bcast Parameters to all GPUs
#ifdef PADDLE_WITH_CUDA
C
chengduoZH 已提交
99 100 101 102 103 104 105 106 107
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
    ncclUniqueId *nccl_id = nullptr;
    if (nccl_id_var != nullptr) {
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
    }
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
        member_->places_, nccl_id, num_trainers, trainer_id));
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
108
#endif
C
chengduoZH 已提交
109 110 111
  }

  if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
Y
Yancey1989 已提交
112
    BCastParamsToDevices(bcast_vars);
Y
Yu Yang 已提交
113
  }
Y
yuyang18 已提交
114 115 116 117 118 119 120 121 122 123
  // Startup Program has been run. All local scopes has correct parameters.

  // Step 2. Create vars in each scope;
  std::vector<details::VariableInfo> var_infos;
  for (auto *var : main_program.Block(0).AllVars()) {
    var_infos.emplace_back();
    var_infos.back().name_ = var->Name();
    var_infos.back().type_ = var->GetType();
    var_infos.back().persistable_ = var->Persistable();
  }
Y
Yu Yang 已提交
124

X
Xin Pan 已提交
125 126
// Step 3. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
Y
yuyang18 已提交
127
#ifdef PADDLE_WITH_CUDA
128
  std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
X
Xin Pan 已提交
129
      main_program, member_->places_, loss_var_name, params,
130
      member_->local_scopes_, member_->use_cuda_, member_->nccl_ctxs_.get());
S
sneaxiy 已提交
131 132 133 134 135 136 137 138 139 140 141 142

  auto max_memory_size = GetEagerDeletionThreshold();
  if (max_memory_size >= 0) {
    for (auto &place : member_->places_) {
      if (!platform::is_gpu_place(place)) continue;
      auto gpu_place = boost::get<platform::CUDAPlace>(place);
      if (gcs_[gpu_place.device] == nullptr) {
        ref_cnts_[gpu_place.device].reset(new details::ReferenceCountMap());
        cur_ref_cnts_[gpu_place.device].reset(
            new details::AtomicReferenceCountMap());
        gcs_[gpu_place.device].reset(
            new StreamGarbageCollector<Tensor>(gpu_place, max_memory_size));
S
sneaxiy 已提交
143 144
      }
    }
S
sneaxiy 已提交
145 146 147 148 149 150 151 152 153 154
    if (!gcs_.empty()) {
      auto ref_cnt_pass =
          ir::PassRegistry::Instance().Get("reference_count_pass");
      ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount, &ref_cnts_);
      ref_cnt_pass->SetNotOwned(details::kCurReferenceCount, &cur_ref_cnts_);
      ref_cnt_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
      graph = ref_cnt_pass->Apply(std::move(graph));
      graph->SetNotOwned("garbage_collector", &gcs_);
    }
  }
C
chengduoZH 已提交
155
#else
156 157 158
  std::unique_ptr<ir::Graph> graph =
      build_strategy.Apply(main_program, member_->places_, loss_var_name,
                           params, member_->local_scopes_, member_->use_cuda_);
Y
Yu Yang 已提交
159
#endif
X
Xin Pan 已提交
160

C
chengduo 已提交
161 162 163 164 165 166
  if (VLOG_IS_ON(5)) {
    // If the loss_var_name is given, the number of graph should be only one.
    if (loss_var_name.size()) {
      PADDLE_ENFORCE_EQ(ir::GraphNum(*graph), 1,
                        "The number of graph should be only one");
    }
C
chengduo 已提交
167 168
  }

Y
yuyang18 已提交
169 170 171 172 173 174
  if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
    member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, places, std::move(graph)));
  } else {
    member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, places, std::move(graph)));
C
chengduoZH 已提交
175
  }
Y
yuyang18 已提交
176 177 178 179

  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
      exec_strategy, member_->local_scopes_, std::move(var_infos),
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
180 181
}

Y
Yancey1989 已提交
182
void ParallelExecutor::BCastParamsToDevices(
183
    const std::unordered_set<std::string> &vars) const {
X
Xin Pan 已提交
184
  // the initializing bcast, all vars would be bcast from device(0).
185
  for (auto &var : vars) {
X
Xin Pan 已提交
186
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
187
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
188 189 190 191 192 193
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
C
chengduoZH 已提交
194
#ifdef PADDLE_WITH_CUDA
195
      std::vector<void *> buffers;
196 197 198 199 200
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
201

