layers.py 235.6 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
15
import collections
Y
Yu Yang 已提交
16
import inspect
Z
zhangjinchao01 已提交
17

18
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
19 20
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22
from .evaluators import *
X
xzl 已提交
23
from .poolings import MaxPooling, AvgPooling, MaxWithMaskPooling, BasePoolingType, \
24
    CudnnAvgPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
25 26
from .attrs import *
from .default_decorators import *
27

Z
zhangjinchao01 已提交
28 29 30 31 32 33
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
34
__all__ = [
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
    'hsigmoid',
    'conv_projection',
56
    'square_error_cost',
57
    'regression_cost',
Q
qijun 已提交
58
    'classification_cost',
59
    'LayerOutput',
Q
qijun 已提交
60 61 62 63 64 65
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
66
    'seq_concat_layer',
Q
qijun 已提交
67 68 69 70 71 72
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
73
    'scaling_projection',
Q
qijun 已提交
74 75 76 77
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
78
    'rotate_layer',
Q
qijun 已提交
79
    'sum_to_one_norm_layer',
G
guosheng 已提交
80
    'row_l2_norm_layer',
Q
qijun 已提交
81 82 83 84 85 86 87 88
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
89
    'gru_step_naive_layer',
Q
qijun 已提交
90 91 92 93 94 95 96 97 98 99 100 101
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
102
    'warp_ctc_layer',
Q
qijun 已提交
103 104 105 106 107
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
C
caoying03 已提交
108
    'BeamInput',
C
caoying03 已提交
109
    'cross_entropy_over_beam',
Q
qijun 已提交
110 111 112 113
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
L
Luo Tao 已提交
114
    'huber_regression_cost',
115
    'huber_classification_cost',
Q
qijun 已提交
116 117 118
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
X
xuwei06 已提交
119
    'printer_layer',
Q
qijun 已提交
120
    'print_layer',
Y
yuan 已提交
121
    'priorbox_layer',
122
    'cross_channel_norm_layer',
123 124
    'multibox_loss_layer',
    'detection_output_layer',
Q
qijun 已提交
125
    'spp_layer',
D
dangqingqing 已提交
126
    'pad_layer',
L
Luo Tao 已提交
127
    'eos_layer',
128
    'smooth_l1_cost',
129
    'layer_support',
W
wwhu 已提交
130
    'multiplex_layer',
D
dangqingqing 已提交
131
    'row_conv_layer',
132
    'dropout_layer',
133
    'prelu_layer',
134
    'switch_order_layer',
135
    'gated_unit_layer',
136
    'crop_layer',
137
    'sub_nested_seq_layer',
138
    'clip_layer',
139
    'slice_projection',
140
    'seq_slice_layer',
141
    'kmax_seq_score_layer',
C
chengduoZH 已提交
142
    'img_pool3d_layer',
G
guosheng 已提交
143
    'scale_shift_layer',
C
chengduoZH 已提交
144
    'img_conv3d_layer',
145
    'resize_layer',
Y
yangyaming 已提交
146
    'sub_seq_layer',
Y
yangyaming 已提交
147
    'scale_sub_region_layer',
Q
qijun 已提交
148
]
Z
zhangjinchao01 已提交
149 150 151 152 153 154 155


class LayerType(object):
    """
    Layer type enumerations.
    """

156 157 158 159 160 161 162 163
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
164
    POOLING_AVG = 'average'
165
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
166
    COST = 'cost'
167 168
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
169
    HSIGMOID = 'hsigmoid'
170 171 172 173 174
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
C
chengduoZH 已提交
175
    CUDNNCONVTRANS_LAYER = 'cudnn_convt'
176
    POOL_LAYER = 'pool'
C
chengduoZH 已提交
177
    POOL3D_LAYER = 'pool3d'
Z
zhangjinchao01 已提交
178 179 180
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
181
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
182 183 184 185
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
186
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
187 188 189 190 191 192 193

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
194
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
195 196 197
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
198
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
199
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
200
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
201 202 203 204 205 206 207 208 209 210 211

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
212
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
213
    BLOCK_EXPAND = "blockexpand"
214
    MAXOUT = "maxout"
Q
qijun 已提交
215
    SPP_LAYER = "spp"
D
dangqingqing 已提交
216
    PAD_LAYER = "pad"
W
wwhu 已提交
217
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
218
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
219 220 221

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
222 223
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
D
dangqingqing 已提交
224 225 226 227 228

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
229
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
230

231 232 233
    CONV3D_LAYER = 'conv3d'
    DECONV3D_LAYER = 'deconv3d'

234 235
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
L
Luo Tao 已提交
236
    HUBER_REGRESSION = 'huber_regression'
237
    HUBER_CLASSIFICATION = 'huber_classification'
238 239
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
C
caoying03 已提交
240
    CROSS_ENTROPY_OVER_BEAM = 'cross_entropy_over_beam'
241 242 243 244 245 246
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
247
    SWITCH_ORDER_LAYER = 'switch_order'
248
    CROP_LAYER = 'crop'
C
caoying03 已提交
249
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
250
    CLIP_LAYER = 'clip'
251
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
252

253
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
254
    SCALE_SHIFT_LAYER = 'scale_shift'
Z
zhangjinchao01 已提交
255

256
    RESIZE = 'resize'
Y
yangyaming 已提交
257
    SUB_SEQ_LAYER = 'subseq'
258

Y
yangyaming 已提交
259
    SCALE_SUB_REGION_LAYER = 'scale_sub_region'
260

Z
zhangjinchao01 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
281
    """
L
Luo Tao 已提交
282
    PaddlePaddle supports three sequence types:
283 284 285

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
286 287
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
288

L
Luo Tao 已提交
289
    Accordingly, AggregateLevel supports two modes:
290

L
Luo Tao 已提交
291
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
292
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
293 294
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
295
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
296 297 298
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
299 300
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
301 302 303
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
R
ranqiu 已提交
326
    :type parents: list | tuple | collections.Sequence
Z
zhangjinchao01 已提交
327 328
    """

Q
qijun 已提交
329 330 331 332 333 334 335 336 337
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
338
                 reverse=None):
Z
zhangjinchao01 已提交
339 340
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
341
        assert size is not None
Z
zhangjinchao01 已提交
342 343
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
344
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
345
        self.layer_type = layer_type
346 347
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
348 349 350 351 352 353 354 355
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
356
        self.reverse = reverse
Z
zhangjinchao01 已提交
357

358 359 360 361 362 363 364 365
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

366 367 368 369
    @property
    def depth(self):
        return cp.g_layer_map[self.full_name].depth

370 371 372 373 374 375 376 377
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
378 379 380

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
381
DEVICE = 'device'
Z
zhangjinchao01 已提交
382 383 384


def layer_support(*attrs):
385
    attrs_list = list(attrs)
386
    attrs_list.append(DEVICE)
Q
qijun 已提交
387

Z
zhangjinchao01 已提交
388 389 390
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
391
            for attr in attrs_list:
Z
zhangjinchao01 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
408 409 410 411 412
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

R
ranqiu 已提交
443
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
444 445 446 447 448 449 450 451
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
452 453
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
454 455 456 457
    proj.origin = input
    return proj


458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

R
ranqiu 已提交
479
    :param input: The input of this layer.
480 481 482 483 484 485 486 487
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
488 489
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
490 491 492 493
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


R
ranqiu 已提交
524
    :param input: The input of this layer, which must contains id fields.
Z
zhangjinchao01 已提交
525 526 527 528 529 530 531 532
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
533 534
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
535 536 537 538
    proj.origin = input
    return proj


539
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

R
ranqiu 已提交
569
    :param input: The input of this layer.
570
    :type input: LayerOutput
Z
zhangjinchao01 已提交
571 572
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
573
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
574 575 576 577 578 579
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
580 581
        if size is None:
            size = input.size - offset
Q
qijun 已提交
582
        proj = IdentityOffsetProjection(
583
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
584 585 586 587
        proj.origin = input
    return proj


588 589
def slice_projection(input, slices):
    """
590 591
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
592 593

    .. math::
594
       output = [input.slices()]
595 596 597 598 599 600 601 602 603

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

R
ranqiu 已提交
604
    :param input: The input of this layer.
605 606 607 608
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
609
    :type slices: pair of int
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

R
ranqiu 已提交
642
    :param input: The input of this layer.
X
xuwei06 已提交
643 644 645 646 647 648
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
649
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
650 651 652 653
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
654
@wrap_param_attr_default()
655
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
656
    """
657
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

R
ranqiu 已提交
671
    :param input: The input of this layer.
672 673 674 675 676 677
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
678 679
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
680
    proj.origin = input
681
    return proj
Z
zhangjinchao01 已提交
682

683 684

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
685 686
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
687

Z
zhangjinchao01 已提交
688
    .. math::
L
Luo Tao 已提交
689
       out.row[i] += scale * (a.row[i] .* b.row[i])
690

Z
zhangjinchao01 已提交
691 692
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
693

Z
zhangjinchao01 已提交
694
    The example usage is:
695

Z
zhangjinchao01 已提交
696
    .. code-block:: python
697

L
Luo Tao 已提交
698
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
699

700 701 702 703
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
704 705
    :param scale: config scalar, default value is one.
    :type scale: float
706 707
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
708
    """
709 710 711
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
712
    a = kwargs.get('x', a)  # For Backward capacity.
713 714 715 716 717 718
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
719
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
720
    op.origin = [a, b]
721
    return op
Z
zhangjinchao01 已提交
722

723

Z
zhangjinchao01 已提交
724
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
725 726 727
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740 741
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

R
ranqiu 已提交
742
    :param input: The input of this layer, which should be a sequence.
Z
zhangjinchao01 已提交
743 744 745 746 747 748 749 750 751
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
R
ranqiu 已提交
752
    :type padding_attr: bool | ParameterAttribute
Z
zhangjinchao01 已提交
753 754 755 756 757 758 759 760 761 762 763
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
764 765 766 767 768 769
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
770 771 772 773 774 775 776 777 778 779 780 781 782
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
783
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
784 785 786 787 788 789
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
R
ranqiu 已提交
790
        :param act: Activation type.
Z
zhangjinchao01 已提交
791
        :type act: BaseActivation
R
ranqiu 已提交
792 793 794
        :param bias_attr: The bias attribute. If the parameter is set to False or an object
                          whose type is not ParameterAttribute, no bias is defined. If the
                          parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
795
        :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
796 797 798
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
799 800 801 802 803 804 805
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
806 807 808 809 810
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

811
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
812 813 814 815 816 817 818 819
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
820
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
821
            self.inputs.append(other)
822 823 824 825
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
826 827 828 829 830 831 832 833
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

834
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
835 836
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
837
        assert len(self.inputs) != 0
838
        ml = MixedLayer(
Z
zhangjinchao01 已提交
839 840 841 842 843
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
844
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
845 846 847
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
848
        self.finalized = True
Z
zhangjinchao01 已提交
849 850 851 852 853 854


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
855 856 857 858 859
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
R
ranqiu 已提交
887
    :param input: The input of this layer. It is an optional parameter. If set,
Z
zhangjinchao01 已提交
888
                  then this function will just return layer's name.
R
ranqiu 已提交
889
    :param act: Activation Type. LinearActivation is the default.
Z
zhangjinchao01 已提交
890
    :type act: BaseActivation
R
ranqiu 已提交
891 892 893
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
894
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
895 896 897 898 899 900 901 902 903
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
904 905 906 907 908 909
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
910
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
911 912 913 914 915 916 917 918
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
C
chengduoZH 已提交
919 920
def data_layer(name, size, depth=None, height=None, width=None,
               layer_attr=None):
Z
zhangjinchao01 已提交
921 922 923 924 925 926 927
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
928
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
929

R
ranqiu 已提交
930
    :param name: The name of this layer.
Z
zhangjinchao01 已提交
931 932 933
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
934
    :param height: Height of this data layer, used for image
R
ranqiu 已提交
935
    :type height: int | None
L
Luo Tao 已提交
936
    :param width: Width of this data layer, used for image
R
ranqiu 已提交
937
    :type width: int | None
Z
zhangjinchao01 已提交
938 939
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
940
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
941 942
    :rtype: LayerOutput
    """
Q
qijun 已提交
943 944 945 946
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
C
chengduoZH 已提交
947
        depth=depth,
L
Luo Tao 已提交
948 949
        height=height,
        width=width,
Q
qijun 已提交
950
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
951

C
chengduoZH 已提交
952 953
    if depth is None:
        depth = 1
954 955
    num_filters = None
    if height is not None and width is not None:
C
chengduoZH 已提交
956 957
        num_filters = size / (width * height * depth)
        assert num_filters * width * height * depth == size, \
C
chengduoZH 已提交
958
                "size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
959 960

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
961 962 963 964


@wrap_name_default("embedding")
@wrap_param_attr_default()
965
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
966 967 968 969
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

970
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
971
    :type name: basestring
R
ranqiu 已提交
972
    :param input: The input of this layer, which must be Index Data.
Z
zhangjinchao01 已提交
973 974 975 976 977
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
R
ranqiu 已提交
978
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
979
    :param layer_attr: Extra layer Config. Default is None.
R
ranqiu 已提交
980
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
981
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
982 983
    :rtype: LayerOutput
    """
Q
qijun 已提交
984 985 986 987 988 989
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
990 991 992 993 994 995 996 997 998
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
999 1000 1001 1002 1003 1004 1005
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
1018
    which is equal to:
Z
zhangjinchao01 已提交
1019 1020 1021 1022 1023 1024

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

1025
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1026
    :type name: basestring
R
ranqiu 已提交
1027 1028
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
1029 1030
    :param size: The layer dimension.
    :type size: int
R
ranqiu 已提交
1031
    :param act: Activation Type. TanhActivation is the default.
Z
zhangjinchao01 已提交
1032 1033 1034
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
1035 1036 1037
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1038
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1039
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
1040
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1041
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1042 1043 1044 1045
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1046
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1047 1048
        param_attr = [param_attr]
    else:
1049
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1050 1051
            assert len(input) == len(param_attr)
        else:
1052
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
1053
                logger.fatal(
W
wangmeng28 已提交
1054 1055 1056 1057 1058
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
1059 1060
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1061
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1062 1063

