conv_mkldnn_op.cc 47.7 KB
Newer Older
A
Adam Osewski 已提交
1
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

A
Adam Osewski 已提交
15 16
#include <tuple>

17
#include "paddle/fluid/framework/expect.h"
18
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
19
#include "paddle/fluid/platform/cpu_info.h"
A
Adam Osewski 已提交
20
#include "paddle/fluid/platform/mkldnn_helper.h"
J
Jacek Czaja 已提交
21
#include "paddle/fluid/platform/mkldnn_reuse.h"
22 23 24

namespace paddle {
namespace operators {
A
Adam Osewski 已提交
25
namespace {
26

27 28 29
inline MKLDNNMemoryFormat GetWeightsFormat(const MKLDNNMemoryFormat format,
                                           const int groups,
                                           const bool is_conv3d) {
Y
Yihua Xu 已提交
30
  if (is_conv3d) {
31
    return (groups == 1) ? format : MKLDNNMemoryFormat::goidhw;
Y
Yihua Xu 已提交
32
  } else {
33
    return (groups == 1) ? format : MKLDNNMemoryFormat::goihw;
Y
Yihua Xu 已提交
34 35 36
  }
}

37 38 39 40 41 42
static dnnl::memory::data_type GetDstType(bool is_int8, bool is_bfloat16,
                                          bool force_fp32_output,
                                          std::string fuse_activation,
                                          bool fuse_residual_conn,
                                          const Tensor* residual_param) {
  auto dst_dt = dnnl::memory::data_type::f32;
43 44
  if (is_int8) {
    dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
45 46
                 ? dnnl::memory::data_type::u8
                 : dnnl::memory::data_type::s8;
47
    if (force_fp32_output) {
48
      dst_dt = dnnl::memory::data_type::f32;
49
    }
50
    if (fuse_residual_conn && residual_param) {
51 52
      auto residual_dt = framework::ToMKLDNNDataType(
          framework::TransToProtoVarType(residual_param->dtype()));
53
      if (dst_dt != residual_dt) dst_dt = residual_dt;
54
    }
55 56
  } else {
    if (!force_fp32_output && is_bfloat16) {
57
      dst_dt = dnnl::memory::data_type::bf16;
58
      if (fuse_residual_conn && residual_param) {
59 60
        dst_dt = framework::ToMKLDNNDataType(
            framework::TransToProtoVarType(residual_param->dtype()));
61 62
      }
    }
63 64 65 66
  }
  return dst_dt;
}

67
template <typename T, typename K, typename T_out>
68
class ConvMKLDNNHandlerT
69 70 71
    : public platform::MKLDNNHandlerT<T, dnnl::convolution_forward,
                                      dnnl::convolution_backward_data,
                                      dnnl::convolution_backward_weights> {
72
 public:
A
Adam Osewski 已提交
73
  ConvMKLDNNHandlerT(const framework::ExecutionContext& ctx,
74
                     const platform::MKLDNNDeviceContext& dev_ctx,
75
                     const dnnl::engine mkldnn_engine,
76 77 78
                     platform::Place cpu_place, const Tensor* input,
                     const Tensor* filter, const Tensor* bias, Tensor* output,
                     const std::string& unique_name)
79 80 81
      : platform::MKLDNNHandlerT<T, dnnl::convolution_forward,
                                 dnnl::convolution_backward_data,
                                 dnnl::convolution_backward_weights>(
82
            dev_ctx, mkldnn_engine, cpu_place,
83
            platform::CreateKey(dev_ctx, phi::vectorize(input->dims()),
84
                                unique_name)) {
85
    if (unlikely(!this->isCached())) {
86
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
87
          input->layout(), framework::DataLayout::kMKLDNN,
88 89
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
90
              framework::DataLayout::kMKLDNN, input->layout()));
91 92 93
      PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Input tensor"));
94

95
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
96
          filter->layout(), framework::DataLayout::kMKLDNN,
97 98
          platform::errors::InvalidArgument(
              "The Filter tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
99
              framework::DataLayout::kMKLDNN, filter->layout()));
100 101 102
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Filter tensor"));
K
Krzysztof Binias 已提交
103

104 105 106 107 108 109 110 111 112 113 114 115
      PADDLE_ENFORCE_GE(
          input->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
      PADDLE_ENFORCE_LE(
          input->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
116

