conv_mkldnn_op.cc 46.8 KB
Newer Older
A
Adam Osewski 已提交
1
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

A
Adam Osewski 已提交
15 16
#include <tuple>

17
#include "paddle/fluid/framework/expect.h"
18
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
19
#include "paddle/fluid/platform/cpu_info.h"
A
Adam Osewski 已提交
20
#include "paddle/fluid/platform/mkldnn_helper.h"
J
Jacek Czaja 已提交
21
#include "paddle/fluid/platform/mkldnn_reuse.h"
22 23 24

namespace paddle {
namespace operators {
A
Adam Osewski 已提交
25
namespace {
26

27 28 29
inline MKLDNNMemoryFormat GetWeightsFormat(const MKLDNNMemoryFormat format,
                                           const int groups,
                                           const bool is_conv3d) {
Y
Yihua Xu 已提交
30
  if (is_conv3d) {
31
    return (groups == 1) ? format : MKLDNNMemoryFormat::goidhw;
Y
Yihua Xu 已提交
32
  } else {
33
    return (groups == 1) ? format : MKLDNNMemoryFormat::goihw;
Y
Yihua Xu 已提交
34 35 36
  }
}

37 38 39 40 41 42
static dnnl::memory::data_type GetDstType(bool is_int8, bool is_bfloat16,
                                          bool force_fp32_output,
                                          std::string fuse_activation,
                                          bool fuse_residual_conn,
                                          const Tensor* residual_param) {
  auto dst_dt = dnnl::memory::data_type::f32;
43 44
  if (is_int8) {
    dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
45 46
                 ? dnnl::memory::data_type::u8
                 : dnnl::memory::data_type::s8;
47
    if (force_fp32_output) {
48
      dst_dt = dnnl::memory::data_type::f32;
49
    }
50 51
    if (fuse_residual_conn && residual_param) {
      auto residual_dt = framework::ToMKLDNNDataType(residual_param->type());
52
      if (dst_dt != residual_dt) dst_dt = residual_dt;
53
    }
54 55
  } else {
    if (!force_fp32_output && is_bfloat16) {
56
      dst_dt = dnnl::memory::data_type::bf16;
57 58 59 60
      if (fuse_residual_conn && residual_param) {
        dst_dt = framework::ToMKLDNNDataType(residual_param->type());
      }
    }
61 62 63 64
  }
  return dst_dt;
}

65
template <typename T, typename K, typename T_out>
66
class ConvMKLDNNHandlerT
67 68 69
    : public platform::MKLDNNHandlerT<T, dnnl::convolution_forward,
                                      dnnl::convolution_backward_data,
                                      dnnl::convolution_backward_weights> {
70
 public:
A
Adam Osewski 已提交
71
  ConvMKLDNNHandlerT(const framework::ExecutionContext& ctx,
72
                     const platform::MKLDNNDeviceContext& dev_ctx,
73
                     const dnnl::engine mkldnn_engine,
74 75 76
                     platform::Place cpu_place, const Tensor* input,
                     const Tensor* filter, const Tensor* bias, Tensor* output,
                     const std::string& unique_name)
77 78 79
      : platform::MKLDNNHandlerT<T, dnnl::convolution_forward,
                                 dnnl::convolution_backward_data,
                                 dnnl::convolution_backward_weights>(
80
            dev_ctx, mkldnn_engine, cpu_place,
81
            platform::CreateKey(dev_ctx, framework::vectorize(input->dims()),
82
                                unique_name)) {
83
    if (unlikely(!this->isCached())) {
84
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
85
          input->layout(), framework::DataLayout::kMKLDNN,
86 87
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
88
              framework::DataLayout::kMKLDNN, input->layout()));
89 90 91
      PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Input tensor"));
92

93
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
94
          filter->layout(), framework::DataLayout::kMKLDNN,
95 96
          platform::errors::InvalidArgument(
              "The Filter tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
97
              framework::DataLayout::kMKLDNN, filter->layout()));
98 99 100
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Filter tensor"));
K
Krzysztof Binias 已提交
101

102 103 104 105 106 107 108 109 110 111 112 113
      PADDLE_ENFORCE_GE(
          input->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
      PADDLE_ENFORCE_LE(
          input->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
114

115 116 117 118 119 120 121 122 123 124 125 126
      PADDLE_ENFORCE_GE(
          filter->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
      PADDLE_ENFORCE_LE(
          filter->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
127

128 129
      if (bias) {
        PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
130
            bias->layout(), framework::DataLayout::kMKLDNN,
131 132
            platform::errors::InvalidArgument(
                "The Bias tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
133
                framework::DataLayout::kMKLDNN, bias->layout()));
134 135 136
        PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
                          platform::errors::InvalidArgument(
                              "Got wrong format for Bias tensor."));
137

138 139 140 141 142 143
        PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                          platform::errors::InvalidArgument(
                              "Bias must only have 1 dimension, "
                              "i.e. X, but got dimension = %d .",
                              bias->dims().size()));
      }
F
FDInSky 已提交
144

145 146 147 148 149 150 151 152 153
      const std::string fuse_activation =
          ctx.Attr<std::string>("fuse_activation");
      const float fuse_alpha = ctx.Attr<float>("fuse_alpha");
      const float fuse_beta = ctx.Attr<float>("fuse_beta");
      const bool fuse_residual_conn =
          ctx.Attr<bool>("fuse_residual_connection");
      const int groups = ctx.Attr<int>("groups");
      const std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
F
FDInSky 已提交
154

