quantization_pass.py 79.0 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
W
WangZhen 已提交
17
from ..... import compat as cpt
W
WangZhen 已提交
18
from .... import core
19
from ....framework import IrGraph
20
from ....framework import IrNode
21
from ....framework import Operator
W
WangZhen 已提交
22 23
from .... import unique_name

24 25 26 27
from ....framework import Program, program_guard, default_startup_program
from ....data import data
from ....layers import mean
from ....executor import scope_guard
28
from ....framework import _get_paddle_place
29

30 31
__all__ = [
    'QuantizationTransformPass', 'QuantizationFreezePass', 'ConvertToInt8Pass',
32 33
    'TransformForMobilePass', 'OutScaleForTrainingPass',
    'OutScaleForInferencePass', 'AddQuantDequantPass'
34
]
W
WangZhen 已提交
35

36 37 38 39 40 41 42 43 44
_fake_quant_op_list = [
    'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
    'fake_quantize_moving_average_abs_max', 'fake_channel_wise_quantize_abs_max'
]

_fake_dequant_op_list = [
    'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
]

45 46 47 48
_fake_quant_dequant_op_list = [
    'fake_quantize_dequantize_moving_average_abs_max'
]

49
_out_scale_op_list = [
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    "conv2d",
    "depthwise_conv2d",
    "mul",
    "matmul",
    "relu",
    "leaky_relu",
    "relu6",
    "sigmoid",
    "tanh",
    "prelu",
    "swish",
    "softmax",
    "batch_norm",
    "elementwise_add",
    "pool2d",
    "reshape2",
    "transpose2",
    "concat",
    "elementwise_mul",
    "scale",
70 71
    "hard_swish",
    "hard_sigmoid",
72
    "conv2d_transpose",
73 74 75 76
    "gru",
    "bilinear_interp",
    "nearest_interp",
    "trilinear_interp",
77 78
]

79 80 81
# list op real input and output names, to avoid processing input such as AxisTensor.
_op_real_in_out_name = {
    "conv2d": [["Input", "Filter"], ["Output"]],
82
    "depthwise_conv2d": [["Input", "Filter"], ["Output"]],
83
    "conv2d_transpose": [["Input", "Filter"], ["Output"]],
84
    "mul": [["X", "Y"], ["Out"]],
85
    "matmul": [["X", "Y"], ["Out"]],
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    "pool2d": [["X"], ["Out"]],
    "elementwise_add": [["X", "Y"], ["Out"]],
    "concat": [["X"], ["Out"]],
    "softmax": [["X"], ["Out"]],
    "argmax": [["X"], ["Out"]],
    "transpose": [["X"], ["Out"]],
    "equal": [["X", "Y"], ["Out"]],
    "gather": [["X"], ["Out"]],
    "greater_equal": [["X", "Y"], ["Out"]],
    "greater_than": [["X", "Y"], ["Out"]],
    "less_equal": [["X", "Y"], ["Out"]],
    "less_than": [["X", "Y"], ["Out"]],
    "mean": [["X"], ["Out"]],
    "not_equal": [["X", "Y"], ["Out"]],
    "reshape": [["X"], ["Out"]],
    "reshape2": [["X"], ["Out"]],
102
    "transpose2": [["X"], ["Out"]],
103 104 105 106 107 108 109 110 111
    "bilinear_interp": [["X"], ["Out"]],
    "nearest_interp": [["X"], ["Out"]],
    "trilinear_interp": [["X"], ["Out"]],
    "slice": [["Input"], ["Out"]],
    "squeeze": [["X"], ["Out"]],
    "elementwise_sub": [["X", "Y"], ["Out"]],
    "relu": [["X"], ["Out"]],
    "relu6": [["X"], ["Out"]],
    "leaky_relu": [["X"], ["Out"]],
112
    "prelu": [["X"], ["Out"]],
113 114
    "tanh": [["X"], ["Out"]],
    "swish": [["X"], ["Out"]],
115 116
    "dropout": [["X"], ["Out"]],
    "batch_norm": [["X"], ["Y"]],
117
    "sigmoid": [["X"], ["Out"]],
118 119
    "elementwise_mul": [["X", "Y"], ["Out"]],
    "scale": [["X"], ["Out"]],
120 121
    "hard_swish": [["X"], ["Out"]],
    "hard_sigmoid": [["X"], ["Out"]],
122
    "gru": [["Input", "Weight"], ["Hidden"]],
123 124
}

125 126 127 128
_conv_ops = ['conv2d', 'depthwise_conv2d', 'conv2d_transpose']

_channelwise_quant_axis1_ops = ['conv2d_transpose', 'mul']

W
WangZhen 已提交
129

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
def _get_op_input_var_names(op):
    """ """
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    var_names = []
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
    name_list = _op_real_in_out_name[op_name][0]
    for name in name_list:
        var_name = op.input(name)
        if isinstance(var_name, list):
            var_names.extend(var_name)
        else:
            var_names.append(var_name)
    return var_names


def _get_op_output_var_names(op):
    """ """
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    var_names = []
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
    name_list = _op_real_in_out_name[op_name][1]
    for name in name_list:
        var_name = op.output(name)
        if isinstance(var_name, list):
            var_names.extend(var_name)
        else:
            var_names.append(var_name)
    return var_names


164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
def _get_output_name_index(op, output_var_name):
    """Get the output name and index of the var_name in the op"""
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
    name_list = _op_real_in_out_name[op_name][1]
    res = None
    for name in name_list:
        var_name = op.output(name)
        for index, val in enumerate(var_name):
            if val == output_var_name:
                res = (name, index)
    return res


180 181 182 183
def _init_var_node(var_node, value, scope, place):
    assert isinstance(value,
                      np.ndarray), 'The type of value should be numpy array.'
    assert scope is not None, \
184
        'The scope cannot be set None.'
185
    assert place is not None, \
186
        'The place cannot be set None.'
187 188 189 190
    tensor = scope.var(var_node.name()).get_tensor()
    tensor.set(value, place)


191 192 193 194 195
def _is_input_all_not_persistable(graph, op_node):
    '''
    Analyse the real inputs of the op node are all not persistable.
    '''
    is_input_all_not_persistable = True
196 197 198 199
    for var_name in _get_op_input_var_names(op_node):
        in_node = graph._find_node_by_name(op_node.inputs, var_name)
        is_input_all_not_persistable = (is_input_all_not_persistable and \
            (not in_node.persistable()))
200 201 202
    return is_input_all_not_persistable


