conv_mkldnn_op.cc 46.0 KB
Newer Older
A
Adam Osewski 已提交
1
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

A
Adam Osewski 已提交
15 16
#include <tuple>

17
#include "paddle/fluid/framework/expect.h"
18
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
19
#include "paddle/fluid/platform/cpu_info.h"
A
Adam Osewski 已提交
20
#include "paddle/fluid/platform/mkldnn_helper.h"
J
Jacek Czaja 已提交
21
#include "paddle/fluid/platform/mkldnn_reuse.h"
22 23 24

namespace paddle {
namespace operators {
A
Adam Osewski 已提交
25
namespace {
26

27 28 29
inline MKLDNNMemoryFormat GetWeightsFormat(const MKLDNNMemoryFormat format,
                                           const int groups,
                                           const bool is_conv3d) {
Y
Yihua Xu 已提交
30
  if (is_conv3d) {
31
    return (groups == 1) ? format : MKLDNNMemoryFormat::goidhw;
Y
Yihua Xu 已提交
32
  } else {
33
    return (groups == 1) ? format : MKLDNNMemoryFormat::goihw;
Y
Yihua Xu 已提交
34 35 36
  }
}

37 38 39 40 41 42
static dnnl::memory::data_type GetDstType(bool is_int8, bool is_bfloat16,
                                          bool force_fp32_output,
                                          std::string fuse_activation,
                                          bool fuse_residual_conn,
                                          const Tensor* residual_param) {
  auto dst_dt = dnnl::memory::data_type::f32;
43 44
  if (is_int8) {
    dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
45 46
                 ? dnnl::memory::data_type::u8
                 : dnnl::memory::data_type::s8;
47
    if (force_fp32_output) {
48
      dst_dt = dnnl::memory::data_type::f32;
49
    }
50
    if (fuse_residual_conn && residual_param) {
51 52
      auto residual_dt = framework::ToMKLDNNDataType(
          framework::TransToProtoVarType(residual_param->dtype()));
53
      if (dst_dt != residual_dt) dst_dt = residual_dt;
54
    }
55 56
  } else {
    if (!force_fp32_output && is_bfloat16) {
57
      dst_dt = dnnl::memory::data_type::bf16;
58
      if (fuse_residual_conn && residual_param) {
59 60
        dst_dt = framework::ToMKLDNNDataType(
            framework::TransToProtoVarType(residual_param->dtype()));
61 62
      }
    }
63 64 65 66
  }
  return dst_dt;
}

67
template <typename T, typename K, typename T_out>
68
class ConvMKLDNNHandlerT
69 70 71
    : public platform::MKLDNNHandlerT<T, dnnl::convolution_forward,
                                      dnnl::convolution_backward_data,
                                      dnnl::convolution_backward_weights> {
72
 public:
A
Adam Osewski 已提交
73
  ConvMKLDNNHandlerT(const framework::ExecutionContext& ctx,
74
                     const platform::MKLDNNDeviceContext& dev_ctx,
75
                     const dnnl::engine mkldnn_engine,
76 77 78
                     platform::Place cpu_place, const Tensor* input,
                     const Tensor* filter, const Tensor* bias, Tensor* output,
                     const std::string& unique_name)
79 80 81
      : platform::MKLDNNHandlerT<T, dnnl::convolution_forward,
                                 dnnl::convolution_backward_data,
                                 dnnl::convolution_backward_weights>(
82
            dev_ctx, mkldnn_engine, cpu_place,
83
            platform::CreateKey(dev_ctx, phi::vectorize(input->dims()),
84
                                unique_name)) {
85
    if (unlikely(!this->isCached())) {
86
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
87
          input->layout(), framework::DataLayout::kMKLDNN,
88 89
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
90
              framework::DataLayout::kMKLDNN, input->layout()));
91 92 93
      PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Input tensor"));
94

95
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
96
          filter->layout(), framework::DataLayout::kMKLDNN,
97 98
          platform::errors::InvalidArgument(
              "The Filter tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
99
              framework::DataLayout::kMKLDNN, filter->layout()));
100 101 102
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Filter tensor"));
K
Krzysztof Binias 已提交
103

104 105 106 107 108 109 110 111 112 113 114 115
      PADDLE_ENFORCE_GE(
          input->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
      PADDLE_ENFORCE_LE(
          input->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
116

117 118 119 120 121 122 123 124 125 126 127 128
      PADDLE_ENFORCE_GE(
          filter->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
      PADDLE_ENFORCE_LE(
          filter->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
129

130 131
      if (bias) {
        PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
132
            bias->layout(), framework::DataLayout::kMKLDNN,
133 134
            platform::errors::InvalidArgument(
                "The Bias tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
135
                framework::DataLayout::kMKLDNN, bias->layout()));
136 137 138
        PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
                          platform::errors::InvalidArgument(
                              "Got wrong format for Bias tensor."));
139

140 141 142 143 144 145
        PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                          platform::errors::InvalidArgument(
                              "Bias must only have 1 dimension, "
                              "i.e. X, but got dimension = %d .",
                              bias->dims().size()));
      }
F
FDInSky 已提交
146

147 148 149
      const int groups = ctx.Attr<int>("groups");
      const std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
F
FDInSky 已提交
150