117 118 119 120 121 122 123 124 125 126 127 128
      PADDLE_ENFORCE_GE(
          filter->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
      PADDLE_ENFORCE_LE(
          filter->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
129

130 131
      if (bias) {
        PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
132
            bias->layout(), framework::DataLayout::kMKLDNN,
133 134
            platform::errors::InvalidArgument(
                "The Bias tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
135
                framework::DataLayout::kMKLDNN, bias->layout()));
136 137 138
        PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
                          platform::errors::InvalidArgument(
                              "Got wrong format for Bias tensor."));
139

140 141 142 143 144 145
        PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                          platform::errors::InvalidArgument(
                              "Bias must only have 1 dimension, "
                              "i.e. X, but got dimension = %d .",
                              bias->dims().size()));
      }
F
FDInSky 已提交
146

147 148 149 150 151 152 153 154 155
      const std::string fuse_activation =
          ctx.Attr<std::string>("fuse_activation");
      const float fuse_alpha = ctx.Attr<float>("fuse_alpha");
      const float fuse_beta = ctx.Attr<float>("fuse_beta");
      const bool fuse_residual_conn =
          ctx.Attr<bool>("fuse_residual_connection");
      const int groups = ctx.Attr<int>("groups");
      const std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
F
FDInSky 已提交
156

157
      const auto input_dims = input->dims();
158
      const auto data_dims = phi::slice_ddim(input_dims, 2, input_dims.size());
159 160
      const auto filter_dims = filter->dims();
      const auto filter_data_dims =
161
          phi::slice_ddim(filter_dims, 2, filter_dims.size());
162

163
      const auto ksize = phi::vectorize(filter_data_dims);
164
      const bool is_test = ctx.Attr<bool>("is_test");
165

166 167
      auto strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
168

169 170
      auto paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
A
Adam 已提交
171

172 173 174
      auto dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));
A
Adam 已提交
175

176 177
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);
A
Adam 已提交
178

179 180
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
181

182
      const auto src_tz = phi::vectorize(input->dims());
183

184
      auto weights_tz = phi::vectorize(filter->dims());
185
      platform::GetGroupConvWeightsTz(weights_tz, groups);
186

187
      const auto dst_tz = phi::vectorize(output->dims());
188

189
      const dnnl::memory::dims stride_dims = strides;
190
      const auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
191
      const dnnl::memory::dims dilations_dims = dilations;
A
Adam 已提交
192

193 194 195 196
      /* create memory descriptor for convolution without specified format
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
197
      auto chosen_memory_format = MKLDNNMemoryFormat::any;
198
      auto data_type = dnnl::memory::data_type::f32;
199 200
      if (ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16" ||
          std::is_same<T_out, platform::bfloat16>::value)
201
        data_type = dnnl::memory::data_type::bf16;
202

203
      dnnl::memory::desc src_md, weights_md;
A
Adam Osewski 已提交
204 205
      if (platform::is_int8<T>()) {
        src_md = platform::MKLDNNMemDesc(
206 207 208
            src_tz,
            framework::ToMKLDNNDataType(
                framework::TransToProtoVarType(input->dtype())),
A
Adam Osewski 已提交
209 210
            chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(
211
            weights_tz, dnnl::memory::data_type::s8, chosen_memory_format);
A
Adam Osewski 已提交
212 213 214 215 216 217 218
      } else {
        src_md =
            platform::MKLDNNMemDesc(src_tz, data_type, chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(weights_tz, data_type,
                                             MKLDNNMemoryFormat::any);
      }

219
      const auto dst_md = platform::MKLDNNMemDesc(
220
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
221 222
      const auto fwd_prop_kind = is_test ? dnnl::prop_kind::forward_inference
                                         : dnnl::prop_kind::forward_training;
223

J
jakpiase 已提交
224
      float sum_scale = 1.0f;
225
      float activation_scale = 1.0f;
A
Adam Osewski 已提交
226
      std::vector<float> output_shift_scale;
227 228 229 230 231 232 233 234 235 236 237
      if (platform::is_int8<T>()) {
        if (ctx.HasAttr("Sum_scale")) {
          sum_scale = ctx.Attr<float>("Sum_scale");
          activation_scale = ctx.Attr<float>("Activation_scale");
          output_shift_scale =
              ctx.Attr<std::vector<float>>("Output_shift_scale");
        } else {
          std::tie(sum_scale, output_shift_scale, activation_scale) =
              get_int8_scales(ctx);
        }
      }
A
Adam Osewski 已提交
238

