conv_mkldnn_op.cc 46.7 KB
Newer Older
A
Adam Osewski 已提交
1
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

A
Adam Osewski 已提交
15 16
#include <tuple>

17
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
18
#include "paddle/fluid/platform/cpu_info.h"
A
Adam Osewski 已提交
19
#include "paddle/fluid/platform/mkldnn_helper.h"
J
Jacek Czaja 已提交
20
#include "paddle/fluid/platform/mkldnn_reuse.h"
21 22 23

namespace paddle {
namespace operators {
A
Adam Osewski 已提交
24
namespace {
25

26 27 28
inline MKLDNNMemoryFormat GetWeightsFormat(const MKLDNNMemoryFormat format,
                                           const int groups,
                                           const bool is_conv3d) {
Y
Yihua Xu 已提交
29
  if (is_conv3d) {
30
    return (groups == 1) ? format : MKLDNNMemoryFormat::goidhw;
Y
Yihua Xu 已提交
31
  } else {
32
    return (groups == 1) ? format : MKLDNNMemoryFormat::goihw;
Y
Yihua Xu 已提交
33 34 35
  }
}

36 37 38 39 40 41
static dnnl::memory::data_type GetDstType(bool is_int8, bool is_bfloat16,
                                          bool force_fp32_output,
                                          std::string fuse_activation,
                                          bool fuse_residual_conn,
                                          const Tensor* residual_param) {
  auto dst_dt = dnnl::memory::data_type::f32;
42 43
  if (is_int8) {
    dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
44 45
                 ? dnnl::memory::data_type::u8
                 : dnnl::memory::data_type::s8;
46
    if (force_fp32_output) {
47
      dst_dt = dnnl::memory::data_type::f32;
48
    }
49 50
    if (fuse_residual_conn && residual_param) {
      auto residual_dt = framework::ToMKLDNNDataType(residual_param->type());
51
      if (dst_dt != residual_dt) dst_dt = residual_dt;
52
    }
53 54
  } else {
    if (!force_fp32_output && is_bfloat16) {
55
      dst_dt = dnnl::memory::data_type::bf16;
56 57 58 59
      if (fuse_residual_conn && residual_param) {
        dst_dt = framework::ToMKLDNNDataType(residual_param->type());
      }
    }
60 61 62 63
  }
  return dst_dt;
}

64
template <typename T, typename K, typename T_out>
65
class ConvMKLDNNHandlerT
66 67 68
    : public platform::MKLDNNHandlerT<T, dnnl::convolution_forward,
                                      dnnl::convolution_backward_data,
                                      dnnl::convolution_backward_weights> {
69
 public:
A
Adam Osewski 已提交
70
  ConvMKLDNNHandlerT(const framework::ExecutionContext& ctx,
71
                     const platform::MKLDNNDeviceContext& dev_ctx,
72
                     const dnnl::engine mkldnn_engine,
73 74 75
                     platform::Place cpu_place, const Tensor* input,
                     const Tensor* filter, const Tensor* bias, Tensor* output,
                     const std::string& unique_name)
76 77 78
      : platform::MKLDNNHandlerT<T, dnnl::convolution_forward,
                                 dnnl::convolution_backward_data,
                                 dnnl::convolution_backward_weights>(
79
            dev_ctx, mkldnn_engine, cpu_place,
80
            platform::CreateKey(dev_ctx, framework::vectorize(input->dims()),
81
                                unique_name)) {
82
    if (!this->isCached()) {
83
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
84
          input->layout(), framework::DataLayout::kMKLDNN,
85 86
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
87
              framework::DataLayout::kMKLDNN, input->layout()));
88 89 90
      PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Input tensor"));
91

92
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
93
          filter->layout(), framework::DataLayout::kMKLDNN,
94 95
          platform::errors::InvalidArgument(
              "The Filter tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
96
              framework::DataLayout::kMKLDNN, filter->layout()));
97 98 99
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Filter tensor"));
K
Krzysztof Binias 已提交
100

101 102 103 104 105 106 107 108 109 110 111 112
      PADDLE_ENFORCE_GE(
          input->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
      PADDLE_ENFORCE_LE(
          input->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
113

114 115 116 117 118 119 120 121 122 123 124 125
      PADDLE_ENFORCE_GE(
          filter->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
      PADDLE_ENFORCE_LE(
          filter->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
126

127 128
      if (bias) {
        PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
129
            bias->layout(), framework::DataLayout::kMKLDNN,
130 131
            platform::errors::InvalidArgument(
                "The Bias tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
132
                framework::DataLayout::kMKLDNN, bias->layout()));
133 134 135
        PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
                          platform::errors::InvalidArgument(
                              "Got wrong format for Bias tensor."));
136

137 138 139 140 141 142
        PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                          platform::errors::InvalidArgument(
                              "Bias must only have 1 dimension, "
                              "i.e. X, but got dimension = %d .",
                              bias->dims().size()));
      }
F
FDInSky 已提交
143

144 145 146 147 148 149 150 151 152
      const std::string fuse_activation =
          ctx.Attr<std::string>("fuse_activation");
      const float fuse_alpha = ctx.Attr<float>("fuse_alpha");
      const float fuse_beta = ctx.Attr<float>("fuse_beta");
      const bool fuse_residual_conn =
          ctx.Attr<bool>("fuse_residual_connection");
      const int groups = ctx.Attr<int>("groups");
      const std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
F
FDInSky 已提交
153