155 156 157 158 159 160
      const auto input_dims = input->dims();
      const auto data_dims =
          framework::slice_ddim(input_dims, 2, input_dims.size());
      const auto filter_dims = filter->dims();
      const auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
161

162
      const auto ksize = framework::vectorize(filter_data_dims);
163
      const bool is_test = ctx.Attr<bool>("is_test");
164

165 166
      auto strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
167

168 169
      auto paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
A
Adam 已提交
170

171 172 173
      auto dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));
A
Adam 已提交
174

175 176
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);
A
Adam 已提交
177

178 179
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
180

A
Adam Osewski 已提交
181
      const auto src_tz = framework::vectorize(input->dims());
182

A
Adam Osewski 已提交
183
      auto weights_tz = framework::vectorize(filter->dims());
184
      platform::GetGroupConvWeightsTz(weights_tz, groups);
185

A
Adam Osewski 已提交
186
      const auto dst_tz = framework::vectorize(output->dims());
187

188
      const dnnl::memory::dims stride_dims = strides;
189
      const auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
190
      const dnnl::memory::dims dilations_dims = dilations;
A
Adam 已提交
191

192 193 194 195
      /* create memory descriptor for convolution without specified format
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
196
      auto chosen_memory_format = MKLDNNMemoryFormat::any;
197
      auto data_type = dnnl::memory::data_type::f32;
198 199
      if (ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16" ||
          std::is_same<T_out, platform::bfloat16>::value)
200
        data_type = dnnl::memory::data_type::bf16;
201

202
      dnnl::memory::desc src_md, weights_md;
A
Adam Osewski 已提交
203 204 205 206 207
      if (platform::is_int8<T>()) {
        src_md = platform::MKLDNNMemDesc(
            src_tz, framework::ToMKLDNNDataType(input->type()),
            chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(
208
            weights_tz, dnnl::memory::data_type::s8, chosen_memory_format);
A
Adam Osewski 已提交
209 210 211 212 213 214 215
      } else {
        src_md =
            platform::MKLDNNMemDesc(src_tz, data_type, chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(weights_tz, data_type,
                                             MKLDNNMemoryFormat::any);
      }

216
      const auto dst_md = platform::MKLDNNMemDesc(
217
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
218 219
      const auto fwd_prop_kind = is_test ? dnnl::prop_kind::forward_inference
                                         : dnnl::prop_kind::forward_training;
220

J
jakpiase 已提交
221
      float sum_scale = 1.0f;
222
      float activation_scale = 1.0f;
A
Adam Osewski 已提交
223
      std::vector<float> output_shift_scale;
J
jakpiase 已提交
224
      if (platform::is_int8<T>())
225 226
        std::tie(sum_scale, output_shift_scale, activation_scale) =
            get_int8_scales(ctx);
A
Adam Osewski 已提交
227

228
      const dnnl::primitive_attr conv_attr = CreatePostOps(
A
Adam Osewski 已提交
229
          fuse_activation, fuse_alpha, fuse_beta, fuse_residual_conn,
230
          output_shift_scale, sum_scale, activation_scale);  // for INT8 only!
A
Adam 已提交
231

232 233
      if (bias) {
        auto bias_tz = framework::vectorize(bias->dims());
234
        dnnl::memory::desc bias_md;
A
Adam Osewski 已提交
235 236
        if (platform::is_int8<T>()) {
          bias_md = platform::MKLDNNMemDesc(
237
              bias_tz, dnnl::memory::data_type::s32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
238 239 240 241
        } else {
          bias_md = platform::MKLDNNMemDesc(bias_tz, data_type,
                                            MKLDNNMemoryFormat::x);
        }
242

243
        this->AcquireForwardPrimitiveDescriptor(
244
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
245
            src_md, weights_md, bias_md, dst_md, stride_dims, dilations_dims,
246 247
            mkldnn_paddings[0], mkldnn_paddings[1]);
      } else {
248
        this->AcquireForwardPrimitiveDescriptor(
249
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
250 251
            src_md, weights_md, dst_md, stride_dims, dilations_dims,
            mkldnn_paddings[0], mkldnn_paddings[1]);
252 253 254
      }
    }
  }
255

256 257 258 259 260 261
  ConvMKLDNNHandlerT(const framework::ExecutionContext& ctx,
                     const platform::MKLDNNDeviceContext& dev_ctx,
                     platform::Place cpu_place, const Tensor* in,
                     const Tensor* filter, const Tensor* bias,
                     const Tensor* out_grad, Tensor* filter_grad,
                     Tensor* in_x_grad, const std::string& unique_name)
262 263 264
      : platform::MKLDNNHandlerT<T, dnnl::convolution_forward,
                                 dnnl::convolution_backward_data,
                                 dnnl::convolution_backward_weights>(
265 266
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
            platform::CreateKey(dev_ctx, framework::vectorize(in->dims()),
267
                                unique_name)) {
268
    if (unlikely(!this->isBwdCached())) {
269
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
270
          in->layout(), framework::DataLayout::kMKLDNN,
271 272
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
273
              framework::DataLayout::kMKLDNN, in->layout()));
274 275 276 277 278
      PADDLE_ENFORCE_NE(in->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Got wrong format for Input tensor."));