239
      const dnnl::primitive_attr conv_attr = CreatePostOps(
A
Adam Osewski 已提交
240
          fuse_activation, fuse_alpha, fuse_beta, fuse_residual_conn,
241
          output_shift_scale, sum_scale, activation_scale);  // for INT8 only!
A
Adam 已提交
242

243
      if (bias) {
244
        auto bias_tz = phi::vectorize(bias->dims());
245
        dnnl::memory::desc bias_md;
A
Adam Osewski 已提交
246 247
        if (platform::is_int8<T>()) {
          bias_md = platform::MKLDNNMemDesc(
248
              bias_tz, dnnl::memory::data_type::s32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
249 250 251 252
        } else {
          bias_md = platform::MKLDNNMemDesc(bias_tz, data_type,
                                            MKLDNNMemoryFormat::x);
        }
253

254
        this->AcquireForwardPrimitiveDescriptor(
255
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
256
            src_md, weights_md, bias_md, dst_md, stride_dims, dilations_dims,
257 258
            mkldnn_paddings[0], mkldnn_paddings[1]);
      } else {
259
        this->AcquireForwardPrimitiveDescriptor(
260
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
261 262
            src_md, weights_md, dst_md, stride_dims, dilations_dims,
            mkldnn_paddings[0], mkldnn_paddings[1]);
263 264 265
      }
    }
  }
266

267 268 269 270 271 272
  ConvMKLDNNHandlerT(const framework::ExecutionContext& ctx,
                     const platform::MKLDNNDeviceContext& dev_ctx,
                     platform::Place cpu_place, const Tensor* in,
                     const Tensor* filter, const Tensor* bias,
                     const Tensor* out_grad, Tensor* filter_grad,
                     Tensor* in_x_grad, const std::string& unique_name)
273 274 275
      : platform::MKLDNNHandlerT<T, dnnl::convolution_forward,
                                 dnnl::convolution_backward_data,
                                 dnnl::convolution_backward_weights>(
276
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
277
            platform::CreateKey(dev_ctx, phi::vectorize(in->dims()),
278
                                unique_name)) {
279
    if (unlikely(!this->isBwdCached())) {
280
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
281
          in->layout(), framework::DataLayout::kMKLDNN,
282 283
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
284
              framework::DataLayout::kMKLDNN, in->layout()));
285 286 287 288 289
      PADDLE_ENFORCE_NE(in->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Got wrong format for Input tensor."));

      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
290
          filter->layout(), framework::DataLayout::kMKLDNN,
291 292
          platform::errors::InvalidArgument(
              "The filter tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
293
              framework::DataLayout::kMKLDNN, filter->layout()));
294 295 296 297 298
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Got wrong format for Filter tensor."));

      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
299
          out_grad->layout(), framework::DataLayout::kMKLDNN,
300 301
          platform::errors::InvalidArgument(
              "The output_grad tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
302
              framework::DataLayout::kMKLDNN, out_grad->layout()));
303 304 305 306 307
      PADDLE_ENFORCE_NE(out_grad->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for output_grad tensor"));

      PADDLE_ENFORCE_EQ(
308
          ctx.Attr<bool>("is_test"), false,
309 310 311 312 313 314 315 316 317 318 319 320 321 322
          platform::errors::InvalidArgument(
              "is_test attribute should be set to False in training phase."));

      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));

      auto input_dims = in->dims();
323
      auto data_dims = phi::slice_ddim(input_dims, 2, input_dims.size());
324 325
      auto filter_dims = filter->dims();
      auto filter_data_dims =
326 327
          phi::slice_ddim(filter_dims, 2, filter_dims.size());
      auto ksize = phi::vectorize(filter_data_dims);
328

A
Adam Osewski 已提交
329 330
      std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
331 332 333
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);

334 335
      auto src_tz = phi::vectorize(in->dims());
      auto weights_tz = phi::vectorize(filter->dims());
336