154 155 156 157 158 159
      const auto input_dims = input->dims();
      const auto data_dims =
          framework::slice_ddim(input_dims, 2, input_dims.size());
      const auto filter_dims = filter->dims();
      const auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
160

161
      const auto ksize = framework::vectorize(filter_data_dims);
162
      const bool is_test = ctx.Attr<bool>("is_test");
163

164 165
      auto strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
166

167 168
      auto paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
A
Adam 已提交
169

170 171 172
      auto dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));
A
Adam 已提交
173

174 175
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);
A
Adam 已提交
176

177 178
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
179

A
Adam Osewski 已提交
180
      const auto src_tz = framework::vectorize(input->dims());
181

A
Adam Osewski 已提交
182
      auto weights_tz = framework::vectorize(filter->dims());
183
      platform::GetGroupConvWeightsTz(weights_tz, groups);
184

A
Adam Osewski 已提交
185
      const auto dst_tz = framework::vectorize(output->dims());
186

187
      const dnnl::memory::dims stride_dims = strides;
188
      const auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
189
      const dnnl::memory::dims dilations_dims = dilations;
A
Adam 已提交
190

191 192 193 194
      /* create memory descriptor for convolution without specified format
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
195
      auto chosen_memory_format = MKLDNNMemoryFormat::any;
196
      auto data_type = dnnl::memory::data_type::f32;
197 198
      if (ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16" ||
          std::is_same<T_out, platform::bfloat16>::value)
199
        data_type = dnnl::memory::data_type::bf16;
200

201
      dnnl::memory::desc src_md, weights_md;
A
Adam Osewski 已提交
202 203 204 205 206
      if (platform::is_int8<T>()) {
        src_md = platform::MKLDNNMemDesc(
            src_tz, framework::ToMKLDNNDataType(input->type()),
            chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(
207
            weights_tz, dnnl::memory::data_type::s8, chosen_memory_format);
A
Adam Osewski 已提交
208 209 210 211 212 213 214
      } else {
        src_md =
            platform::MKLDNNMemDesc(src_tz, data_type, chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(weights_tz, data_type,
                                             MKLDNNMemoryFormat::any);
      }

215
      const auto dst_md = platform::MKLDNNMemDesc(
216
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
217 218
      const auto fwd_prop_kind = is_test ? dnnl::prop_kind::forward_inference
                                         : dnnl::prop_kind::forward_training;
219

J
jakpiase 已提交
220
      float sum_scale = 1.0f;
221
      float activation_scale = 1.0f;
A
Adam Osewski 已提交
222
      std::vector<float> output_shift_scale;
J
jakpiase 已提交
223
      if (platform::is_int8<T>())
224 225
        std::tie(sum_scale, output_shift_scale, activation_scale) =
            get_int8_scales(ctx);
A
Adam Osewski 已提交
226

227
      const dnnl::primitive_attr conv_attr = CreatePostOps(
A
Adam Osewski 已提交
228
          fuse_activation, fuse_alpha, fuse_beta, fuse_residual_conn,
229
          output_shift_scale, sum_scale, activation_scale);  // for INT8 only!
A
Adam 已提交
230

231 232
      if (bias) {
        auto bias_tz = framework::vectorize(bias->dims());
233
        dnnl::memory::desc bias_md;
A
Adam Osewski 已提交
234 235
        if (platform::is_int8<T>()) {
          bias_md = platform::MKLDNNMemDesc(
236
              bias_tz, dnnl::memory::data_type::s32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
237 238 239 240
        } else {
          bias_md = platform::MKLDNNMemDesc(bias_tz, data_type,
                                            MKLDNNMemoryFormat::x);
        }
241

242
        this->AcquireForwardPrimitiveDescriptor(
243
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
244
            src_md, weights_md, bias_md, dst_md, stride_dims, dilations_dims,
245 246
            mkldnn_paddings[0], mkldnn_paddings[1]);
      } else {
247
        this->AcquireForwardPrimitiveDescriptor(
248
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
249 250
            src_md, weights_md, dst_md, stride_dims, dilations_dims,
            mkldnn_paddings[0], mkldnn_paddings[1]);
251 252 253
      }
    }
  }
254

255 256 257 258 259 260
  ConvMKLDNNHandlerT(const framework::ExecutionContext& ctx,
                     const platform::MKLDNNDeviceContext& dev_ctx,
                     platform::Place cpu_place, const Tensor* in,
                     const Tensor* filter, const Tensor* bias,
                     const Tensor* out_grad, Tensor* filter_grad,
                     Tensor* in_x_grad, const std::string& unique_name)
261 262 263
      : platform::MKLDNNHandlerT<T, dnnl::convolution_forward,
                                 dnnl::convolution_backward_data,
                                 dnnl::convolution_backward_weights>(
264 265
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
            platform::CreateKey(dev_ctx, framework::vectorize(in->dims()),
266
                                unique_name)) {
267 268
    if (!this->isBwdCached()) {
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
269
          in->layout(), framework::DataLayout::kMKLDNN,
270 271
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
272
              framework::DataLayout::kMKLDNN, in->layout()));
273 274 275 276 277
      PADDLE_ENFORCE_NE(in->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Got wrong format for Input tensor."));