151
      const auto input_dims = input->dims();
152
      const auto data_dims = phi::slice_ddim(input_dims, 2, input_dims.size());
153 154
      const auto filter_dims = filter->dims();
      const auto filter_data_dims =
155
          phi::slice_ddim(filter_dims, 2, filter_dims.size());
156

157
      const auto ksize = phi::vectorize(filter_data_dims);
158
      const bool is_test = ctx.Attr<bool>("is_test");
159

160 161
      auto strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
162

163 164
      auto paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
A
Adam 已提交
165

166 167 168
      auto dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));
A
Adam 已提交
169

170 171
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);
A
Adam 已提交
172

173 174
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
175

176
      const auto src_tz = phi::vectorize(input->dims());
177

178
      auto weights_tz = phi::vectorize(filter->dims());
179
      platform::GetGroupConvWeightsTz(weights_tz, groups);
180

181
      const auto dst_tz = phi::vectorize(output->dims());
182

183
      const dnnl::memory::dims stride_dims = strides;
184
      const auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
185
      const dnnl::memory::dims dilations_dims = dilations;
A
Adam 已提交
186

187 188 189 190
      /* create memory descriptor for convolution without specified format
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
191
      auto chosen_memory_format = MKLDNNMemoryFormat::any;
192
      auto data_type = dnnl::memory::data_type::f32;
193 194
      if (ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16" ||
          std::is_same<T_out, platform::bfloat16>::value)
195
        data_type = dnnl::memory::data_type::bf16;
196

197
      dnnl::memory::desc src_md, weights_md;
A
Adam Osewski 已提交
198 199
      if (platform::is_int8<T>()) {
        src_md = platform::MKLDNNMemDesc(
200 201 202
            src_tz,
            framework::ToMKLDNNDataType(
                framework::TransToProtoVarType(input->dtype())),
A
Adam Osewski 已提交
203 204
            chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(
205
            weights_tz, dnnl::memory::data_type::s8, chosen_memory_format);
A
Adam Osewski 已提交
206 207 208 209 210 211 212
      } else {
        src_md =
            platform::MKLDNNMemDesc(src_tz, data_type, chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(weights_tz, data_type,
                                             MKLDNNMemoryFormat::any);
      }

213
      const auto dst_md = platform::MKLDNNMemDesc(
214
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
215 216
      const auto fwd_prop_kind = is_test ? dnnl::prop_kind::forward_inference
                                         : dnnl::prop_kind::forward_training;
217

218
      const dnnl::primitive_attr conv_attr = CreateConvAttrs(ctx);
A
Adam 已提交
219

220
      if (bias) {
221
        auto bias_tz = phi::vectorize(bias->dims());
222
        dnnl::memory::desc bias_md;
A
Adam Osewski 已提交
223 224
        if (platform::is_int8<T>()) {
          bias_md = platform::MKLDNNMemDesc(
225
              bias_tz, dnnl::memory::data_type::s32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
226 227 228 229
        } else {
          bias_md = platform::MKLDNNMemDesc(bias_tz, data_type,
                                            MKLDNNMemoryFormat::x);
        }
230

231
        this->AcquireForwardPrimitiveDescriptor(
232
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
233
            src_md, weights_md, bias_md, dst_md, stride_dims, dilations_dims,
234 235
            mkldnn_paddings[0], mkldnn_paddings[1]);
      } else {
236
        this->AcquireForwardPrimitiveDescriptor(
237
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
238 239
            src_md, weights_md, dst_md, stride_dims, dilations_dims,
            mkldnn_paddings[0], mkldnn_paddings[1]);
240 241 242
      }
    }
  }
243

244 245 246 247 248 249
  ConvMKLDNNHandlerT(const framework::ExecutionContext& ctx,
                     const platform::MKLDNNDeviceContext& dev_ctx,
                     platform::Place cpu_place, const Tensor* in,
                     const Tensor* filter, const Tensor* bias,
                     const Tensor* out_grad, Tensor* filter_grad,
                     Tensor* in_x_grad, const std::string& unique_name)
250 251 252
      : platform::MKLDNNHandlerT<T, dnnl::convolution_forward,
                                 dnnl::convolution_backward_data,
                                 dnnl::convolution_backward_weights>(
253
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
254
            platform::CreateKey(dev_ctx, phi::vectorize(in->dims()),
255
                                unique_name)) {
256
    if (unlikely(!this->isBwdCached())) {
257
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
258
          in->layout(), framework::DataLayout::kMKLDNN,
259 260
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
261
              framework::DataLayout::kMKLDNN, in->layout()));
262 263 264 265 266
      PADDLE_ENFORCE_NE(in->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Got wrong format for Input tensor."));

      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
267
          filter->layout(), framework::DataLayout::kMKLDNN,
268 269
          platform::errors::InvalidArgument(
              "The filter tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
270
              framework::DataLayout::kMKLDNN, filter->layout()));
271 272 273 274 275
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Got wrong format for Filter tensor."));

      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
276
          out_grad->layout(), framework::DataLayout::kMKLDNN,
277 278
          platform::errors::InvalidArgument(
              "The output_grad tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
279
              framework::DataLayout::kMKLDNN, out_grad->layout()));
280 281 282 283 284
      PADDLE_ENFORCE_NE(out_grad->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for output_grad tensor"));