      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
279
          filter->layout(), framework::DataLayout::kMKLDNN,
280 281
          platform::errors::InvalidArgument(
              "The filter tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
282
              framework::DataLayout::kMKLDNN, filter->layout()));
283 284 285 286 287
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Got wrong format for Filter tensor."));

      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
288
          out_grad->layout(), framework::DataLayout::kMKLDNN,
289 290
          platform::errors::InvalidArgument(
              "The output_grad tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
291
              framework::DataLayout::kMKLDNN, out_grad->layout()));
292 293 294 295 296
      PADDLE_ENFORCE_NE(out_grad->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for output_grad tensor"));

      PADDLE_ENFORCE_EQ(
297
          ctx.Attr<bool>("is_test"), false,
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
          platform::errors::InvalidArgument(
              "is_test attribute should be set to False in training phase."));

      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));

      auto input_dims = in->dims();
      auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
      auto filter_dims = filter->dims();
      auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
      auto ksize = framework::vectorize(filter_data_dims);

A
Adam Osewski 已提交
318 319
      std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
320 321 322 323 324 325
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);

      auto src_tz = framework::vectorize(in->dims());
      auto weights_tz = framework::vectorize(filter->dims());

A
Adam Osewski 已提交
326
      int groups = ctx.Attr<int>("groups");
327 328
      int g = std::max(groups, 1);
      platform::GetGroupConvWeightsTz(weights_tz, g);
A
Adam Osewski 已提交
329
      auto dst_tz = framework::vectorize(out_grad->dims());
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353

      /* create memory descriptor for conv backward without specified format
       * ('any') which lets a primitive (conv backward in this case) choose
       * the memory format preferred for best performance
       */
      const auto chosen_memory_format = MKLDNNMemoryFormat::any;
      const auto weights_format = MKLDNNMemoryFormat::any;

      auto src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      const auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
      auto diff_src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
      auto diff_weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
      auto diff_dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);

      auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
354
      const dnnl::memory::dims dilations_dims = dilations;
355

356
      const dnnl::memory::dims stride_dims = strides;
357
      // Recreating FWD PD. For training there are no post ops in convolution
358
      dnnl::primitive_attr conv_attr;
359 360
      if (bias) {
        auto bias_tz = framework::vectorize(bias->dims());
361
        dnnl::memory::desc bias_md;
A
Adam Osewski 已提交
362 363
        if (platform::is_int8<T>()) {
          bias_md = platform::MKLDNNMemDesc(
364
              bias_tz, dnnl::memory::data_type::s32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
365 366
        } else {
          bias_md = platform::MKLDNNMemDesc(
367
              bias_tz, dnnl::memory::data_type::f32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
368
        }
369

370
        this->AcquireForwardPrimitiveDescriptor(
371
            conv_attr, dnnl::prop_kind::forward_training,
372 373 374 375
            dnnl::algorithm::convolution_direct, src_md, weights_md, bias_md,
            dst_md, stride_dims, dilations_dims, mkldnn_paddings[0],
            mkldnn_paddings[1]);
      } else {
376
        this->AcquireForwardPrimitiveDescriptor(
377
            conv_attr, dnnl::prop_kind::forward_training,
378 379 380 381 382
            dnnl::algorithm::convolution_direct, src_md, weights_md, dst_md,
            stride_dims, dilations_dims, mkldnn_paddings[0],
            mkldnn_paddings[1]);
      }

383
      this->AcquireBackwardPrimitiveDescriptor(
384
          dnnl::algorithm::convolution_direct, diff_src_md, weights_md,
385 386 387
          diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
          mkldnn_paddings[1]);

388
      this->AcquireBackwardWeightsPrimitiveDescriptor(
389
          dnnl::algorithm::convolution_direct, src_md, diff_weights_md,
390 391 392 393 394
          diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
          mkldnn_paddings[1]);
    }
  }

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
  std::shared_ptr<std::tuple<float, std::vector<float>>> get_int8_bias_scales(
      const framework::ExecutionContext& ctx) {
    // Get scales int8 bias key
    const std::string key_bs = this->key_ + "@bs";

    // Scales for int8 bias are to be cached to avoid
    // computing them each iteration
    auto bias_scale_tuple =
        std::static_pointer_cast<std::tuple<float, std::vector<float>>>(
            this->dev_ctx_.GetBlob(key_bs));
    if (bias_scale_tuple) return bias_scale_tuple;

    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto& weights_tz = framework::vectorize(filter->dims());
    const int groups = std::max(ctx.Attr<int>("groups"), 1);

    const auto& scale_weights_data =
        ctx.Attr<std::vector<float>>("Scale_weights");
    const auto& scale_in_data = ctx.Attr<float>("Scale_in");

    bool is_multi_channel = scale_weights_data.size() > 1;
    int mask_reorder = is_multi_channel ? 1 << 0 : 1;

    int count = 1;
    if (is_multi_channel) {
      count *= weights_tz[0];
      if (groups > 1) {
        count *= weights_tz[1];
      }
    }

    bias_scale_tuple =
        std::make_shared<std::tuple<float, std::vector<float>>>(std::make_tuple(
            static_cast<float>(mask_reorder), std::vector<float>(count)));
    for (int i = 0; i < count; i++) {
      std::get<1>(*bias_scale_tuple)[i] = scale_in_data * scale_weights_data[i];
    }