203 204 205 206 207 208 209 210 211 212 213 214 215 216
def _check_grandchild_op_node(op_node, grandchild_op_name):
    '''
    Check whether the fake_quant node has a grandchild op node named
    grandchild_op_name.
    '''
    for out1_var_node in op_node.outputs:
        for out1_op_node in out1_var_node.outputs:
            for out2_var_node in out1_op_node.outputs:
                for out2_op_node in out2_var_node.outputs:
                    if out2_op_node.name() == grandchild_op_name:
                        return True
    return False


217
class QuantizationTransformPass(object):
218
    """
219 220
    Quantize the ops that have weights. Add quant and dequant ops for
    the quantized ops's inputs.
221
    """
222
    _supported_quantizable_op_type = [
223
        'conv2d', 'depthwise_conv2d', 'conv2d_transpose', 'mul', 'matmul'
224
    ]
225

W
WangZhen 已提交
226
    def __init__(self,
227
                 scope=None,
228
                 place=None,
W
WangZhen 已提交
229 230 231 232
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
233
                 window_size=10000,
234
                 moving_rate=0.9,
235
                 skip_pattern=['skip_quant'],
236 237 238 239 240 241 242
                 quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'],
                 weight_quantize_func=None,
                 act_quantize_func=None,
                 weight_preprocess_func=None,
                 act_preprocess_func=None,
                 optimizer_func=None,
                 executor=None):
243
        r"""
244
        Constructor.
245

W
WangZhen 已提交
246
        Args:
247
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
248 249
                type, this pass will create some new parameters. The scope is used to
                initialize these new parameters.
250 251 252
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs. 
253
            weight_bits(int): quantization bit number for weights,
W
WangZhen 已提交
254
                the bias is not quantized.
255 256
            activation_bits(int): quantization bit number for activation.
            activation_quantize_type(str): quantization type for activation,
257 258 259 260 261
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
262
            weight_quantize_type(str): quantization type for weights,
263 264 265
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
266 267
            window_size(int): the window size for 'range_abs_max' quantization.
            moving_rate(float): the param for 'moving_average_abs_max' quantization.
268
            skip_pattern(str or str list): The user-defined quantization skip pattern, which
269
                will be presented in the name scope of an op. When the skip pattern is
270
                detected in an op's name scope, the corresponding op will not be quantized. 
271
            quantizable_op_type(list[str]): List the type of ops that will be quantized. 
272 273
                Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
                QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
            weight_quantize_func(function): Function that defines how to quantize weight.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization function and
                dequantization function, that is, the function's input is non-quantized
                weight and function returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'. Default is None.
            act_quantize_func(function): Function that defines how to quantize activation.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization and dequantization
                process, that is, the function's input is non-quantized activation and
                function returns dequantized activation. If None, will use quantization
                op defined by 'activation_quantize_type'. Default is None.
            weight_preprocess_func(function): Function that defines how to preprocess
                weight before quantization. Using this can quickly test if user's preprocess
                method works or not. The function's input is non-quantized weight and
                function returns processed weight to be quantized. If None, the weight will
                be quantized directly. Default is None.
            act_preprocess_func(function): Function that defines how to preprocess
                activation before quantization. Using this can quickly test if user's
                preprocess method works or not. The function's input is non-quantized
                activation and function returns processed activation to be quantized.
                If None, the activation will be quantized directly. Default is None.
            optimizer_func(function): Fuction return a optimizer. When 'is_test' is
                False and user want to use self-defined quantization function and
                preprocess function, this function must be set. Default is None.
            executor(Fluid.Executor): If user want to use self-defined quantization
                function and preprocess function, executor must be set for initialization.
301 302
                Default is None.

303

W
WangZhen 已提交
304 305
        Examples:
        .. code-block:: python
306 307 308 309
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
310
            from paddle.fluid.contrib.slim.graph import IrGraph
311 312
            from paddle.fluid import core

313
            graph = IrGraph(core.Graph(program.desc), for_test=False)
314
            place = fluid.CPUPlace()
315
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
316
            place)
317
            transform_pass.apply(graph)
W
WangZhen 已提交
318
        """
319
        self._scope = scope
320
        self._place = _get_paddle_place(place)
321 322
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
323
        self._skip_pattern = skip_pattern
324 325 326 327 328 329
        self._weight_quantize_func = weight_quantize_func
        self._act_quantize_func = act_quantize_func
        self._weight_preprocess_func = weight_preprocess_func
        self._act_preprocess_func = act_preprocess_func
        self._optimizer = optimizer_func
        self._exe = executor
330 331 332 333
        quant_type = [
            'abs_max', 'channel_wise_abs_max', 'range_abs_max',
            'moving_average_abs_max'
        ]
334 335
        assert activation_quantize_type != 'channel_wise_abs_max', \
            "The activation quantization type does not support 'channel_wise_abs_max'."
W
WangZhen 已提交
336 337
        if activation_quantize_type not in quant_type:
            raise ValueError(
338 339 340
                "Unknown activation_quantize_type : '%s'. It can only be "
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'." %
                (str(activation_quantize_type)))
W
WangZhen 已提交
341 342
        if weight_quantize_type not in quant_type:
            raise ValueError(
343
                "Unknown weight_quantize_type: '%s'. It can only be "
344 345
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' "
                "or 'moving_average_abs_max'." % (str(weight_quantize_type)))
W
WangZhen 已提交
346

347 348 349
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
350
        self._moving_rate = moving_rate
W
WangZhen 已提交
351

352 353
        self._quantizable_ops = quantizable_op_type
        for op in self._quantizable_ops:
354
            assert op in QuantizationTransformPass._supported_quantizable_op_type, \
355
                op + " is not supported for quantization."
356 357
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
358
        ]
359 360
        self._is_test = None
        self._global_step = None
W
WangZhen 已提交
361

362 363 364
        self.create_var_map = {}
        self.create_op_map = {}

365
    def apply(self, graph):
366 367 368 369 370 371 372
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
373 374
        Returns:
            None
375
        """
W
WangZhen 已提交
376
        assert isinstance(graph,
377 378
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
W
WangZhen 已提交
379 380
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
381
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
382
        processed_vars = []
W
WangZhen 已提交
383