      PADDLE_ENFORCE_EQ(
285
          ctx.Attr<bool>("is_test"), false,
286 287 288 289 290 291 292 293 294 295 296 297 298 299
          platform::errors::InvalidArgument(
              "is_test attribute should be set to False in training phase."));

      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));

      auto input_dims = in->dims();
300
      auto data_dims = phi::slice_ddim(input_dims, 2, input_dims.size());
301 302
      auto filter_dims = filter->dims();
      auto filter_data_dims =
303 304
          phi::slice_ddim(filter_dims, 2, filter_dims.size());
      auto ksize = phi::vectorize(filter_data_dims);
305

A
Adam Osewski 已提交
306 307
      std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
308 309 310
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);

311 312
      auto src_tz = phi::vectorize(in->dims());
      auto weights_tz = phi::vectorize(filter->dims());
313

A
Adam Osewski 已提交
314
      int groups = ctx.Attr<int>("groups");
315 316
      int g = std::max(groups, 1);
      platform::GetGroupConvWeightsTz(weights_tz, g);
317
      auto dst_tz = phi::vectorize(out_grad->dims());
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

      /* create memory descriptor for conv backward without specified format
       * ('any') which lets a primitive (conv backward in this case) choose
       * the memory format preferred for best performance
       */
      const auto chosen_memory_format = MKLDNNMemoryFormat::any;
      const auto weights_format = MKLDNNMemoryFormat::any;

      auto src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      const auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
      auto diff_src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
      auto diff_weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
      auto diff_dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);

      auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
342
      const dnnl::memory::dims dilations_dims = dilations;
343

344
      const dnnl::memory::dims stride_dims = strides;
345
      // Recreating FWD PD. For training there are no post ops in convolution
346
      dnnl::primitive_attr conv_attr;
347
      if (bias) {
348
        auto bias_tz = phi::vectorize(bias->dims());
349
        dnnl::memory::desc bias_md;
A
Adam Osewski 已提交
350 351
        if (platform::is_int8<T>()) {
          bias_md = platform::MKLDNNMemDesc(
352
              bias_tz, dnnl::memory::data_type::s32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
353 354
        } else {
          bias_md = platform::MKLDNNMemDesc(
355
              bias_tz, dnnl::memory::data_type::f32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
356
        }
357

358
        this->AcquireForwardPrimitiveDescriptor(
359
            conv_attr, dnnl::prop_kind::forward_training,
360 361 362 363
            dnnl::algorithm::convolution_direct, src_md, weights_md, bias_md,
            dst_md, stride_dims, dilations_dims, mkldnn_paddings[0],
            mkldnn_paddings[1]);
      } else {
364
        this->AcquireForwardPrimitiveDescriptor(
365
            conv_attr, dnnl::prop_kind::forward_training,
366 367 368 369 370
            dnnl::algorithm::convolution_direct, src_md, weights_md, dst_md,
            stride_dims, dilations_dims, mkldnn_paddings[0],
            mkldnn_paddings[1]);
      }

371
      this->AcquireBackwardPrimitiveDescriptor(
372
          dnnl::algorithm::convolution_direct, diff_src_md, weights_md,
373 374 375
          diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
          mkldnn_paddings[1]);

376
      this->AcquireBackwardWeightsPrimitiveDescriptor(
377
          dnnl::algorithm::convolution_direct, src_md, diff_weights_md,
378 379 380 381 382
          diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
          mkldnn_paddings[1]);
    }
  }

383 384 385 386 387 388 389 390 391 392 393 394 395
  std::shared_ptr<std::tuple<float, std::vector<float>>> get_int8_bias_scales(
      const framework::ExecutionContext& ctx) {
    // Get scales int8 bias key
    const std::string key_bs = this->key_ + "@bs";

    // Scales for int8 bias are to be cached to avoid
    // computing them each iteration
    auto bias_scale_tuple =
        std::static_pointer_cast<std::tuple<float, std::vector<float>>>(
            this->dev_ctx_.GetBlob(key_bs));
    if (bias_scale_tuple) return bias_scale_tuple;

    const auto* filter = ctx.Input<Tensor>("Filter");
396
    const auto& weights_tz = phi::vectorize(filter->dims());
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
    const int groups = std::max(ctx.Attr<int>("groups"), 1);

    const auto& scale_weights_data =
        ctx.Attr<std::vector<float>>("Scale_weights");
    const auto& scale_in_data = ctx.Attr<float>("Scale_in");

    bool is_multi_channel = scale_weights_data.size() > 1;
    int mask_reorder = is_multi_channel ? 1 << 0 : 1;

    int count = 1;
    if (is_multi_channel) {
      count *= weights_tz[0];
      if (groups > 1) {
        count *= weights_tz[1];
      }
    }

    bias_scale_tuple =
        std::make_shared<std::tuple<float, std::vector<float>>>(std::make_tuple(
            static_cast<float>(mask_reorder), std::vector<float>(count)));
    for (int i = 0; i < count; i++) {
      std::get<1>(*bias_scale_tuple)[i] = scale_in_data * scale_weights_data[i];
    }

    this->dev_ctx_.SetBlob(key_bs, bias_scale_tuple);

    return bias_scale_tuple;
  }

426
  std::tuple<float, std::vector<float>, float> get_int8_scales(
A
Adam Osewski 已提交
427 428
      const framework::ExecutionContext& ctx) const {
    const auto* filter = ctx.Input<Tensor>("Filter");
429
    const auto& weights_tz = phi::vectorize(filter->dims());
A
Adam Osewski 已提交
430 431 432 433 434 435 436 437 438