A
Adam Osewski 已提交
337
      int groups = ctx.Attr<int>("groups");
338 339
      int g = std::max(groups, 1);
      platform::GetGroupConvWeightsTz(weights_tz, g);
340
      auto dst_tz = phi::vectorize(out_grad->dims());
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364

      /* create memory descriptor for conv backward without specified format
       * ('any') which lets a primitive (conv backward in this case) choose
       * the memory format preferred for best performance
       */
      const auto chosen_memory_format = MKLDNNMemoryFormat::any;
      const auto weights_format = MKLDNNMemoryFormat::any;

      auto src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      const auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
      auto diff_src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
      auto diff_weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
      auto diff_dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);

      auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
365
      const dnnl::memory::dims dilations_dims = dilations;
366

367
      const dnnl::memory::dims stride_dims = strides;
368
      // Recreating FWD PD. For training there are no post ops in convolution
369
      dnnl::primitive_attr conv_attr;
370
      if (bias) {
371
        auto bias_tz = phi::vectorize(bias->dims());
372
        dnnl::memory::desc bias_md;
A
Adam Osewski 已提交
373 374
        if (platform::is_int8<T>()) {
          bias_md = platform::MKLDNNMemDesc(
375
              bias_tz, dnnl::memory::data_type::s32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
376 377
        } else {
          bias_md = platform::MKLDNNMemDesc(
378
              bias_tz, dnnl::memory::data_type::f32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
379
        }
380

381
        this->AcquireForwardPrimitiveDescriptor(
382
            conv_attr, dnnl::prop_kind::forward_training,
383 384 385 386
            dnnl::algorithm::convolution_direct, src_md, weights_md, bias_md,
            dst_md, stride_dims, dilations_dims, mkldnn_paddings[0],
            mkldnn_paddings[1]);
      } else {
387
        this->AcquireForwardPrimitiveDescriptor(
388
            conv_attr, dnnl::prop_kind::forward_training,
389 390 391 392 393
            dnnl::algorithm::convolution_direct, src_md, weights_md, dst_md,
            stride_dims, dilations_dims, mkldnn_paddings[0],
            mkldnn_paddings[1]);
      }

394
      this->AcquireBackwardPrimitiveDescriptor(
395
          dnnl::algorithm::convolution_direct, diff_src_md, weights_md,
396 397 398
          diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
          mkldnn_paddings[1]);

399
      this->AcquireBackwardWeightsPrimitiveDescriptor(
400
          dnnl::algorithm::convolution_direct, src_md, diff_weights_md,
401 402 403 404 405
          diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
          mkldnn_paddings[1]);
    }
  }

406 407 408 409 410 411 412 413 414 415 416 417 418
  std::shared_ptr<std::tuple<float, std::vector<float>>> get_int8_bias_scales(
      const framework::ExecutionContext& ctx) {
    // Get scales int8 bias key
    const std::string key_bs = this->key_ + "@bs";

    // Scales for int8 bias are to be cached to avoid
    // computing them each iteration
    auto bias_scale_tuple =
        std::static_pointer_cast<std::tuple<float, std::vector<float>>>(
            this->dev_ctx_.GetBlob(key_bs));
    if (bias_scale_tuple) return bias_scale_tuple;

    const auto* filter = ctx.Input<Tensor>("Filter");
419
    const auto& weights_tz = phi::vectorize(filter->dims());
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
    const int groups = std::max(ctx.Attr<int>("groups"), 1);

    const auto& scale_weights_data =
        ctx.Attr<std::vector<float>>("Scale_weights");
    const auto& scale_in_data = ctx.Attr<float>("Scale_in");

    bool is_multi_channel = scale_weights_data.size() > 1;
    int mask_reorder = is_multi_channel ? 1 << 0 : 1;

    int count = 1;
    if (is_multi_channel) {
      count *= weights_tz[0];
      if (groups > 1) {
        count *= weights_tz[1];
      }
    }

    bias_scale_tuple =
        std::make_shared<std::tuple<float, std::vector<float>>>(std::make_tuple(
            static_cast<float>(mask_reorder), std::vector<float>(count)));
    for (int i = 0; i < count; i++) {
      std::get<1>(*bias_scale_tuple)[i] = scale_in_data * scale_weights_data[i];
    }

