conv_mkldnn_op.cc 47.3 KB
Newer Older
A
Adam Osewski 已提交
1
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

A
Adam Osewski 已提交
15 16
#include <tuple>

17
#include "paddle/fluid/framework/expect.h"
18
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
19
#include "paddle/fluid/platform/cpu_info.h"
A
Adam Osewski 已提交
20
#include "paddle/fluid/platform/mkldnn_helper.h"
J
Jacek Czaja 已提交
21
#include "paddle/fluid/platform/mkldnn_reuse.h"
22 23 24

namespace paddle {
namespace operators {
A
Adam Osewski 已提交
25
namespace {
26

27
inline MKLDNNMemoryFormat GetWeightsFormat(const int groups,
28
                                           const bool is_conv3d) {
Y
Yihua Xu 已提交
29
  if (is_conv3d) {
30 31
    return (groups == 1) ? MKLDNNMemoryFormat::oidhw
                         : MKLDNNMemoryFormat::goidhw;
Y
Yihua Xu 已提交
32
  } else {
33
    return (groups == 1) ? MKLDNNMemoryFormat::oihw : MKLDNNMemoryFormat::goihw;
Y
Yihua Xu 已提交
34 35 36
  }
}

37 38
static dnnl::memory::data_type GetDstType(bool is_int8,
                                          bool is_bfloat16,
39 40 41 42 43
                                          bool force_fp32_output,
                                          std::string fuse_activation,
                                          bool fuse_residual_conn,
                                          const Tensor* residual_param) {
  auto dst_dt = dnnl::memory::data_type::f32;
44 45
  if (is_int8) {
    dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
46 47
                 ? dnnl::memory::data_type::u8
                 : dnnl::memory::data_type::s8;
48
    if (force_fp32_output) {
49
      dst_dt = dnnl::memory::data_type::f32;
50
    }
51
    if (fuse_residual_conn && residual_param) {
52 53
      auto residual_dt = framework::ToMKLDNNDataType(
          framework::TransToProtoVarType(residual_param->dtype()));
54
      if (dst_dt != residual_dt) dst_dt = residual_dt;
55
    }
56 57
  } else {
    if (!force_fp32_output && is_bfloat16) {
58
      dst_dt = dnnl::memory::data_type::bf16;
59
      if (fuse_residual_conn && residual_param) {
60 61
        dst_dt = framework::ToMKLDNNDataType(
            framework::TransToProtoVarType(residual_param->dtype()));
62 63
      }
    }
64 65 66 67
  }
  return dst_dt;
}

68
template <typename T, typename K, typename T_out>
69
class ConvMKLDNNHandlerT
70 71
    : public platform::MKLDNNHandlerT<T,
                                      dnnl::convolution_forward,
72 73
                                      dnnl::convolution_backward_data,
                                      dnnl::convolution_backward_weights> {
74
 public:
A
Adam Osewski 已提交
75
  ConvMKLDNNHandlerT(const framework::ExecutionContext& ctx,
76
                     const platform::MKLDNNDeviceContext& dev_ctx,
77
                     const dnnl::engine mkldnn_engine,
78 79 80 81 82
                     platform::Place cpu_place,
                     const Tensor* input,
                     const Tensor* filter,
                     const Tensor* bias,
                     Tensor* output,
83
                     const std::string& unique_name)
84 85
      : platform::MKLDNNHandlerT<T,
                                 dnnl::convolution_forward,
86 87
                                 dnnl::convolution_backward_data,
                                 dnnl::convolution_backward_weights>(
88 89 90 91 92
            dev_ctx,
            mkldnn_engine,
            cpu_place,
            platform::CreateKey(
                dev_ctx, phi::vectorize(input->dims()), unique_name)) {
93
    if (unlikely(!this->isCached())) {
94
      PADDLE_ENFORCE_EQ(
95 96
          input->layout(),
          framework::DataLayout::kMKLDNN,
97 98
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
99 100
              framework::DataLayout::kMKLDNN,
              input->layout()));
101

102
      PADDLE_ENFORCE_EQ(
103 104
          filter->layout(),
          framework::DataLayout::kMKLDNN,
105 106
          platform::errors::InvalidArgument(
              "The Filter tensor's layout should be %d, but got %d.",
107 108
              framework::DataLayout::kMKLDNN,
              filter->layout()));
K
Krzysztof Binias 已提交
109

110
      PADDLE_ENFORCE_GE(
111 112
          input->dims().size(),
          4,
113 114 115 116 117
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
      PADDLE_ENFORCE_LE(
118 119
          input->dims().size(),
          5,
120 121 122 123
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
124

125
      PADDLE_ENFORCE_GE(
126 127
          filter->dims().size(),
          4,
128 129 130 131 132
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
      PADDLE_ENFORCE_LE(
133 134
          filter->dims().size(),
          5,
135 136 137 138
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
139

140 141
      if (bias) {
        PADDLE_ENFORCE_EQ(
142 143
            bias->layout(),
            framework::DataLayout::kMKLDNN,
144 145
            platform::errors::InvalidArgument(
                "The Bias tensor's layout should be %d, but got %d.",
146 147
                framework::DataLayout::kMKLDNN,
                bias->layout()));
148

149 150
        PADDLE_ENFORCE_EQ(bias->dims().size(),
                          1,
151 152 153 154 155
                          platform::errors::InvalidArgument(
                              "Bias must only have 1 dimension, "
                              "i.e. X, but got dimension = %d .",
                              bias->dims().size()));
      }
F
FDInSky 已提交
156

157 158 159
      const int groups = ctx.Attr<int>("groups");
      const std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
F
FDInSky 已提交
160

161
      const auto input_dims = input->dims();
162
      const auto data_dims = phi::slice_ddim(input_dims, 2, input_dims.size());
163 164
      const auto filter_dims = filter->dims();
      const auto filter_data_dims =
165
          phi::slice_ddim(filter_dims, 2, filter_dims.size());
166