      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
278
          filter->layout(), framework::DataLayout::kMKLDNN,
279 280
          platform::errors::InvalidArgument(
              "The filter tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
281
              framework::DataLayout::kMKLDNN, filter->layout()));
282 283 284 285 286
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Got wrong format for Filter tensor."));

      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
287
          out_grad->layout(), framework::DataLayout::kMKLDNN,
288 289
          platform::errors::InvalidArgument(
              "The output_grad tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
290
              framework::DataLayout::kMKLDNN, out_grad->layout()));
291 292 293 294 295
      PADDLE_ENFORCE_NE(out_grad->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for output_grad tensor"));

      PADDLE_ENFORCE_EQ(
296
          ctx.Attr<bool>("is_test"), false,
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
          platform::errors::InvalidArgument(
              "is_test attribute should be set to False in training phase."));

      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));

      auto input_dims = in->dims();
      auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
      auto filter_dims = filter->dims();
      auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
      auto ksize = framework::vectorize(filter_data_dims);

A
Adam Osewski 已提交
317 318
      std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
319 320 321 322 323 324
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);

      auto src_tz = framework::vectorize(in->dims());
      auto weights_tz = framework::vectorize(filter->dims());

A
Adam Osewski 已提交
325
      int groups = ctx.Attr<int>("groups");
326 327
      int g = std::max(groups, 1);
      platform::GetGroupConvWeightsTz(weights_tz, g);
A
Adam Osewski 已提交
328
      auto dst_tz = framework::vectorize(out_grad->dims());
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352

      /* create memory descriptor for conv backward without specified format
       * ('any') which lets a primitive (conv backward in this case) choose
       * the memory format preferred for best performance
       */
      const auto chosen_memory_format = MKLDNNMemoryFormat::any;
      const auto weights_format = MKLDNNMemoryFormat::any;

      auto src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      const auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
      auto diff_src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
      auto diff_weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
      auto diff_dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);

      auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
353
      const dnnl::memory::dims dilations_dims = dilations;
354

355
      const dnnl::memory::dims stride_dims = strides;
356
      // Recreating FWD PD. For training there are no post ops in convolution
357
      dnnl::primitive_attr conv_attr;
358 359
      if (bias) {
        auto bias_tz = framework::vectorize(bias->dims());
360
        dnnl::memory::desc bias_md;
A
Adam Osewski 已提交
361 362
        if (platform::is_int8<T>()) {
          bias_md = platform::MKLDNNMemDesc(
363
              bias_tz, dnnl::memory::data_type::s32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
364 365
        } else {
          bias_md = platform::MKLDNNMemDesc(
366
              bias_tz, dnnl::memory::data_type::f32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
367
        }
368

369
        this->AcquireForwardPrimitiveDescriptor(
370
            conv_attr, dnnl::prop_kind::forward_training,
371 372 373 374
            dnnl::algorithm::convolution_direct, src_md, weights_md, bias_md,
            dst_md, stride_dims, dilations_dims, mkldnn_paddings[0],
            mkldnn_paddings[1]);
      } else {
375
        this->AcquireForwardPrimitiveDescriptor(
376
            conv_attr, dnnl::prop_kind::forward_training,
377 378 379 380 381
            dnnl::algorithm::convolution_direct, src_md, weights_md, dst_md,
            stride_dims, dilations_dims, mkldnn_paddings[0],
            mkldnn_paddings[1]);
      }

382
      this->AcquireBackwardPrimitiveDescriptor(
383
          dnnl::algorithm::convolution_direct, diff_src_md, weights_md,
384 385 386
          diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
          mkldnn_paddings[1]);

387
      this->AcquireBackwardWeightsPrimitiveDescriptor(
388
          dnnl::algorithm::convolution_direct, src_md, diff_weights_md,
389 390 391 392 393
          diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
          mkldnn_paddings[1]);
    }
  }

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
  std::shared_ptr<std::tuple<float, std::vector<float>>> get_int8_bias_scales(
      const framework::ExecutionContext& ctx) {
    // Get scales int8 bias key
    const std::string key_bs = this->key_ + "@bs";

    // Scales for int8 bias are to be cached to avoid
    // computing them each iteration
    auto bias_scale_tuple =
        std::static_pointer_cast<std::tuple<float, std::vector<float>>>(
            this->dev_ctx_.GetBlob(key_bs));
    if (bias_scale_tuple) return bias_scale_tuple;

    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto& weights_tz = framework::vectorize(filter->dims());
    const int groups = std::max(ctx.Attr<int>("groups"), 1);

    const auto& scale_weights_data =
        ctx.Attr<std::vector<float>>("Scale_weights");
    const auto& scale_in_data = ctx.Attr<float>("Scale_in");

    bool is_multi_channel = scale_weights_data.size() > 1;
    int mask_reorder = is_multi_channel ? 1 << 0 : 1;

    int count = 1;
    if (is_multi_channel) {
      count *= weights_tz[0];
      if (groups > 1) {
        count *= weights_tz[1];
      }
    }

    bias_scale_tuple =
        std::make_shared<std::tuple<float, std::vector<float>>>(std::make_tuple(
            static_cast<float>(mask_reorder), std::vector<float>(count)));
    for (int i = 0; i < count; i++) {
      std::get<1>(*bias_scale_tuple)[i] = scale_in_data * scale_weights_data[i];
    }