    const bool& force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    const bool& fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    const int groups = std::max(ctx.Attr<int>("groups"), 1);

    const auto& scale_in_data = ctx.Attr<float>("Scale_in");
    const auto& scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
    bool is_multi_channel = scale_weights_data.size() > 1;
439
    bool has_activation = !ctx.Attr<std::string>("fuse_activation").empty();
440 441 442 443 444 445 446
    float activation_scale = (!force_fp32_output && has_activation)
                                 ? ctx.Attr<float>("Scale_out")
                                 : 1.0f;

    float scale_out_data = (force_fp32_output || has_activation)
                               ? 1.0f
                               : ctx.Attr<float>("Scale_out");
A
Adam Osewski 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
    float sum_scale =
        fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;
    int count =
        is_multi_channel
            ? (groups > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
            : 1;
    std::vector<float> output_shift_scale(count);

#pragma omp parallel for if (count > 50)
    for (int i = 0; i < count; i++) {
      if (scale_weights_data[i] == 0.0)
        // weights data will contain 0 in some models, then weights
        // scale couldn't be calculated
        output_shift_scale[i] = scale_out_data;
      else
        output_shift_scale[i] =
            static_cast<float>(static_cast<double>(scale_out_data) /
                               (static_cast<double>(scale_in_data) *
                                static_cast<double>(scale_weights_data[i])));
    }

468
    return std::make_tuple(sum_scale, output_shift_scale, activation_scale);
A
Adam Osewski 已提交
469 470
  }

471
  dnnl::primitive_attr CreateConvAttrs(const framework::ExecutionContext& ctx) {
472 473
    dnnl::primitive_attr conv_attr;
    dnnl::post_ops post_operations;
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497

    const std::string fuse_activation =
        ctx.Attr<std::string>("fuse_activation");
    const float fuse_alpha = ctx.Attr<float>("fuse_alpha");
    const float fuse_beta = ctx.Attr<float>("fuse_beta");
    const bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");

    float sum_scale = 1.0f;
    float activation_scale = 1.0f;
    std::vector<float> output_shift_scale;
    if (platform::is_int8<T>()) {
      if (ctx.HasAttr("Sum_scale")) {
        sum_scale = ctx.Attr<float>("Sum_scale");
        activation_scale = ctx.Attr<float>("Activation_scale");
        output_shift_scale = ctx.Attr<std::vector<float>>("Output_shift_scale");
      } else {
        std::tie(sum_scale, output_shift_scale, activation_scale) =
            get_int8_scales(ctx);
      }

      if (output_shift_scale.size() > 0) {
        int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
        conv_attr.set_output_scales(mask, output_shift_scale);
      }
498
    }
499

500 501 502 503 504 505 506 507
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
      post_operations.append_sum(sum_scale);
    }
508 509

    if (fuse_activation == "hard_sigmoid") {
510 511
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_linear,
512
                                     fuse_alpha, fuse_beta);
513 514
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_clip, 0.0f, 1.0f);
515 516 517 518 519
    } else if (fuse_activation != "") {
      const auto activation_algorithm =
          platform::AcquireActivationAlgorithm(fuse_activation);
      post_operations.append_eltwise(activation_scale, activation_algorithm,
                                     fuse_alpha, fuse_beta);
520
    }
521

522 523 524
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }
525

526
  std::shared_ptr<dnnl::memory>
527 528 529
  AcquireWeightsMemoryWithReorderFromDataPrimitive(
      const framework::Tensor* filter, const int groups, const bool is_conv3d) {
    const K* filter_data = filter->data<K>();
530
    auto weights_tz = phi::vectorize(filter->dims());
531 532 533 534 535 536 537 538
    platform::GetGroupConvWeightsTz(weights_tz, groups);

    auto user_src_md = platform::MKLDNNMemDesc(
        weights_tz, platform::MKLDNNGetDataType<K>(),
        GetWeightsFormat(filter->format(), groups, is_conv3d));

    return this->AcquireMemoryWithReorder(
        user_src_md, this->bwd_pd_->weights_desc(),
A
Adam Osewski 已提交
539
        platform::to_void_cast<K>(filter_data), "@weights_mem_d_p", false);
540 541
  }

542
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorder(
543
      const framework::Tensor* input) {
544 545 546 547
    return this->AcquireMemoryWithReorderPrimitive(
        input, "@src_mem_p_user", "@src_mem_p_target", "@src_mem_p",
        this->fwd_pd_->src_desc());
  }
548

549
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorderFromWeightsPrimitive(
550 551 552 553 554 555
      const framework::Tensor* input) {
    return this->AcquireMemoryWithReorderPrimitive(
        input, "@src_mem_w_p_user", "@src_mem_w_p_target", "@src_mem_w_p",
        this->bwd_w_pd_->src_desc());
  }

556
  std::shared_ptr<dnnl::memory>
557 558 559 560 561 562 563
  AcquireDiffDstMemoryWithReorderFromWeightsPrimitive(
      const framework::Tensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
        out_grad, "@diff_dst_mem_w_p_user", "@diff_dst_mem_w_p_target",
        "@diff_dst_mem_w_p", this->bwd_w_pd_->diff_dst_desc());
  }