167
      const auto ksize = phi::vectorize(filter_data_dims);
168
      const bool is_test = ctx.Attr<bool>("is_test");
169

170 171
      auto strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
172

173 174
      auto paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
A
Adam 已提交
175

176 177 178
      auto dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));
A
Adam 已提交
179

180 181
      UpdatePaddingAndDilation(
          &paddings, &dilations, padding_algorithm, data_dims, strides, ksize);
A
Adam 已提交
182

183 184 185 186
      std::transform(
          dilations.begin(), dilations.end(), dilations.begin(), [](int64_t i) {
            return i - 1;
          });
187

188
      const auto src_tz = phi::vectorize(input->dims());
189

190
      auto weights_tz = phi::vectorize(filter->dims());
191
      platform::GetGroupConvWeightsTz(weights_tz, groups);
192

193
      const auto dst_tz = phi::vectorize(output->dims());
194

195
      const dnnl::memory::dims stride_dims = strides;
196
      const auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
197
      const dnnl::memory::dims dilations_dims = dilations;
A
Adam 已提交
198

199 200 201 202
      /* create memory descriptor for convolution without specified format
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
203
      auto chosen_memory_format = MKLDNNMemoryFormat::any;
204
      auto data_type = dnnl::memory::data_type::f32;
205 206
      if (ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16" ||
          std::is_same<T_out, platform::bfloat16>::value)
207
        data_type = dnnl::memory::data_type::bf16;
208

209
      dnnl::memory::desc src_md, weights_md;
A
Adam Osewski 已提交
210 211
      if (platform::is_int8<T>()) {
        src_md = platform::MKLDNNMemDesc(
212 213 214
            src_tz,
            framework::ToMKLDNNDataType(
                framework::TransToProtoVarType(input->dtype())),
A
Adam Osewski 已提交
215 216
            chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(
217
            weights_tz, dnnl::memory::data_type::s8, chosen_memory_format);
A
Adam Osewski 已提交
218 219 220
      } else {
        src_md =
            platform::MKLDNNMemDesc(src_tz, data_type, chosen_memory_format);
221 222
        weights_md = platform::MKLDNNMemDesc(
            weights_tz, data_type, MKLDNNMemoryFormat::any);
A
Adam Osewski 已提交
223 224
      }

225
      const auto dst_md = platform::MKLDNNMemDesc(
226
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
227 228
      const auto fwd_prop_kind = is_test ? dnnl::prop_kind::forward_inference
                                         : dnnl::prop_kind::forward_training;
229

230
      const dnnl::primitive_attr conv_attr = CreateConvAttrs(ctx);
A
Adam 已提交
231

232
      if (bias) {
233
        auto bias_tz = phi::vectorize(bias->dims());
234
        dnnl::memory::desc bias_md;
A
Adam Osewski 已提交
235 236
        if (platform::is_int8<T>()) {
          bias_md = platform::MKLDNNMemDesc(
237
              bias_tz, dnnl::memory::data_type::s32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
238
        } else {
239 240
          bias_md = platform::MKLDNNMemDesc(
              bias_tz, data_type, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
241
        }
242

243
        this->AcquireForwardPrimitiveDescriptor(
244 245 246 247 248 249 250 251 252 253 254
            conv_attr,
            fwd_prop_kind,
            dnnl::algorithm::convolution_direct,
            src_md,
            weights_md,
            bias_md,
            dst_md,
            stride_dims,
            dilations_dims,
            mkldnn_paddings[0],
            mkldnn_paddings[1]);
255
      } else {
256
        this->AcquireForwardPrimitiveDescriptor(
257 258 259 260 261 262 263 264 265 266
            conv_attr,
            fwd_prop_kind,
            dnnl::algorithm::convolution_direct,
            src_md,
            weights_md,
            dst_md,
            stride_dims,
            dilations_dims,
            mkldnn_paddings[0],
            mkldnn_paddings[1]);
267 268 269
      }
    }
  }
270

271 272
  ConvMKLDNNHandlerT(const framework::ExecutionContext& ctx,
                     const platform::MKLDNNDeviceContext& dev_ctx,
273 274 275 276 277 278 279 280 281 282
                     platform::Place cpu_place,
                     const Tensor* in,
                     const Tensor* filter,
                     const Tensor* bias,
                     const Tensor* out_grad,
                     Tensor* filter_grad,
                     Tensor* in_x_grad,
                     const std::string& unique_name)
      : platform::MKLDNNHandlerT<T,
                                 dnnl::convolution_forward,
283 284
                                 dnnl::convolution_backward_data,
                                 dnnl::convolution_backward_weights>(
285 286 287 288 289
            dev_ctx,
            dev_ctx.GetEngine(),
            cpu_place,
            platform::CreateKey(
                dev_ctx, phi::vectorize(in->dims()), unique_name)) {
290
    if (unlikely(!this->isBwdCached())) {
291
      PADDLE_ENFORCE_EQ(
292 293
          in->layout(),
          framework::DataLayout::kMKLDNN,
294 295
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
296 297
              framework::DataLayout::kMKLDNN,
              in->layout()));
298 299

      PADDLE_ENFORCE_EQ(
300 301
          filter->layout(),
          framework::DataLayout::kMKLDNN,
302 303
          platform::errors::InvalidArgument(
              "The filter tensor's layout should be %d, but got %d.",
304 305
              framework::DataLayout::kMKLDNN,
              filter->layout()));
306 307

      PADDLE_ENFORCE_EQ(
308 309
          out_grad->layout(),
          framework::DataLayout::kMKLDNN,
310 311
          platform::errors::InvalidArgument(
              "The output_grad tensor's layout should be %d, but got %d.",
312 313
              framework::DataLayout::kMKLDNN,
              out_grad->layout()));
314 315