    this->dev_ctx_.SetBlob(key_bs, bias_scale_tuple);

    return bias_scale_tuple;
  }

437
  std::tuple<float, std::vector<float>, float> get_int8_scales(
A
Adam Osewski 已提交
438 439 440 441 442 443 444 445 446 447 448 449
      const framework::ExecutionContext& ctx) const {
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto& weights_tz = framework::vectorize(filter->dims());

    const bool& force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    const bool& fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    const int groups = std::max(ctx.Attr<int>("groups"), 1);

    const auto& scale_in_data = ctx.Attr<float>("Scale_in");
    const auto& scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
    bool is_multi_channel = scale_weights_data.size() > 1;
450 451 452 453
    bool has_activation = !ctx.Attr<std::string>("fuse_activation").empty();
    float activation_scale =
        force_fp32_output ? 1.0f : has_activation ? ctx.Attr<float>("Scale_out")
                                                  : 1.0f;
A
Adam Osewski 已提交
454
    auto scale_out_data =
455 456 457
        force_fp32_output ? 1.0f : has_activation
                                       ? 1.0f
                                       : ctx.Attr<float>("Scale_out");
A
Adam Osewski 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
    float sum_scale =
        fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;
    int count =
        is_multi_channel
            ? (groups > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
            : 1;
    std::vector<float> output_shift_scale(count);

#pragma omp parallel for if (count > 50)
    for (int i = 0; i < count; i++) {
      if (scale_weights_data[i] == 0.0)
        // weights data will contain 0 in some models, then weights
        // scale couldn't be calculated
        output_shift_scale[i] = scale_out_data;
      else
        output_shift_scale[i] =
            static_cast<float>(static_cast<double>(scale_out_data) /
                               (static_cast<double>(scale_in_data) *
                                static_cast<double>(scale_weights_data[i])));
    }

479
    return std::make_tuple(sum_scale, output_shift_scale, activation_scale);
A
Adam Osewski 已提交
480 481
  }

482
  dnnl::primitive_attr CreatePostOps(
483 484
      std::string fuse_activation, float fuse_alpha, float fuse_beta,
      bool fuse_residual_conn, const std::vector<float> output_shift_scale = {},
485
      float sum_scale = 1.0f, float activation_scale = 1.0f) {
486 487
    dnnl::primitive_attr conv_attr;
    dnnl::post_ops post_operations;
488 489 490 491
    if (output_shift_scale.size() > 0) {
      int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
      conv_attr.set_output_scales(mask, output_shift_scale);
    }
492

493 494 495 496 497 498 499 500 501 502 503
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
      post_operations.append_sum(sum_scale);
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
504 505 506
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_relu, fuse_alpha,
                                     fuse_beta);
507
    } else if (fuse_activation == "relu6") {
508 509
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_bounded_relu,
510
                                     fuse_alpha, fuse_beta);
511 512 513 514
    } else if (fuse_activation == "swish") {
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_swish, fuse_alpha,
                                     fuse_beta);
J
jakpiase 已提交
515
    } else if (fuse_activation == "hard_swish") {
516 517
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_hardswish,
518
                                     fuse_alpha, fuse_beta);
519 520 521 522
    } else if (fuse_activation == "mish") {
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_mish, fuse_alpha,
                                     fuse_beta);
523
    } else if (fuse_activation == "hard_sigmoid") {
524 525
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_linear,
526
                                     fuse_alpha, fuse_beta);
527 528
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_clip, 0.0f, 1.0f);
B
baoachun 已提交
529
    } else if (fuse_activation == "gelu_tanh") {
530 531
      post_operations.append_eltwise(
          activation_scale, dnnl::algorithm::eltwise_gelu_tanh, 0.0f, 0.0f);
B
baoachun 已提交
532
    } else if (fuse_activation == "gelu_erf") {
533 534
      post_operations.append_eltwise(
          activation_scale, dnnl::algorithm::eltwise_gelu_erf, 0.0f, 0.0f);
535 536 537 538
    }
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }
539

540
  std::shared_ptr<dnnl::memory>
541 542 543 544 545 546 547 548 549 550 551 552
  AcquireWeightsMemoryWithReorderFromDataPrimitive(
      const framework::Tensor* filter, const int groups, const bool is_conv3d) {
    const K* filter_data = filter->data<K>();
    auto weights_tz = framework::vectorize(filter->dims());
    platform::GetGroupConvWeightsTz(weights_tz, groups);

    auto user_src_md = platform::MKLDNNMemDesc(
        weights_tz, platform::MKLDNNGetDataType<K>(),
        GetWeightsFormat(filter->format(), groups, is_conv3d));

    return this->AcquireMemoryWithReorder(
        user_src_md, this->bwd_pd_->weights_desc(),
A
Adam Osewski 已提交
553
        platform::to_void_cast<K>(filter_data), "@weights_mem_d_p", false);
554 555
  }

556
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorder(
557
      const framework::Tensor* input) {
558 559 560 561
    return this->AcquireMemoryWithReorderPrimitive(
        input, "@src_mem_p_user", "@src_mem_p_target", "@src_mem_p",
        this->fwd_pd_->src_desc());
  }
562