564
  std::shared_ptr<dnnl::memory>
565 566 567 568 569 570 571
  AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive(
      const framework::Tensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
        out_grad, "@diff_dst_mem_p_user", "@diff_dst_mem_p_target",
        "@diff_dst_mem_p", this->bwd_pd_->diff_dst_desc());
  }

572
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorderPrimitive(
573 574
      const framework::Tensor* in_mem, const char* key_mem_user,
      const char* key_mem_target, const char* key_mem,
575
      const dnnl::memory::desc& mem_md) {
576 577 578 579 580 581
    const T* in_mem_data = in_mem->data<T>();
    const std::string user_key_suffix{key_mem_user};
    auto user_mem_p = this->AcquireMemory(user_key_suffix);

    if (!user_mem_p) {
      auto user_mem_md = platform::MKLDNNMemDesc(
582
          phi::vectorize(in_mem->dims()), platform::MKLDNNGetDataType<T>(),
583
          in_mem->format());
584
      return this->AcquireMemoryWithReorder(
585
          user_mem_md, mem_md, platform::to_void_cast<T>(in_mem_data), key_mem);
586
    } else {
587 588
      const std::string target_key_suffix{key_mem_target};
      const auto target_mem_p = this->AcquireMemory(target_key_suffix);
A
Adam Osewski 已提交
589
      user_mem_p->set_data_handle(platform::to_void_cast<T>(in_mem_data));
590
      if (user_mem_p != target_mem_p) {
591
        this->AcquireReorder(user_mem_p, target_mem_p);
592
      }
593
      return target_mem_p;
594
    }
595 596
  }

597
  std::shared_ptr<dnnl::memory> AcquireWeightsMemoryWithReorder(
598
      const framework::Tensor* filter, const int groups, const bool is_conv3d,
599 600
      const bool is_test, const std::vector<float>& scale_data = {1.0f},
      int mask = 0) {
601 602 603
    // This is workaround to make execution faster, delete
    // if statement after including md inside Tensor
    auto weights_mem_p = this->AcquireMemory("@weights_mem_p_target");
604
    if (is_test && weights_mem_p) {
605
      return weights_mem_p;
606
    } else if (is_test) {
607
      const K* filter_data = filter->data<K>();
608
      auto weights_tz = phi::vectorize(filter->dims());
609
      platform::GetGroupConvWeightsTz(weights_tz, groups);
610 611

      auto user_src_md = platform::MKLDNNMemDesc(
612
          weights_tz, platform::MKLDNNGetDataType<K>(),
613 614 615 616
          GetWeightsFormat(filter->format(), groups, is_conv3d));

      return this->AcquireMemoryWithReorder(
          user_src_md, this->fwd_pd_->weights_desc(),
617 618
          platform::to_void_cast<K>(filter_data), "@weights_mem_p", is_test, {},
          scale_data, mask);
619 620
    } else {
      const T* filter_data = filter->data<T>();
621
      auto weights_tz = phi::vectorize(filter->dims());
622 623 624 625 626 627 628 629 630 631
      platform::GetGroupConvWeightsTz(weights_tz, groups);

      auto user_src_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(),
          GetWeightsFormat(filter->format(), groups, is_conv3d));

      return this->AcquireMemoryWithReorder(
          user_src_md, this->fwd_pd_->weights_desc(),
          platform::to_void_cast<T>(filter_data), "@weights_mem_p", is_test, {},
          scale_data, mask);
632
    }
633
  }
634

635
  std::shared_ptr<dnnl::memory> AcquireBiasMemoryWithReorder(
636
      const framework::Tensor* bias, const bool is_test,
A
Adam Osewski 已提交
637
      const std::vector<float>& scale_data = {1.0f}, int mask = 0) {
638
    auto bias_mem_p = this->AcquireMemory("@bias_mem_p_target");
639
    if (is_test && bias_mem_p) {
640 641 642 643
      return bias_mem_p;
    } else {
      const K* bias_data = bias->data<K>();
      auto user_bias_md = platform::MKLDNNMemDesc(
644
          phi::vectorize(bias->dims()), platform::MKLDNNGetDataType<K>(),
645 646 647
          MKLDNNMemoryFormat::x);

      return this->AcquireMemoryWithReorder(
A
Adam Osewski 已提交
648
          user_bias_md, this->fwd_pd_->bias_desc(),
649
          platform::to_void_cast<K>(bias_data), "@bias_mem_p", is_test, {},
A
Adam Osewski 已提交
650
          scale_data, mask);
651
    }
652
  }
653

654
  std::shared_ptr<dnnl::memory> AcquireResidualMemory(
655
      const framework::Tensor* residual_param) {
656
    void* residual_data =
657 658
        framework::TransToProtoVarType(residual_param->dtype()) ==
                framework::DataTypeTrait<T_out>::DataType()
A
Adam Osewski 已提交
659 660
            ? platform::to_void_cast<T_out>(residual_param->data<T_out>())
            : platform::to_void_cast<T>(residual_param->data<T>());
661 662 663 664 665 666
    auto residual_mem_p = this->AcquireMemory("@user_residual_data_mem_p");
    if (residual_mem_p) {
      residual_mem_p->set_data_handle(residual_data);
      return residual_mem_p;
    } else {
      auto user_residual_md = platform::MKLDNNMemDesc(
667
          phi::vectorize(residual_param->dims()),
668 669
          framework::ToMKLDNNDataType(
              framework::TransToProtoVarType(residual_param->dtype())),
670
          residual_param->format());
671