    Layer(
Q
qijun 已提交
1064 1065 1066
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1067 1068 1069 1070 1071
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1072 1073 1074
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1075

1076

1077
@wrap_name_default("print")
1078
def printer_layer(input, format=None, name=None):
1079 1080
    """
    Print the output value of input layers. This layer is useful for debugging.
1081

1082
    :param name: The name of this layer. It is optional.
1083
    :type name: basestring
R
ranqiu 已提交
1084 1085
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
1086
    :return: LayerOutput
1087
    """
1088 1089 1090 1091 1092
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1093 1094 1095

    Layer(
        name=name,
1096
        format=format,
1097
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1098
        inputs=[l.name for l in input], )
1099
    # this layer don't return anything, can not be input of other layer.
1100

X
xuwei06 已提交
1101 1102 1103 1104 1105 1106 1107
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1108

Y
yuan 已提交
1109
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1110
def priorbox_layer(input,
G
gaoyuan 已提交
1111
                   image,
G
gaoyuan 已提交
1112 1113 1114 1115 1116
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1117 1118 1119
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

1120
    :param name: The name of this layer. It is optional.
Y
yuan 已提交
1121
    :type name: basestring
R
ranqiu 已提交
1122
    :param input: The input of this layer.
Y
yuan 已提交
1123
    :type input: LayerOutput
G
gaoyuan 已提交
1124 1125
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1137
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1138 1139 1140
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1141
        inputs=[input.name, image.name],
Y
yuan 已提交
1142 1143 1144 1145 1146 1147
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1148 1149
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1150
        parents=[input, image],
G
gaoyuan 已提交
1151 1152 1153
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1154

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

1169
    :param name: The name of this layer. It is optional.
1170
    :type name: basestring
Y
yangyaming 已提交
1171 1172
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1173
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1174
    :type input_conf: LayerOutput | List of LayerOutput
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1196
    input_loc_num = len(input_loc)
1197 1198 1199 1200 1201 1202

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1203
    input_conf_num = len(input_conf)
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
G
gaoyuan 已提交
1241 1242
    box location. The output's shape of this layer could be zero if there is
    no valid bounding box.
1243

1244
    :param name: The name of this layer. It is optional.
1245
    :type name: basestring
Y
yangyaming 已提交
1246 1247
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1248
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1249
    :type input_conf: LayerOutput | List of LayerOutput.
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1271
    input_loc_num = len(input_loc)
1272 1273 1274 1275 1276 1277

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1278 1279
    input_conf_num = len(input_conf)

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


1308 1309
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1310 1311 1312 1313 1314
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1315

1316
    :param name: The name of this layer. It is optional.
G
gaoyuan 已提交
1317
    :type name: basestring
R
ranqiu 已提交
1318
    :param input: The input of this layer.
G
gaoyuan 已提交
1319 1320 1321 1322 1323
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1324
    assert input.num_filters is not None
G
gaoyuan 已提交
1325 1326
    Layer(
        name=name,
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1340 1341
    return LayerOutput(
        name,
1342
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1343 1344 1345 1346 1347
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1348 1349 1350 1351
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1352 1353 1354 1355
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1356
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1357
                  stride=-1,
Z
zhangjinchao01 已提交
1358 1359 1360 1361
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1362 1363
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1364 1365 1366
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1367
    operation. Note that for sequence with sub-sequence, the default value
1368 1369
    of stride is -1.

Z
zhangjinchao01 已提交
1370 1371 1372 1373 1374 1375
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1376
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1377

L
Luo Tao 已提交
1378 1379
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1380
    :type agg_level: AggregateLevel
1381
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1382
    :type name: basestring
R
ranqiu 已提交
1383
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1384 1385 1386
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
R
ranqiu 已提交
1387
    :type pooling_type: BasePoolingType | None
L
Luo Tao 已提交
1388
    :param stride: The step size between successive pooling regions.
1389
    :type stride: Int
R
ranqiu 已提交
1390 1391 1392
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1393
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1394
    :param layer_attr: The Extra Attributes for layer, such as dropout.
R
ranqiu 已提交
1395
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1396
    :return: LayerOutput object.
Y
Yu Yang 已提交
1397
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1398 1399
    """
    extra_dict = dict()
1400
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1401 1402
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1403 1404 1405 1406
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1407 1408
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1409 1410 1411
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1412 1413 1414 1415 1416 1417
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1418
        stride=stride,
Q
qijun 已提交
1419
        **extra_dict)
Z
zhangjinchao01 已提交
1420

Q
qijun 已提交
1421 1422
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1423

Q
qijun 已提交
1424

Z
zhangjinchao01 已提交
1425 1426
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1427
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1428 1429
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1430
@layer_support()
Q
qijun 已提交
1431 1432
def lstmemory(input,
              name=None,
1433
              size=None,
Q
qijun 已提交
1434 1435 1436 1437 1438 1439
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1440 1441 1442 1443 1444 1445 1446 1447
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1448
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1449

L
luotao02 已提交
1450
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1451

L
luotao02 已提交
1452
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1453

L
luotao02 已提交
1454
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1455

L
luotao02 已提交
1456
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1457 1458


C
caoying03 已提交
1459
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1460
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1461 1462 1463 1464
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1465

C
caoying03 已提交
1466
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1467 1468
    to config a simple plain lstm layer.

C
caoying03 已提交
1469 1470 1471 1472
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1473 1474 1475 1476 1477

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1478 1479
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
R
ranqiu 已提交
1480
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1481 1482 1483
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
R
ranqiu 已提交
1484
    :param act: Activation type. TanhActivation is the default. :math:`h_t`
Z
zhangjinchao01 已提交
1485 1486 1487 1488 1489
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation
R
ranqiu 已提交
1490 1491 1492
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1493
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1494
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1495
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1496
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1497
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1498
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1499 1500 1501 1502 1503 1504
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1505
    assert input.size is not None and input.size % 4 == 0
1506

1507 1508 1509 1510 1511
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1512 1513 1514
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1515

Q
qijun 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1526

Q
qijun 已提交
1527 1528 1529 1530 1531
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1532

Z
zhangjinchao01 已提交
1533 1534 1535

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1536
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1537 1538
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1539
@layer_support()
Q
qijun 已提交
1540
def grumemory(input,
1541
              size=None,
Q
qijun 已提交
1542 1543 1544 1545 1546 1547
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1569 1570
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1571 1572 1573 1574 1575

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1576 1577 1578
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1579 1580 1581 1582 1583

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1584
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1585
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1586 1587 1588
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1589

C
caoying03 已提交
1590 1591 1592
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1593 1594 1595 1596 1597 1598 1599 1600

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
R
ranqiu 已提交
1601 1602
    :type name: None | basestring
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1603
    :type input: LayerOutput.
1604 1605
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1606
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1607
    :type reverse: bool
R
ranqiu 已提交
1608
    :param act: Activation type, TanhActivation is the default. This activation
Z
zhangjinchao01 已提交
1609 1610 1611 1612 1613 1614
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
R
ranqiu 已提交
1615 1616 1617
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1618
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1619
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1620
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1621
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1622
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1623
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1624 1625 1626 1627
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1628 1629 1630 1631 1632 1633
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1634 1635 1636
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1637

Q
qijun 已提交
1638 1639 1640 1641 1642 1643 1644 1645 1646
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1647

Q
qijun 已提交
1648 1649 1650 1651 1652
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1653

Z
zhangjinchao01 已提交
1654 1655 1656

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1657 1658
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1659
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1660
             stride=-1,
Z
zhangjinchao01 已提交
1661 1662 1663 1664
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1665 1666 1667
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1668
    of stride is -1.
1669

L
Luo Tao 已提交
1670 1671 1672 1673 1674 1675
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1676
    :param agg_level: Aggregated level
1677
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1678
    :type name: basestring
R
ranqiu 已提交
1679
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1680
    :type input: LayerOutput
L
Luo Tao 已提交
1681
    :param stride: The step size between successive pooling regions.
1682
    :type stride: Int
Z
zhangjinchao01 已提交
1683 1684
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1685
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1686 1687
    :rtype: LayerOutput
    """
1688 1689 1690 1691 1692 1693
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1694
    if agg_level == AggregateLevel.TO_SEQUENCE:
1695 1696
        assert stride == -1

Z
zhangjinchao01 已提交
1697 1698 1699 1700 1701
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1702
        stride=stride,
Q
qijun 已提交
1703 1704 1705 1706 1707 1708
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1709 1710 1711 1712


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1713 1714
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1715
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1716
              stride=-1,
Z
zhangjinchao01 已提交
1717 1718 1719 1720
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1721 1722 1723
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1724
    of stride is -1.
1725

L
Luo Tao 已提交
1726 1727 1728 1729 1730 1731
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1732
    :param agg_level: aggregation level
1733
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1734
    :type name: basestring
R
ranqiu 已提交
1735
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1736
    :type input: LayerOutput
L
Luo Tao 已提交
1737
    :param stride: The step size between successive pooling regions.
1738
    :type stride: Int
Z
zhangjinchao01 已提交
1739 1740
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1741
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1742 1743
    :rtype: LayerOutput
    """
1744 1745 1746 1747 1748 1749 1750

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1751
    if agg_level == AggregateLevel.TO_SEQUENCE:
1752 1753
        assert stride == -1

Z
zhangjinchao01 已提交
1754 1755 1756 1757 1758
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1759
        stride=stride,
Q
qijun 已提交
1760 1761 1762 1763 1764 1765
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1766 1767 1768


class ExpandLevel(object):
1769 1770 1771 1772 1773
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1774 1775
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1776 1777
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1778 1779
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1780 1781
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1782 1783
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1784 1785
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1786

1787

Z
zhangjinchao01 已提交
1788 1789
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1790 1791
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1792 1793
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1794
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1806
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1807

R
ranqiu 已提交
1808
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1809 1810 1811
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
1812
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1813
    :type name: basestring
R
ranqiu 已提交
1814 1815 1816
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1817
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1818 1819 1820 1821
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1822
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1823 1824 1825 1826 1827 1828 1829 1830 1831
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1832 1833 1834 1835 1836 1837
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1838 1839


X
xuwei06 已提交
1840
@wrap_name_default()
X
xuwei06 已提交
1841
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1842
@layer_support()
X
xuwei06 已提交
1843 1844 1845
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1846
                 act=None,
X
xuwei06 已提交
1847 1848
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1849
    """
X
xuwei06 已提交
1850
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1851

X
xuwei06 已提交
1852
    If as_row_vector:
X
xuwei06 已提交
1853
    .. math::
X
xuwei06 已提交
1854 1855 1856 1857 1858
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1859 1860 1861 1862 1863

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1864
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1865

R
ranqiu 已提交
1866
    :param input: The input of this layer.
X
xuwei06 已提交
1867 1868 1869
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
1870
    :param name: The name of this layer. It is optional.
X
xuwei06 已提交
1871 1872 1873 1874 1875 1876
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
R
ranqiu 已提交
1877
    :param act: Activation type. IdentityActivation is the default.
X
xuwei06 已提交
1878
    :type act: BaseActivation
X
xuwei06 已提交
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1889
        active_type=act.name,
X
xuwei06 已提交
1890
        num_filters=num_repeats,
X
xuwei06 已提交
1891
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1892
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1893 1894 1895 1896 1897
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1898
        activation=act,
Q
qijun 已提交
1899 1900
        parents=[input])

X
xuwei06 已提交
1901

1902 1903 1904
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1905
@layer_support(ERROR_CLIPPING, DROPOUT)
1906 1907 1908 1909 1910 1911 1912 1913
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1914
    the dimension of each instance is M, and the input reshape_size is N, then the
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

R
ranqiu 已提交
1925
    :param input: The input of this layer.
1926 1927 1928
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
1929
    :param name: The name of this layer. It is optional.
1930
    :type name: basestring
R
ranqiu 已提交
1931
    :param act: Activation type. IdentityActivation is the default.
1932 1933 1934
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
R
ranqiu 已提交
1935 1936 1937
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1938
    :type bias_attr: ParameterAttribute | None | bool | Any
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

R
ranqiu 已提交
1977 1978
    :param input: The input of this layer.
    :type input: list | tuple
Z
zhangjinchao01 已提交
1979 1980
    :param weight: Weight layer.
    :type weight: LayerOutput
1981
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1982 1983 1984
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1985
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1986 1987
    :rtype: LayerOutput
    """
1988
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1989
    assert len(input) == 2
1990 1991 1992 1993 1994 1995 1996
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1997 1998 1999 2000
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
2001 2002 2003 2004 2005 2006
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
2007 2008


L
liaogang 已提交
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
2025
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
2026

L
liaogang 已提交
2027
    :param   input:        A input layer.
L
liaogang 已提交
2028
    :type    input:        LayerOutput.
L
liaogang 已提交
2029
    :param   out_size_x:   bilinear interpolation output width.
R
ranqiu 已提交
2030
    :type    out_size_x:   int | None
L
liaogang 已提交
2031
    :param   out_size_y:   bilinear interpolation output height.
R
ranqiu 已提交
2032
    :type    out_size_y:   int | None
L
liaogang 已提交
2033
    :param   name:         The layer's name, which cna not be specified.
R
ranqiu 已提交
2034
    :type    name:         None | basestring
L
liaogang 已提交
2035
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
2036 2037 2038 2039 2040 2041 2042
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2043
    assert input.num_filters is not None
L
liaogang 已提交
2044
    num_channels = input.num_filters
Q
qijun 已提交
2045 2046 2047 2048 2049 2050 2051
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2052
                channels=num_channels)),
Q
qijun 已提交
2053 2054 2055 2056 2057 2058 2059 2060 2061
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2062