384
        def _quant_preprocess(op_node):
385 386 387
            user_skipped = False
            if isinstance(self._skip_pattern, list):
                user_skipped = op_node.op().has_attr("op_namescope") and \
388 389
                               any(pattern in op_node.op().attr("op_namescope") \
                                   for pattern in self._skip_pattern)
390 391
            elif isinstance(self._skip_pattern, str):
                user_skipped = op_node.op().has_attr("op_namescope") and \
392 393
                               op_node.op().attr("op_namescope").find(
                                   self._skip_pattern) != -1
394

395
            if user_skipped:
396 397
                op_node.op()._set_attr("skip_quant", True)

W
WangZhen 已提交
398
        def _transform_forward(graph, op):
399
            op.op()._set_attr("quantization_type", "qat_with_weight")
400 401
            inputs = op.inputs
            for var_node in inputs:
402 403
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
404 405 406
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
407 408 409
                    name = var_node.name()
                    if name in processed_vars:
                        continue
410 411
                    is_weight = True if var_node.name() in persistable_vars \
                        else False
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440

                    # if var node is weight and weight_preprocess_func is not None,
                    # will insert weight preprocess func 
                    # to preorocess weight before quantization
                    # if var node is activation and act_preprocess_func is not None, 
                    # will insert activation preprocess func 
                    # to preorocess activation before quantization
                    if is_weight and self._weight_preprocess_func is not None:
                        var_node = self._insert_func(
                            graph, self._weight_preprocess_func, var_node, op)
                    elif not is_weight and self._act_preprocess_func is not None:
                        var_node = self._insert_func(
                            graph, self._act_preprocess_func, var_node, op)

                    # if var node is weight and weight_quantize_func is not None,
                    # will insert weight quantize func to quantize and dequantize weight
                    # if var node is activation and act_quantize_func is not None,
                    # will insert act quantize func to quantize and dequantize activation
                    if is_weight and self._weight_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._weight_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue
                    elif not is_weight and self._act_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._act_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue

W
WangZhen 已提交
441
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
442
                        else self._activation_bits
443 444
                    quant_type = self._weight_quantize_type if is_weight \
                        else self._activation_quantize_type
445 446 447 448 449 450 451 452
                    if quant_type == 'channel_wise_abs_max':  # Weight quantization
                        quant_axis = 1 if op.name() in \
                            _channelwise_quant_axis1_ops else 0
                        quant_var_node, scale_var_node = self._insert_channel_quant_op(
                            graph, var_node, name, quant_bits, quant_axis)
                        dequant_var_node = self._insert_channel_dequant_op(
                            graph, quant_var_node, [scale_var_node],
                            [quant_bits], quant_axis)
453 454
                    else:
                        quant_var_node, scale_var_node = self._insert_quant_op(
455
                            graph, var_node, name, quant_bits, quant_type)
456 457
                        dequant_var_node = self._insert_dequant_op(
                            graph, quant_var_node, scale_var_node, quant_bits)
458
                    dequantized_vars[name] = dequant_var_node
459
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
460 461 462

        def _transform_backward(graph, op):
            for var_node in op.inputs:
463 464
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
465 466
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
467
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
468

469
        if not self._is_test:
W
WangZhen 已提交
470
            self._create_global_step(graph)
471
        ops = graph.all_op_nodes()
472 473 474 475 476 477
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
            if op.name() in self._quantizable_ops or \
                    op.name() in self._quantizable_grad_ops:
                _quant_preprocess(op)
478 479
        # Insert mapping table to solve the problem in saving inference model.
        graph.out_node_mapping_table = dict()
W
WangZhen 已提交
480 481
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
W
WangZhen 已提交
482
        for op in ops:
483
            if op.name() in self._quantizable_ops:
484
                if not self._is_skip_quant(graph, op):
485
                    _transform_forward(graph, op)
W
WangZhen 已提交
486 487
        # The loop for renaming the inputs of backward op.
        for op in ops:
488
            if op.name() in self._quantizable_grad_ops:
W
WangZhen 已提交
489
                _transform_backward(graph, op)
Z
Zhen Wang 已提交
490
        graph.resolve_hazard()
491
        return graph
W
WangZhen 已提交
492

W
WangZhen 已提交
493
    def _create_global_step(self, graph):
494 495
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
496
            counter_name = cpt.to_text('@STEP_COUNTER@')
497
            for node in graph.all_var_nodes():
W
WangZhen 已提交
498
                if node.name() == counter_name:
499 500
                    self._global_step = node
            if self._global_step is None:
501
                global_step_in = graph.create_persistable_node(
W
WangZhen 已提交
502 503 504 505
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
506 507 508 509 510 511
                _init_var_node(
                    global_step_in,
                    np.zeros(
                        [1], dtype='int64'),
                    self._scope,
                    self._place)
W
WangZhen 已提交
512 513
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
514
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
515 516
                increment_op = graph.create_op_node(
                    op_type='increment',
517 518 519 520 521
                    attrs={
                        'step': 1.0,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    },
W
WangZhen 已提交
522 523
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
524 525 526
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
527

528
    def _insert_quant_op(self, graph, var_node, name, quant_bits, quant_type):
W
WangZhen 已提交
529 530 531 532
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
533 534
            return self._insert_quant_abs_max_op(graph, var_node, name,
                                                 quant_bits)
W
WangZhen 已提交
535
        elif quant_type == 'range_abs_max':
536
            return self._insert_quant_range_abs_max_op(graph, var_node, name,
W
WangZhen 已提交
537
                                                       quant_bits)
538
        elif quant_type == 'moving_average_abs_max':
539 540
            return self._insert_quant_moving_average_abs_max_op(
                graph, var_node, name, quant_bits)
W
WangZhen 已提交
541

542
    def _insert_quant_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
543 544 545 546 547 548
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
549
            name=self._quantized_var_name(name),
550 551 552
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
553
        scale_var_node = graph.create_persistable_node(
554
            name=self._quantized_scale_name(name),
555
            var_type=var_node.type(),
556
            shape=[1],
557
            var_dtype=var_node.dtype())
558 559 560 561 562 563 564 565
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_var_node,
            np.zeros(
                scale_var_node.shape(), dtype=data_type),
            self._scope,
            self._place)
W
WangZhen 已提交
566 567
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
568 569 570 571
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
572 573 574
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
575 576 577
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
578 579
        return quant_var_node, scale_var_node

580
    def _insert_quant_range_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
581 582 583 584 585 586
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
587
            name=self._quantized_var_name(name),
588 589 590
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
591

592
        scale_in_node = graph.create_persistable_node(
593
            name=self._quantized_scale_name(name),
W
WangZhen 已提交
594 595
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
596
            var_dtype=var_node.dtype())
597 598
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
599 600 601 602 603 604
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
W
WangZhen 已提交
605 606 607 608 609