      PADDLE_ENFORCE_EQ(
316 317
          ctx.Attr<bool>("is_test"),
          false,
318 319 320 321 322 323 324 325 326 327 328 329 330 331
          platform::errors::InvalidArgument(
              "is_test attribute should be set to False in training phase."));

      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));

      auto input_dims = in->dims();
332
      auto data_dims = phi::slice_ddim(input_dims, 2, input_dims.size());
333 334
      auto filter_dims = filter->dims();
      auto filter_data_dims =
335 336
          phi::slice_ddim(filter_dims, 2, filter_dims.size());
      auto ksize = phi::vectorize(filter_data_dims);
337

A
Adam Osewski 已提交
338 339
      std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
340 341
      UpdatePaddingAndDilation(
          &paddings, &dilations, padding_algorithm, data_dims, strides, ksize);
342

343 344
      auto src_tz = phi::vectorize(in->dims());
      auto weights_tz = phi::vectorize(filter->dims());
345

A
Adam Osewski 已提交
346
      int groups = ctx.Attr<int>("groups");
347 348
      int g = std::max(groups, 1);
      platform::GetGroupConvWeightsTz(weights_tz, g);
349
      auto dst_tz = phi::vectorize(out_grad->dims());
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

      /* create memory descriptor for conv backward without specified format
       * ('any') which lets a primitive (conv backward in this case) choose
       * the memory format preferred for best performance
       */
      const auto chosen_memory_format = MKLDNNMemoryFormat::any;
      const auto weights_format = MKLDNNMemoryFormat::any;

      auto src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      const auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
      auto diff_src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
      auto diff_weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
      auto diff_dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);

      auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
372 373 374 375
      std::transform(
          dilations.begin(), dilations.end(), dilations.begin(), [](int64_t i) {
            return i - 1;
          });
376
      const dnnl::memory::dims dilations_dims = dilations;
377

378
      const dnnl::memory::dims stride_dims = strides;
379
      // Recreating FWD PD. For training there are no post ops in convolution
380
      dnnl::primitive_attr conv_attr;
381
      if (bias) {
382
        auto bias_tz = phi::vectorize(bias->dims());
383
        dnnl::memory::desc bias_md;
A
Adam Osewski 已提交
384 385
        if (platform::is_int8<T>()) {
          bias_md = platform::MKLDNNMemDesc(
386
              bias_tz, dnnl::memory::data_type::s32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
387 388
        } else {
          bias_md = platform::MKLDNNMemDesc(
389
              bias_tz, dnnl::memory::data_type::f32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
390
        }
391

392
        this->AcquireForwardPrimitiveDescriptor(
393 394 395 396 397 398 399 400 401 402
            conv_attr,
            dnnl::prop_kind::forward_training,
            dnnl::algorithm::convolution_direct,
            src_md,
            weights_md,
            bias_md,
            dst_md,
            stride_dims,
            dilations_dims,
            mkldnn_paddings[0],
403 404
            mkldnn_paddings[1]);
      } else {
405
        this->AcquireForwardPrimitiveDescriptor(
406 407 408 409 410 411 412 413 414
            conv_attr,
            dnnl::prop_kind::forward_training,
            dnnl::algorithm::convolution_direct,
            src_md,
            weights_md,
            dst_md,
            stride_dims,
            dilations_dims,
            mkldnn_paddings[0],
415 416 417
            mkldnn_paddings[1]);
      }

418
      this->AcquireBackwardPrimitiveDescriptor(
419 420 421 422 423 424 425
          dnnl::algorithm::convolution_direct,
          diff_src_md,
          weights_md,
          diff_dst_md,
          strides,
          dilations_dims,
          mkldnn_paddings[0],
426 427
          mkldnn_paddings[1]);

428
      this->AcquireBackwardWeightsPrimitiveDescriptor(
429 430 431 432 433 434 435
          dnnl::algorithm::convolution_direct,
          src_md,
          diff_weights_md,
          diff_dst_md,
          strides,
          dilations_dims,
          mkldnn_paddings[0],
436 437 438 439
          mkldnn_paddings[1]);
    }
  }

440 441 442 443 444 445 446 447 448 449 450 451 452
  std::shared_ptr<std::tuple<float, std::vector<float>>> get_int8_bias_scales(
      const framework::ExecutionContext& ctx) {
    // Get scales int8 bias key
    const std::string key_bs = this->key_ + "@bs";

    // Scales for int8 bias are to be cached to avoid
    // computing them each iteration
    auto bias_scale_tuple =
        std::static_pointer_cast<std::tuple<float, std::vector<float>>>(
            this->dev_ctx_.GetBlob(key_bs));
    if (bias_scale_tuple) return bias_scale_tuple;

    const auto* filter = ctx.Input<Tensor>("Filter");
453
    const auto& weights_tz = phi::vectorize(filter->dims());
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
    const int groups = std::max(ctx.Attr<int>("groups"), 1);

    const auto& scale_weights_data =
        ctx.Attr<std::vector<float>>("Scale_weights");
    const auto& scale_in_data = ctx.Attr<float>("Scale_in");

    bool is_multi_channel = scale_weights_data.size() > 1;
    int mask_reorder = is_multi_channel ? 1 << 0 : 1;

    int count = 1;
    if (is_multi_channel) {
      count *= weights_tz[0];
      if (groups > 1) {
        count *= weights_tz[1];
      }
    }

    bias_scale_tuple =
        std::make_shared<std::tuple<float, std::vector<float>>>(std::make_tuple(
            static_cast<float>(mask_reorder), std::vector<float>(count)));
    for (int i = 0; i < count; i++) {
      std::get<1>(*bias_scale_tuple)[i] = scale_in_data * scale_weights_data[i];
    }

    this->dev_ctx_.SetBlob(key_bs, bias_scale_tuple);