563
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorderFromWeightsPrimitive(
564 565 566 567 568 569
      const framework::Tensor* input) {
    return this->AcquireMemoryWithReorderPrimitive(
        input, "@src_mem_w_p_user", "@src_mem_w_p_target", "@src_mem_w_p",
        this->bwd_w_pd_->src_desc());
  }

570
  std::shared_ptr<dnnl::memory>
571 572 573 574 575 576 577
  AcquireDiffDstMemoryWithReorderFromWeightsPrimitive(
      const framework::Tensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
        out_grad, "@diff_dst_mem_w_p_user", "@diff_dst_mem_w_p_target",
        "@diff_dst_mem_w_p", this->bwd_w_pd_->diff_dst_desc());
  }

578
  std::shared_ptr<dnnl::memory>
579 580 581 582 583 584 585
  AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive(
      const framework::Tensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
        out_grad, "@diff_dst_mem_p_user", "@diff_dst_mem_p_target",
        "@diff_dst_mem_p", this->bwd_pd_->diff_dst_desc());
  }

586
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorderPrimitive(
587 588
      const framework::Tensor* in_mem, const char* key_mem_user,
      const char* key_mem_target, const char* key_mem,
589
      const dnnl::memory::desc& mem_md) {
590 591 592 593 594 595 596 597
    const T* in_mem_data = in_mem->data<T>();
    const std::string user_key_suffix{key_mem_user};
    auto user_mem_p = this->AcquireMemory(user_key_suffix);

    if (!user_mem_p) {
      auto user_mem_md = platform::MKLDNNMemDesc(
          framework::vectorize(in_mem->dims()),
          platform::MKLDNNGetDataType<T>(), in_mem->format());
598
      return this->AcquireMemoryWithReorder(
599
          user_mem_md, mem_md, platform::to_void_cast<T>(in_mem_data), key_mem);
600
    } else {
601 602
      const std::string target_key_suffix{key_mem_target};
      const auto target_mem_p = this->AcquireMemory(target_key_suffix);
A
Adam Osewski 已提交
603
      user_mem_p->set_data_handle(platform::to_void_cast<T>(in_mem_data));
604
      if (user_mem_p != target_mem_p) {
605
        this->AcquireReorder(user_mem_p, target_mem_p);
606
      }
607
      return target_mem_p;
608
    }
609 610
  }

611
  std::shared_ptr<dnnl::memory> AcquireWeightsMemoryWithReorder(
612
      const framework::Tensor* filter, const int groups, const bool is_conv3d,
613 614
      const bool is_test, const std::vector<float>& scale_data = {1.0f},
      int mask = 0) {
615 616 617
    // This is workaround to make execution faster, delete
    // if statement after including md inside Tensor
    auto weights_mem_p = this->AcquireMemory("@weights_mem_p_target");
618
    if (is_test && weights_mem_p) {
619
      return weights_mem_p;
620
    } else if (is_test) {
621
      const K* filter_data = filter->data<K>();
622
      auto weights_tz = framework::vectorize(filter->dims());
623
      platform::GetGroupConvWeightsTz(weights_tz, groups);
624 625

      auto user_src_md = platform::MKLDNNMemDesc(
626
          weights_tz, platform::MKLDNNGetDataType<K>(),
627 628 629 630
          GetWeightsFormat(filter->format(), groups, is_conv3d));

      return this->AcquireMemoryWithReorder(
          user_src_md, this->fwd_pd_->weights_desc(),
631 632
          platform::to_void_cast<K>(filter_data), "@weights_mem_p", is_test, {},
          scale_data, mask);
633 634 635 636 637 638 639 640 641 642 643 644 645
    } else {
      const T* filter_data = filter->data<T>();
      auto weights_tz = framework::vectorize(filter->dims());
      platform::GetGroupConvWeightsTz(weights_tz, groups);

      auto user_src_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(),
          GetWeightsFormat(filter->format(), groups, is_conv3d));

      return this->AcquireMemoryWithReorder(
          user_src_md, this->fwd_pd_->weights_desc(),
          platform::to_void_cast<T>(filter_data), "@weights_mem_p", is_test, {},
          scale_data, mask);
646
    }
647
  }
648

649
  std::shared_ptr<dnnl::memory> AcquireBiasMemoryWithReorder(
650
      const framework::Tensor* bias, const bool is_test,
A
Adam Osewski 已提交
651
      const std::vector<float>& scale_data = {1.0f}, int mask = 0) {
652
    auto bias_mem_p = this->AcquireMemory("@bias_mem_p_target");
653
    if (is_test && bias_mem_p) {
654 655 656 657 658 659 660 661
      return bias_mem_p;
    } else {
      const K* bias_data = bias->data<K>();
      auto user_bias_md = platform::MKLDNNMemDesc(
          framework::vectorize(bias->dims()), platform::MKLDNNGetDataType<K>(),
          MKLDNNMemoryFormat::x);

      return this->AcquireMemoryWithReorder(
A
Adam Osewski 已提交
662
          user_bias_md, this->fwd_pd_->bias_desc(),
663
          platform::to_void_cast<K>(bias_data), "@bias_mem_p", is_test, {},
A
Adam Osewski 已提交
664
          scale_data, mask);
665
    }
666
  }
667