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

610
        if not self._is_test:
W
WangZhen 已提交
611
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
612
            scales_node = graph.create_persistable_node(
W
WangZhen 已提交
613 614
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
615
                shape=[self._window_size],
616
                var_dtype=var_node.dtype())
617 618
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
619 620 621 622 623 624 625
            _init_var_node(
                scales_node,
                np.zeros(
                    [self._window_size], dtype=data_type),
                self._scope,
                self._place)

626
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
627 628
            outputs['OutScales'] = scales_node
        attrs = {
629
            'window_size': self._window_size,
W
WangZhen 已提交
630
            'bit_length': quant_bits,
631 632
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
W
WangZhen 已提交
633 634 635 636 637 638 639
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

640 641 642 643
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
644

645 646 647
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
648 649 650

        return quant_var_node, scale_out_node

651
    def _insert_quant_moving_average_abs_max_op(self, graph, var_node, name,
652 653 654 655
                                                quant_bits):
        """Insert fake_quantize_moving_average_abs_max
        """
        quant_var_node = graph.create_var_node(
656
            name=self._quantized_var_name(name),
657 658 659 660
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
661
            name=self._quantized_scale_name(name),
662 663 664
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
665 666
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
667 668 669 670 671 672
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
673 674 675 676 677 678 679 680 681 682

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
683 684
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
685
            _init_var_node(
686
                state_in_node,
687 688 689 690
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
691 692 693 694 695
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
696 697 698 699 700 701
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node

738 739
    def _insert_channel_quant_op(self, graph, var_node, name, quant_bits,
                                 quant_axis):
740 741 742 743 744 745
        """
        Insert fake_channel_wise_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
746
            name=self._quantized_var_name(name),
747 748 749
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
750
        scale_var_node = graph.create_persistable_node(
751
            name=self._quantized_scale_name(name),
752
            var_type=var_node.type(),
753
            shape=[var_node.shape()[quant_axis]],
754
            var_dtype=var_node.dtype())
755 756 757 758 759 760 761 762
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_var_node,
            np.zeros(
                scale_var_node.shape(), dtype=data_type),
            self._scope,
            self._place)
763 764 765 766
        quant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_quantize_abs_max',
            attrs={
                'bit_length': quant_bits,
767
                'quant_axis': quant_axis,
768
                'is_test': self._is_test,
769 770 771 772 773 774 775 776 777 778
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
        return quant_var_node, scale_var_node

W
WangZhen 已提交
779 780 781 782 783 784 785 786
    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
787 788 789
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
790 791 792
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
793 794 795 796
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
797 798 799
            inputs={'X': var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
800 801 802
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
803 804
        return dequant_var_node

805
    def _insert_channel_dequant_op(self, graph, var_node, scale_var_nodes,
806
                                   quant_bits, quant_axis):
807 808 809 810 811 812 813 814 815 816 817 818 819 820
        """
        Insert fake_channel_wise_dequantize_max_abs in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': quant_bits,
821
                'quant_axis': quant_axis,
822 823 824 825 826 827 828 829 830 831 832
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node,
                    'Scales': scale_var_nodes},
            outputs={'Out': dequant_var_node})
        graph.link_to(var_node, dequant_op_node)
        for scale_n in scale_var_nodes:
            graph.link_to(scale_n, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
    def _create_new_node(self, graph, in_node):
        """
        create a node that same with in_node in graph
        Args:
            graph(IrGraph): create node in graph.
            in_node(IrVarNode): create node that same with in_node.
        Returns:
            created new node
        """
        key = ''
        for inp in in_node.inputs:
            key = key + inp.name()
        key = key + in_node.name()
        for inp in in_node.outputs:
            key = key + inp.name()

        if key in self.create_var_map.keys():
            new_node = self.create_var_map[key]
        elif in_node.is_ctrl_var():
            new_node = graph.create_control_dep_var()
            self.create_var_map[key] = new_node
        else:
            new_node = graph.create_var_node_from_desc(in_node.node.var())
            self.create_var_map[key] = new_node
        return new_node

    def _copy_graph(self, graph, source_graph, op_node):
        """
        copy op_node in source_graph to graph. And will run recursively 
        for next ops that link to op_node's outputs.
        Args:
            graph(IrGraph): target graph to copy.
            source_graph(IrGraph): source graph to copy.
            op_node(IrOpNode): op node in source_graph.
        Returns:
            None

        """
        key = ''
        for inp in op_node.inputs:
            key = key + inp.name()
        key = key + op_node.name()
        for inp in op_node.outputs:
            key = key + inp.name()
        has_created = False
        if key in self.create_op_map.keys():
            new_op_node = self.create_op_map[key]
            has_created = True
        else:
            new_op_node = graph.create_op_node_from_desc(op_node.node.op())
            self.create_op_map[key] = new_op_node
        if has_created:
            return
        for in_node in op_node.inputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_node, new_op_node)
        for in_node in op_node.outputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_op_node, new_node)
        for var_node in op_node.outputs:
            for next_op_node in var_node.outputs:
                self._copy_graph(graph, source_graph, next_op_node)
        return

    def _insert_func(self, graph, func, var_node, op):
        """
        Insert a tmp program that returned by func between var_node and op.

        Args:
            graph(IrGraph): target graph to insert tmp program.
            func(Function): function to define a tmp program
            var_node(IrVarNode): node in target graph.
            op(IrOpNode): op in target graph.
        Returns:
            op's new input that replaces var_node
        """
        tmp_program = Program()
        startup_program = Program()
        with program_guard(tmp_program, startup_program):
            with unique_name.guard(var_node.name() + "_"):
                in_node = data(
                    var_node.name() + '_tmp_input',
                    shape=var_node.shape(),
                    dtype='float32')
                out_node = func(in_node)
918
                graph.out_node_mapping_table[out_node.name] = var_node.name()
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
                # loss shape must be 1 when minimize
                loss = mean(out_node)
                if not graph._for_test:
                    assert self._optimizer, "optimizer_func must be set when graph is test graph"
                    in_node.stop_gradient = False
                    optimizer = self._optimizer()
                    optimizer.minimize(loss)
        with scope_guard(self._scope):
            self._exe.run(startup_program)

        tmp_graph = IrGraph(
            core.Graph(tmp_program.desc), for_test=graph._for_test)
        in_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                               in_node.name)
        out_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                                out_node.name)