672 673 674
      return this->AcquireMemoryFromPrimitive(user_residual_md, residual_data,
                                              "@user_residual_data_mem_p");
    }
675 676
  }

677
  std::shared_ptr<dnnl::memory> AcquireDstMemoryWithResidual(
678 679 680 681 682
      framework::Tensor* output, const framework::Tensor* residual_param) {
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (residual_param->format() !=
        platform::GetMKLDNNFormat(this->fwd_pd_->dst_desc())) {
      auto residual_memory_p = this->AcquireResidualMemory(residual_param);
683
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
684
      this->AcquireReorder(residual_memory_p, dst_memory_p);
685 686 687 688 689
    } else {
      // Changing ShareDataWith to TensorCopy results in performance drop
      // on ResNet architectures
      // (https://github.com/PaddlePaddle/Paddle/issues/22964)
      output->ShareDataWith(*residual_param);
690
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
691 692 693 694 695
    }
    return dst_memory_p;
  }
};

A
Adam Osewski 已提交
696 697
}  // anonymous namespace

698
template <typename T, typename K>
A
Adam Osewski 已提交
699
class ConvMKLDNNOpKernel : public framework::OpKernel<T> {
700
 public:
A
Adam Osewski 已提交
701
  void Compute(const framework::ExecutionContext& ctx) const override {
702
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
A
Adam Osewski 已提交
703
                      platform::errors::PreconditionNotMet(
704 705 706
                          "Operator DNNL Conv must use CPUPlace"));
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
707 708 709 710 711 712 713 714
    bool is_BFLOAT16 = ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16";
    auto residual_param = ctx.Input<Tensor>("ResidualData");
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    auto dst_dt =
        GetDstType(is_INT8, is_BFLOAT16, force_fp32_output, fuse_activation,
                   fuse_residual_conn, residual_param);
715
    if (!is_INT8) {
716
      if (dst_dt == dnnl::memory::data_type::f32) {
717
        ComputeFP32<float>(ctx);
718
      } else if (dst_dt == dnnl::memory::data_type::bf16) {
719 720
        ComputeFP32<platform::bfloat16>(ctx);
      }
721
    } else {
722
      if (dst_dt == dnnl::memory::data_type::f32) {
723
        ComputeINT8<float>(ctx);
724
      } else if (dst_dt == dnnl::memory::data_type::u8) {
725
        ComputeINT8<uint8_t>(ctx);
726
      } else if (dst_dt == dnnl::memory::data_type::s8) {
727 728
        ComputeINT8<int8_t>(ctx);
      }
729
    }
730
  }
731

732
  template <typename T_out>
A
Adam Osewski 已提交
733
  void ComputeFP32(const framework::ExecutionContext& ctx) const {
734
    auto& dev_ctx =
A
Adam Osewski 已提交
735
        ctx.template device_context<platform::MKLDNNDeviceContext>();
736
    const auto& mkldnn_engine = dev_ctx.GetEngine();
737

738
    const bool is_test = ctx.Attr<bool>("is_test");
739 740
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
    const bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
741

742 743 744 745 746
    const auto* input = ctx.Input<Tensor>("Input");
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
747

748
    ConvMKLDNNHandlerT<T, K, T_out> handler(
749 750
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
751

752
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
753

754
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
755
        filter, ctx.Attr<int>("groups"), is_conv3d, is_test);
756

757 758 759
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
760
      dst_memory_p =
761 762
          handler.AcquireDstMemoryWithResidual(output, residual_param);
    } else {
763
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
764
    }
765

766
    auto conv_p = handler.AcquireForwardPrimitive();
A
Adam 已提交
767

768
    std::unordered_map<int, dnnl::memory> args = {
769 770 771
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};
A
Adam 已提交
772

773
    if (bias) {
774
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(bias, is_test);
775
      args.insert({DNNL_ARG_BIAS, *bias_memory_p});
776
    }
777

778
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
779
    conv_p->execute(astream, args);
A
Adam 已提交
780
    astream.wait();
781

A
Adam Osewski 已提交
782 783
    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
784
  }
785

786
  template <typename T_out>
A
Adam Osewski 已提交
787
  void ComputeINT8(const framework::ExecutionContext& ctx) const {
788
    auto& dev_ctx =
A
Adam Osewski 已提交
789
        ctx.template device_context<platform::MKLDNNDeviceContext>();
790 791
    const auto& mkldnn_engine = dev_ctx.GetEngine();

A
Adam Osewski 已提交
792 793 794 795 796
    const std::string& fuse_activation =
        ctx.Attr<std::string>("fuse_activation");
    const bool& fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    const bool& force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
797

798 799
    bool unsigned_output =
        (fuse_activation == "relu" || fuse_activation == "relu6");
800 801
    bool need_s8_to_u8 = false;

A
Adam Osewski 已提交
802 803 804 805 806 807 808 809
    PADDLE_ENFORCE_NE(
        is_conv3d, true,
        platform::errors::Unimplemented(
            "OneDNN int8 convolution does not support 3D inputs currently"));
    PADDLE_ENFORCE_EQ(
        fuse_residual_conn && force_fp32_output, false,
        platform::errors::Unimplemented(
            "residual fusion does not support force output with fp32"));
A
Adam 已提交
810