    this->dev_ctx_.SetBlob(key_bs, bias_scale_tuple);

    return bias_scale_tuple;
  }

438
  std::tuple<float, std::vector<float>, float> get_int8_scales(
A
Adam Osewski 已提交
439 440 441 442 443 444 445 446 447 448 449 450
      const framework::ExecutionContext& ctx) const {
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto& weights_tz = framework::vectorize(filter->dims());

    const bool& force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    const bool& fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    const int groups = std::max(ctx.Attr<int>("groups"), 1);

    const auto& scale_in_data = ctx.Attr<float>("Scale_in");
    const auto& scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
    bool is_multi_channel = scale_weights_data.size() > 1;
451 452 453 454
    bool has_activation = !ctx.Attr<std::string>("fuse_activation").empty();
    float activation_scale =
        force_fp32_output ? 1.0f : has_activation ? ctx.Attr<float>("Scale_out")
                                                  : 1.0f;
A
Adam Osewski 已提交
455
    auto scale_out_data =
456 457 458
        force_fp32_output ? 1.0f : has_activation
                                       ? 1.0f
                                       : ctx.Attr<float>("Scale_out");
A
Adam Osewski 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
    float sum_scale =
        fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;
    int count =
        is_multi_channel
            ? (groups > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
            : 1;
    std::vector<float> output_shift_scale(count);

#pragma omp parallel for if (count > 50)
    for (int i = 0; i < count; i++) {
      if (scale_weights_data[i] == 0.0)
        // weights data will contain 0 in some models, then weights
        // scale couldn't be calculated
        output_shift_scale[i] = scale_out_data;
      else
        output_shift_scale[i] =
            static_cast<float>(static_cast<double>(scale_out_data) /
                               (static_cast<double>(scale_in_data) *
                                static_cast<double>(scale_weights_data[i])));
    }

480
    return std::make_tuple(sum_scale, output_shift_scale, activation_scale);
A
Adam Osewski 已提交
481 482
  }

483
  dnnl::primitive_attr CreatePostOps(
484 485
      std::string fuse_activation, float fuse_alpha, float fuse_beta,
      bool fuse_residual_conn, const std::vector<float> output_shift_scale = {},
486
      float sum_scale = 1.0f, float activation_scale = 1.0f) {
487 488
    dnnl::primitive_attr conv_attr;
    dnnl::post_ops post_operations;
489 490 491 492
    if (output_shift_scale.size() > 0) {
      int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
      conv_attr.set_output_scales(mask, output_shift_scale);
    }
493

494 495 496 497 498 499 500 501 502 503 504
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
      post_operations.append_sum(sum_scale);
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
505 506 507
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_relu, fuse_alpha,
                                     fuse_beta);
508
    } else if (fuse_activation == "relu6") {
509 510
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_bounded_relu,
511
                                     fuse_alpha, fuse_beta);
512 513 514 515
    } else if (fuse_activation == "swish") {
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_swish, fuse_alpha,
                                     fuse_beta);
J
jakpiase 已提交
516
    } else if (fuse_activation == "hard_swish") {
517 518
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_hardswish,
519
                                     fuse_alpha, fuse_beta);
520 521 522 523
    } else if (fuse_activation == "mish") {
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_mish, fuse_alpha,
                                     fuse_beta);
524
    } else if (fuse_activation == "hard_sigmoid") {
525 526
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_linear,
527
                                     fuse_alpha, fuse_beta);
528 529
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_clip, 0.0f, 1.0f);
B
baoachun 已提交
530
    } else if (fuse_activation == "gelu_tanh") {
531 532
      post_operations.append_eltwise(
          activation_scale, dnnl::algorithm::eltwise_gelu_tanh, 0.0f, 0.0f);
B
baoachun 已提交
533
    } else if (fuse_activation == "gelu_erf") {
534 535
      post_operations.append_eltwise(
          activation_scale, dnnl::algorithm::eltwise_gelu_erf, 0.0f, 0.0f);
536 537 538 539
    }
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }
540

541
  std::shared_ptr<dnnl::memory>
542 543 544 545 546 547 548 549 550 551 552 553
  AcquireWeightsMemoryWithReorderFromDataPrimitive(
      const framework::Tensor* filter, const int groups, const bool is_conv3d) {
    const K* filter_data = filter->data<K>();
    auto weights_tz = framework::vectorize(filter->dims());
    platform::GetGroupConvWeightsTz(weights_tz, groups);

    auto user_src_md = platform::MKLDNNMemDesc(
        weights_tz, platform::MKLDNNGetDataType<K>(),
        GetWeightsFormat(filter->format(), groups, is_conv3d));

    return this->AcquireMemoryWithReorder(
        user_src_md, this->bwd_pd_->weights_desc(),
A
Adam Osewski 已提交
554
        platform::to_void_cast<K>(filter_data), "@weights_mem_d_p", false);
555 556
  }

557
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorder(
558
      const framework::Tensor* input) {
559 560 561 562
    return this->AcquireMemoryWithReorderPrimitive(
        input, "@src_mem_p_user", "@src_mem_p_target", "@src_mem_p",
        this->fwd_pd_->src_desc());
  }
563