        in_node_params = []
        in_op_node = []
        # copy tmp graph to graph, after that, we can insert tmp graph's copy to graph.
        for node in tmp_graph.all_var_nodes():
            if node.inputs == [] and node.persistable():
                in_node_params.append(node)
        for node in tmp_graph.all_op_nodes():
            if node.inputs == []:
                in_op_node.append(node)
        for node in in_node.outputs:
            self._copy_graph(graph, tmp_graph, node)
        for node in in_node_params:
            for op_node in node.outputs:
                self._copy_graph(graph, tmp_graph, op_node)
        for node in in_op_node:
            self._copy_graph(graph, tmp_graph, node)

        target_in_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                  in_node.name())
        target_out_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                   out_node.name())
        loss_node = graph._find_node_by_name(graph.all_var_nodes(), loss.name)
        outputs = target_in_node.outputs
        for node in outputs:
            graph.update_input_link(target_in_node, var_node, node)
        graph.update_input_link(var_node, target_out_node, op)

        # update grad
        if not graph._for_test:
            op_out = op.outputs[0]
            op_out_grad = graph._find_node_by_name(graph.all_var_nodes(),
                                                   op_out.name() + "@GRAD")
            # find op's gradient op, such as conv2d_grad
            op_grad = op_out_grad.outputs[0]
            target_out_grad_node = graph._find_node_by_name(
                graph.all_var_nodes(), target_out_node.name() + "@GRAD")
            in_node_grad = graph._find_node_by_name(
                graph.all_var_nodes(), target_in_node.name() + "@GRAD")
            in_node_grad_op = in_node_grad.inputs
            # update op_grad's input
            graph.update_input_link(var_node, target_out_node, op_grad)

            op_grad_out = None
            # find var_node's corresponding grad node
            for node in op_grad.outputs:
                if var_node.name() + "@GRAD" in node.name():
                    op_grad_out = node
            # update op_grad's output
            if op_grad_out is not None:
                graph.update_output_link(op_grad_out, target_out_grad_node,
                                         op_grad)
            else:
                graph.link_to(op_grad, target_out_grad_node)

            for node in in_node_grad_op:
                graph.update_input_link(target_in_node, var_node, node)
                if op_grad_out:
                    graph.update_output_link(in_node_grad, op_grad_out, node)
            # remove useless nodes
            mean_grad = target_out_grad_node.inputs[0]
            mean_out_grad = mean_grad.inputs[0]
            fill_constant_node = mean_out_grad.inputs[0]
            graph.safe_remove_nodes(mean_grad)
            graph.safe_remove_nodes(mean_out_grad)
            graph.safe_remove_nodes(fill_constant_node)
            graph.safe_remove_nodes(in_node_grad)

        graph.safe_remove_nodes(loss_node.inputs[0])
        graph.safe_remove_nodes(loss_node)
        graph.safe_remove_nodes(target_in_node)
        return target_out_node

W
WangZhen 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
1022
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
1023 1024
        """
        return "%s.scale" % (var_name)
W
WangZhen 已提交
1025

1026
    def _is_skip_quant(self, graph, op_node):
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
        """
        Analyse whether the op node skips quantization.
        """
        is_skip = False
        if op_node.op().has_attr("skip_quant") and \
            op_node.op().attr("skip_quant"):
            is_skip = True
        # if the inputs of mul and matmul are not all persistable, use
        # AddQuantDequantPass to quantize them.
        if op_node.name() in ["mul", "matmul"] and \
            _is_input_all_not_persistable(graph, op_node):
            is_skip = True
1039 1040 1041
        if op_node.op().has_attr("quantization_type") and \
            op_node.op().attr("quantization_type") == "qat_without_weight":
            is_skip = True
1042 1043
        return is_skip

W
WangZhen 已提交
1044 1045 1046 1047 1048 1049 1050

class QuantizationFreezePass(object):
    def __init__(self,
                 scope,
                 place,
                 weight_bits=8,
                 activation_bits=8,
1051
                 weight_quantize_type='abs_max',
1052
                 quantizable_op_type=None):
1053 1054
        """
        The freeze pass is used to adjust the quantize operator order, for example:
T
tianshuo78520a 已提交
1055
            1) `activation -> quant -> dequant -> conv2d` will be frozen into
1056
            `activation -> quant -> conv2d -> dequant`
T
tianshuo78520a 已提交
1057 1058
            2) `weight -> quant -> dequant -> conv2d` will be frozen into `weight -> conv2d`,
            and weight will be scaled offline.
1059 1060 1061

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
1062 1063
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the weight tensors.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
1064 1065 1066 1067 1068
            weight_bits(int): quantization bit number for weights.
            activation_bits(int): quantization bit number for activation.
            weight_quantize_type(str): quantization type for weights, support 'abs_max' and 
                'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight, 
                since weights are fixed once the model is well trained.
1069 1070
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1071
        """
W
WangZhen 已提交
1072 1073 1074 1075 1076
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
1077
        self._place = _get_paddle_place(place)
W
WangZhen 已提交
1078 1079 1080
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._weight_quantize_type = weight_quantize_type
1081 1082
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
W
WangZhen 已提交
1083 1084
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
1085
        self._quant_var_scale_map = collections.OrderedDict()
W
WangZhen 已提交
1086 1087

    def apply(self, graph):
1088 1089 1090 1091 1092
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
1093 1094
        Returns:
            None
1095
        """
1096
        # Get input scales in fake quant op and process weights
1097 1098
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1099 1100 1101
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
1102
                input_arg_name = op_node.input('X')[0]
1103 1104 1105 1106
                if hasattr(graph, 'out_node_mapping_table'):
                    if input_arg_name in graph.out_node_mapping_table.keys():
                        input_arg_name = graph.out_node_mapping_table[
                            input_arg_name]
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
                if input_arg_name not in persistable_vars:
                    scale_v = graph._find_node_by_name(
                        op_node.outputs, op_node.output('OutScale')[0])
                    self._quant_var_scale_map[input_arg_name] = scale_v
                else:
                    # Obtain scale from OutScale var node
                    scale_v = self._load_var(op_node.output('OutScale')[0])
                    assert scale_v.ndim in [
                        1, 2
                    ], "the dim of scale_v should be 1 or 2"
                    if scale_v.ndim == 2:
                        scale_v = scale_v[0]
                    if scale_v.size == 1:
                        scale_v = scale_v[0]
W
WangZhen 已提交
1121
                    else:
1122
                        scale_v = scale_v.tolist()
1123
                    self._quant_var_scale_map[input_arg_name] = scale_v
1124
                    # Quantize weight and restore
W
WangZhen 已提交
1125
                    param_v = self._load_var(input_arg_name)
1126 1127 1128 1129 1130 1131 1132 1133
                    if isinstance(scale_v, list) and \
                        any(_check_grandchild_op_node(op_node, op)
                        for op in _channelwise_quant_axis1_ops):
                        quant_axis = 1
                    else:
                        quant_axis = 0
                    quantized_param_v = self._quant(
                        param_v, scale_v, self._weight_bits, quant_axis)
W
WangZhen 已提交
1134
                    self._restore_var(input_arg_name, quantized_param_v)
1135
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
W
WangZhen 已提交
1136