    return bias_scale_tuple;
  }

483
  std::tuple<float, std::vector<float>, float> get_int8_scales(
A
Adam Osewski 已提交
484 485
      const framework::ExecutionContext& ctx) const {
    const auto* filter = ctx.Input<Tensor>("Filter");
486
    const auto& weights_tz = phi::vectorize(filter->dims());
A
Adam Osewski 已提交
487 488 489 490 491 492 493 494 495

    const bool& force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    const bool& fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    const int groups = std::max(ctx.Attr<int>("groups"), 1);

    const auto& scale_in_data = ctx.Attr<float>("Scale_in");
    const auto& scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
    bool is_multi_channel = scale_weights_data.size() > 1;
496
    bool has_activation = !ctx.Attr<std::string>("fuse_activation").empty();
497 498 499 500 501 502 503
    float activation_scale = (!force_fp32_output && has_activation)
                                 ? ctx.Attr<float>("Scale_out")
                                 : 1.0f;

    float scale_out_data = (force_fp32_output || has_activation)
                               ? 1.0f
                               : ctx.Attr<float>("Scale_out");
A
Adam Osewski 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
    float sum_scale =
        fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;
    int count =
        is_multi_channel
            ? (groups > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
            : 1;
    std::vector<float> output_shift_scale(count);

#pragma omp parallel for if (count > 50)
    for (int i = 0; i < count; i++) {
      if (scale_weights_data[i] == 0.0)
        // weights data will contain 0 in some models, then weights
        // scale couldn't be calculated
        output_shift_scale[i] = scale_out_data;
      else
        output_shift_scale[i] =
            static_cast<float>(static_cast<double>(scale_out_data) /
                               (static_cast<double>(scale_in_data) *
                                static_cast<double>(scale_weights_data[i])));
    }

525
    return std::make_tuple(sum_scale, output_shift_scale, activation_scale);
A
Adam Osewski 已提交
526 527
  }

528
  dnnl::primitive_attr CreateConvAttrs(const framework::ExecutionContext& ctx) {
529 530
    dnnl::primitive_attr conv_attr;
    dnnl::post_ops post_operations;
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550

    const bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");

    float sum_scale = 1.0f;
    float activation_scale = 1.0f;
    std::vector<float> output_shift_scale;
    if (platform::is_int8<T>()) {
      if (ctx.HasAttr("Sum_scale")) {
        sum_scale = ctx.Attr<float>("Sum_scale");
        activation_scale = ctx.Attr<float>("Activation_scale");
        output_shift_scale = ctx.Attr<std::vector<float>>("Output_shift_scale");
      } else {
        std::tie(sum_scale, output_shift_scale, activation_scale) =
            get_int8_scales(ctx);
      }

      if (output_shift_scale.size() > 0) {
        int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
        conv_attr.set_output_scales(mask, output_shift_scale);
      }
551
    }
552

553 554 555 556 557 558 559 560
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
      post_operations.append_sum(sum_scale);
    }
561

562
    platform::AppendActivation(ctx, post_operations, activation_scale);
563

564 565 566
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }
567

568
  std::shared_ptr<dnnl::memory>
569 570 571
  AcquireWeightsMemoryWithReorderFromDataPrimitive(
      const framework::Tensor* filter, const int groups, const bool is_conv3d) {
    const K* filter_data = filter->data<K>();
572
    auto weights_tz = phi::vectorize(filter->dims());
573 574
    platform::GetGroupConvWeightsTz(weights_tz, groups);

575 576 577 578
    auto user_src_md =
        platform::MKLDNNMemDesc(weights_tz,
                                platform::MKLDNNGetDataType<K>(),
                                GetWeightsFormat(groups, is_conv3d));
579 580

    return this->AcquireMemoryWithReorder(
581 582 583 584 585
        user_src_md,
        this->bwd_pd_->weights_desc(),
        platform::to_void_cast<K>(filter_data),
        "@weights_mem_d_p",
        false);
586 587
  }

588
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorder(
589
      const framework::Tensor* input) {
590 591 592 593 594
    return this->AcquireMemoryWithReorderPrimitive(input,
                                                   "@src_mem_p_user",
                                                   "@src_mem_p_target",
                                                   "@src_mem_p",
                                                   this->fwd_pd_->src_desc());
595
  }
596

597
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorderFromWeightsPrimitive(
598
      const framework::Tensor* input) {
599 600 601 602 603
    return this->AcquireMemoryWithReorderPrimitive(input,
                                                   "@src_mem_w_p_user",
                                                   "@src_mem_w_p_target",
                                                   "@src_mem_w_p",
                                                   this->bwd_w_pd_->src_desc());
604 605
  }

606
  std::shared_ptr<dnnl::memory>
607 608 609
  AcquireDiffDstMemoryWithReorderFromWeightsPrimitive(
      const framework::Tensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
610 611 612 613 614
        out_grad,
        "@diff_dst_mem_w_p_user",
        "@diff_dst_mem_w_p_target",
        "@diff_dst_mem_w_p",
        this->bwd_w_pd_->diff_dst_desc());
615 616
  }

617
  std::shared_ptr<dnnl::memory>
618 619 620
  AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive(
      const framework::Tensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
621 622 623 624 625
        out_grad,
        "@diff_dst_mem_p_user",
        "@diff_dst_mem_p_target",
        "@diff_dst_mem_p",
        this->bwd_pd_->diff_dst_desc());
626 627
  }