564
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorderFromWeightsPrimitive(
565 566 567 568 569 570
      const framework::Tensor* input) {
    return this->AcquireMemoryWithReorderPrimitive(
        input, "@src_mem_w_p_user", "@src_mem_w_p_target", "@src_mem_w_p",
        this->bwd_w_pd_->src_desc());
  }

571
  std::shared_ptr<dnnl::memory>
572 573 574 575 576 577 578
  AcquireDiffDstMemoryWithReorderFromWeightsPrimitive(
      const framework::Tensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
        out_grad, "@diff_dst_mem_w_p_user", "@diff_dst_mem_w_p_target",
        "@diff_dst_mem_w_p", this->bwd_w_pd_->diff_dst_desc());
  }

579
  std::shared_ptr<dnnl::memory>
580 581 582 583 584 585 586
  AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive(
      const framework::Tensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
        out_grad, "@diff_dst_mem_p_user", "@diff_dst_mem_p_target",
        "@diff_dst_mem_p", this->bwd_pd_->diff_dst_desc());
  }

587
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorderPrimitive(
588 589
      const framework::Tensor* in_mem, const char* key_mem_user,
      const char* key_mem_target, const char* key_mem,
590
      const dnnl::memory::desc& mem_md) {
591 592 593 594 595 596 597 598
    const T* in_mem_data = in_mem->data<T>();
    const std::string user_key_suffix{key_mem_user};
    auto user_mem_p = this->AcquireMemory(user_key_suffix);

    if (!user_mem_p) {
      auto user_mem_md = platform::MKLDNNMemDesc(
          framework::vectorize(in_mem->dims()),
          platform::MKLDNNGetDataType<T>(), in_mem->format());
599
      return this->AcquireMemoryWithReorder(
600
          user_mem_md, mem_md, platform::to_void_cast<T>(in_mem_data), key_mem);
601
    } else {
602 603
      const std::string target_key_suffix{key_mem_target};
      const auto target_mem_p = this->AcquireMemory(target_key_suffix);
A
Adam Osewski 已提交
604
      user_mem_p->set_data_handle(platform::to_void_cast<T>(in_mem_data));
605
      if (user_mem_p != target_mem_p) {
606
        this->AcquireReorder(user_mem_p, target_mem_p);
607
      }
608
      return target_mem_p;
609
    }
610 611
  }

612
  std::shared_ptr<dnnl::memory> AcquireWeightsMemoryWithReorder(
613
      const framework::Tensor* filter, const int groups, const bool is_conv3d,
614 615
      const bool is_test, const std::vector<float>& scale_data = {1.0f},
      int mask = 0) {
616 617 618
    // This is workaround to make execution faster, delete
    // if statement after including md inside Tensor
    auto weights_mem_p = this->AcquireMemory("@weights_mem_p_target");
619
    if (is_test && weights_mem_p) {
620
      return weights_mem_p;
621
    } else if (is_test) {
622
      const K* filter_data = filter->data<K>();
623
      auto weights_tz = framework::vectorize(filter->dims());
624
      platform::GetGroupConvWeightsTz(weights_tz, groups);
625 626

      auto user_src_md = platform::MKLDNNMemDesc(
627
          weights_tz, platform::MKLDNNGetDataType<K>(),
628 629 630 631
          GetWeightsFormat(filter->format(), groups, is_conv3d));

      return this->AcquireMemoryWithReorder(
          user_src_md, this->fwd_pd_->weights_desc(),
632 633
          platform::to_void_cast<K>(filter_data), "@weights_mem_p", is_test, {},
          scale_data, mask);
634 635 636 637 638 639 640 641 642 643 644 645 646
    } else {
      const T* filter_data = filter->data<T>();
      auto weights_tz = framework::vectorize(filter->dims());
      platform::GetGroupConvWeightsTz(weights_tz, groups);

      auto user_src_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(),
          GetWeightsFormat(filter->format(), groups, is_conv3d));

      return this->AcquireMemoryWithReorder(
          user_src_md, this->fwd_pd_->weights_desc(),
          platform::to_void_cast<T>(filter_data), "@weights_mem_p", is_test, {},
          scale_data, mask);
647
    }
648
  }
649

650
  std::shared_ptr<dnnl::memory> AcquireBiasMemoryWithReorder(
651
      const framework::Tensor* bias, const bool is_test,
A
Adam Osewski 已提交
652
      const std::vector<float>& scale_data = {1.0f}, int mask = 0) {
653
    auto bias_mem_p = this->AcquireMemory("@bias_mem_p_target");
654
    if (is_test && bias_mem_p) {
655 656 657 658 659 660 661 662
      return bias_mem_p;
    } else {
      const K* bias_data = bias->data<K>();
      auto user_bias_md = platform::MKLDNNMemDesc(
          framework::vectorize(bias->dims()), platform::MKLDNNGetDataType<K>(),
          MKLDNNMemoryFormat::x);

      return this->AcquireMemoryWithReorder(
A
Adam Osewski 已提交
663
          user_bias_md, this->fwd_pd_->bias_desc(),
664
          platform::to_void_cast<K>(bias_data), "@bias_mem_p", is_test, {},
A
Adam Osewski 已提交
665
          scale_data, mask);
666
    }
667
  }
668