668
  std::shared_ptr<dnnl::memory> AcquireResidualMemory(
669
      const framework::Tensor* residual_param) {
670 671
    void* residual_data =
        residual_param->type() == framework::DataTypeTrait<T_out>::DataType()
A
Adam Osewski 已提交
672 673
            ? platform::to_void_cast<T_out>(residual_param->data<T_out>())
            : platform::to_void_cast<T>(residual_param->data<T>());
674 675 676 677 678 679 680 681 682
    auto residual_mem_p = this->AcquireMemory("@user_residual_data_mem_p");
    if (residual_mem_p) {
      residual_mem_p->set_data_handle(residual_data);
      return residual_mem_p;
    } else {
      auto user_residual_md = platform::MKLDNNMemDesc(
          framework::vectorize(residual_param->dims()),
          framework::ToMKLDNNDataType(residual_param->type()),
          residual_param->format());
683

684 685 686
      return this->AcquireMemoryFromPrimitive(user_residual_md, residual_data,
                                              "@user_residual_data_mem_p");
    }
687 688
  }

689
  std::shared_ptr<dnnl::memory> AcquireDstMemoryWithResidual(
690 691 692 693 694
      framework::Tensor* output, const framework::Tensor* residual_param) {
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (residual_param->format() !=
        platform::GetMKLDNNFormat(this->fwd_pd_->dst_desc())) {
      auto residual_memory_p = this->AcquireResidualMemory(residual_param);
695
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
696
      this->AcquireReorder(residual_memory_p, dst_memory_p);
697 698 699 700 701
    } else {
      // Changing ShareDataWith to TensorCopy results in performance drop
      // on ResNet architectures
      // (https://github.com/PaddlePaddle/Paddle/issues/22964)
      output->ShareDataWith(*residual_param);
702
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
703 704 705 706 707
    }
    return dst_memory_p;
  }
};

A
Adam Osewski 已提交
708 709
}  // anonymous namespace

710
template <typename T, typename K>
A
Adam Osewski 已提交
711
class ConvMKLDNNOpKernel : public framework::OpKernel<T> {
712
 public:
A
Adam Osewski 已提交
713
  void Compute(const framework::ExecutionContext& ctx) const override {
714
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
A
Adam Osewski 已提交
715
                      platform::errors::PreconditionNotMet(
716 717 718
                          "Operator DNNL Conv must use CPUPlace"));
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
719 720 721 722 723 724 725 726
    bool is_BFLOAT16 = ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16";
    auto residual_param = ctx.Input<Tensor>("ResidualData");
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    auto dst_dt =
        GetDstType(is_INT8, is_BFLOAT16, force_fp32_output, fuse_activation,
                   fuse_residual_conn, residual_param);
727
    if (!is_INT8) {
728
      if (dst_dt == dnnl::memory::data_type::f32) {
729
        ComputeFP32<float>(ctx);
730
      } else if (dst_dt == dnnl::memory::data_type::bf16) {
731 732
        ComputeFP32<platform::bfloat16>(ctx);
      }
733
    } else {
734
      if (dst_dt == dnnl::memory::data_type::f32) {
735
        ComputeINT8<float>(ctx);
736
      } else if (dst_dt == dnnl::memory::data_type::u8) {
737
        ComputeINT8<uint8_t>(ctx);
738
      } else if (dst_dt == dnnl::memory::data_type::s8) {
739 740
        ComputeINT8<int8_t>(ctx);
      }
741
    }
742
  }
743

744
  template <typename T_out>
A
Adam Osewski 已提交
745
  void ComputeFP32(const framework::ExecutionContext& ctx) const {
746
    auto& dev_ctx =
A
Adam Osewski 已提交
747
        ctx.template device_context<platform::MKLDNNDeviceContext>();
748
    const auto& mkldnn_engine = dev_ctx.GetEngine();
749

750
    const bool is_test = ctx.Attr<bool>("is_test");
751 752
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
    const bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
753

754 755 756 757 758
    const auto* input = ctx.Input<Tensor>("Input");
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
759

760
    ConvMKLDNNHandlerT<T, K, T_out> handler(
761 762
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
763

764
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
765

766
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
767
        filter, ctx.Attr<int>("groups"), is_conv3d, is_test);
768

769 770 771
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
772
      dst_memory_p =
773 774
          handler.AcquireDstMemoryWithResidual(output, residual_param);
    } else {
775
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
776
    }
777

778
    auto conv_p = handler.AcquireForwardPrimitive();
A
Adam 已提交
779

780
    std::unordered_map<int, dnnl::memory> args = {
781 782 783
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};
A
Adam 已提交
784

785
    if (bias) {
786
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(bias, is_test);
787
      args.insert({DNNL_ARG_BIAS, *bias_memory_p});
788
    }
789

790
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
791
    conv_p->execute(astream, args);
A
Adam 已提交
792
    astream.wait();
793

A
Adam Osewski 已提交
794 795
    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
796
  }
797

798
  template <typename T_out>
A
Adam Osewski 已提交
799
  void ComputeINT8(const framework::ExecutionContext& ctx) const {
800
    auto& dev_ctx =
A
Adam Osewski 已提交
801
        ctx.template device_context<platform::MKLDNNDeviceContext>();
802 803
    const auto& mkldnn_engine = dev_ctx.GetEngine();