Z
zhangjinchao01 已提交
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2082
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2083 2084 2085
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2086
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2087 2088 2089
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2090
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2091 2092
    :rtype: LayerOutput
    """
2093 2094 2095
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2096 2097 2098
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2099
        inputs=[weight.name, input.name],
Q
qijun 已提交
2100 2101 2102
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2103 2104 2105 2106 2107 2108


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2109
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2110 2111

    .. math::
2112
       y  = w x
Z
zhangjinchao01 已提交
2113

2114 2115 2116 2117 2118
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2119 2120 2121 2122 2123 2124 2125

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2126
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2127 2128 2129
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2130
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2131 2132 2133
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2134
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2135 2136
    :rtype: LayerOutput
    """
2137 2138 2139
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2140 2141 2142 2143
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2144 2145 2146
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2147 2148 2149 2150 2151 2152


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2153
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

R
ranqiu 已提交
2166
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2167
    :type input: LayerOutput
2168
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2169 2170 2171
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2172
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2173 2174 2175 2176 2177 2178
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2179 2180 2181
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2182 2183


2184 2185
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2186
def rotate_layer(input, height, width, name=None, layer_attr=None):
2187
    """
H
Haonan 已提交
2188 2189
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2190 2191

    .. math::
H
Haonan 已提交
2192
       y(j,i,:) = x(M-i-1,j,:)
2193

H
Haonan 已提交
2194
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2195 2196 2197 2198 2199 2200

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2201 2202
                          height=100,
                          width=100)
2203

R
ranqiu 已提交
2204
    :param input: The input of this layer.
2205 2206 2207
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
2208
    :param name: The name of this layer. It is optional.
2209 2210 2211 2212 2213 2214 2215
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2216 2217 2218
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2219
        width=width,
H
Haonan 已提交
2220 2221 2222 2223 2224 2225 2226 2227
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2228 2229


Z
zhangjinchao01 已提交
2230 2231
@wrap_name_default()
@layer_support()
2232
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2233 2234 2235 2236
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2237
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2238 2239 2240 2241 2242
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2243

2244 2245
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2246

L
Luo Tao 已提交
2247 2248 2249 2250 2251 2252
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

2253
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2265
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2266 2267
    :rtype: LayerOutput
    """
2268
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2269 2270 2271 2272 2273 2274
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2275
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2276
    else:
2277 2278
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2279 2280 2281 2282 2283 2284
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2285
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2286
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2287

2288

Z
zhangjinchao01 已提交
2289 2290
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2291
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2292
@layer_support()
Q
qijun 已提交
2293 2294
def hsigmoid(input,
             label,
2295
             num_classes=None,
Q
qijun 已提交
2296 2297 2298 2299
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2311
                        label=data_layer)
Z
zhangjinchao01 已提交
2312

R
ranqiu 已提交
2313 2314
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
2315 2316 2317
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
R
ranqiu 已提交
2318
    :type num_classes: int | None
2319
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
2320
    :type name: basestring
R
ranqiu 已提交
2321 2322 2323
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2324
    :type bias_attr: ParameterAttribute | None | bool | Any
2325
    :param param_attr: Parameter Attribute. None means default parameter.
R
ranqiu 已提交
2326
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
2327 2328
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2329
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2330 2331 2332 2333
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2334 2335 2336 2337 2338 2339 2340 2341 2342
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2343 2344 2345
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2346 2347 2348 2349 2350
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2351 2352
    ipts_for_layer = []
    parents = []
2353
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2354
        assert isinstance(each_input, LayerOutput)
2355
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2356 2357 2358 2359
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2360
    l = Layer(
Z
zhangjinchao01 已提交
2361 2362 2363 2364 2365
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2366 2367 2368
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2369

2370

Z
zhangjinchao01 已提交
2371 2372 2373 2374 2375
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2376 2377 2378 2379 2380 2381 2382 2383 2384
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2385
                   dilation=1,
Q
qijun 已提交
2386 2387 2388 2389 2390 2391 2392
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2393
                   dilation_y=None,
2394 2395
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2396
    """
2397
    Convolution layer for image. Paddle can support both square and non-square
2398
    input currently.
Z
zhangjinchao01 已提交
2399 2400 2401 2402

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2403

2404
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2405
    and non-square input currently.
2406

X
xuwei06 已提交
2407
    The details of convolution transpose layer,
2408 2409 2410
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2411 2412 2413 2414
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2415 2416 2417
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2418
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2419 2420
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2421

L
Luo Tao 已提交
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

2432
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2433
    :type name: basestring
R
ranqiu 已提交
2434
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2435
    :type input: LayerOutput
2436 2437
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
R
ranqiu 已提交
2438
    :type filter_size: int | tuple | list
C
caoying03 已提交
2439 2440 2441
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
R
ranqiu 已提交
2442
    :type filter_size_y: int | None
Z
zhangjinchao01 已提交
2443
    :param num_filters: Each filter group's number of filter
R
ranqiu 已提交
2444
    :param act: Activation type. ReluActivation is the default.
Z
zhangjinchao01 已提交
2445 2446 2447
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2448 2449
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
R
ranqiu 已提交
2450
    :type stride: int | tuple | list
Z
zhangjinchao01 已提交
2451 2452
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2453 2454
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
2455
    :type padding: int | tuple | list
Z
zhangjinchao01 已提交
2456 2457
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
2458 2459
    :param dilation: The x dimension of the dilation. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
2460
    :type dilation: int | tuple | list
W
wanghaoshuang 已提交
2461 2462
    :param dilation_y: The y dimension of the dilation.
    :type dilation_y: int
R
ranqiu 已提交
2463 2464 2465
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2466
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
2467 2468 2469 2470 2471 2472 2473 2474 2475
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2476 2477
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2478
    :param layer_type: specify the layer_type, default is None. If trans=True,
2479 2480
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2481
                       "cudnn_conv"
2482
    :type layer_type: String
D
dangqingqing 已提交
2483
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2484 2485 2486 2487 2488
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2489

Z
zhangjinchao01 已提交
2490
    if filter_size_y is None:
2491 2492 2493 2494 2495 2496
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2497
    if stride_y is None:
2498 2499 2500 2501 2502 2503
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2504
    if padding_y is None:
2505 2506 2507 2508 2509 2510
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2511 2512 2513 2514 2515 2516 2517
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2518 2519
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2520
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2521 2522 2523 2524
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2525

2526
    if layer_type:
W
wanghaoshuang 已提交
2527 2528
        if dilation > 1 or dilation_y > 1:
            assert layer_type in ["cudnn_conv", "cudnn_convt"]
2529
        if trans:
2530
            assert layer_type in ["exconvt", "cudnn_convt"]
2531 2532 2533 2534 2535
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2536

X
xuwei06 已提交
2537
    l = Layer(
Z
zhangjinchao01 已提交
2538
        name=name,
Q
qijun 已提交
2539 2540 2541 2542 2543
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2544
                dilation=dilation,
Q
qijun 已提交
2545 2546 2547 2548 2549
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2550
                dilation_y=dilation_y,
Q
qijun 已提交
2551 2552
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2553 2554 2555 2556
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2557
        type=lt,
Q
qijun 已提交
2558 2559 2560 2561 2562 2563 2564 2565
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2566 2567 2568 2569


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2580 2581
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2582 2583 2584 2585 2586 2587 2588
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2617
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2618
    :type padding: int
2619
    :param padding_y: pooling padding height. It's equal to padding by default.
R
ranqiu 已提交
2620
    :type padding_y: int | None
Z
zhangjinchao01 已提交
2621 2622
    :param name: name of pooling layer
    :type name: basestring.
R
ranqiu 已提交
2623
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2624
    :type input: LayerOutput
2625
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2626
    :type pool_size: int
2627
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
R
ranqiu 已提交
2628
    :type pool_size_y: int | None
Z
zhangjinchao01 已提交
2629 2630
    :param num_channels: number of input channel.
    :type num_channels: int
2631
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2632 2633
                      MaxPooling.
    :type pool_type: BasePoolingType
2634
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2635
    :type stride: int
2636
    :param stride_y: stride height of pooling. It is equal to stride by default.
R
ranqiu 已提交
2637
    :type stride_y: int | None
Z
zhangjinchao01 已提交
2638 2639
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2640 2641 2642 2643
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2644 2645
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

X
xzl 已提交
2656
    assert type(pool_type) in [AvgPooling, MaxPooling, MaxWithMaskPooling, CudnnAvgPooling,
W
wanghaoshuang 已提交
2657
                               CudnnMaxPooling], \
X
xzl 已提交
2658
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling MaxWithMaskPooling are supported"
W
wanghaoshuang 已提交
2659

2660
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2661
        if (
Y
Yu Yang 已提交
2662
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2663
        else pool_type.name
2664 2665 2666 2667
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2668
    l = Layer(
Z
zhangjinchao01 已提交
2669 2670
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2683
                    padding_y=padding_y))
Q
qijun 已提交
2684
        ],
2685
        ceil_mode=ceil_mode,
Q
qijun 已提交
2686 2687 2688 2689 2690 2691 2692
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2693 2694


C
chengduoZH 已提交
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
@wrap_name_default("pool3d")
@layer_support()
def img_pool3d_layer(input,
                     pool_size,
                     name=None,
                     num_channels=None,
                     pool_type=None,
                     stride=1,
                     padding=0,
                     layer_attr=None,
                     pool_size_y=None,
                     stride_y=None,
                     padding_y=None,
                     pool_size_z=None,
                     stride_z=None,
                     padding_z=None,
                     ceil_mode=True):
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool3d_layer(input=conv,
                                 pool_size=3,
                                 num_channels=8,
                                 stride=1,
                                 padding=1,
                                 pool_type=MaxPooling())

    :param padding: pooling padding width.
R
ranqiu 已提交
2747
    :type padding: int | tuple | list
C
chengduoZH 已提交
2748 2749
    :param name: name of pooling layer
    :type name: basestring.
R
ranqiu 已提交
2750
    :param input: The input of this layer.
C
chengduoZH 已提交
2751 2752
    :type input: LayerOutput
    :param pool_size: pooling window width
R
ranqiu 已提交
2753
    :type pool_size: int | tuple | list
C
chengduoZH 已提交
2754 2755 2756 2757 2758 2759
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
                      MaxPooling.
    :type pool_type: BasePoolingType
    :param stride: stride width of pooling.
R
ranqiu 已提交
2760
    :type stride: int | tuple | list
C
chengduoZH 已提交
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name + '-projection' \
        if (
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
        else pool_type.name

    if isinstance(pool_size, collections.Sequence):
        assert len(pool_size) == 3
        pool_size, pool_size_y, pool_size_z = pool_size
    else:
        pool_size_y = pool_size
        pool_size_z = pool_size

    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride

    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_y = padding
    else:
        padding_y = padding
        padding_z = padding

    l = Layer(
        name=name,
        type=LayerType.POOL3D_LAYER,
        inputs=[
            Input(
                input.name,
                pool=Pool3d(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
                    padding_y=padding_y,
                    size_z=pool_size_z,
                    stride_z=stride_z,
                    padding_z=padding_z))
        ],
        ceil_mode=ceil_mode,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


Q
qijun 已提交
2835 2836
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2837 2838 2839 2840 2841 2842
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2843 2844 2845 2846 2847
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2848 2849 2850 2851
    The example usage is:

    ..  code-block:: python

2852 2853 2854
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2855 2856
                        pool_type=MaxPooling())

2857
    :param name: The name of this layer. It is optional.
Q
qijun 已提交
2858
    :type name: basestring
R
ranqiu 已提交
2859
    :param input: The input of this layer.
Q
qijun 已提交
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2885
    l = Layer(
Q
qijun 已提交
2886 2887
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2888 2889 2890 2891 2892
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2893
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2905 2906 2907 2908
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2909
    l = Layer(
Q
qijun 已提交
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2929 2930 2931 2932


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2933 2934 2935 2936 2937 2938
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2939
                      layer_attr=None):
Z
zhangjinchao01 已提交
2940
    """
2941
    Response normalization across feature maps.
D
dangqingqing 已提交
2942 2943
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2944

L
Luo Tao 已提交
2945 2946 2947
    The example usage is:

    ..  code-block:: python
2948

L
Luo Tao 已提交
2949 2950
        norm = img_cmrnorm_layer(input=net, size=5)

2951
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
2952 2953
    :type name: None | basestring
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2954
    :type input: LayerOutput
2955
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
2956
    :type size: int
D
dangqingqing 已提交
2957
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
2958
    :type scale: float
D
dangqingqing 已提交
2959
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
2960 2961 2962 2963 2964
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2965
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2966 2967 2968
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2969
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
2970 2971 2972


@wrap_bias_attr_default()
2973 2974
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
2975 2976
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
2977
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2978 2979 2980
def batch_norm_layer(input,
                     act=None,
                     name=None,
C
chengduoZH 已提交
2981
                     img3D=False,
Q
qijun 已提交
2982 2983 2984 2985
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
2986 2987
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
C
chengduoZH 已提交
2988 2989
                     use_global_stats=None,
                     mean_var_names=None):
Z
zhangjinchao01 已提交
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
3008 3009 3010
    The example usage is:

    ..  code-block:: python
3011

L
Luo Tao 已提交
3012 3013
        norm = batch_norm_layer(input=net, act=ReluActivation())

3014
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3015 3016 3017 3018
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
    :param batch_norm_type: We have batch_norm, mkldnn_batch_norm and cudnn_batch_norm.
                            batch_norm supports CPU, MKLDNN and GPU. cudnn_batch_norm
                            requires cuDNN version greater or equal to v4 (>=v4).
                            But cudnn_batch_norm is faster and needs less
                            memory than batch_norm. mkldnn_batch_norm requires
                            enable use_mkldnn. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU,
                            mkldnn_batch_norm for MKLDNN and batch_norm for CPU.
                            Otherwise, select batch norm type based on the
                            specified type. If you use cudnn_batch_norm,
Z
zhangjinchao01 已提交
3029
                            we suggested you use latest version, such as v5.1.
R
ranqiu 已提交
3030
    :type batch_norm_type: None | string, None or "batch_norm" or "cudnn_batch_norm"
3031
                           or "mkldnn_batch_norm"
Z
zhangjinchao01 已提交
3032 3033 3034 3035 3036 3037 3038 3039 3040
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
R
ranqiu 已提交
3041
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
R
ranqiu 已提交
3053
    :type use_global_stats: bool | None.
Z
zhangjinchao01 已提交
3054 3055 3056 3057 3058
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
C
chengduoZH 已提交
3059 3060
    :param mean_var_names: [mean name, variance name]
    :type mean_var_names: string list
D
dangqingqing 已提交
3061
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3062 3063 3064 3065 3066 3067 3068 3069 3070
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
3071
           (batch_norm_type == "mkldnn_batch_norm") or \
Z
zhangjinchao01 已提交
3072
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
3073
    l = Layer(
Z
zhangjinchao01 已提交
3074
        name=name,
C
chengduoZH 已提交
3075
        img3D=img3D,
Q
qijun 已提交
3076 3077
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
3078 3079 3080 3081 3082 3083
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
C
chengduoZH 已提交
3084
        mean_var_names=mean_var_names,
Q
qijun 已提交
3085
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3086

Q
qijun 已提交
3087 3088 3089 3090 3091 3092 3093
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

R
ranqiu 已提交
3115
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3116
    :type input: LayerOutput
3117
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3118 3119 3120
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3121
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3122 3123 3124 3125 3126 3127
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
3128 3129 3130
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
3131 3132


G
guosheng 已提交
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

R
ranqiu 已提交
3151
    :param input: The input of this layer.
G
guosheng 已提交
3152
    :type input: LayerOutput
3153
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
3169 3170 3171
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
3172
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3173
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
3196 3197 3198
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3199 3200

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
3201 3202
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
3203 3204
    Please refer to dropout_layer for details.