669
  std::shared_ptr<dnnl::memory> AcquireResidualMemory(
670
      const framework::Tensor* residual_param) {
671 672
    void* residual_data =
        residual_param->type() == framework::DataTypeTrait<T_out>::DataType()
A
Adam Osewski 已提交
673 674
            ? platform::to_void_cast<T_out>(residual_param->data<T_out>())
            : platform::to_void_cast<T>(residual_param->data<T>());
675 676 677 678 679 680 681 682 683
    auto residual_mem_p = this->AcquireMemory("@user_residual_data_mem_p");
    if (residual_mem_p) {
      residual_mem_p->set_data_handle(residual_data);
      return residual_mem_p;
    } else {
      auto user_residual_md = platform::MKLDNNMemDesc(
          framework::vectorize(residual_param->dims()),
          framework::ToMKLDNNDataType(residual_param->type()),
          residual_param->format());
684

685 686 687
      return this->AcquireMemoryFromPrimitive(user_residual_md, residual_data,
                                              "@user_residual_data_mem_p");
    }
688 689
  }

690
  std::shared_ptr<dnnl::memory> AcquireDstMemoryWithResidual(
691 692 693 694 695
      framework::Tensor* output, const framework::Tensor* residual_param) {
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (residual_param->format() !=
        platform::GetMKLDNNFormat(this->fwd_pd_->dst_desc())) {
      auto residual_memory_p = this->AcquireResidualMemory(residual_param);
696
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
697
      this->AcquireReorder(residual_memory_p, dst_memory_p);
698 699 700 701 702
    } else {
      // Changing ShareDataWith to TensorCopy results in performance drop
      // on ResNet architectures
      // (https://github.com/PaddlePaddle/Paddle/issues/22964)
      output->ShareDataWith(*residual_param);
703
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
704 705 706 707 708
    }
    return dst_memory_p;
  }
};

A
Adam Osewski 已提交
709 710
}  // anonymous namespace

711
template <typename T, typename K>
A
Adam Osewski 已提交
712
class ConvMKLDNNOpKernel : public framework::OpKernel<T> {
713
 public:
A
Adam Osewski 已提交
714
  void Compute(const framework::ExecutionContext& ctx) const override {
715
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
A
Adam Osewski 已提交
716
                      platform::errors::PreconditionNotMet(
717 718 719
                          "Operator DNNL Conv must use CPUPlace"));
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
720 721 722 723 724 725 726 727
    bool is_BFLOAT16 = ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16";
    auto residual_param = ctx.Input<Tensor>("ResidualData");
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    auto dst_dt =
        GetDstType(is_INT8, is_BFLOAT16, force_fp32_output, fuse_activation,
                   fuse_residual_conn, residual_param);
728
    if (!is_INT8) {
729
      if (dst_dt == dnnl::memory::data_type::f32) {
730
        ComputeFP32<float>(ctx);
731
      } else if (dst_dt == dnnl::memory::data_type::bf16) {
732 733
        ComputeFP32<platform::bfloat16>(ctx);
      }
734
    } else {
735
      if (dst_dt == dnnl::memory::data_type::f32) {
736
        ComputeINT8<float>(ctx);
737
      } else if (dst_dt == dnnl::memory::data_type::u8) {
738
        ComputeINT8<uint8_t>(ctx);
739
      } else if (dst_dt == dnnl::memory::data_type::s8) {
740 741
        ComputeINT8<int8_t>(ctx);
      }
742
    }
743
  }
744

745
  template <typename T_out>
A
Adam Osewski 已提交
746
  void ComputeFP32(const framework::ExecutionContext& ctx) const {
747
    auto& dev_ctx =
A
Adam Osewski 已提交
748
        ctx.template device_context<platform::MKLDNNDeviceContext>();
749
    const auto& mkldnn_engine = dev_ctx.GetEngine();
750

751
    const bool is_test = ctx.Attr<bool>("is_test");
752 753
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
    const bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
754

755 756 757 758 759
    const auto* input = ctx.Input<Tensor>("Input");
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
760

761
    ConvMKLDNNHandlerT<T, K, T_out> handler(
762 763
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
764

765
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
766

767
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
768
        filter, ctx.Attr<int>("groups"), is_conv3d, is_test);
769

770 771 772
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
773
      dst_memory_p =
774 775
          handler.AcquireDstMemoryWithResidual(output, residual_param);
    } else {
776
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
777
    }
778

779
    auto conv_p = handler.AcquireForwardPrimitive();
A
Adam 已提交
780

781
    std::unordered_map<int, dnnl::memory> args = {
782 783 784
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};
A
Adam 已提交
785

786
    if (bias) {
787
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(bias, is_test);
788
      args.insert({DNNL_ARG_BIAS, *bias_memory_p});
789
    }
790

791
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
792
    conv_p->execute(astream, args);
A
Adam 已提交
793
    astream.wait();
794

A
Adam Osewski 已提交
795 796
    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
797
  }
798

799
  template <typename T_out>
A
Adam Osewski 已提交
800
  void ComputeINT8(const framework::ExecutionContext& ctx) const {
801
    auto& dev_ctx =
A
Adam Osewski 已提交
802
        ctx.template device_context<platform::MKLDNNDeviceContext>();
803 804
    const auto& mkldnn_engine = dev_ctx.GetEngine();