628
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorderPrimitive(
629 630 631 632
      const framework::Tensor* in_mem,
      const char* key_mem_user,
      const char* key_mem_target,
      const char* key_mem,
633
      const dnnl::memory::desc& mem_md) {
634 635 636 637 638
    const T* in_mem_data = in_mem->data<T>();
    const std::string user_key_suffix{key_mem_user};
    auto user_mem_p = this->AcquireMemory(user_key_suffix);

    if (!user_mem_p) {
639
      return this->AcquireMemoryWithReorder(
640 641 642 643
          in_mem->mem_desc(),
          mem_md,
          platform::to_void_cast<T>(in_mem_data),
          key_mem);
644
    } else {
645 646
      const std::string target_key_suffix{key_mem_target};
      const auto target_mem_p = this->AcquireMemory(target_key_suffix);
A
Adam Osewski 已提交
647
      user_mem_p->set_data_handle(platform::to_void_cast<T>(in_mem_data));
648
      if (user_mem_p != target_mem_p) {
649
        this->AcquireReorder(user_mem_p, target_mem_p);
650
      }
651
      return target_mem_p;
652
    }
653 654
  }

655
  std::shared_ptr<dnnl::memory> AcquireWeightsMemoryWithReorder(
656 657 658 659 660
      const framework::Tensor* filter,
      const int groups,
      const bool is_conv3d,
      const bool is_test,
      const std::vector<float>& scale_data = {1.0f},
661
      int mask = 0) {
662 663 664
    // This is workaround to make execution faster, delete
    // if statement after including md inside Tensor
    auto weights_mem_p = this->AcquireMemory("@weights_mem_p_target");
665
    if (is_test && weights_mem_p) {
666
      return weights_mem_p;
667
    } else if (is_test) {
668
      const K* filter_data = filter->data<K>();
669
      auto weights_tz = phi::vectorize(filter->dims());
670
      platform::GetGroupConvWeightsTz(weights_tz, groups);
671

672 673 674 675
      auto user_src_md =
          platform::MKLDNNMemDesc(weights_tz,
                                  platform::MKLDNNGetDataType<K>(),
                                  GetWeightsFormat(groups, is_conv3d));
676 677

      return this->AcquireMemoryWithReorder(
678 679 680 681 682 683 684 685
          user_src_md,
          this->fwd_pd_->weights_desc(),
          platform::to_void_cast<K>(filter_data),
          "@weights_mem_p",
          is_test,
          {},
          scale_data,
          mask);
686 687
    } else {
      const T* filter_data = filter->data<T>();
688
      auto weights_tz = phi::vectorize(filter->dims());
689 690
      platform::GetGroupConvWeightsTz(weights_tz, groups);

691 692 693 694
      auto user_src_md =
          platform::MKLDNNMemDesc(weights_tz,
                                  platform::MKLDNNGetDataType<T>(),
                                  GetWeightsFormat(groups, is_conv3d));
695 696

      return this->AcquireMemoryWithReorder(
697 698 699 700 701 702 703 704
          user_src_md,
          this->fwd_pd_->weights_desc(),
          platform::to_void_cast<T>(filter_data),
          "@weights_mem_p",
          is_test,
          {},
          scale_data,
          mask);
705
    }
706
  }
707

708
  std::shared_ptr<dnnl::memory> AcquireBiasMemoryWithReorder(
709 710 711 712
      const framework::Tensor* bias,
      const bool is_test,
      const std::vector<float>& scale_data = {1.0f},
      int mask = 0) {
713
    auto bias_mem_p = this->AcquireMemory("@bias_mem_p_target");
714
    if (is_test && bias_mem_p) {
715 716
      return bias_mem_p;
    } else {
717
      // if K is int8 (weights are int8) then biases are int32
718 719
      using K_Bias = typename std::
          conditional<std::is_same<K, int8_t>::value, int32_t, K>::type;
720 721 722 723 724
      if (std::is_same<K_Bias, int32_t>::value &&
          bias->dtype() != phi::DataType::INT32) {
        LOG(ERROR) << "Bias should be of type int32 but is " << bias->dtype();
      }
      const K_Bias* bias_data = bias->data<K_Bias>();
725 726

      return this->AcquireMemoryWithReorder(
727
          bias->mem_desc(),
728 729 730 731 732 733 734
          this->fwd_pd_->bias_desc(),
          platform::to_void_cast<K_Bias>(bias_data),
          "@bias_mem_p",
          is_test,
          {},
          scale_data,
          mask);
735
    }
736
  }
737

738
  std::shared_ptr<dnnl::memory> AcquireResidualMemory(
739
      const framework::Tensor* residual_param) {
740
    void* residual_data =
741 742
        framework::TransToProtoVarType(residual_param->dtype()) ==
                framework::DataTypeTrait<T_out>::DataType()
A
Adam Osewski 已提交
743 744
            ? platform::to_void_cast<T_out>(residual_param->data<T_out>())
            : platform::to_void_cast<T>(residual_param->data<T>());
745 746 747 748 749
    auto residual_mem_p = this->AcquireMemory("@user_residual_data_mem_p");
    if (residual_mem_p) {
      residual_mem_p->set_data_handle(residual_data);
      return residual_mem_p;
    } else {
750 751 752
      return this->AcquireMemoryFromPrimitive(residual_param->mem_desc(),
                                              residual_data,
                                              "@user_residual_data_mem_p");
753
    }
754 755
  }

756
  std::shared_ptr<dnnl::memory> AcquireDstMemoryWithResidual(
757 758
      framework::Tensor* output, const framework::Tensor* residual_param) {
    std::shared_ptr<dnnl::memory> dst_memory_p;
759
    if (residual_param->mem_desc() != this->fwd_pd_->dst_desc()) {
760
      auto residual_memory_p = this->AcquireResidualMemory(residual_param);
761
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
762
      this->AcquireReorder(residual_memory_p, dst_memory_p);
763 764 765 766 767
    } else {
      // Changing ShareDataWith to TensorCopy results in performance drop
      // on ResNet architectures
      // (https://github.com/PaddlePaddle/Paddle/issues/22964)
      output->ShareDataWith(*residual_param);
768
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
769 770 771 772 773
    }
    return dst_memory_p;
  }
};