X
Xin Pan 已提交
202
        if (i == 0) {
203 204
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
205
          auto local_scope = member_->local_scopes_[i];
206
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
207
          t->Resize(dims);
208
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
209
        }
210
        buffers.push_back(buffer);
211
      }
212

213 214 215 216 217 218
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
219 220
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
221
        }
222
        member_->nccl_ctxs_->WaitAll();
223
      }
C
chengduoZH 已提交
224 225 226
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
227 228
    } else {
      platform::CPUPlace cpu;
Y
Yancey1989 已提交
229
      for (size_t i = 0; i < member_->places_.size(); ++i) {
X
Xin Pan 已提交
230
        if (i == 0) continue;
Y
Yancey1989 已提交
231

232 233
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
234 235 236 237

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->use_all_reduce_ || member_->use_cuda_ ||
            var == "@LR_DECAY_COUNTER@") {
238 239 240 241 242 243
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
        } else {
          t->ShareDataWith(main_tensor);
        }
Y
Yu Yang 已提交
244
      }
Y
Stash  
Yu Yang 已提交
245 246
    }
  }
Y
Yu Yang 已提交
247
}
Y
Yu Yang 已提交
248

Y
Yu Yang 已提交
249 250
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
S
sneaxiy 已提交
251 252 253 254 255 256 257 258 259
  // If ParallelExecutor has been destructed
  // just return
  if (!is_alive_.test_and_set()) return;

  // If ParallelExecutor is running
  if (is_running_.test_and_set()) {
    PADDLE_THROW("The previous ParallelExecutor::Run() has not stopped");
  }

X
Xin Pan 已提交
260
  platform::RecordBlock b(0);
S
sneaxiy 已提交
261 262 263
#ifdef PADDLE_WITH_CUDA
  if (!gcs_.empty()) {
    ResetReferenceCount();
S
sneaxiy 已提交
264 265 266 267 268 269 270
    for (auto &pair : cur_ref_cnts_) {
      auto &name_map = *(pair.second);
      for (auto &fetch_name : fetch_tensors) {
        name_map.erase(fetch_name);
      }
      name_map.erase(fetched_var_name);
    }
S
sneaxiy 已提交
271 272
  }
#endif
S
sneaxiy 已提交
273 274 275 276 277 278 279 280 281 282 283
  try {
    auto fetch_data = member_->executor_->Run(fetch_tensors);
    *member_->global_scope_->Var(fetched_var_name)
         ->GetMutable<FeedFetchList>() = fetch_data;
    is_running_.clear();
  } catch (...) {
    is_running_.clear();
    if (is_alive_.test_and_set()) {
      std::rethrow_exception(std::current_exception());
    }
  }
Y
Yu Yang 已提交
284
}
Y
Yu Yang 已提交
285

Y
Yu Yang 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
305 306 307 308 309
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
310 311
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
312
      auto t =
Y
Yu Yang 已提交
313
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
314 315
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
316 317 318 319
    }
  }
}

320
ParallelExecutor::~ParallelExecutor() {
S
sneaxiy 已提交
321
  is_alive_.clear();
C
chengduoZH 已提交
322
  if (member_->own_local_scope_) {
323
    for (size_t i = 1; i < member_->local_scopes_.size(); ++i) {
M
minqiyang 已提交
324 325 326 327
      Scope *local_scope = member_->local_scopes_[i];
      if (member_->global_scope_->HasKid(local_scope)) {
        member_->global_scope_->DeleteScope(local_scope);
      }
328 329
    }
  }
S
sneaxiy 已提交
330 331 332 333 334 335

  while (is_running_.test_and_set()) {
    // wait unitl all threads have been stopped
  }

  member_.reset();
336 337
}

Y
Yu Yang 已提交
338
}  // namespace framework
Y
Yang Yang 已提交
339
}  // namespace paddle
S
sneaxiy 已提交
340 341 342
#ifdef PADDLE_WITH_CUDA
USE_PASS(reference_count_pass);
#endif