3205
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3206 3207 3208
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
R
ranqiu 已提交
3209 3210
    :type input: LayerOutput | list | tuple
    :param act: Activation Type. LinearActivation is the default.
Z
zhangjinchao01 已提交
3211
    :type act: BaseActivation
R
ranqiu 已提交
3212 3213 3214
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3215
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3216 3217
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3218
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3219 3220 3221 3222 3223 3224
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3225
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3226 3227 3228 3229 3230 3231 3232
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3233
    l = Layer(
Q
qijun 已提交
3234 3235 3236
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3237 3238
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3239
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3240

Q
qijun 已提交
3241 3242 3243 3244 3245 3246 3247
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3248 3249 3250 3251


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3252
@layer_support(DROPOUT, ERROR_CLIPPING)
3253
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3254 3255 3256 3257
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

3258 3259 3260 3261 3262 3263
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

3264
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3265 3266
    :type name: basestring
    :param input: input layers or projections
R
ranqiu 已提交
3267 3268
    :type input: list | tuple | collections.Sequence
    :param act: Activation type. IdentityActivation is the default.
Z
zhangjinchao01 已提交
3269 3270 3271
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3272
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3273 3274 3275 3276 3277 3278 3279 3280
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3281
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3282 3283

    def __is_type__(o, tp):
3284
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3306 3307
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3308

Q
qijun 已提交
3309 3310
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3311

3312 3313
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3314

3315
    layer = Layer(
Q
qijun 已提交
3316 3317
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3318 3319
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3320
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3321
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3322

3323
    sz = layer.config.size
Z
zhangjinchao01 已提交
3324

Q
qijun 已提交
3325 3326 3327 3328 3329 3330 3331 3332
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3333 3334
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3335
@wrap_bias_attr_default(has_bias=False)
3336
@layer_support(DROPOUT, ERROR_CLIPPING)
3337 3338 3339 3340
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
3341

3342
    Inputs:
X
xuwei06 已提交
3343
      - a = [a1, a2, ..., am]
3344
      - b = [b1, b2, ..., bn]
3345

X
xuwei06 已提交
3346 3347 3348 3349
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3350 3351 3352 3353 3354 3355 3356

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

3357
    :param name: The name of this layer. It is optional.
3358 3359 3360 3361 3362
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
R
ranqiu 已提交
3363
    :param act: Activation type. IdentityActivation is the default.
3364 3365 3366
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3367 3368 3369
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3370
    :type bias_attr: ParameterAttribute | None | bool | Any
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3392
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3393 3394
def memory(name,
           size,
3395
           memory_name=None,
Q
qijun 已提交
3396 3397 3398 3399
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

3420 3421 3422 3423 3424 3425 3426 3427 3428
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
L
Liu Yiqun 已提交
3429

3430 3431 3432 3433 3434 3435 3436
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3437 3438 3439
    :type name: basestring
    :param size: size of memory.
    :type size: int
3440 3441 3442
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
3443
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3444 3445
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
R
ranqiu 已提交
3446
    :type boot_layer: LayerOutput | None
Z
zhangjinchao01 已提交
3447
    :param boot_bias: boot layer's bias
R
ranqiu 已提交
3448
    :type boot_bias: ParameterAttribute | None
Z
zhangjinchao01 已提交
3449 3450 3451 3452
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
3453
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3464 3465
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3466

3467 3468 3469 3470 3471 3472 3473 3474
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3475 3476

    lout = LayerOutput(
3477
        name=memory_name,
Q
qijun 已提交
3478 3479 3480
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3481 3482 3483 3484
    return lout


@wrap_bias_attr_default()
3485 3486
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3487 3488 3489
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3490 3491
def lstm_step_layer(input,
                    state,
3492
                    size=None,
Q
qijun 已提交
3493 3494 3495 3496 3497 3498
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3499
    """
3500 3501
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3502 3503 3504

    ..  math::

3505
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3506

3507
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3508

3509
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3510

3511
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3512

L
luotao02 已提交
3513
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3514 3515


L
luotao02 已提交
3516
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3517
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3518
    input vectors.
Z
zhangjinchao01 已提交
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3529 3530
    This layer has two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, whose name is 'state' and can use
Z
zhangjinchao01 已提交
3531 3532
    :code:`get_output_layer` to extract this output.

3533
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3534
    :type name: basestring
3535 3536
    :param size: Layer's size. NOTE: lstm layer's size, should be equal to
                 :code:`input.size/4`, and should be equal to
Z
zhangjinchao01 已提交
3537 3538 3539 3540 3541 3542
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
R
ranqiu 已提交
3543
    :param act: Activation type. TanhActivation is the default.
Z
zhangjinchao01 已提交
3544
    :type act: BaseActivation
R
ranqiu 已提交
3545
    :param gate_act: Gate Activation Type. SigmoidActivation is the default.
Z
zhangjinchao01 已提交
3546
    :type gate_act: BaseActivation
R
ranqiu 已提交
3547
    :param state_act: State Activation Type. TanhActivation is the default.
Z
zhangjinchao01 已提交
3548
    :type state_act: BaseActivation
R
ranqiu 已提交
3549 3550 3551
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3552
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3553 3554
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3555
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3556 3557
    :rtype: LayerOutput
    """
3558 3559 3560

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3561 3562 3563 3564 3565 3566 3567
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3568
        size=state.size,
Q
qijun 已提交
3569 3570
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3571

Q
qijun 已提交
3572 3573 3574 3575 3576 3577 3578
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3579 3580 3581


@wrap_bias_attr_default()
W
wangyang59 已提交
3582
@wrap_param_attr_default()
Q
qijun 已提交
3583
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3584 3585 3586
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3587 3588 3589 3590 3591 3592 3593
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3594
                   param_attr=None,
Q
qijun 已提交
3595
                   layer_attr=None):
Z
zhangjinchao01 已提交
3596 3597 3598 3599 3600 3601 3602
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
R
ranqiu 已提交
3603
    :type act: BaseActivation
3604
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3605 3606
    :param gate_act: Activation type of this layer's two gates. Default is Sigmoid.
    :type gate_act: BaseActivation
R
ranqiu 已提交
3607 3608 3609
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3610
    :type bias_attr: ParameterAttribute | None | bool | Any
3611 3612
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
3613
    :param layer_attr:
D
dangqingqing 已提交
3614
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3615 3616 3617 3618 3619 3620 3621 3622
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3623 3624 3625 3626
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3627
        # backward model compatibility.
3628
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3629 3630 3631 3632
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3633
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3634
    return LayerOutput(
Q
qijun 已提交
3635 3636
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3637
        parents=[input, output_mem],
Q
qijun 已提交
3638 3639
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3640 3641


Y
Yu Yang 已提交
3642 3643 3644 3645
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3646
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
    GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING
    and DROPOUT.

    :param input:
    :param output_mem:
    :param size:
3664
    :param name: The name of this layer. It is optional.
Y
Yu Yang 已提交
3665
    :param act:
R
ranqiu 已提交
3666 3667 3668
    :type act: BaseActivation
    :param gate_act: Activation type of this layer's two gates. Default is Sigmoid.
    :type gate_act: BaseActivation
R
ranqiu 已提交
3669 3670 3671
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3672
    :type bias_attr: ParameterAttribute | None | bool | Any
Y
Yu Yang 已提交
3673 3674 3675
    :param param_attr:
    :param layer_attr:
    :return:
R
ranqiu 已提交
3676
    :rtype: LayerOutput
Y
Yu Yang 已提交
3677 3678 3679 3680 3681 3682
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

3683
    if bias_attr and bias_attr.attr.get("parameter_name", None) is not None:
3684 3685 3686 3687
        raise ValueError("You should not specify the field `name` in bias_attr."
                         " Otherwise, the three biases, which correponding to "
                         " the two gates and the mixed layer for computing Wx+b"
                         ", will share the same parameter matrix unexpectedly.")
3688

Y
Yu Yang 已提交
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3726 3727 3728 3729
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3730 3731 3732 3733
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3734

3735
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3736 3737 3738 3739 3740 3741 3742
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3743
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3744 3745 3746 3747 3748 3749 3750
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3751 3752 3753 3754 3755 3756 3757
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3758

Q
qijun 已提交
3759 3760 3761 3762 3763
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3764 3765 3766 3767 3768 3769 3770


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3771 3772 3773 3774 3775 3776 3777
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3778
    """
3779 3780
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3781

3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


R
ranqiu 已提交
3797
    :param input: The input of this layer.
3798
    :type input: LayerOutput
R
ranqiu 已提交
3799
    :param act: Activation type. TanhActivation is the default.
3800
    :type act: BaseActivation
R
ranqiu 已提交
3801 3802 3803
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3804
    :type bias_attr: ParameterAttribute | None | bool | Any
3805 3806
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
3807
    :param name: The name of this layer. It is optional.
3808 3809 3810
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3811
    :return: LayerOutput object.
3812
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3813
    """
Q
qijun 已提交
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3829 3830 3831 3832 3833 3834


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
3835 3836
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3837
    """
3838

Z
zhangjinchao01 已提交
3839 3840 3841
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
3842
        assert input.size is not None
Z
zhangjinchao01 已提交
3843
        if size is not None:
3844
            assert input.size == size
Z
zhangjinchao01 已提交
3845 3846


3847
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
3848
    """
3849
    DEPRECATED.
Z
zhangjinchao01 已提交
3850 3851 3852 3853 3854 3855 3856 3857
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3858
    return input
Z
zhangjinchao01 已提交
3859 3860 3861


@wrap_name_default("recurrent_group")
3862
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
3863
    """
C
caoying03 已提交
3864 3865 3866 3867 3868
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

R
ranqiu 已提交
3911
    :type input: LayerOutput | StaticInput | SubsequenceInput | list | tuple
Z
zhangjinchao01 已提交
3912

3913 3914
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3915
    :type reverse: bool
3916

3917 3918
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
3919 3920 3921 3922 3923 3924 3925

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

R
ranqiu 已提交
3926
    :type targetInlink: LayerOutput | SubsequenceInput
3927

D
dangqingqing 已提交
3928
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3929 3930 3931 3932
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

3933
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
3934
        input = [input]
3935
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3936 3937

    def is_in_links(x):
3938
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
3939 3940 3941 3942

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3943
        name=name,
3944 3945
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
3946 3947
    in_args = []
    for each_input in input:
3948
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
3949
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
3950
            mem = memory(
3951
                name=None,
Q
qijun 已提交
3952 3953
                size=each_input.input.size,
                boot_layer=each_input.input)
3954
            mem.set_input(mem)
Z
zhangjinchao01 已提交
3955
            in_args.append(mem)
3956 3957
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
3958

Z
zhangjinchao01 已提交
3959 3960 3961 3962 3963
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

3964 3965 3966 3967 3968 3969
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
3970 3971 3972

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
3973
    for layer_out in layer_outs:
3974 3975
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
3976 3977
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
3978 3979 3980 3981 3982
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

3983

Z
zhangjinchao01 已提交
3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
4012 4013

    def before_real_step(self):
Q
qijun 已提交
4014 4015 4016 4017 4018 4019 4020 4021 4022
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
4023 4024 4025
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
4026
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

R
ranqiu 已提交
4044
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4045
    :type input: LayerOutput
4046
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4047 4048 4049
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4050
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4051 4052 4053 4054
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4065

4066

H
Haonan 已提交
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

4079
    :param name: The name of this layer. It is optional.
H
Haonan 已提交
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
4103

Z
zhangjinchao01 已提交
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

4120
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
4121
    :type name: basestring
R
ranqiu 已提交
4122
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4123 4124 4125 4126 4127
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4128
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4129 4130
    :rtype: LayerOutput
    """
Q
qijun 已提交
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4142 4143 4144


@wrap_name_default()
Q
qijun 已提交
4145 4146 4147 4148 4149 4150 4151
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
4152
                num_results_per_sample=None):
4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
4164
            with mixed_layer(size=512, name='rnn') as simple_rnn:
4165 4166 4167 4168
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

4169 4170 4171 4172 4173
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

4174 4175
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
4176 4177
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
4178 4179
                               bos_id=0,
                               eos_id=1,
4180
                               beam_size=5)
4181 4182 4183 4184 4185 4186 4187 4188 4189