A
Adam Osewski 已提交
811 812 813 814
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
815

A
Adam Osewski 已提交
816 817 818
    ConvMKLDNNHandlerT<T, K, T_out> handler(
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
819

A
Adam Osewski 已提交
820
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
F
FDInSky 已提交
821

A
Adam Osewski 已提交
822 823 824 825 826 827 828
    const auto& scale_weights_data =
        ctx.Attr<std::vector<float>>("Scale_weights");
    const bool is_multi_channel = scale_weights_data.size() > 1;
    const int& groups = ctx.Attr<int>("groups");
    int mask_reorder =
        is_multi_channel ? ((groups != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
829
        filter, groups, false, true, scale_weights_data, mask_reorder);
830

A
Adam Osewski 已提交
831 832 833
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
834
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
835 836 837 838 839 840
          output->dims(), residual_param->dims(),
          platform::errors::InvalidArgument(
              "Output and elementwise parameter need to have the "
              "same dimension sizes, but got output's dimension = %d"
              " and residual param's dimension =%d .",
              output->dims().size(), residual_param->dims().size()));
841
      dst_memory_p =
A
Adam Osewski 已提交
842 843
          handler.AcquireDstMemoryWithResidual(output, residual_param);
      need_s8_to_u8 = (platform::MKLDNNGetDataType<T_out>() ==
844
                       dnnl::memory::data_type::s8) &&
A
Adam Osewski 已提交
845 846 847 848
                      unsigned_output;
    } else {
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
    }
L
lidanqing 已提交
849

A
Adam Osewski 已提交
850 851 852
    auto conv_p = handler.AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> args = {
853 854 855
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};
A
Adam 已提交
856

A
Adam Osewski 已提交
857
    if (bias) {
858 859 860 861 862 863 864 865 866 867 868 869
      std::vector<float> bias_scales;
      auto p_scales_tuple =
          std::make_shared<std::tuple<float, std::vector<float>>>(
              std::make_tuple(static_cast<float>(mask_reorder), bias_scales));
      if (ctx.HasAttr("Bias_scales")) {
        bias_scales = ctx.Attr<std::vector<float>>("Bias_scales");
        p_scales_tuple =
            std::make_shared<std::tuple<float, std::vector<float>>>(
                std::make_tuple(static_cast<float>(mask_reorder), bias_scales));
      } else {
        p_scales_tuple = handler.get_int8_bias_scales(ctx);
      }
A
Adam Osewski 已提交
870
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(
871
          bias, true, std::get<1>(*p_scales_tuple),
872
          std::get<0>(*p_scales_tuple));
873
      args.insert({DNNL_ARG_BIAS, *bias_memory_p});
874
    }
A
Adam Osewski 已提交
875 876 877

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    conv_p->execute(astream, args);
A
Adam 已提交
878
    astream.wait();
A
Adam Osewski 已提交
879

880
    if (need_s8_to_u8) {
X
xiaolil1 已提交
881 882
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }
A
Adam Osewski 已提交
883 884 885

    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
886
  }
887 888
};

889
template <typename T, typename K>
A
Adam Osewski 已提交
890
class ConvMKLDNNGradOpKernel : public framework::OpKernel<T> {
891
 public:
A
Adam Osewski 已提交
892
  void Compute(const framework::ExecutionContext& ctx) const override {
893
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
A
Adam Osewski 已提交
894
                      platform::errors::PreconditionNotMet(
895
                          "Operator DNNL ConvGrad must use CPUPlace"));
896 897
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
898 899 900 901
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
902 903
    const Tensor* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
904 905 906 907 908 909 910
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    if (!input_grad && !filter_grad) return;

911 912 913 914 915
    // TODO(jczaja): Are all tensors really needed?
    ConvMKLDNNHandlerT<T, K, T> handler(
        ctx, dev_ctx, ctx.GetPlace(), input, filter, bias, output_grad,
        filter_grad, input_grad,
        ctx.InputName("Input") + ctx.InputName("Filter"));
916 917

    // create mkldnn memory from input tensors (data/weights)
918
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
919

920 921 922 923 924 925
    if (filter_grad) {
      auto src_memory_p =
          handler.AcquireSrcMemoryWithReorderFromWeightsPrimitive(input);
      auto diff_dst_memory_p =
          handler.AcquireDiffDstMemoryWithReorderFromWeightsPrimitive(
              output_grad);
926

927 928
      // For convoluition with groups write filter grad into
      // oneDNN buffer and then we reorder it into filter_grad tensor
929
      int g = std::max(ctx.Attr<int>("groups"), 1);
930
      auto diff_weights_memory_p =
931 932
          g > 1 ? handler.AcquireDiffWeightsMemory()
                : handler.AcquireDiffWeightsMemory(filter_grad);
933

934
      auto conv_bwd_weights_p = handler.AcquireBackwardWeightsPrimitive();
935

A
Adam 已提交
936 937
      // TODO(grygielski) why no bias_diff?
      conv_bwd_weights_p->execute(
938 939 940
          astream, {{DNNL_ARG_SRC, *src_memory_p},
                    {DNNL_ARG_DIFF_DST, *diff_dst_memory_p},
                    {DNNL_ARG_DIFF_WEIGHTS, *diff_weights_memory_p}});
A
Adam 已提交
941
      astream.wait();
942