A
Adam Osewski 已提交
804 805 806 807 808
    const std::string& fuse_activation =
        ctx.Attr<std::string>("fuse_activation");
    const bool& fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    const bool& force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
809

810 811
    bool unsigned_output =
        (fuse_activation == "relu" || fuse_activation == "relu6");
812 813
    bool need_s8_to_u8 = false;

A
Adam Osewski 已提交
814 815 816 817 818 819 820 821
    PADDLE_ENFORCE_NE(
        is_conv3d, true,
        platform::errors::Unimplemented(
            "OneDNN int8 convolution does not support 3D inputs currently"));
    PADDLE_ENFORCE_EQ(
        fuse_residual_conn && force_fp32_output, false,
        platform::errors::Unimplemented(
            "residual fusion does not support force output with fp32"));
A
Adam 已提交
822

A
Adam Osewski 已提交
823 824 825 826
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
827

A
Adam Osewski 已提交
828 829 830
    ConvMKLDNNHandlerT<T, K, T_out> handler(
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
831

A
Adam Osewski 已提交
832
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
F
FDInSky 已提交
833

A
Adam Osewski 已提交
834 835 836 837 838 839 840
    const auto& scale_weights_data =
        ctx.Attr<std::vector<float>>("Scale_weights");
    const bool is_multi_channel = scale_weights_data.size() > 1;
    const int& groups = ctx.Attr<int>("groups");
    int mask_reorder =
        is_multi_channel ? ((groups != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
841
        filter, groups, false, true, scale_weights_data, mask_reorder);
842

A
Adam Osewski 已提交
843 844 845
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
846
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
847 848 849 850 851 852
          output->dims(), residual_param->dims(),
          platform::errors::InvalidArgument(
              "Output and elementwise parameter need to have the "
              "same dimension sizes, but got output's dimension = %d"
              " and residual param's dimension =%d .",
              output->dims().size(), residual_param->dims().size()));
853
      dst_memory_p =
A
Adam Osewski 已提交
854 855
          handler.AcquireDstMemoryWithResidual(output, residual_param);
      need_s8_to_u8 = (platform::MKLDNNGetDataType<T_out>() ==
856
                       dnnl::memory::data_type::s8) &&
A
Adam Osewski 已提交
857 858 859 860
                      unsigned_output;
    } else {
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
    }
L
lidanqing 已提交
861

A
Adam Osewski 已提交
862 863 864
    auto conv_p = handler.AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> args = {
865 866 867
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};
A
Adam 已提交
868

A
Adam Osewski 已提交
869
    if (bias) {
870
      auto p_scales_tuple = handler.get_int8_bias_scales(ctx);
A
Adam 已提交
871

A
Adam Osewski 已提交
872
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(
873
          bias, true, std::get<1>(*p_scales_tuple),
874
          std::get<0>(*p_scales_tuple));
875
      args.insert({DNNL_ARG_BIAS, *bias_memory_p});
876
    }
A
Adam Osewski 已提交
877 878 879

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    conv_p->execute(astream, args);
A
Adam 已提交
880
    astream.wait();
A
Adam Osewski 已提交
881

882
    if (need_s8_to_u8) {
X
xiaolil1 已提交
883 884
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }
A
Adam Osewski 已提交
885 886 887

    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
888
  }
889 890
};

891
template <typename T, typename K>
A
Adam Osewski 已提交
892
class ConvMKLDNNGradOpKernel : public framework::OpKernel<T> {
893
 public:
A
Adam Osewski 已提交
894
  void Compute(const framework::ExecutionContext& ctx) const override {
895
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
A
Adam Osewski 已提交
896
                      platform::errors::PreconditionNotMet(
897
                          "Operator DNNL ConvGrad must use CPUPlace"));
898 899
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
900 901 902 903
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
904 905
    const Tensor* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
906 907 908 909 910 911 912
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    if (!input_grad && !filter_grad) return;

913 914 915 916 917
    // TODO(jczaja): Are all tensors really needed?
    ConvMKLDNNHandlerT<T, K, T> handler(
        ctx, dev_ctx, ctx.GetPlace(), input, filter, bias, output_grad,
        filter_grad, input_grad,
        ctx.InputName("Input") + ctx.InputName("Filter"));
918 919

    // create mkldnn memory from input tensors (data/weights)
920
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
921

922 923 924 925 926 927
    if (filter_grad) {
      auto src_memory_p =
          handler.AcquireSrcMemoryWithReorderFromWeightsPrimitive(input);
      auto diff_dst_memory_p =
          handler.AcquireDiffDstMemoryWithReorderFromWeightsPrimitive(
              output_grad);
928

929 930
      // For convoluition with groups write filter grad into
      // oneDNN buffer and then we reorder it into filter_grad tensor
931
      int g = std::max(ctx.Attr<int>("groups"), 1);
932
      auto diff_weights_memory_p =
933 934
          g > 1 ? handler.AcquireDiffWeightsMemory()
                : handler.AcquireDiffWeightsMemory(filter_grad);
935

936
      auto conv_bwd_weights_p = handler.AcquireBackwardWeightsPrimitive();
937

A
Adam 已提交
938 939
      // TODO(grygielski) why no bias_diff?
      conv_bwd_weights_p->execute(
940 941 942
          astream, {{DNNL_ARG_SRC, *src_memory_p},
                    {DNNL_ARG_DIFF_DST, *diff_dst_memory_p},
                    {DNNL_ARG_DIFF_WEIGHTS, *diff_weights_memory_p}});
A
Adam 已提交
943
      astream.wait();
944