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
4190
                 step, and it is applied to sequences with arbitrary length by
4191 4192 4193 4194 4195
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
4196 4197
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
4198
                  In beam_search, none of the input's type should be LayerOutput.
4199
    :type input: list
4200 4201 4202
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
4203
                   symbol is essential, since it is used to initialize the RNN
4204 4205 4206 4207 4208 4209 4210 4211
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4212 4213
    :param max_length: Max generated sequence length.
    :type max_length: int
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4224 4225
    :return: The generated word index.
    :rtype: LayerOutput
4226 4227
    """

Z
zhangjinchao01 已提交
4228 4229 4230 4231 4232
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4233
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4234 4235 4236 4237 4238 4239
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4240 4241 4242
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4243
        if isinstance(each_input, BaseGeneratedInput):
4244 4245
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4246
            generated_input_index = i
4247

Z
zhangjinchao01 已提交
4248 4249 4250
        else:
            real_input.append(each_input)

4251
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4252 4253 4254 4255 4256 4257 4258 4259

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4260 4261 4262 4263 4264 4265
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4266 4267 4268 4269 4270 4271

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4272
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4273 4274
        return predict

4275 4276
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4277

Q
qijun 已提交
4278

4279 4280
def __cost_input__(input, label, weight=None):
    """
4281
    inputs and parents for cost layers.
4282
    """
C
caoying03 已提交
4283 4284 4285 4286 4287 4288
    if isinstance(input, LayerOutput):
        input = [input]
    if isinstance(label, LayerOutput):
        label = [label]
    ipts = [Input(ipt.name) for ipt in (input + label)]
    parents = [ipt for ipt in (input + label)]
4289
    if weight is not None:
4290
        assert weight.size == 1
4291 4292 4293
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4294

Z
zhangjinchao01 已提交
4295 4296

@wrap_name_default()
L
luotao1 已提交
4297
@layer_support()
4298 4299 4300 4301 4302 4303
def square_error_cost(input,
                      label,
                      weight=None,
                      name=None,
                      coeff=1.0,
                      layer_attr=None):
Z
zhangjinchao01 已提交
4304
    """
4305
    sum of square error cost:
L
Luo Tao 已提交
4306 4307 4308

    ..  math::

4309
        cost = \\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4310

4311
    :param name: The name of this layer. It is optional.
4312
    :type name: basestring
Z
zhangjinchao01 已提交
4313
    :param input: Network prediction.
4314
    :type input: LayerOutput
Z
zhangjinchao01 已提交
4315
    :param label: Data label.
4316 4317 4318 4319
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
4320 4321
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4322 4323
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4324
    :return: LayerOutput object.
4325
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4326
    """
4327 4328
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4329 4330 4331 4332
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4333
        coeff=coeff,
Q
qijun 已提交
4334
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4335
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4336 4337


4338
regression_cost = square_error_cost
L
Luo Tao 已提交
4339 4340


Z
zhangjinchao01 已提交
4341
@wrap_name_default("cost")
4342
@layer_support()
Q
qijun 已提交
4343 4344 4345 4346
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4347
                        evaluator=classification_error_evaluator,
4348 4349
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4350 4351 4352
    """
    classification cost Layer.

4353
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4354 4355 4356 4357 4358
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
4359 4360 4361
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
Z
zhangjinchao01 已提交
4362
    :param evaluator: Evaluator method.
4363 4364
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
4365 4366
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
4367
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4368 4369 4370 4371 4372
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4373 4374 4375

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4376 4377 4378 4379
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4380
        coeff=coeff,
Q
qijun 已提交
4381
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4382 4383 4384 4385 4386 4387 4388 4389 4390 4391

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4392
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4393

4394
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4395 4396 4397 4398 4399
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4400
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4401

4402

Q
qijun 已提交
4403 4404 4405 4406 4407 4408 4409 4410 4411
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4412 4413
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4414 4415 4416 4417 4418 4419 4420 4421 4422 4423
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

4424 4425
       op = conv_operator(img=input1,
                          filter=input2,
4426
                          filter_size=3,
Z
zhangjinchao01 已提交
4427 4428 4429
                          num_filters=64,
                          num_channels=64)

4430 4431 4432 4433
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
4434 4435
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
4436 4437 4438
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
4439
    :type filter_size_y: int
4440 4441
    :param num_filters: channel of output data.
    :type num_filters: int
4442 4443
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
4444
    :param stride: The x dimension of the stride.
L
luotao02 已提交
4445
    :type stride: int
Z
zhangjinchao01 已提交
4446
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
4447
    :type stride_y: int
Z
zhangjinchao01 已提交
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4461

4462 4463
    if num_channels is None:
        num_channels = img.num_filters
4464 4465

    assert isinstance(filter, LayerOutput)
4466
    assert filter.size is not None
4467

4468 4469 4470
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4482

4483
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4484 4485
    return op

Q
qijun 已提交
4486

4487
@wrap_param_attr_default()
Q
qijun 已提交
4488 4489 4490 4491 4492 4493 4494 4495 4496 4497
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4498 4499
                    param_attr=None,
                    trans=False):
4500 4501 4502 4503 4504 4505 4506 4507 4508
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4509
       proj = conv_projection(input=input1,
4510 4511 4512 4513
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

R
ranqiu 已提交
4514
    :param input: The input of this layer.
4515 4516 4517 4518 4519 4520 4521 4522 4523
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
4524 4525
    :param num_channels: channel of input data.
    :type num_channels: int
4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
4538
    :param trans: whether it is convTrans or conv
R
ranqiu 已提交
4539
    :type trans: bool
4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4570
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4571 4572 4573 4574 4575
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4576 4577 4578
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4591 4592 4593 4594

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4595

D
dangqingqing 已提交
4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
4613

D
dangqingqing 已提交
4614
    For example,
4615

4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4637 4638

    The simply usage is:
D
dangqingqing 已提交
4639 4640 4641 4642 4643 4644 4645 4646

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

R
ranqiu 已提交
4647
    :param input: The input of this layer.
D
dangqingqing 已提交
4648 4649
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
R
ranqiu 已提交
4650
    :type pad_c: list | None
D
dangqingqing 已提交
4651
    :param pad_h: padding size in height dimension.
R
ranqiu 已提交
4652
    :type pad_h: list | None
D
dangqingqing 已提交
4653
    :param pad_w: padding size in width dimension.
R
ranqiu 已提交
4654
    :type pad_w: list | None
D
dangqingqing 已提交
4655 4656
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
4657
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4700
@wrap_name_default()
L
luotao1 已提交
4701 4702
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4714 4715 4716 4717
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4718 4719 4720 4721 4722

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4723
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4724

4725
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4726
    :type name: basestring
4727 4728
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4729
    :param b: input layer b.
4730
    :type b: LayerOutput
L
luotao1 已提交
4731 4732
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4733
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4734 4735
    :rtype: LayerOutput
    """
4736 4737
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4738 4739 4740
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4741
        inputs=[a.name, b.name],
Q
qijun 已提交
4742
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4743

Q
qijun 已提交
4744 4745
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4746 4747 4748 4749 4750


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4751
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4752
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4753 4754 4755 4756 4757 4758 4759 4760
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4761 4762 4763 4764 4765
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4766
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4767 4768

    In this formular:
4769 4770
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4771 4772
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4773
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4774 4775 4776 4777 4778

    The simple usage is:

    .. code-block:: python

4779
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4780

4781
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4782
    :type name: basestring
4783 4784 4785 4786
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4787
    :param size: the layer dimension.
L
luotao02 已提交
4788
    :type size: int.
R
ranqiu 已提交
4789
    :param act: Activation type. LinearActivation is the default.
Z
zhangjinchao01 已提交
4790 4791
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4792
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
4793 4794 4795
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
4796
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
4797
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4798
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4799
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4800 4801
    :rtype: LayerOutput
    """
4802
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4803 4804 4805 4806 4807 4808
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4809 4810 4811 4812
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4813 4814 4815 4816 4817 4818


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
4819
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
4820 4821
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4822
                       select=None,
Q
qijun 已提交
4823 4824
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4825 4826 4827
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4828 4829 4830
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4841
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4842

4843
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4844
    :type name: basestring
R
ranqiu 已提交
4845 4846
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
4847 4848
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4849
                   If is None, acts exactly like fc_layer.
4850
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4851 4852
    :param size: The layer dimension.
    :type size: int
R
ranqiu 已提交
4853
    :param act: Activation type. TanhActivation is the default.
Z
zhangjinchao01 已提交
4854 4855 4856
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
4857 4858 4859
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
4860
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
4861
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4862
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4863
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4864 4865 4866 4867
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4868
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4869 4870
        param_attr = [param_attr]
    else:
4871
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4872 4873
            assert len(input) == len(param_attr)
        else:
4874
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
4875
                logger.fatal(
W
wangmeng28 已提交
4876 4877 4878 4879 4880
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
4881 4882
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4883 4884 4885 4886
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4887
    Layer(
Q
qijun 已提交
4888 4889 4890
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4891 4892 4893
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4894
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4895 4896 4897 4898
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4899 4900 4901 4902 4903 4904 4905
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4906 4907 4908


@wrap_name_default()
L
luotao1 已提交
4909 4910
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4911 4912 4913 4914 4915 4916 4917 4918 4919 4920
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

R
ranqiu 已提交
4921
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4922
    :type input: LayerOutput
4923
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4924
    :type name: basestring
L
luotao1 已提交
4925
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4926
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4927
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4928 4929
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4930
    l = Layer(
Z
zhangjinchao01 已提交
4931 4932 4933
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4934 4935 4936
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4937 4938 4939


@wrap_name_default()
L
luotao1 已提交
4940
@layer_support()
Q
qijun 已提交
4941 4942 4943 4944
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4945
                          layer_attr=None):
Z
zhangjinchao01 已提交
4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

R
ranqiu 已提交
4959
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4960
    :type input: LayerOutput
4961
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4962 4963 4964 4965 4966
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
4967
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4968
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4969
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4970 4971 4972 4973 4974 4975 4976 4977
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
4978 4979 4980
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
4981 4982 4983


@wrap_name_default()
L
luotao1 已提交
4984
@layer_support()
Q
qijun 已提交
4985
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4986
    """
4987 4988 4989 4990
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
4991 4992 4993

    .. math::

4994
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
4995

4996 4997 4998 4999 5000
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
5001

5002
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
5003 5004

    In this formular:
5005 5006 5007 5008 5009 5010
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
5011 5012 5013 5014 5015

    The simple usage is:

    .. code-block:: python

5016
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
5017 5018
                                       size=elem_dim)

5019 5020 5021 5022
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
5023 5024
    :param size: the dimension of this layer.
    :type size: int
5025
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5026
    :type name: basestring
L
luotao1 已提交
5027
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5028
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5029
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5030 5031
    :rtype: LayerOutput
    """
5032 5033 5034 5035
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
5036
            size = vectors.size / weights.size
5037 5038
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
5039 5040
    Layer(
        name=name,
5041
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
5042
        size=size,
5043
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
5044 5045 5046
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
5047

5048

5049
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
5050

5051

Z
zhangjinchao01 已提交
5052
@wrap_name_default()
L
luotao1 已提交
5053
@layer_support()
Z
zhangjinchao01 已提交
5054 5055 5056 5057 5058 5059 5060
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
5061
                       num_channels=None,
L
luotao1 已提交
5062 5063
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5064 5065
    """
    Expand feature map to minibatch matrix.
5066
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
5067
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
5068 5069 5070 5071 5072 5073 5074 5075 5076 5077

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
5078
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
5079 5080
    convolution neural network, and before recurrent neural network.

5081 5082 5083 5084
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
5085
       block_expand = block_expand_layer(input=layer,
5086
                                         num_channels=128,
5087 5088 5089 5090 5091
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

R
ranqiu 已提交
5092
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5093
    :type input: LayerOutput
5094
    :param num_channels: The channel number of input layer.
R
ranqiu 已提交
5095
    :type num_channels: int | None
Z
zhangjinchao01 已提交
5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
5108
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5109
    :type name: None | basestring.
L
luotao1 已提交
5110
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5111
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5112
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5113 5114
    :rtype: LayerOutput
    """
5115 5116 5117
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
5135 5136


5137 5138
@wrap_name_default()
@layer_support()
5139
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
5140 5141 5142 5143 5144
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

5145
    So groups should be larger than 1, and the num of channels should be able
5146 5147
    to devided by groups.

X
xuwei06 已提交
5148 5149 5150 5151 5152 5153 5154 5155
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

5156
    Please refer to Paper:
5157 5158 5159 5160
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
5161

5162 5163 5164 5165 5166 5167 5168 5169
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

R
ranqiu 已提交
5170
    :param input: The input of this layer.
5171 5172 5173
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
R
ranqiu 已提交
5174
    :type num_channels: int | None
5175 5176
    :param groups: The group number of input layer.
    :type groups: int
5177
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5178
    :type name: None | basestring.
5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
5190 5191 5192 5193 5194 5195 5196 5197 5198
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
5199 5200


Z
zhangjinchao01 已提交
5201
@wrap_name_default()
L
luotao1 已提交
5202
@layer_support()
Q
qijun 已提交
5203 5204 5205 5206 5207
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
5208
              layer_attr=None):
Z
zhangjinchao01 已提交
5209 5210 5211 5212 5213
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

5214 5215
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
5216 5217
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
5218 5219 5220 5221 5222 5223 5224 5225

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

C
caoying03 已提交
5226
    The example usage is:
Z
zhangjinchao01 已提交
5227 5228 5229 5230 5231 5232 5233 5234

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

R
ranqiu 已提交
5235
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5236 5237 5238
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
5239
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
5240
    :type size: int
5241
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5242
    :type name: basestring | None
Z
zhangjinchao01 已提交
5243 5244
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
5245
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5246
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5247
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5248 5249 5250 5251
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5252 5253 5254 5255 5256
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5257
    Layer(
5258 5259 5260 5261
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5262
        inputs=[input.name, label.name],
Q
qijun 已提交
5263
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5264 5265
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5266