A
Adam Osewski 已提交
943
      filter_grad->set_layout(framework::DataLayout::kMKLDNN);
944 945
      // in OneDNN groups in convolution are treated as separate dimension
      // which is not the case in paddlepaddle
A
Adam Osewski 已提交
946
      auto filter_fmt = platform::GetMKLDNNFormat(*diff_weights_memory_p);
947 948 949 950

      // For convolution with groups convert from blocked to NCHW
      // otherwise there will be problems in next operators working on this data
      if (g > 1) {
951 952
        dnnl::memory::data_type in_type = framework::ToMKLDNNDataType(
            framework::TransToProtoVarType(filter->dtype()));
953 954
        // for 3d conv with groups (six dimensional data reorder to goidhw)
        // for 2d conv with groups (five dimensional data reorder to goihw)
955
        // auto weights_tz = phi::vectorize(filter->dims());
956 957

        auto weights_tz = diff_weights_memory_p->get_desc().dims();
958 959 960
        dnnl::memory::format_tag out_format =
            weights_tz.size() == 6 ? dnnl::memory::format_tag::goidhw
                                   : dnnl::memory::format_tag::goihw;
961 962 963
        platform::ReorderMKLDNNHandler handler(
            weights_tz, framework::TransToProtoVarType(filter->dtype()),
            in_type, mkldnn_engine);
964 965 966 967 968 969
        auto reorder_dst_memory_p =
            handler.AcquireDstMemory(filter_grad, out_format, ctx.GetPlace());

        auto reorder_p =
            handler.AcquireReorder(reorder_dst_memory_p, diff_weights_memory_p);

970
        {
C
chenjian 已提交
971 972 973
          platform::RecordEvent record_reorder(
              "int_reorder", platform::TracerEventType::UserDefined, 2,
              platform::EventRole::kUniqueOp);
974 975 976 977
          reorder_p->execute(astream, *diff_weights_memory_p,
                             *reorder_dst_memory_p);
          astream.wait();
        }
978 979 980 981

        // So here we have a data in goihw , which can be interpreted as OIHW
        // (OIDHW for conv3d)
        // because filter_grad shape is set for OIHW (OIDHW for conv3d)
982 983 984
        dnnl::memory::format_tag target_format =
            weights_tz.size() == 6 ? dnnl::memory::format_tag::oidhw
                                   : dnnl::memory::format_tag::oihw;
985 986 987 988
        filter_grad->set_format(target_format);
      } else {
        filter_grad->set_format(filter_fmt);
      }
989 990
    }
    if (input_grad) {
991 992 993 994
      auto weights_memory_p =
          handler.AcquireWeightsMemoryWithReorderFromDataPrimitive(
              filter, ctx.Attr<int>("groups"),
              ctx.Attr<std::vector<int>>("strides").size() == 3U);
995

996 997 998 999
      auto diff_dst_memory_p =
          handler.AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive(
              output_grad);
      auto diff_src_memory_p = handler.AcquireDiffSrcMemory(input_grad);
1000

1001
      auto conv_bwd_data_p = handler.AcquireBackwardPrimitive();
1002

A
Adam 已提交
1003
      conv_bwd_data_p->execute(astream,
1004 1005 1006
                               {{DNNL_ARG_WEIGHTS, *weights_memory_p},
                                {DNNL_ARG_DIFF_DST, *diff_dst_memory_p},
                                {DNNL_ARG_DIFF_SRC, *diff_src_memory_p}});
A
Adam 已提交
1007
      astream.wait();
1008

A
Adam Osewski 已提交
1009 1010
      input_grad->set_layout(framework::DataLayout::kMKLDNN);
      input_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory_p));
1011
    }
X
xiaolil1 已提交
1012
  }
1013
};
1014

1015 1016 1017 1018 1019
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
1020 1021 1022
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1023
                                    ops::ConvMKLDNNOpKernel<float, float>);
1024

1025 1026 1027 1028
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    conv2d, MKLDNN, ::paddle::platform::CPUPlace, BF16, ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNOpKernel<paddle::platform::bfloat16, float>);

1029 1030
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
1031
                                    ops::kConvMKLDNNINT8,
1032
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);
1033 1034 1035

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
1036
                                    ops::kConvMKLDNNINT8,
1037
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
1038 1039 1040 1041

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1042
                                    ops::ConvMKLDNNGradOpKernel<float, float>);
1043

1044 1045 1046
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace, BF16,
    ops::kConvMKLDNNFP32,
1047 1048
    ops::ConvMKLDNNGradOpKernel<paddle::platform::bfloat16,
                                paddle::platform::bfloat16>);
1049

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    depthwise_conv2d, MKLDNN, ::paddle::platform::CPUPlace, BF16,
    ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNOpKernel<paddle::platform::bfloat16, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
                                    ops::kConvMKLDNNINT8,
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
                                    ops::kConvMKLDNNINT8,
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    depthwise_conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace, BF16,
    ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNGradOpKernel<paddle::platform::bfloat16, float>);

1080 1081 1082
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1083
                                    ops::ConvMKLDNNOpKernel<float, float>);
1084 1085 1086 1087

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1088
                                    ops::ConvMKLDNNGradOpKernel<float, float>);