A
Adam Osewski 已提交
774 775
}  // anonymous namespace

776
template <typename T, typename K>
A
Adam Osewski 已提交
777
class ConvMKLDNNOpKernel : public framework::OpKernel<T> {
778
 public:
A
Adam Osewski 已提交
779
  void Compute(const framework::ExecutionContext& ctx) const override {
780 781
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()),
                      true,
A
Adam Osewski 已提交
782
                      platform::errors::PreconditionNotMet(
783 784 785
                          "Operator DNNL Conv must use CPUPlace"));
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
786 787 788 789 790
    bool is_BFLOAT16 = ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16";
    auto residual_param = ctx.Input<Tensor>("ResidualData");
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
791 792 793 794 795 796
    auto dst_dt = GetDstType(is_INT8,
                             is_BFLOAT16,
                             force_fp32_output,
                             fuse_activation,
                             fuse_residual_conn,
                             residual_param);
797
    if (!is_INT8) {
798
      if (dst_dt == dnnl::memory::data_type::f32) {
799
        ComputeFP32<float>(ctx);
800
      } else if (dst_dt == dnnl::memory::data_type::bf16) {
801 802
        ComputeFP32<platform::bfloat16>(ctx);
      }
803
    } else {
804
      if (dst_dt == dnnl::memory::data_type::f32) {
805
        ComputeINT8<float>(ctx);
806
      } else if (dst_dt == dnnl::memory::data_type::u8) {
807
        ComputeINT8<uint8_t>(ctx);
808
      } else if (dst_dt == dnnl::memory::data_type::s8) {
809 810
        ComputeINT8<int8_t>(ctx);
      }
811
    }
812
  }
813

814
  template <typename T_out>
A
Adam Osewski 已提交
815
  void ComputeFP32(const framework::ExecutionContext& ctx) const {
816
    auto& dev_ctx =
A
Adam Osewski 已提交
817
        ctx.template device_context<platform::MKLDNNDeviceContext>();
818
    const auto& mkldnn_engine = dev_ctx.GetEngine();
819

820
    const bool is_test = ctx.Attr<bool>("is_test");
821 822
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
    const bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
823

824 825 826 827 828
    const auto* input = ctx.Input<Tensor>("Input");
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
829

830
    ConvMKLDNNHandlerT<T, K, T_out> handler(
831 832 833 834 835 836 837 838 839
        ctx,
        dev_ctx,
        mkldnn_engine,
        ctx.GetPlace(),
        input,
        filter,
        bias,
        output,
        ctx.InputName("Input") + ctx.InputName("Filter"));
840

841
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
842

843
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
844
        filter, ctx.Attr<int>("groups"), is_conv3d, is_test);
845

846 847 848
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
849
      dst_memory_p =
850 851
          handler.AcquireDstMemoryWithResidual(output, residual_param);
    } else {
852
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
853
    }
854

855
    auto conv_p = handler.AcquireForwardPrimitive();
A
Adam 已提交
856

857
    std::unordered_map<int, dnnl::memory> args = {
858 859 860
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};
A
Adam 已提交
861

862
    if (bias) {
863
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(bias, is_test);
864
      args.insert({DNNL_ARG_BIAS, *bias_memory_p});
865
    }
866

867
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
868
    conv_p->execute(astream, args);
A
Adam 已提交
869
    astream.wait();
870

871
    output->set_mem_desc(dst_memory_p->get_desc());
872
  }
873

874
  template <typename T_out>
A
Adam Osewski 已提交
875
  void ComputeINT8(const framework::ExecutionContext& ctx) const {
876
    auto& dev_ctx =
A
Adam Osewski 已提交
877
        ctx.template device_context<platform::MKLDNNDeviceContext>();
878 879
    const auto& mkldnn_engine = dev_ctx.GetEngine();

A
Adam Osewski 已提交
880 881 882 883 884
    const std::string& fuse_activation =
        ctx.Attr<std::string>("fuse_activation");
    const bool& fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    const bool& force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
885

886 887
    bool unsigned_output =
        (fuse_activation == "relu" || fuse_activation == "relu6");
888 889
    bool need_s8_to_u8 = false;

A
Adam Osewski 已提交
890
    PADDLE_ENFORCE_NE(
891 892
        is_conv3d,
        true,
A
Adam Osewski 已提交
893 894 895
        platform::errors::Unimplemented(
            "OneDNN int8 convolution does not support 3D inputs currently"));
    PADDLE_ENFORCE_EQ(
896 897
        fuse_residual_conn && force_fp32_output,
        false,
A
Adam Osewski 已提交
898 899
        platform::errors::Unimplemented(
            "residual fusion does not support force output with fp32"));
A
Adam 已提交
900

A
Adam Osewski 已提交
901 902 903 904
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
905

A
Adam Osewski 已提交
906
    ConvMKLDNNHandlerT<T, K, T_out> handler(
907 908 909 910 911 912 913 914 915
        ctx,
        dev_ctx,
        mkldnn_engine,
        ctx.GetPlace(),
        input,
        filter,
        bias,
        output,
        ctx.InputName("Input") + ctx.InputName("Filter"));
916

A
Adam Osewski 已提交
917
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
F
FDInSky 已提交
918

A
Adam Osewski 已提交
919 920 921 922 923 924 925
    const auto& scale_weights_data =
        ctx.Attr<std::vector<float>>("Scale_weights");
    const bool is_multi_channel = scale_weights_data.size() > 1;
    const int& groups = ctx.Attr<int>("groups");
    int mask_reorder =
        is_multi_channel ? ((groups != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
926
        filter, groups, false, true, scale_weights_data, mask_reorder);
927