A
Adam Osewski 已提交
945
      filter_grad->set_layout(framework::DataLayout::kMKLDNN);
946 947
      // in OneDNN groups in convolution are treated as separate dimension
      // which is not the case in paddlepaddle
A
Adam Osewski 已提交
948
      auto filter_fmt = platform::GetMKLDNNFormat(*diff_weights_memory_p);
949 950 951 952

      // For convolution with groups convert from blocked to NCHW
      // otherwise there will be problems in next operators working on this data
      if (g > 1) {
953
        dnnl::memory::data_type in_type =
A
Adam Osewski 已提交
954
            framework::ToMKLDNNDataType(filter->type());
955 956
        // for 3d conv with groups (six dimensional data reorder to goidhw)
        // for 2d conv with groups (five dimensional data reorder to goihw)
A
Adam Osewski 已提交
957
        // auto weights_tz = framework::vectorize(filter->dims());
958 959

        auto weights_tz = diff_weights_memory_p->get_desc().dims();
960 961 962
        dnnl::memory::format_tag out_format =
            weights_tz.size() == 6 ? dnnl::memory::format_tag::goidhw
                                   : dnnl::memory::format_tag::goihw;
963 964
        platform::ReorderMKLDNNHandler handler(weights_tz, filter->type(),
                                               in_type, mkldnn_engine);
965 966 967 968 969 970
        auto reorder_dst_memory_p =
            handler.AcquireDstMemory(filter_grad, out_format, ctx.GetPlace());

        auto reorder_p =
            handler.AcquireReorder(reorder_dst_memory_p, diff_weights_memory_p);

971 972 973 974 975 976 977
        {
          platform::RecordEvent record_reorder("int_reorder",
                                               platform::EventRole::kUniqueOp);
          reorder_p->execute(astream, *diff_weights_memory_p,
                             *reorder_dst_memory_p);
          astream.wait();
        }
978 979 980 981

        // So here we have a data in goihw , which can be interpreted as OIHW
        // (OIDHW for conv3d)
        // because filter_grad shape is set for OIHW (OIDHW for conv3d)
982 983 984
        dnnl::memory::format_tag target_format =
            weights_tz.size() == 6 ? dnnl::memory::format_tag::oidhw
                                   : dnnl::memory::format_tag::oihw;
985 986 987 988
        filter_grad->set_format(target_format);
      } else {
        filter_grad->set_format(filter_fmt);
      }
989 990
    }
    if (input_grad) {
991 992 993 994
      auto weights_memory_p =
          handler.AcquireWeightsMemoryWithReorderFromDataPrimitive(
              filter, ctx.Attr<int>("groups"),
              ctx.Attr<std::vector<int>>("strides").size() == 3U);
995

996 997 998 999
      auto diff_dst_memory_p =
          handler.AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive(
              output_grad);
      auto diff_src_memory_p = handler.AcquireDiffSrcMemory(input_grad);
1000

1001
      auto conv_bwd_data_p = handler.AcquireBackwardPrimitive();
1002

A
Adam 已提交
1003
      conv_bwd_data_p->execute(astream,
1004 1005 1006
                               {{DNNL_ARG_WEIGHTS, *weights_memory_p},
                                {DNNL_ARG_DIFF_DST, *diff_dst_memory_p},
                                {DNNL_ARG_DIFF_SRC, *diff_src_memory_p}});
A
Adam 已提交
1007
      astream.wait();
1008

A
Adam Osewski 已提交
1009 1010
      input_grad->set_layout(framework::DataLayout::kMKLDNN);
      input_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory_p));
1011
    }
X
xiaolil1 已提交
1012
  }
1013
};
1014

1015 1016 1017 1018 1019
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
1020 1021 1022
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1023
                                    ops::ConvMKLDNNOpKernel<float, float>);
1024

1025 1026 1027 1028
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    conv2d, MKLDNN, ::paddle::platform::CPUPlace, BF16, ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNOpKernel<paddle::platform::bfloat16, float>);

1029 1030
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
1031
                                    ops::kConvMKLDNNINT8,
1032
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);
1033 1034 1035

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
1036
                                    ops::kConvMKLDNNINT8,
1037
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
1038 1039 1040 1041

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1042
                                    ops::ConvMKLDNNGradOpKernel<float, float>);
1043

1044 1045 1046
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace, BF16,
    ops::kConvMKLDNNFP32,
1047 1048
    ops::ConvMKLDNNGradOpKernel<paddle::platform::bfloat16,
                                paddle::platform::bfloat16>);
1049

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    depthwise_conv2d, MKLDNN, ::paddle::platform::CPUPlace, BF16,
    ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNOpKernel<paddle::platform::bfloat16, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
                                    ops::kConvMKLDNNINT8,
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
                                    ops::kConvMKLDNNINT8,
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    depthwise_conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace, BF16,
    ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNGradOpKernel<paddle::platform::bfloat16, float>);

1080 1081 1082
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1083
                                    ops::ConvMKLDNNOpKernel<float, float>);
1084 1085 1086 1087

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1088
                                    ops::ConvMKLDNNGradOpKernel<float, float>);