1137
        # Remove all fake dequant op
1138
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1139 1140 1141 1142 1143
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

1144
        # Insert post dequant op
1145
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1146
        for op_node in ops:
1147 1148 1149
            op_node_desc = op_node.op()
            if op_node_desc.has_attr("quantization_type") and \
                op_node_desc.attr("quantization_type") == "qat_with_weight":
1150
                if self._weight_quantize_type == 'channel_wise_abs_max':
1151 1152 1153
                    self._insert_post_channel_dequant_op(graph, op_node)
                else:
                    self._insert_post_dequant_op(graph, op_node)
W
WangZhen 已提交
1154

1155
        # Rename inputs of the followed ops after inserting dequant_op after fc/conv
W
WangZhen 已提交
1156 1157
        for op_node in ops:
            for var_node in op_node.inputs:
1158 1159 1160
                if var_node.node in self._op_output_rename_map:
                    old_in = var_node
                    new_in = self._op_output_rename_map[var_node.node]
W
WangZhen 已提交
1161 1162 1163 1164
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1165
        graph.resolve_hazard()
1166
        return graph
W
WangZhen 已提交
1167 1168

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
1169 1170
        k = graph._find_node_by_name(op_node.outputs, op_node.output('Out')[0])
        v = graph._find_node_by_name(op_node.inputs, op_node.input('X')[0])
1171 1172
        if v.node not in self._op_input_rename_map:
            self._op_input_rename_map[k.node] = v
W
WangZhen 已提交
1173
        else:
1174 1175
            self._op_input_rename_map[k.node] = self._op_input_rename_map[
                v.node]
W
WangZhen 已提交
1176
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
1177

1178 1179 1180 1181
    def _insert_post_channel_dequant_op(self, graph, op_node):
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        for var_node in op_node.inputs:
            name = var_node.name()
1182 1183 1184 1185 1186
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
1187 1188 1189
                new_in.clear_outputs()
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1190
            scale_v = self._quant_var_scale_map[original_var_name]
1191 1192 1193 1194 1195 1196 1197 1198
            if original_var_name in persistable_vars:
                assert isinstance(
                    scale_v,
                    list), 'The scale of parameter %s is not a list.' % (
                        original_var_name)
                channel_scale = np.array(scale_v)
            else:
                assert isinstance(scale_v, IrNode)
1199
                scale_var_node = self._quant_var_scale_map[original_var_name]
1200

1201
        if len(op_node.output_arg_names()) != 1:
1202 1203 1204
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1205 1206
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
1207 1208 1209 1210 1211
        weight_scale_node = graph.create_persistable_node(
            name=unique_name.generate('channel_scale'),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[channel_scale.shape[0]],
            var_dtype=output_var_node.dtype())
1212 1213
        data_type = 'float64' if output_var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
1214 1215 1216
        _init_var_node(weight_scale_node,
                       channel_scale.astype(data_type), self._scope,
                       self._place)
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': [self._weight_bits, self._activation_bits],
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={
                'X': output_var_node,
                'Scales': [weight_scale_node, scale_var_node]
            },
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(weight_scale_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1237
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
1238 1239
        return dequant_var_node

W
WangZhen 已提交
1240
    def _insert_post_dequant_op(self, graph, op_node):
1241
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
1242 1243 1244
        max_range = 1
        param_range = (1 << (self._weight_bits - 1)) - 1
        act_range = (1 << (self._activation_bits - 1)) - 1
W
WangZhen 已提交
1245
        for var_node in op_node.inputs:
W
WangZhen 已提交
1246
            name = var_node.name()
1247 1248 1249 1250 1251
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
W
WangZhen 已提交
1252
                new_in.clear_outputs()
W
WangZhen 已提交
1253 1254
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1255
            scale_v = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1256 1257 1258 1259
            if original_var_name in persistable_vars:
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
1260
                max_range *= param_range / scale_v
W
WangZhen 已提交
1261
            else:
1262
                max_range *= act_range
1263
                assert isinstance(scale_v, IrNode)
1264
                scale_var_node = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1265

1266
        if len(op_node.output_arg_names()) != 1:
W
WangZhen 已提交
1267 1268 1269
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1270 1271
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
W
WangZhen 已提交
1272 1273
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
1274 1275 1276
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
W
WangZhen 已提交
1277 1278
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
1279 1280 1281 1282
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
1283 1284 1285 1286 1287 1288
            inputs={'X': output_var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1289
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
W
WangZhen 已提交
1290 1291 1292 1293 1294
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

1295 1296 1297
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
1298 1299 1300

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1301
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1302 1303 1304 1305 1306 1307
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1308 1309 1310 1311 1312 1313
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
W
WangZhen 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
        if var_name.endswith('.scale'):
            return var_name[:-len('.scale')]
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
1337
    def _is_float(self, v):
W
WangZhen 已提交
1338 1339 1340
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

1341 1342
    def _quant(self, x, scale, num_bits, quant_axis):
        assert quant_axis in [0, 1], 'quant_axis should be 0 or 1 for now.'
1343 1344 1345 1346 1347 1348 1349
        bnt = (1 << (num_bits - 1)) - 1

        def _clip(x, scale):
            x[x > scale] = scale
            x[x < -scale] = -scale
            return x

1350 1351
        if isinstance(scale, list):
            for i, s in enumerate(scale):
1352
                if quant_axis == 0:
1353 1354
                    x[i] = _clip(x[i], s)
                    x[i] = np.round(x[i] / s * bnt)
1355
                else:
1356 1357
                    x[:, i] = _clip(x[:, i], s)
                    x[:, i] = np.round(x[:, i] / s * bnt)
1358
        else:
1359 1360 1361
            x = _clip(x, scale)
            x = np.round(x / scale * bnt)
        return x
1362 1363 1364


class ConvertToInt8Pass(object):
1365
    def __init__(self, scope, place, quantizable_op_type=None):
1366 1367 1368 1369 1370
        """
        Convert the weights into int8_t type.