5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5278
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5279
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5280 5281 5282 5283 5284 5285 5286
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

5287 5288 5289
    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
L
Liu Yiqun 已提交
5290
    icml2006_GravesFGS06.pdf>`_.
5291 5292 5293

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
L
Liu Yiqun 已提交
5294 5295 5296
          label needed by CTC, you need to use (num_classes + 1) as the input size.
          Thus, the size of both warp_ctc layer and 'input' layer should be set to
          num_classes + 1.
5297 5298
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
5299
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
5300
          'linear' activation is expected instead in the 'input' layer.
5301

C
caoying03 已提交
5302
    The example usage is:
5303 5304 5305 5306 5307 5308 5309 5310 5311

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

R
ranqiu 已提交
5312
    :param input: The input of this layer.
5313 5314 5315 5316 5317
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
5318
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5319
    :type name: basestring | None
5320 5321 5322 5323 5324
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5325
    :type layer_attr: ExtraLayerAttribute | None
5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5348
@wrap_name_default()
5349
@wrap_param_attr_default()
L
luotao1 已提交
5350
@layer_support()
Q
qijun 已提交
5351 5352 5353 5354 5355 5356
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5357
              coeff=1.0,
L
luotao1 已提交
5358
              layer_attr=None):
Z
zhangjinchao01 已提交
5359 5360 5361 5362
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5363
    The example usage is:
Z
zhangjinchao01 已提交
5364 5365 5366 5367 5368 5369 5370 5371 5372 5373

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
5374
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5375 5376 5377 5378 5379 5380 5381
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5382
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5383
    :type name: None | basestring
5384 5385
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5386
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5387
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5388
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5389 5390 5391 5392 5393
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5394 5395 5396 5397 5398 5399
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5400

Q
qijun 已提交
5401
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5402 5403 5404 5405
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5406 5407 5408 5409
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5410
        coeff=coeff,
Q
qijun 已提交
5411
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5412 5413 5414
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5415 5416 5417 5418
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5419

5420

Z
zhangjinchao01 已提交
5421
@wrap_name_default()
5422
@wrap_param_attr_default()
L
luotao1 已提交
5423
@layer_support()
Q
qijun 已提交
5424 5425 5426 5427 5428
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5429
                       layer_attr=None):
Z
zhangjinchao01 已提交
5430 5431 5432 5433 5434 5435 5436
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

C
caoying03 已提交
5437
    The example usage is:
L
Luo Tao 已提交
5438 5439 5440 5441 5442 5443

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5444 5445 5446 5447 5448 5449 5450 5451
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5452
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5453
    :type name: None | basestring
L
luotao1 已提交
5454
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5455
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5456
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5457 5458 5459 5460 5461 5462
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5463
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5464 5465 5466 5467
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5468 5469 5470 5471
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5472
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5473 5474 5475
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5476 5477 5478 5479
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5480

Q
qijun 已提交
5481

C
caoying03 已提交
5482 5483 5484 5485 5486
"""
Following are cost Layers.
"""


5487
@wrap_bias_attr_default(has_bias=True)
5488
@wrap_param_attr_default()
5489 5490
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5491 5492
def nce_layer(input,
              label,
C
caoying03 已提交
5493
              num_classes=None,
5494
              param_attr=None,
Q
qijun 已提交
5495 5496 5497 5498 5499 5500
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5501
    """
C
caoying03 已提交
5502 5503 5504 5505 5506 5507
    Noise-contrastive estimation. This layer implements the method in the
    following paper:

    Reference:
        A fast and simple algorithm for training neural probabilistic language
        models. https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf
5508 5509 5510 5511 5512

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5513 5514
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5515 5516
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

5517
    :param name: The name of this layer. It is optional.
5518
    :type name: basestring
C
caoying03 已提交
5519 5520
    :param input: The input layers. It should be a LayerOutput or a list/tuple
                  of LayerOutput.
R
ranqiu 已提交
5521
    :type input: LayerOutput | list | tuple | collections.Sequence
C
caoying03 已提交
5522
    :param label: The ground truth.
5523
    :type label: LayerOutput
C
caoying03 已提交
5524 5525
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. The default value is None.
5526
    :type weight: LayerOutput
C
caoying03 已提交
5527
    :param num_classes: The class number.
5528
    :type num_classes: int
C
caoying03 已提交
5529 5530 5531 5532
    :param param_attr: The parameter attributes.
    :type param_attr: ParameterAttribute|list
    :param num_neg_samples: The number of sampled negative labels. The default
                            value is 10.
5533
    :type num_neg_samples: int
C
caoying03 已提交
5534 5535 5536 5537 5538 5539 5540
    :param neg_distribution: The discrete noisy distribution over the output
                             space from which num_neg_samples negative labels
                             are sampled. If this parameter is not set, a
                             uniform distribution will be used. A user defined
                             distribution is a list whose length must be equal
                             to the num_classes. Each member of the list defines
                             the probability of a class given input x.
R
ranqiu 已提交
5541
    :type neg_distribution: list | tuple | collections.Sequence | None
C
caoying03 已提交
5542 5543 5544 5545
    :param bias_attr: The attribute for bias. If this parameter is set False or
                      any object whose type is not ParameterAttribute, no bias
                      is added. If this parameter is set True, the bias is
                      initialized to zero.
R
ranqiu 已提交
5546
    :type bias_attr: ParameterAttribute | None | bool | Any
5547 5548
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
C
caoying03 已提交
5549
    :return: The LayerOutput object.
5550 5551 5552 5553
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5554 5555 5556 5557 5558 5559 5560 5561
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5562
    assert isinstance(input, collections.Sequence)
5563

5564 5565
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5566 5567
    if num_classes is None:
        num_classes = label.size
5568 5569 5570
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5571
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
5572

5573 5574
    ipts_for_layer = []
    parents = []
5575
    for each_input, attr in zip(input, param_attr):
5576
        assert isinstance(each_input, LayerOutput)
5577
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5578 5579 5580 5581 5582 5583 5584 5585 5586 5587
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5588
    l = Layer(
5589 5590 5591 5592
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
C
caoying03 已提交
5593
        active_type=SigmoidActivation().name,
5594 5595 5596
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5597 5598
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5599 5600 5601 5602
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
C
caoying03 已提交
5603
        activation=SigmoidActivation())
5604 5605


Z
zhangjinchao01 已提交
5606
@wrap_name_default()
L
luotao1 已提交
5607
@layer_support()
Q
qijun 已提交
5608 5609 5610 5611 5612 5613 5614
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5615
    """
5616
    A cost Layer for learning to rank using gradient descent. Details can refer
5617 5618
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
5619 5620 5621 5622 5623
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
5624
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5625

L
luotao02 已提交
5626
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5627

L
luotao02 已提交
5628
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5629 5630 5631 5632 5633 5634 5635 5636

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5637
    The example usage is:
Z
zhangjinchao01 已提交
5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
R
ranqiu 已提交
5654
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5655
    :type name: None | basestring
Z
zhangjinchao01 已提交
5656 5657
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5658 5659
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5660
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5673 5674 5675 5676 5677 5678
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5679

X
xuwei06 已提交
5680
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5681

5682

Z
zhangjinchao01 已提交
5683
@wrap_name_default()
L
luotao1 已提交
5684
@layer_support()
Q
qijun 已提交
5685 5686 5687 5688 5689 5690
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5691 5692 5693
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5694
    The example usage is:
Z
zhangjinchao01 已提交
5695 5696 5697 5698 5699 5700 5701 5702

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5703
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
5704 5705 5706 5707
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
R
ranqiu 已提交
5708
                     e.g., 5 for NDCG@5. It must be less than or equal to the
Z
zhangjinchao01 已提交
5709 5710 5711 5712 5713 5714
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
5715 5716 5717
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
5718
    :type max_sort_size: int
R
ranqiu 已提交
5719
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5720
    :type name: None | basestring
L
luotao1 已提交
5721 5722
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5723
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5724 5725
    :rtype: LayerOutput
    """
5726 5727 5728
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5729 5730 5731 5732 5733 5734 5735
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5736

Q
qijun 已提交
5737 5738
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5739

5740

Z
zhangjinchao01 已提交
5741
@wrap_name_default()
L
luotao1 已提交
5742
@layer_support()
5743 5744 5745 5746 5747 5748
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5749 5750 5751
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5752 5753
    The example usage is:

Z
zhangjinchao01 已提交
5754 5755
    .. code-block:: python

X
xuwei06 已提交
5756
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5757
                            label=label_layer)
Z
zhangjinchao01 已提交
5758 5759 5760 5761

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
R
ranqiu 已提交
5762
    :type input: LayerOutput
R
ranqiu 已提交
5763
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5764 5765 5766 5767
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
    :type coeff: float
5768 5769 5770 5771
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
R
ranqiu 已提交
5772 5773
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5774
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5775
    :return: LayerOutput object.
R
ranqiu 已提交
5776
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
5777 5778
    """

5779
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5780 5781 5782
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5783
        inputs=ipts,
Q
qijun 已提交
5784 5785
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5786
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5787

5788

Z
zhangjinchao01 已提交
5789
@wrap_name_default()
L
luotao1 已提交
5790
@layer_support()
Q
qijun 已提交
5791 5792 5793 5794
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5795 5796
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5797 5798
    """
    A loss layer for multi class entropy with selfnorm.
5799
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5800

C
caoying03 已提交
5801 5802
    The example usage is:

Z
zhangjinchao01 已提交
5803 5804
    .. code-block:: python

X
xuwei06 已提交
5805
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5806
                                          label=label_layer)
Z
zhangjinchao01 已提交
5807 5808

    :param input: The first input layer.
R
ranqiu 已提交
5809
    :type input: LayerOutput
Z
zhangjinchao01 已提交
5810
    :param label: The input label.
R
ranqiu 已提交
5811
    :type input: LayerOutput
R
ranqiu 已提交
5812
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5813 5814 5815 5816
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
    :type coeff: float
Z
zhangjinchao01 已提交
5817
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
R
ranqiu 已提交
5818 5819 5820
    :type softmax_selfnorm_alpha: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5821
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5822
    :return: LayerOutput object.
R
ranqiu 已提交
5823
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
5824
    """
Q
qijun 已提交
5825 5826 5827 5828 5829 5830 5831
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5832

Q
qijun 已提交
5833 5834 5835 5836 5837
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5838

5839

X
xuwei06 已提交
5840 5841 5842 5843
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
5844
    A loss layer which calculates the sum of the input as loss.
X
xuwei06 已提交
5845

C
caoying03 已提交
5846 5847
    The example usage is:

X
xuwei06 已提交
5848 5849
    .. code-block:: python

L
Luo Tao 已提交
5850
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5851

R
ranqiu 已提交
5852
    :param input: The input of this layer.
R
ranqiu 已提交
5853
    :type input: LayerOutput
R
ranqiu 已提交
5854
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5855 5856 5857
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
X
xuwei06 已提交
5858 5859 5860 5861
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5862
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5863 5864 5865 5866 5867
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5868

Q
qijun 已提交
5869
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5870 5871


Z
zhangjinchao01 已提交
5872
@wrap_name_default()
L
luotao1 已提交
5873
@layer_support()
L
Luo Tao 已提交
5874 5875 5876 5877 5878 5879
def huber_regression_cost(input,
                          label,
                          name=None,
                          delta=1.0,
                          coeff=1.0,
                          layer_attr=None):
Z
zhangjinchao01 已提交
5880
    """
5881 5882 5883
    In statistics, the Huber loss is a loss function used in robust regression,
    that is less sensitive to outliers in data than the squared error loss.
    Given a prediction f(x), a label y and :math:`\delta`, the loss function
L
Luo Tao 已提交
5884 5885 5886 5887 5888
    is defined as:

    .. math:
       loss = 0.5*\left ( y-f(x) \right )^2, \left | y-f(x) \right |\leq \delta
       loss = \delta \left | y-f(x) \right |-0.5\delta ^2, otherwise
Z
zhangjinchao01 已提交
5889

C
caoying03 已提交
5890 5891
    The example usage is:

Z
zhangjinchao01 已提交
5892 5893
    .. code-block:: python

L
Luo Tao 已提交
5894 5895 5896
       cost = huber_regression_cost(input=input_layer, label=label_layer)

    :param input: The first input layer.
R
ranqiu 已提交
5897
    :type input: LayerOutput
L
Luo Tao 已提交
5898
    :param label: The input label.
R
ranqiu 已提交
5899
    :type input: LayerOutput
R
ranqiu 已提交
5900
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5901
    :type name: basestring
L
Luo Tao 已提交
5902
    :param delta: The difference between the observed and predicted values.
R
ranqiu 已提交
5903 5904 5905 5906 5907 5908
    :type delta: float
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
Luo Tao 已提交
5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
    assert isinstance(input, LayerOutput)
    Layer(
        name=name,
        type=LayerType.HUBER_REGRESSION,
        inputs=[input.name, label.name],
        delta=delta,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HUBER_REGRESSION, parents=[input, label], size=1)


Z
zhangjinchao01 已提交
5925
@wrap_name_default()
L
luotao1 已提交
5926
@layer_support()
5927 5928 5929 5930 5931
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
5932
    """
5933 5934 5935
    For classification purposes, a variant of the Huber loss called modified Huber
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
    a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber
5936 5937 5938
    loss is defined as:

    .. math:
5939
       loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1
5940
       loss = -4yf(x), \text{otherwise}
Z
zhangjinchao01 已提交
5941

C
caoying03 已提交
5942 5943
    The example usage is:

Z
zhangjinchao01 已提交
5944 5945
    .. code-block:: python

5946
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
5947 5948

    :param input: The first input layer.
R
ranqiu 已提交
5949
    :type input: LayerOutput
Z
zhangjinchao01 已提交
5950
    :param label: The input label.
R
ranqiu 已提交
5951
    :type input: LayerOutput
R
ranqiu 已提交
5952
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5953 5954 5955 5956 5957 5958
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5959
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5960
    :return: LayerOutput object.
R
ranqiu 已提交
5961
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
5962
    """
5963 5964 5965
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
5966 5967
    Layer(
        name=name,
5968
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
5969 5970 5971
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5972 5973
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
5974

5975

Z
zhangjinchao01 已提交
5976
@wrap_name_default()
L
luotao1 已提交
5977
@layer_support()
Q
qijun 已提交
5978 5979 5980 5981
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
5982
                                     layer_attr=None):
Z
zhangjinchao01 已提交
5983 5984 5985
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
5986 5987
    The example usage is:

Z
zhangjinchao01 已提交
5988 5989
    .. code-block:: python

X
xuwei06 已提交
5990
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
5991
                                               label=label_layer)
Z
zhangjinchao01 已提交
5992 5993 5994 5995 5996

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
5997
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5998 5999 6000
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
Z
zhangjinchao01 已提交
6001
    :type coeff: float
R
ranqiu 已提交
6002 6003
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6004
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6005
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6006 6007 6008
    :rtype: LayerOutput
    """

6009 6010
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
C
caoying03 已提交
6011 6012 6013 6014
        logger.log(logging.WARN,
                   ("%s is not a recommended activation for "
                    "multi_binary_label_cross_entropy, sigmoid is better") %
                   repr(input.activation))
Q
qijun 已提交
6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
6027 6028


C
caoying03 已提交
6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050
class BeamInput(object):
    """
    Define the input for cross_entropy_over_beam layer.