A
Adam Osewski 已提交
928 929 930
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
931
      PADDLE_ENFORCE_EQ(
932 933
          output->dims(),
          residual_param->dims(),
A
Adam Osewski 已提交
934 935 936 937
          platform::errors::InvalidArgument(
              "Output and elementwise parameter need to have the "
              "same dimension sizes, but got output's dimension = %d"
              " and residual param's dimension =%d .",
938 939
              output->dims().size(),
              residual_param->dims().size()));
940
      dst_memory_p =
A
Adam Osewski 已提交
941 942
          handler.AcquireDstMemoryWithResidual(output, residual_param);
      need_s8_to_u8 = (platform::MKLDNNGetDataType<T_out>() ==
943
                       dnnl::memory::data_type::s8) &&
A
Adam Osewski 已提交
944 945 946 947
                      unsigned_output;
    } else {
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
    }
L
lidanqing 已提交
948

A
Adam Osewski 已提交
949 950 951
    auto conv_p = handler.AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> args = {
952 953 954
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};
A
Adam 已提交
955

A
Adam Osewski 已提交
956
    if (bias) {
957 958 959 960 961 962 963 964 965 966 967 968
      std::vector<float> bias_scales;
      auto p_scales_tuple =
          std::make_shared<std::tuple<float, std::vector<float>>>(
              std::make_tuple(static_cast<float>(mask_reorder), bias_scales));
      if (ctx.HasAttr("Bias_scales")) {
        bias_scales = ctx.Attr<std::vector<float>>("Bias_scales");
        p_scales_tuple =
            std::make_shared<std::tuple<float, std::vector<float>>>(
                std::make_tuple(static_cast<float>(mask_reorder), bias_scales));
      } else {
        p_scales_tuple = handler.get_int8_bias_scales(ctx);
      }
969 970 971 972 973
      auto bias_memory_p =
          handler.AcquireBiasMemoryWithReorder(bias,
                                               true,
                                               std::get<1>(*p_scales_tuple),
                                               std::get<0>(*p_scales_tuple));
974
      args.insert({DNNL_ARG_BIAS, *bias_memory_p});
975
    }
A
Adam Osewski 已提交
976 977 978

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    conv_p->execute(astream, args);
A
Adam 已提交
979
    astream.wait();
A
Adam Osewski 已提交
980

981
    if (need_s8_to_u8) {
X
xiaolil1 已提交
982 983
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }
A
Adam Osewski 已提交
984

985
    output->set_mem_desc(dst_memory_p->get_desc());
986
  }
987 988
};

989
template <typename T, typename K>
A
Adam Osewski 已提交
990
class ConvMKLDNNGradOpKernel : public framework::OpKernel<T> {
991
 public:
A
Adam Osewski 已提交
992
  void Compute(const framework::ExecutionContext& ctx) const override {
993 994
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()),
                      true,
A
Adam Osewski 已提交
995
                      platform::errors::PreconditionNotMet(
996
                          "Operator DNNL ConvGrad must use CPUPlace"));
997 998
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
999 1000 1001 1002
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
1003 1004
    const Tensor* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
1005 1006 1007 1008 1009 1010 1011
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    if (!input_grad && !filter_grad) return;

1012 1013
    // TODO(jczaja): Are all tensors really needed?
    ConvMKLDNNHandlerT<T, K, T> handler(
1014 1015 1016 1017 1018 1019 1020 1021 1022
        ctx,
        dev_ctx,
        ctx.GetPlace(),
        input,
        filter,
        bias,
        output_grad,
        filter_grad,
        input_grad,
1023
        ctx.InputName("Input") + ctx.InputName("Filter"));
1024 1025

    // create mkldnn memory from input tensors (data/weights)
1026
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
1027

1028 1029 1030 1031 1032 1033
    if (filter_grad) {
      auto src_memory_p =
          handler.AcquireSrcMemoryWithReorderFromWeightsPrimitive(input);
      auto diff_dst_memory_p =
          handler.AcquireDiffDstMemoryWithReorderFromWeightsPrimitive(
              output_grad);
1034

1035 1036
      // For convoluition with groups write filter grad into
      // oneDNN buffer and then we reorder it into filter_grad tensor
1037
      int g = std::max(ctx.Attr<int>("groups"), 1);
1038
      auto diff_weights_memory_p =
1039 1040
          g > 1 ? handler.AcquireDiffWeightsMemory()
                : handler.AcquireDiffWeightsMemory(filter_grad);
1041

1042
      auto conv_bwd_weights_p = handler.AcquireBackwardWeightsPrimitive();
1043

A
Adam 已提交
1044
      conv_bwd_weights_p->execute(
1045 1046 1047 1048
          astream,
          {{DNNL_ARG_SRC, *src_memory_p},
           {DNNL_ARG_DIFF_DST, *diff_dst_memory_p},
           {DNNL_ARG_DIFF_WEIGHTS, *diff_weights_memory_p}});
A
Adam 已提交
1049
      astream.wait();
1050

A
Adam Osewski 已提交
1051
      filter_grad->set_layout(framework::DataLayout::kMKLDNN);
1052 1053
      // in OneDNN groups in convolution are treated as separate dimension
      // which is not the case in paddlepaddle
A
Adam Osewski 已提交
1054
      auto filter_fmt = platform::GetMKLDNNFormat(*diff_weights_memory_p);
1055 1056 1057 1058

      // For convolution with groups convert from blocked to NCHW
      // otherwise there will be problems in next operators working on this data
      if (g > 1) {
1059 1060
        dnnl::memory::data_type in_type = framework::ToMKLDNNDataType(
            framework::TransToProtoVarType(filter->dtype()));
1061 1062
        // for 3d conv with groups (six dimensional data reorder to goidhw)
        // for 2d conv with groups (five dimensional data reorder to goihw)
1063
        // auto weights_tz = phi::vectorize(filter->dims());
1064 1065

        auto weights_tz = diff_weights_memory_p->get_desc().dims();
1066 1067 1068
        dnnl::memory::format_tag out_format =
            weights_tz.size() == 6 ? dnnl::memory::format_tag::goidhw
                                   : dnnl::memory::format_tag::goihw;
1069
        platform::ReorderMKLDNNHandler handler(
1070 1071 1072 1073
            weights_tz,
            framework::TransToProtoVarType(filter->dtype()),
            in_type,
            mkldnn_engine);
1074 1075 1076 1077 1078 1079
        auto reorder_dst_memory_p =
            handler.AcquireDstMemory(filter_grad, out_format, ctx.GetPlace());

        auto reorder_p =
            handler.AcquireReorder(reorder_dst_memory_p, diff_weights_memory_p);