A
Adam Osewski 已提交
805 806 807 808 809
    const std::string& fuse_activation =
        ctx.Attr<std::string>("fuse_activation");
    const bool& fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    const bool& force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
810

811 812
    bool unsigned_output =
        (fuse_activation == "relu" || fuse_activation == "relu6");
813 814
    bool need_s8_to_u8 = false;

A
Adam Osewski 已提交
815 816 817 818 819 820 821 822
    PADDLE_ENFORCE_NE(
        is_conv3d, true,
        platform::errors::Unimplemented(
            "OneDNN int8 convolution does not support 3D inputs currently"));
    PADDLE_ENFORCE_EQ(
        fuse_residual_conn && force_fp32_output, false,
        platform::errors::Unimplemented(
            "residual fusion does not support force output with fp32"));
A
Adam 已提交
823

A
Adam Osewski 已提交
824 825 826 827
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
828

A
Adam Osewski 已提交
829 830 831
    ConvMKLDNNHandlerT<T, K, T_out> handler(
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
832

A
Adam Osewski 已提交
833
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
F
FDInSky 已提交
834

A
Adam Osewski 已提交
835 836 837 838 839 840 841
    const auto& scale_weights_data =
        ctx.Attr<std::vector<float>>("Scale_weights");
    const bool is_multi_channel = scale_weights_data.size() > 1;
    const int& groups = ctx.Attr<int>("groups");
    int mask_reorder =
        is_multi_channel ? ((groups != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
842
        filter, groups, false, true, scale_weights_data, mask_reorder);
843

A
Adam Osewski 已提交
844 845 846
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
847
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
848 849 850 851 852 853
          output->dims(), residual_param->dims(),
          platform::errors::InvalidArgument(
              "Output and elementwise parameter need to have the "
              "same dimension sizes, but got output's dimension = %d"
              " and residual param's dimension =%d .",
              output->dims().size(), residual_param->dims().size()));
854
      dst_memory_p =
A
Adam Osewski 已提交
855 856
          handler.AcquireDstMemoryWithResidual(output, residual_param);
      need_s8_to_u8 = (platform::MKLDNNGetDataType<T_out>() ==
857
                       dnnl::memory::data_type::s8) &&
A
Adam Osewski 已提交
858 859 860 861
                      unsigned_output;
    } else {
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
    }
L
lidanqing 已提交
862

A
Adam Osewski 已提交
863 864 865
    auto conv_p = handler.AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> args = {
866 867 868
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};
A
Adam 已提交
869

A
Adam Osewski 已提交
870
    if (bias) {
871
      auto p_scales_tuple = handler.get_int8_bias_scales(ctx);
A
Adam 已提交
872

A
Adam Osewski 已提交
873
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(
874
          bias, true, std::get<1>(*p_scales_tuple),
875
          std::get<0>(*p_scales_tuple));
876
      args.insert({DNNL_ARG_BIAS, *bias_memory_p});
877
    }
A
Adam Osewski 已提交
878 879 880

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    conv_p->execute(astream, args);
A
Adam 已提交
881
    astream.wait();
A
Adam Osewski 已提交
882

883
    if (need_s8_to_u8) {
X
xiaolil1 已提交
884 885
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }
A
Adam Osewski 已提交
886 887 888

    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
889
  }
890 891
};

892
template <typename T, typename K>
A
Adam Osewski 已提交
893
class ConvMKLDNNGradOpKernel : public framework::OpKernel<T> {
894
 public:
A
Adam Osewski 已提交
895
  void Compute(const framework::ExecutionContext& ctx) const override {
896
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
A
Adam Osewski 已提交
897
                      platform::errors::PreconditionNotMet(
898
                          "Operator DNNL ConvGrad must use CPUPlace"));
899 900
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
901 902 903 904
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
905 906
    const Tensor* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
907 908 909 910 911 912 913
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    if (!input_grad && !filter_grad) return;

914 915 916 917 918
    // TODO(jczaja): Are all tensors really needed?
    ConvMKLDNNHandlerT<T, K, T> handler(
        ctx, dev_ctx, ctx.GetPlace(), input, filter, bias, output_grad,
        filter_grad, input_grad,
        ctx.InputName("Input") + ctx.InputName("Filter"));
919 920

    // create mkldnn memory from input tensors (data/weights)
921
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
922

923 924 925 926 927 928
    if (filter_grad) {
      auto src_memory_p =
          handler.AcquireSrcMemoryWithReorderFromWeightsPrimitive(input);
      auto diff_dst_memory_p =
          handler.AcquireDiffDstMemoryWithReorderFromWeightsPrimitive(
              output_grad);
929

930 931
      // For convoluition with groups write filter grad into
      // oneDNN buffer and then we reorder it into filter_grad tensor
932
      int g = std::max(ctx.Attr<int>("groups"), 1);
933
      auto diff_weights_memory_p =
934 935
          g > 1 ? handler.AcquireDiffWeightsMemory()
                : handler.AcquireDiffWeightsMemory(filter_grad);
936

937
      auto conv_bwd_weights_p = handler.AcquireBackwardWeightsPrimitive();
938

A
Adam 已提交
939 940
      // TODO(grygielski) why no bias_diff?
      conv_bwd_weights_p->execute(
941 942 943
          astream, {{DNNL_ARG_SRC, *src_memory_p},
                    {DNNL_ARG_DIFF_DST, *diff_dst_memory_p},
                    {DNNL_ARG_DIFF_WEIGHTS, *diff_weights_memory_p}});
A
Adam 已提交
944
      astream.wait();
945