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
1371 1372 1373
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the
                8bits weight tensors. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs.
1374 1375
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1376
        """
1377 1378 1379 1380 1381
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
1382
        self._place = _get_paddle_place(place)
1383 1384

    def apply(self, graph):
1385
        """
T
tianshuo78520a 已提交
1386 1387
        Convert weights' type of the graph. After that, the data type of the
        graph weights is int8_t.
1388 1389 1390

        Args:
            graph(IrGraph): the applied graph.
1391 1392
        Returns:
            None
1393
        """
1394 1395
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
1396 1397
        input_map = {}
        for op_node in ops:
1398 1399
            if op_node.op().has_attr("quantization_type") and \
                op_node.op().attr("quantization_type") == "qat_with_weight":
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
                            int8_var_node = self._convert_to_int8(graph,
                                                                  var_node)
                            input_map[name] = int8_var_node
                        graph.update_input_link(var_node, input_map[name],
                                                op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1412
        graph.resolve_hazard()
1413 1414 1415 1416
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
1417
        int8_var_node = graph.create_persistable_node(
1418
            name=cpt.to_text(int8_var_node_name),
1419 1420
            var_type=var_node.type(),
            shape=var_node.shape(),
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
            var_dtype=core.VarDesc.VarType.INT8)
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1436
        ops = graph.all_op_nodes()
1437 1438 1439 1440 1441 1442
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1443 1444 1445 1446 1447 1448
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
1449 1450 1451 1452 1453
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
    def __init__(self):
1454
        """
T
tianshuo78520a 已提交
1455
        This pass is used to convert the frozen graph for paddle-mobile execution.
1456
        """
1457 1458
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
1459 1460

    def apply(self, graph):
1461 1462 1463 1464 1465 1466 1467
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
1468 1469
        Returns:
            None
1470
        """
1471
        ops = graph.all_op_nodes()
1472 1473 1474
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
1475
                op_node.set_type('quantize')
1476 1477 1478 1479 1480 1481 1482
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
1483
                op_node.set_type('dequantize')
1484 1485 1486 1487 1488 1489
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)
Z
Zhen Wang 已提交
1490
        graph.resolve_hazard()
1491
        return graph
1492 1493


1494
class OutScaleForTrainingPass(object):
1495 1496 1497 1498 1499 1500 1501
    def __init__(self, scope=None, place=None, moving_rate=0.9):
        """
        This pass is used for calculating output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1502 1503 1504
            place(fluid.CPUPlace|fluid.CUDAPlace|str): The place is used to initialize new parameters.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the
                index of the GPUs.
1505 1506 1507
            moving_rate(float): The decay coefficient of moving average. The default value is 0.9.
        """
        self._scope = scope
1508
        self._place = _get_paddle_place(place)
1509 1510
        self._moving_rate = moving_rate
        self._is_test = None
1511
        self._teller_set = _out_scale_op_list
1512 1513 1514 1515 1516 1517 1518 1519 1520

    def apply(self, graph):
        """
        Insert the `moving_average_abs_max_scale` op in order to calculate output scales
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1521 1522
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1523
        self._is_test = graph.is_test()
1524 1525 1526 1527 1528 1529 1530
        target_ops = []
        for op in graph.all_op_nodes():
            if op.name() in self._teller_set:
                target_ops.append(op)
        for op in target_ops:
            for output_var_name in _get_op_output_var_names(op):
                in_node = graph._find_node_by_name(op.outputs, output_var_name)
1531 1532 1533 1534
                if in_node.dtype() not in \
                    [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                    continue

1535 1536 1537 1538 1539
                scale_node = graph.create_persistable_node(
                    name=self._scale_name(in_node.name()),
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=in_node.dtype())
1540 1541 1542 1543 1544 1545 1546 1547
                data_type = 'float64' if in_node.dtype() \
                    == core.VarDesc.VarType.FP64 else 'float32'
                _init_var_node(
                    scale_node,
                    np.ones(
                        [1], dtype=data_type),
                    self._scope,
                    self._place)
1548
                ins = {'X': in_node}
1549
                outs = {'OutScale': scale_node}
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
                if not self._is_test:
                    state_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_state@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    _init_var_node(
                        state_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    accum_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_accum@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    _init_var_node(
                        accum_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    state_out_node = graph.create_var_node_from_desc(
                        state_in_node.var())
                    accum_out_node = graph.create_var_node_from_desc(
                        accum_in_node.var())

                    ins['InState'] = state_in_node
                    ins['InAccum'] = accum_in_node
                    outs['OutState'] = state_out_node
                    outs['OutAccum'] = accum_out_node

                attrs = {
                    'moving_rate': self._moving_rate,
                    'is_test': self._is_test,
                    'op_role': core.op_proto_and_checker_maker.OpRole.Forward
                }
                scale_op_node = graph.create_op_node(
                    op_type='moving_average_abs_max_scale',
                    attrs=attrs,
                    inputs=ins,
                    outputs=outs)
                graph.link_to(in_node, scale_op_node)
                graph.link_to(scale_op_node, scale_node)
                if not self._is_test:
                    graph.link_to(state_in_node, scale_op_node)
                    graph.link_to(accum_in_node, scale_op_node)
                    graph.link_to(scale_op_node, state_out_node)
                    graph.link_to(scale_op_node, accum_out_node)
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)


1610
class OutScaleForInferencePass(object):
1611 1612 1613 1614 1615 1616 1617 1618 1619
    def __init__(self, scope=None):
        """
        This pass is used for setting output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
        """
        self._scope = scope
1620
        self._teller_set = _out_scale_op_list
1621 1622 1623 1624 1625 1626 1627 1628 1629

    def apply(self, graph):
        """
        Get output scales from the scope and set these scales in op_descs
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1630 1631
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1632 1633 1634
        op_nodes = graph.all_op_nodes()
        for op_node in op_nodes:
            if op_node.name() in self._teller_set:
1635 1636
                var_names = _get_op_output_var_names(op_node)
                for var_name in var_names:
1637 1638 1639 1640 1641 1642
                    in_node = graph._find_node_by_name(op_node.outputs,
                                                       var_name)
                    if in_node.dtype() not in \
                        [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                        continue