    A beam is made up of a triple: the first one is scores over all
    candidates; the second one is indices of top k selected candidates; the
    third one is the index of ground truth, which is also always called
    gold.
    """

    def __init__(self, candidate_scores, selected_candidates, gold):
        assert isinstance(candidate_scores, LayerOutput)
        self.candidate_scores = candidate_scores
        assert candidate_scores.size == 1

        assert isinstance(selected_candidates, LayerOutput)
        self.selected_candidates = selected_candidates

        assert isinstance(gold, LayerOutput)
        self.gold = gold


C
caoying03 已提交
6051 6052
@wrap_name_default()
@layer_support()
C
caoying03 已提交
6053
def cross_entropy_over_beam(input, name=None):
C
caoying03 已提交
6054
    """
C
caoying03 已提交
6055 6056 6057
    This layer is used in learning to search models, which is to solve complex
    joint prediction problems based on learning to search through a
    problem-defined search space.
C
caoying03 已提交
6058

C
caoying03 已提交
6059 6060 6061 6062 6063
    Specifically, the learning to search process for this layer begins with
    searching a target sequence from a nested sequence. In the first search
    step, top beam size sequences with highest scores, indices of these top k
    sequences in the original nested sequence, and the ground truth (also
    called gold) altogether (a triple) make up of the first beam.
C
caoying03 已提交
6064

C
caoying03 已提交
6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082
    Then, several special positions, for example, start and end positions
    that define meaningful segments are searched. In these searches, top k
    positions with highest scores are selected, and then sequence, starting
    from the selected starts till ends of the sequences (or a fixed position)
    are taken to search next.

    We call the possible top k results returned in one search the beam. This
    search process can be repeated for pre-defined turns and leads to several
    beam expansions.

    Finally, the layer cross_entropy_over_beam takes all the beam expansions
    which contain several candidate targets found along the multi-step search.
    cross_entropy_over_beam calculates cross entropy over the expanded beams
    which all the candidates in the beam as the normalized factor.

    Note that, if gold falls off the beam at search step t, then the cost is
    calculated over the beam at step t.

6083
    This cost layer always works together with kmax_seq_score_layer,
C
caoying03 已提交
6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103
    sub_nested_seq_layer, and sequence_slice_layer to trim the input to form a
    sub-search space.


    The example usage is:

    .. code-block:: python

       cost = cross_entropy_over_beam(input=[
           BeamInput(
               candidate_scores=beam1_candidates,
               selected_candidates=beam1_topk,
               gold=gold1),
           BeamInput(
               candidate_scores=beam2_candidates,
               selected_candidates=beam2_topk,
               gold=gold2),
       ])


R
ranqiu 已提交
6104
    :param input: Input beams for this layer.
C
caoying03 已提交
6105
    :type input: BeamInput
R
ranqiu 已提交
6106
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    if isinstance(input, BeamInput):
        input = [input]
    else:
        assert isinstance(input, list), (
            'input for cross_entropy_over_beam shold be a python list '
            'of BeamInput object.')
        for ipt in input:
            assert isinstance(ipt, BeamInput), (
                'input for cross_entropy_over_beam '
                'should be a BeamInput object.')

    ipts = []
    parents = []
    for beam in input:
        parents += [beam.candidate_scores, beam.selected_candidates, beam.gold]
        ipts += [
            beam.candidate_scores.name, beam.selected_candidates.name,
            beam.gold.name
        ]

    Layer(name=name, type=LayerType.CROSS_ENTROPY_OVER_BEAM, inputs=ipts)
C
caoying03 已提交
6133 6134 6135
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)


D
dangqingqing 已提交
6136 6137
@wrap_name_default()
@layer_support()
6138
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
6139 6140
    """
    This is a L1 loss but more smooth. It requires that the
R
ranqiu 已提交
6141
    sizes of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
6142 6143 6144 6145 6146 6147 6148 6149 6150

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

6151
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
6152

R
ranqiu 已提交
6153 6154 6155
    Reference:
        Fast R-CNN
        https://arxiv.org/pdf/1504.08083v2.pdf
D
dangqingqing 已提交
6156

C
caoying03 已提交
6157 6158
    The example usage is:

D
dangqingqing 已提交
6159 6160
    .. code-block:: python

6161 6162
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
6163 6164 6165 6166 6167

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6168
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6169
    :type name: basestring
R
ranqiu 已提交
6170 6171
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
6172
    :type coeff: float
R
ranqiu 已提交
6173 6174
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
6187
        coeff=coeff,
D
dangqingqing 已提交
6188 6189 6190
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
6191 6192 6193 6194 6195


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6196 6197 6198
    This layer multiplex multiple layers according to the indexes,
    which are provided by the first input layer.
    inputs[0]: the indexes of the layers to form the output of size batchSize.
W
wwhu 已提交
6199
    inputs[1:N]; the candidate output data.
R
ranqiu 已提交
6200 6201
    For each index i from 0 to batchSize - 1, the i-th row of the output is the
    the same to the i-th row of the (index[i] + 1)-th layer.
W
wwhu 已提交
6202 6203 6204 6205 6206 6207 6208 6209

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
6210 6211
    The example usage is:

W
wwhu 已提交
6212 6213 6214 6215 6216 6217
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
6218
    :param name: The name of this layer. It is optional.
W
wwhu 已提交
6219
    :type name: basestring
R
ranqiu 已提交
6220 6221
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
W
wwhu 已提交
6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
6245 6246


6247 6248 6249 6250
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """

R
ranqiu 已提交
6251 6252 6253 6254 6255 6256
    The example usage is:

    .. code-block:: python

        dropout = dropout_layer(input=input_layer, dropout_rate=0.5)

6257
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6258
    :type name: basestring
R
ranqiu 已提交
6259
    :param input: The input of this layer.
R
ranqiu 已提交
6260 6261 6262 6263 6264
    :type input: LayerOutput
    :param dropout_rate: The probability of dropout.
    :type dropout_rate: float
    :return: LayerOutput object.
    :rtype: LayerOutput
6265 6266 6267 6268 6269 6270 6271
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
6272 6273


D
dangqingqing 已提交
6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
R
ranqiu 已提交
6287
    introduced in paper of `Deep Speech 2: End-to-End Speech Recognition
D
dangqingqing 已提交
6288 6289 6290 6291 6292 6293 6294
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
R
ranqiu 已提交
6295
    efficient manner to improve unidirectional RNNs.
6296

R
ranqiu 已提交
6297
    The connection of row convolution is different from the 1D sequence
D
dangqingqing 已提交
6298 6299 6300 6301
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
6302

D
dangqingqing 已提交
6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


R
ranqiu 已提交
6318
    :param input: The input of this layer.
D
dangqingqing 已提交
6319 6320 6321 6322
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
R
ranqiu 已提交
6323
    :param act: Activation Type. LinearActivation is the default.
D
dangqingqing 已提交
6324
    :type act: BaseActivation
R
ranqiu 已提交
6325 6326
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
D
dangqingqing 已提交
6327
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
6328 6329
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6330
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
6346 6347


6348 6349 6350 6351 6352 6353 6354 6355 6356
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
R
ranqiu 已提交
6357
    The Parametric Relu activation that actives outputs with a learnable weight.
6358 6359 6360 6361 6362 6363 6364 6365 6366

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
6367 6368 6369 6370 6371 6372
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

6373
    :param name: The name of this layer. It is optional.
6374
    :type name: basestring
R
ranqiu 已提交
6375
    :param input: The input of this layer.
6376
    :type input: LayerOutput
R
ranqiu 已提交
6377
    :param partial_sum: this parameter makes a group of inputs share the same weight.
C
caoying03 已提交
6378 6379

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
R
ranqiu 已提交
6380 6381
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share the same weight.
        - partial_sum = number of outputs, indicates all elements share the same weight.
C
caoying03 已提交
6382 6383

    :type partial_sum: int
6384
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
R
ranqiu 已提交
6385 6386 6387
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6388
    :type layer_attr: ExtraLayerAttribute | None
6389 6390 6391 6392
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

6393
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
C
caoying03 已提交
6394
    assert isinstance(param_attr, ParameterAttribute)
6395 6396 6397

    l = Layer(
        name=name,
C
caoying03 已提交
6398
        type=LayerType.PRELU,
C
caoying03 已提交
6399
        inputs=Input(input.name, **param_attr.attr),
6400 6401 6402 6403 6404 6405 6406
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)
6407 6408


6409
@wrap_name_default()
C
caoying03 已提交
6410
@layer_support(ERROR_CLIPPING, DROPOUT)
6411 6412 6413 6414 6415 6416 6417
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6418 6419
                     gate_bias_attr=True,
                     inproj_attr=None,
6420 6421 6422 6423 6424 6425 6426
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
R
ranqiu 已提交
6427
    product between :match:`X'` and :math:`\sigma` is finally returned.
6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440

    Reference:
        Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

R
ranqiu 已提交
6441
    :param input: The input of this layer.
6442
    :type input: LayerOutput
R
ranqiu 已提交
6443
    :param size: The dimension of this layer's output.
6444
    :type size: int
R
ranqiu 已提交
6445
    :param act: Activation type of the projection. LinearActivation is the default.
6446
    :type act: BaseActivation
6447
    :param name: The name of this layer. It is optional.
6448
    :type name: basestring
R
ranqiu 已提交
6449 6450
    :param gate_attr: The extra layer attribute of the gate. See ExtraLayerAttribute for
                      details.
R
ranqiu 已提交
6451
    :type gate_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6452 6453 6454
    :param gate_param_attr: The parameter attribute of the gate. See ParameterAttribute
                            for details.
    :type gate_param_attr: ParameterAttribute
R
ranqiu 已提交
6455 6456 6457
    :param gate_bias_attr: The bias attribute of the gate. If the parameter is set to False or
                           an object whose type is not ParameterAttribute, no bias is defined.
                           If the parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6458 6459 6460
    :type gate_bias_attr: ParameterAttribute | bool | None | Any
    :param inproj_attr: Extra layer attributes of the projection. See ExtraLayerAttribute for
                        details.
R
ranqiu 已提交
6461
    :type inproj_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6462 6463 6464
    :param inproj_param_attr: The parameter attribute of the projection. See ParameterAttribute
                              for details.
    :type inproj_param_attr: ParameterAttribute
R
ranqiu 已提交
6465 6466 6467
    :param inproj_bias_attr: The bias attribute of the projection. If the parameter is set to False
                             or an object whose type is not ParameterAttribute, no bias is defined.
                             If the parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6468 6469 6470
    :type inproj_bias_attr: ParameterAttribute | bool | None | Any
    :param layer_attr: Extra layer attribute of the product. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6471
    :type layer_attr: ExtraLayerAttribute | None
6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6484
        layer_attr=inproj_attr,
6485 6486 6487 6488 6489 6490 6491 6492 6493
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6494
        param_attr=gate_param_attr,
6495 6496 6497 6498 6499
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6500 6501


6502
@layer_support()
6503
@wrap_name_default('switch_order')
W
wanghaoshuang 已提交
6504 6505
def switch_order_layer(input,
                       name=None,
6506
                       reshape_axis=None,
W
wanghaoshuang 已提交
6507 6508
                       act=None,
                       layer_attr=None):
6509
    """
6510
    This layer switch dimension order of image input.
6511 6512
    From order "batchSize, channels, height, width"
    to order "batchSize, height, width, channels".
6513 6514 6515 6516

    The example usage is:

    .. code-block:: python
6517 6518
       reshape_axis = 3
       switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
6519
       reshape = {'height':[ 0, 1, 2], 'width':[3]}
6520

R
ranqiu 已提交
6521
    :param input: The input of this layer.
6522
    :type input: LayerOutput
6523
    :param name: The name of this layer. It is optional.
6524
    :type name: basestring
R
ranqiu 已提交
6525 6526
    :param reshape_axis: Specify the axises of 'height'. Its value should be positive and less than 4.
    :type reshape_axis: int
6527 6528 6529
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6530
    assert isinstance(input, LayerOutput)
6531 6532 6533 6534 6535
    assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
    height = [ele for ele in xrange(reshape_axis)]
    width = [ele for ele in range(reshape_axis, 4)]
    reshape = {'height': height, 'width': width}

6536 6537
    l = Layer(
        name=name,
W
wanghaoshuang 已提交
6538
        inputs=input.name,
6539 6540
        reshape=reshape,
        type=LayerType.SWITCH_ORDER_LAYER,
W
wanghaoshuang 已提交
6541
        active_type=act.name,
6542 6543 6544
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
6545
        layer_type=LayerType.SWITCH_ORDER_LAYER,
6546
        activation=act,
6547 6548
        parents=input,
        size=l.config.size)
W
wanghaoshuang 已提交
6549 6550