A
Adam Osewski 已提交
946
      filter_grad->set_layout(framework::DataLayout::kMKLDNN);
947 948
      // in OneDNN groups in convolution are treated as separate dimension
      // which is not the case in paddlepaddle
A
Adam Osewski 已提交
949
      auto filter_fmt = platform::GetMKLDNNFormat(*diff_weights_memory_p);
950 951 952 953

      // For convolution with groups convert from blocked to NCHW
      // otherwise there will be problems in next operators working on this data
      if (g > 1) {
954
        dnnl::memory::data_type in_type =
A
Adam Osewski 已提交
955
            framework::ToMKLDNNDataType(filter->type());
956 957
        // for 3d conv with groups (six dimensional data reorder to goidhw)
        // for 2d conv with groups (five dimensional data reorder to goihw)
A
Adam Osewski 已提交
958
        // auto weights_tz = framework::vectorize(filter->dims());
959 960

        auto weights_tz = diff_weights_memory_p->get_desc().dims();
961 962 963
        dnnl::memory::format_tag out_format =
            weights_tz.size() == 6 ? dnnl::memory::format_tag::goidhw
                                   : dnnl::memory::format_tag::goihw;
964 965
        platform::ReorderMKLDNNHandler handler(weights_tz, filter->type(),
                                               in_type, mkldnn_engine);
966 967 968 969 970 971
        auto reorder_dst_memory_p =
            handler.AcquireDstMemory(filter_grad, out_format, ctx.GetPlace());

        auto reorder_p =
            handler.AcquireReorder(reorder_dst_memory_p, diff_weights_memory_p);

972 973 974 975 976 977 978
        {
          platform::RecordEvent record_reorder("int_reorder",
                                               platform::EventRole::kUniqueOp);
          reorder_p->execute(astream, *diff_weights_memory_p,
                             *reorder_dst_memory_p);
          astream.wait();
        }
979 980 981 982

        // So here we have a data in goihw , which can be interpreted as OIHW
        // (OIDHW for conv3d)
        // because filter_grad shape is set for OIHW (OIDHW for conv3d)
983 984 985
        dnnl::memory::format_tag target_format =
            weights_tz.size() == 6 ? dnnl::memory::format_tag::oidhw
                                   : dnnl::memory::format_tag::oihw;
986 987 988 989
        filter_grad->set_format(target_format);
      } else {
        filter_grad->set_format(filter_fmt);
      }
990 991
    }
    if (input_grad) {
992 993 994 995
      auto weights_memory_p =
          handler.AcquireWeightsMemoryWithReorderFromDataPrimitive(
              filter, ctx.Attr<int>("groups"),
              ctx.Attr<std::vector<int>>("strides").size() == 3U);
996

997 998 999 1000
      auto diff_dst_memory_p =
          handler.AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive(
              output_grad);
      auto diff_src_memory_p = handler.AcquireDiffSrcMemory(input_grad);
1001

1002
      auto conv_bwd_data_p = handler.AcquireBackwardPrimitive();
1003

A
Adam 已提交
1004
      conv_bwd_data_p->execute(astream,
1005 1006 1007
                               {{DNNL_ARG_WEIGHTS, *weights_memory_p},
                                {DNNL_ARG_DIFF_DST, *diff_dst_memory_p},
                                {DNNL_ARG_DIFF_SRC, *diff_src_memory_p}});
A
Adam 已提交
1008
      astream.wait();
1009

A
Adam Osewski 已提交
1010 1011
      input_grad->set_layout(framework::DataLayout::kMKLDNN);
      input_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory_p));
1012
    }
X
xiaolil1 已提交
1013
  }
1014
};
1015

1016 1017 1018 1019 1020
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
1021 1022 1023
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1024
                                    ops::ConvMKLDNNOpKernel<float, float>);
1025

1026 1027 1028 1029
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    conv2d, MKLDNN, ::paddle::platform::CPUPlace, BF16, ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNOpKernel<paddle::platform::bfloat16, float>);

1030 1031
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
1032
                                    ops::kConvMKLDNNINT8,
1033
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);
1034 1035 1036

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
1037
                                    ops::kConvMKLDNNINT8,
1038
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
1039 1040 1041 1042

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1043
                                    ops::ConvMKLDNNGradOpKernel<float, float>);
1044

1045 1046 1047
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace, BF16,
    ops::kConvMKLDNNFP32,
1048 1049
    ops::ConvMKLDNNGradOpKernel<paddle::platform::bfloat16,
                                paddle::platform::bfloat16>);
1050

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    depthwise_conv2d, MKLDNN, ::paddle::platform::CPUPlace, BF16,
    ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNOpKernel<paddle::platform::bfloat16, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
                                    ops::kConvMKLDNNINT8,
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
                                    ops::kConvMKLDNNINT8,
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    depthwise_conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace, BF16,
    ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNGradOpKernel<paddle::platform::bfloat16, float>);

1081 1082 1083
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1084
                                    ops::ConvMKLDNNOpKernel<float, float>);
1085 1086 1087 1088

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1089
                                    ops::ConvMKLDNNGradOpKernel<float, float>);