1080
        {
C
chenjian 已提交
1081
          platform::RecordEvent record_reorder(
1082 1083 1084
              "int_reorder",
              platform::TracerEventType::UserDefined,
              2,
C
chenjian 已提交
1085
              platform::EventRole::kUniqueOp);
1086 1087
          reorder_p->execute(
              astream, *diff_weights_memory_p, *reorder_dst_memory_p);
1088 1089
          astream.wait();
        }
1090 1091 1092 1093

        // So here we have a data in goihw , which can be interpreted as OIHW
        // (OIDHW for conv3d)
        // because filter_grad shape is set for OIHW (OIDHW for conv3d)
1094 1095 1096
        dnnl::memory::format_tag target_format =
            weights_tz.size() == 6 ? dnnl::memory::format_tag::oidhw
                                   : dnnl::memory::format_tag::oihw;
1097 1098 1099 1100
        filter_grad->set_format(target_format);
      } else {
        filter_grad->set_format(filter_fmt);
      }
1101 1102
    }
    if (input_grad) {
1103 1104
      auto weights_memory_p =
          handler.AcquireWeightsMemoryWithReorderFromDataPrimitive(
1105 1106
              filter,
              ctx.Attr<int>("groups"),
1107
              ctx.Attr<std::vector<int>>("strides").size() == 3U);
1108

1109 1110 1111 1112
      auto diff_dst_memory_p =
          handler.AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive(
              output_grad);
      auto diff_src_memory_p = handler.AcquireDiffSrcMemory(input_grad);
1113

1114
      auto conv_bwd_data_p = handler.AcquireBackwardPrimitive();
1115

A
Adam 已提交
1116
      conv_bwd_data_p->execute(astream,
1117 1118 1119
                               {{DNNL_ARG_WEIGHTS, *weights_memory_p},
                                {DNNL_ARG_DIFF_DST, *diff_dst_memory_p},
                                {DNNL_ARG_DIFF_SRC, *diff_src_memory_p}});
A
Adam 已提交
1120
      astream.wait();
1121

A
Adam Osewski 已提交
1122 1123
      input_grad->set_layout(framework::DataLayout::kMKLDNN);
      input_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory_p));
1124
    }
X
xiaolil1 已提交
1125
  }
1126
};
1127

1128 1129 1130 1131 1132
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

1133 1134 1135 1136
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    FP32,
X
Xin Pan 已提交
1137
                                    ops::kConvMKLDNNFP32,
1138
                                    ops::ConvMKLDNNOpKernel<float, float>);
1139

1140
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
1141 1142 1143 1144 1145
    conv2d,
    MKLDNN,
    ::paddle::platform::CPUPlace,
    BF16,
    ops::kConvMKLDNNFP32,
1146 1147
    ops::ConvMKLDNNOpKernel<paddle::platform::bfloat16, float>);

1148 1149 1150 1151
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    U8,
1152
                                    ops::kConvMKLDNNINT8,
1153
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);
1154

1155 1156 1157 1158
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    U8WS8,
1159 1160 1161
                                    ops::kConvMKLDNNINT8WS8,
                                    ops::ConvMKLDNNOpKernel<uint8_t, int8_t>);

1162 1163 1164 1165
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    S8,
1166
                                    ops::kConvMKLDNNINT8,
1167
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
1168

1169 1170 1171 1172
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    S8WS8,
1173 1174 1175
                                    ops::kConvMKLDNNINT8WS8,
                                    ops::ConvMKLDNNOpKernel<int8_t, int8_t>);

1176 1177 1178 1179
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    FP32,
X
Xin Pan 已提交
1180
                                    ops::kConvMKLDNNFP32,
1181
                                    ops::ConvMKLDNNGradOpKernel<float, float>);
1182

1183
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
1184 1185 1186 1187
    conv2d_grad,
    MKLDNN,
    ::paddle::platform::CPUPlace,
    BF16,
1188
    ops::kConvMKLDNNFP32,
1189 1190
    ops::ConvMKLDNNGradOpKernel<paddle::platform::bfloat16,
                                paddle::platform::bfloat16>);
1191

1192 1193 1194 1195
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    FP32,
1196 1197 1198 1199
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
1200 1201 1202 1203
    depthwise_conv2d,
    MKLDNN,
    ::paddle::platform::CPUPlace,
    BF16,
1204 1205 1206
    ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNOpKernel<paddle::platform::bfloat16, float>);

1207 1208 1209 1210
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    U8,
1211 1212 1213
                                    ops::kConvMKLDNNINT8,
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);

1214 1215 1216 1217
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    S8,
1218 1219 1220
                                    ops::kConvMKLDNNINT8,
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);

1221 1222 1223 1224
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d_grad,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    FP32,
1225 1226 1227 1228
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
1229 1230 1231 1232
    depthwise_conv2d_grad,
    MKLDNN,
    ::paddle::platform::CPUPlace,
    BF16,
1233 1234 1235
    ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNGradOpKernel<paddle::platform::bfloat16, float>);

1236 1237 1238 1239
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    FP32,
1240
                                    ops::kConvMKLDNNFP32,
1241
                                    ops::ConvMKLDNNOpKernel<float, float>);
1242

1243 1244 1245 1246
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    FP32,
1247
                                    ops::kConvMKLDNNFP32,
1248
                                    ops::ConvMKLDNNGradOpKernel<float, float>);