6551 6552
@wrap_name_default()
@layer_support()
6553
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6554
    """
R
ranqiu 已提交
6555 6556 6557
    This layer crops images according to the offset and shape. Users can set
    the crop shape through the argument 'shape' explicitly or by specifying a
    reference input layer.
6558

6559 6560 6561
    The example usage is:

    .. code-block:: python
W
whs 已提交
6562
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6563

R
ranqiu 已提交
6564 6565
    :param input: The input of this layer. If two inputs are given, the second one
                  will be regarded as the reference.
R
ranqiu 已提交
6566 6567
    :type input: LayerOutput | Sequence
    :param offset: The crop offset.
6568
    :type offset: Sequence
R
ranqiu 已提交
6569
    :param axis: The start axis to be cropped. For image input layer:
6570 6571 6572 6573
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
R
ranqiu 已提交
6574 6575
    :type axis: int
    :param shape: The shape to be cropped to. Default is None.
6576
    :type shape: Sequence | None
6577
    :param name: The name of this layer. It is optional.
6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6599 6600


C
caoying03 已提交
6601 6602
@wrap_name_default()
@layer_support()
6603
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6604
    """
6605
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6606
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6607

C
caoying03 已提交
6608 6609 6610
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6611 6612 6613 6614

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6615

R
ranqiu 已提交
6616
        sub_nest_seq = sub_nested_seq_layer(input=data, selected_indices=selected_ids)
6617

C
caoying03 已提交
6618

R
ranqiu 已提交
6619
    :param input: The input of this layer. It is a nested sequence.
6620
    :type input: LayerOutput
R
ranqiu 已提交
6621
    :param selected_indices: A set of sequence indices in the nested sequence.
C
caoying03 已提交
6622
    :type input: LayerOutput
6623
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6624 6625 6626 6627
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6628

6629 6630 6631 6632 6633 6634 6635
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6636
    l = Layer(
6637 6638
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6639 6640 6641 6642 6643 6644 6645
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6646 6647


G
guosheng 已提交
6648
@wrap_name_default("clip")
6649
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6650 6651 6652 6653 6654 6655 6656 6657 6658
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6659
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6660

6661
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6662
    :type name: basestring
R
ranqiu 已提交
6663
    :param input: The input of this layer.
G
guosheng 已提交
6664
    :type input: LayerOutput.
6665
    :param min: The lower threshold for clipping.
R
ranqiu 已提交
6666
    :type min: float
6667
    :param max: The upper threshold for clipping.
R
ranqiu 已提交
6668
    :type max: float
6669 6670
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6671 6672 6673 6674 6675
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6676 6677
        min=min,
        max=max)
G
guosheng 已提交
6678 6679
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6680 6681


6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

6706
    :param name: The name of this layer. It is optional.
6707
    :type name: basestring
R
ranqiu 已提交
6708
    :param input: The input of this layer, which should be a sequence.
6709
    :type input: LayerOutput
R
ranqiu 已提交
6710
    :param starts: The start indices to slice the input sequence.
R
ranqiu 已提交
6711
    :type starts: LayerOutput | None
R
ranqiu 已提交
6712
    :param ends: The end indices to slice the input sequence.
R
ranqiu 已提交
6713
    :type ends: LayerOutput | None
6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
6745 6746


6747 6748
@wrap_name_default()
@layer_support()
6749
def kmax_seq_score_layer(input, name=None, beam_size=1):
6750
    """
R
ranqiu 已提交
6751
    This layer accepts one input which is scores over a sequence or a nested
6752 6753 6754 6755
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

6756
        kmax_indices = kmax_seq_score_layer(input=input_layer, beam_size)
6757 6758


6759
    :param name: The name of this layer. It is optional.
6760
    :type name: basestring
R
ranqiu 已提交
6761 6762
    :param input: The input of this layer. It stores scores over a sequence or
                  a nested sequence and its size must be 1.
R
ranqiu 已提交
6763
    :type input: LayerOutput
R
ranqiu 已提交
6764 6765
    :param beam_size: The indices of the sequences with top beam_size scores are returned.
    :type beam_size: int
6766 6767 6768
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6769
    assert isinstance(input, LayerOutput), ("kmax_seq_score_layer "
6770
                                            "accepts only one input.")
6771
    assert input.size == 1, (
6772
        "input of kmax_seq_score_layer is a score "
6773 6774 6775 6776 6777 6778 6779 6780 6781 6782
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
6783 6784


6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810
@wrap_name_default("conv3d")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_conv3d_layer(input,
                     filter_size,
                     num_filters,
                     name=None,
                     num_channels=None,
                     act=None,
                     groups=1,
                     stride=1,
                     padding=0,
                     bias_attr=None,
                     param_attr=None,
                     shared_biases=True,
                     layer_attr=None,
                     trans=False,
                     layer_type=None):
    """

    The example usage is:

    ..  code-block:: python

C
chengduoZH 已提交
6811
        conv = img_conv3d_layer(input=data, filter_size=1,
6812 6813 6814 6815 6816
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

6817
    :param name: The name of this layer. It is optional.
6818
    :type name: basestring
R
ranqiu 已提交
6819
    :param input: The input of this layer.
6820
    :type input: LayerOutput
R
ranqiu 已提交
6821 6822
    :param filter_size: The dimensions of the filter kernel along three axises. If the parameter
                        is set to one integer, the three dimensions will be same.
R
ranqiu 已提交
6823
    :type filter_size: int | tuple | list
R
ranqiu 已提交
6824 6825
    :param num_filters: The number of filters in each group.
    :type num_filters: int
R
ranqiu 已提交
6826
    :param act: Activation type. ReluActivation is the default.
6827
    :type act: BaseActivation
R
ranqiu 已提交
6828
    :param groups: The number of the filter groups.
6829
    :type groups: int
R
ranqiu 已提交
6830 6831
    :param stride: The strides of the convolution along three axises. If the parameter
                   is set to one integer, the three strides will be same.
R
ranqiu 已提交
6832
    :type stride: int | tuple | list
R
ranqiu 已提交
6833 6834
    :param padding: The numbers of padding along three axises. If the parameter is set to
                    one integer, they will be same.
R
ranqiu 已提交
6835
    :type padding: int | tuple | list
R
ranqiu 已提交
6836 6837 6838
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6839
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
6840 6841 6842
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None,  its actual value will be automatically set to
                         the channels number of the input .
6843
    :type num_channels: int
R
ranqiu 已提交
6844 6845
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
6846
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
6847
    :param shared_biases: Whether biases will be shared between filters or not.
6848
    :type shared_biases: bool
R
ranqiu 已提交
6849 6850
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
6851
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
6852
    :param trans: True if it is a convTransLayer, False if it is a convLayer
6853
    :type trans: bool
R
ranqiu 已提交
6854 6855 6856 6857
    :param layer_type: Specify the layer_type. If the parameter is set, it must be "deconv3d"
                       when trans=True. If not set, it will be automatically set to "deconv3d"
                       when trans=True and "conv3d" when trans=False.
    :type layer_type: basestring
6858 6859 6860 6861 6862 6863 6864
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

C
chengduoZH 已提交
6865 6866 6867 6868 6869 6870
    if isinstance(filter_size, collections.Sequence):
        assert len(filter_size) == 3
        filter_size, filter_size_y, filter_size_z = filter_size
    else:
        filter_size_y = filter_size
        filter_size_z = filter_size
6871

C
chengduoZH 已提交
6872 6873 6874 6875 6876 6877
    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride
6878

C
chengduoZH 已提交
6879 6880 6881 6882 6883 6884
    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_z = padding
    else:
        padding_y = padding
        padding_z = padding
6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

    if layer_type:
        if trans:
            assert layer_type in ["deconv3d"]
        lt = layer_type
    else:
        lt = LayerType.DECONV3D_LAYER if trans else LayerType.CONV3D_LAYER

    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            conv=Conv3D(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y,
                filter_size_z=filter_size_z,
                padding_z=padding_z,
                stride_z=stride_z),
            **param_attr.attr),
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
        type=lt,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
C
chengduoZH 已提交
6931 6932


G
guosheng 已提交
6933 6934 6935 6936 6937
@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
6938
    A layer applies a linear transformation to each element in each row of
R
ranqiu 已提交
6939
    the input matrix. For each element, the layer first re-scales it and then
6940 6941
    adds a bias to it.

X
xuwei06 已提交
6942
    This layer is very like the SlopeInterceptLayer, except the scale and
6943 6944
    bias are trainable.

G
guosheng 已提交
6945 6946 6947 6948 6949 6950 6951 6952
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

6953
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6954
    :type name: basestring
R
ranqiu 已提交
6955 6956
    :param input: The input of this layer.
    :type input: LayerOutput
R
ranqiu 已提交
6957 6958
    :param param_attr: The parameter attribute of scaling. See ParameterAttribute for
                      details.
G
guosheng 已提交
6959
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
6960 6961 6962
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6963
    :type bias_attr: ParameterAttribute | None | bool | Any
G
guosheng 已提交
6964 6965 6966 6967 6968 6969 6970 6971 6972 6973
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)
6974 6975 6976 6977 6978 6979 6980 6981 6982


@wrap_name_default("resize")
def resize_layer(input, size, name=None):
    """
    The resize layer resizes the input matrix with a shape of [Height, Width]
    into the output matrix with a shape of [Height x Width / size, size],
    where size is the parameter of this layer indicating the output dimension.

R
ranqiu 已提交
6983
    :param input: The input of this layer.
6984 6985 6986
    :type input: LayerOutput.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
6987
    :param size: The resized output dimension of this layer.
6988 6989 6990 6991 6992 6993
    :type size: int
    :return: A LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(name=name, type=LayerType.RESIZE, inputs=Input(input.name), size=size)
    return LayerOutput(name, LayerType.RESIZE, parents=[input], size=input.size)
Y
yangyaming 已提交
6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012


@wrap_act_default(act=LinearActivation())
@wrap_name_default('sub_seq')
def sub_seq_layer(input, offsets, sizes, act=None, bias_attr=None, name=None):
    """
    sub_seq_layer will return sub-sequences from the input sequences. For each
    sequence in the input sequence layer, sub_seq_layer will slice it by given
    offset and size. Please notice that, number of offset value and size value
    both are equal to the number of sequence in the input layer.

    .. code-block:: python

        sub_seq = sub_seq_layer(input=input_seq, offsets=offsets, sizes=sizes)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer, which should be sequence.
    :type input: LayerOutput
R
ranqiu 已提交
7013 7014
    :param offsets: The offset indices to slice the input sequence, which should
                    be sequence type.
Y
yangyaming 已提交
7015
    :type offsets: LayerOutput
R
ranqiu 已提交
7016
    :param sizes: The sizes of the sub-sequences, which should be sequence type.
Y
yangyaming 已提交
7017
    :type sizes: LayerOutput
R
ranqiu 已提交
7018
    :param act: Activation type, LinearActivation is the default.
Y
yangyaming 已提交
7019
    :type act: BaseActivation.
R
ranqiu 已提交
7020 7021 7022
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
Y
yangyaming 已提交
7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047
    :type bias_attr: ParameterAttribute | None | bool | Any
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of sub_seq_layer layer must be a PaddlePaddle layer.')
    assert isinstance(offsets, LayerOutput), (
        'The offset indices for sub_seq_layer, '
        'must be a PaddlePaddle layer.')
    assert isinstance(sizes, LayerOutput), (
        'The sizes of sub-sequences, must be a PaddlePaddle layer.')

    Layer(
        name=name,
        type=LayerType.SUB_SEQ_LAYER,
        inputs=[input.name, offsets.name, sizes.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr))

    return LayerOutput(
        name,
        LayerType.SUB_SEQ_LAYER,
        parents=[input, offsets, sizes],
        size=input.size)
Y
yangyaming 已提交
7048 7049


Y
yangyaming 已提交
7050 7051
@wrap_name_default('scale_sub_region')
def scale_sub_region_layer(input, indices, value, name=None):
Y
yangyaming 已提交
7052
    """
Y
yangyaming 已提交
7053 7054 7055 7056 7057 7058
    Given an image or feature map with CHW information, scale_sub_region_layer
    can be used to multiply a real value to values of a sub continuous region.
    You can provide start and end indices of CHW for each instance.
    Please notice that all start indices are counting from 1.
    The shape of indices should be [batch_size, 6] and the layout for each row
    is [C_Start, C_End, H_Start, H_End, W_Start, W_End].
Y
yangyaming 已提交
7059 7060 7061

    .. code-block:: python

Y
yangyaming 已提交
7062 7063 7064
        scale_sub_region = scale_sub_region_layer(input=input,
                                                  indices=indices,
                                                  value=value)
Y
yangyaming 已提交
7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer which should contains CHW information.
    :type input: LayerOutput
    :param indices: Start index and end index for C H W, the input value should
                    be a 2-D matrix with shape [batch_size, 6].
    :type indices: LayerOutput.
    :param value: value to multiply.
    :type value: float
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
Y
yangyaming 已提交
7080 7081
        'The first input of scale_sub_region_layer, '
        'must be a PaddlePaddle layer.')
Y
yangyaming 已提交
7082 7083 7084 7085 7086 7087 7088
    assert isinstance(indices, LayerOutput), (
        'The start and end indices for CHW, must be a PaddlePaddle layer.')
    assert isinstance(value, float), (
        'The value to multiply, must be a real value.')

    Layer(
        name=name,
Y
yangyaming 已提交
7089
        type=LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7090 7091 7092 7093 7094
        inputs=[input.name, indices.name],
        value=value)

    return LayerOutput(
        name,
Y
yangyaming 已提交
7095
        LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7096
        parents=[input, indices],
Y
yangyaming 已提交
7097
        num_filters=input.num_filters,
Y
yangyaming 已提交
7098
        size=input.size)