1643
                    scale_name = self._scale_name(var_name)
1644 1645 1646 1647 1648 1649 1650
                    scale_var = self._scope.find_var(scale_name)
                    assert scale_var is not None, \
                        "Can not find {} variable in the scope".format(scale_name)
                    scale_value = np.array(scale_var.get_tensor())[0]

                    # For compatibility, we save output threshold by two methods.
                    op_node.op()._set_attr("out_threshold", float(scale_value))
1651 1652 1653 1654 1655

                    argname_index = _get_output_name_index(op_node, var_name)
                    assert argname_index is not None, \
                        var_name + " is not the output of the op"
                    op_node.op()._set_attr(argname_index[0] + str(argname_index[1]) \
1656
                        + "_threshold", float(scale_value))
1657 1658 1659 1660 1661 1662 1663 1664
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)
1665 1666 1667


class AddQuantDequantPass(object):
1668 1669 1670 1671
    """
    Quantize the ops that do not have weights, and add quant_dequant op for the 
    quantized ops's inputs.
    """
1672 1673 1674 1675 1676
    _supported_quantizable_op_type = [
        "pool2d", "elementwise_add", "concat", "softmax", "argmax", "transpose",
        "equal", "gather", "greater_equal", "greater_than", "less_equal",
        "less_than", "mean", "not_equal", "reshape", "reshape2",
        "bilinear_interp", "nearest_interp", "trilinear_interp", "slice",
1677 1678
        "squeeze", "elementwise_sub", "mul", "matmul", "relu", "relu6",
        "leaky_relu", "tanh", "swish"
1679 1680
    ]

1681 1682 1683
    # To be compatible with PaddleSlim, not remove _activation_type for now
    _activation_type = ["relu", "relu6", "leaky_relu", "tanh", "swish"]

1684 1685 1686 1687 1688
    def __init__(self,
                 scope=None,
                 place=None,
                 moving_rate=0.9,
                 quant_bits=8,
1689
                 skip_pattern=["skip_quant"],
1690
                 quantizable_op_type=["elementwise_add", "pool2d"],
1691
                 is_full_quantized=False):
1692
        """
1693
        Constructor.
1694 1695 1696

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1697 1698 1699
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
1700 1701 1702 1703 1704 1705 1706 1707
            moving_rate(float, optional): the param for 'quant_dequant_moving_average_abs_max' 
                quantization. Default is 0.9.
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
            skip_pattern(str, optional): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
                Default is 'skip_quant'.
            quantizable_op_type(list[str], optional): List the type of ops that will be 
1708
                quantized. Default is ["elementwise_add", "pool2d"]. 
1709 1710 1711 1712
            is_full_quantized(bool, optional): If set is_full_quantized as True, apply 
                quantization to all supported quantizable op type. If set is_full_quantized
                as False, only apply quantization to the op type according to the input 
                quantizable_op_type.
1713 1714
        """
        self._scope = scope
1715
        self._place = _get_paddle_place(place)
1716 1717 1718
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
        self._is_test = None
1719
        self._skip_pattern = skip_pattern
1720 1721 1722 1723 1724 1725 1726

        if is_full_quantized:
            self._quantizable_op_type = \
                AddQuantDequantPass._supported_quantizable_op_type
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in quantizable_op_type:
1727
                assert op_type in AddQuantDequantPass._supported_quantizable_op_type, \
1728
                    op_type + " is not supported for quantization."
1729 1730 1731 1732
        self._quantizable_grad_op_type = [
            '%s_grad' % (op) for op in self._quantizable_op_type
        ]

1733 1734
        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."
1735 1736 1737

    def apply(self, graph):
        """
1738 1739
        Add quant_dequant before some ops, such as the 'elementwise_add' and
        'pool2d' op.
1740

1741 1742
        Args:
            graph(IrGraph): the target graph.
1743 1744
        Returns:
            None
1745 1746 1747 1748
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
1749 1750
        dequantized_vars_map = collections.OrderedDict()

1751 1752 1753
        # Forward stage, insert quant_dequant op
        all_op_nodes = graph.all_op_nodes()
        for op_node in all_op_nodes:
1754
            if op_node.name() in self._quantizable_op_type:
1755
                is_skip = False
1756
                if isinstance(self._skip_pattern, list):
1757
                    is_skip = op_node.op().has_attr("op_namescope") and \
1758 1759
                                   any(pattern in op_node.op().attr("op_namescope") for pattern in self._skip_pattern)
                elif isinstance(self._skip_pattern, str):
1760
                    is_skip = op_node.op().has_attr("op_namescope") and \
1761
                                   op_node.op().attr("op_namescope").find(self._skip_pattern) != -1
1762 1763 1764
                is_quantized = op_node.op().has_attr("quantization_type") and \
                    op_node.op().attr("quantization_type") == "qat_with_weight"
                if is_skip or is_quantized or \
1765
                    (not _is_input_all_not_persistable(graph, op_node)):
1766
                    continue
1767

1768 1769 1770
                op_node.op()._set_attr("quantization_type",
                                       "qat_without_weight")
                op_node.op()._set_attr("activation_bits", self._quant_bits)
1771
                arg_names = _get_op_input_var_names(op_node)
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
                for arg_name in arg_names:
                    in_node = graph._find_node_by_name(op_node.inputs, arg_name)
                    if arg_name in dequantized_vars_map:
                        quant_var_node = dequantized_vars_map[arg_name]
                    else:
                        quant_var_node, _ = \
                            self._inser_quant_dequant_moving_average_abs_max_op(
                            graph, in_node, self._quant_bits)
                        dequantized_vars_map[arg_name] = quant_var_node
                    graph.update_input_link(in_node, quant_var_node, op_node)
1782

1783 1784
        # Backward stage, update input link
        for op_node in all_op_nodes:
1785
            if op_node.name() in self._quantizable_grad_op_type:
1786 1787 1788 1789 1790 1791 1792 1793
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
                        in_node = graph._find_node_by_name(op_node.inputs,
                                                           input_name)
                        dequant_var_node = dequantized_vars_map[input_name]
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
        graph.resolve_hazard()
        return graph

    def _inser_quant_dequant_moving_average_abs_max_op(self, graph, var_node,
                                                       quant_bits):
        """Insert fake_quantize_dequantize_moving_average_abs_max op.
        """
        quant_var_node = graph.create_var_node(
            name="{}.quant_dequant".format(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
            name="{}.quant_dequant.scale".format(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
            _init_var_node(
                state_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_dequantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node