    this->dev_ctx_.SetBlob(key_bs, bias_scale_tuple);

    return bias_scale_tuple;
  }

449
  std::tuple<float, std::vector<float>, float> get_int8_scales(
A
Adam Osewski 已提交
450 451
      const framework::ExecutionContext& ctx) const {
    const auto* filter = ctx.Input<Tensor>("Filter");
452
    const auto& weights_tz = phi::vectorize(filter->dims());
A
Adam Osewski 已提交
453 454 455 456 457 458 459 460 461

    const bool& force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    const bool& fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    const int groups = std::max(ctx.Attr<int>("groups"), 1);

    const auto& scale_in_data = ctx.Attr<float>("Scale_in");
    const auto& scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
    bool is_multi_channel = scale_weights_data.size() > 1;
462
    bool has_activation = !ctx.Attr<std::string>("fuse_activation").empty();
463 464 465 466 467 468
    float activation_scale = force_fp32_output ? 1.0f
                             : has_activation  ? ctx.Attr<float>("Scale_out")
                                               : 1.0f;
    auto scale_out_data = force_fp32_output ? 1.0f
                          : has_activation  ? 1.0f
                                            : ctx.Attr<float>("Scale_out");
A
Adam Osewski 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
    float sum_scale =
        fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;
    int count =
        is_multi_channel
            ? (groups > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
            : 1;
    std::vector<float> output_shift_scale(count);

#pragma omp parallel for if (count > 50)
    for (int i = 0; i < count; i++) {
      if (scale_weights_data[i] == 0.0)
        // weights data will contain 0 in some models, then weights
        // scale couldn't be calculated
        output_shift_scale[i] = scale_out_data;
      else
        output_shift_scale[i] =
            static_cast<float>(static_cast<double>(scale_out_data) /
                               (static_cast<double>(scale_in_data) *
                                static_cast<double>(scale_weights_data[i])));
    }

490
    return std::make_tuple(sum_scale, output_shift_scale, activation_scale);
A
Adam Osewski 已提交
491 492
  }

493
  dnnl::primitive_attr CreatePostOps(
494 495
      std::string fuse_activation, float fuse_alpha, float fuse_beta,
      bool fuse_residual_conn, const std::vector<float> output_shift_scale = {},
496
      float sum_scale = 1.0f, float activation_scale = 1.0f) {
497 498
    dnnl::primitive_attr conv_attr;
    dnnl::post_ops post_operations;
499 500 501 502
    if (output_shift_scale.size() > 0) {
      int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
      conv_attr.set_output_scales(mask, output_shift_scale);
    }
503

504 505 506 507 508 509 510 511 512 513 514
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
      post_operations.append_sum(sum_scale);
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
515 516 517
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_relu, fuse_alpha,
                                     fuse_beta);
518
    } else if (fuse_activation == "relu6") {
519 520
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_bounded_relu,
521
                                     fuse_alpha, fuse_beta);
522 523 524 525
    } else if (fuse_activation == "swish") {
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_swish, fuse_alpha,
                                     fuse_beta);
J
jakpiase 已提交
526
    } else if (fuse_activation == "hard_swish") {
527 528
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_hardswish,
529
                                     fuse_alpha, fuse_beta);
530 531 532 533
    } else if (fuse_activation == "mish") {
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_mish, fuse_alpha,
                                     fuse_beta);
534
    } else if (fuse_activation == "hard_sigmoid") {
535 536
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_linear,
537
                                     fuse_alpha, fuse_beta);
538 539
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_clip, 0.0f, 1.0f);
B
baoachun 已提交
540
    } else if (fuse_activation == "gelu_tanh") {
541 542
      post_operations.append_eltwise(
          activation_scale, dnnl::algorithm::eltwise_gelu_tanh, 0.0f, 0.0f);
B
baoachun 已提交
543
    } else if (fuse_activation == "gelu_erf") {
544 545
      post_operations.append_eltwise(
          activation_scale, dnnl::algorithm::eltwise_gelu_erf, 0.0f, 0.0f);
546 547 548 549
    }
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }
550

551
  std::shared_ptr<dnnl::memory>
552 553 554
  AcquireWeightsMemoryWithReorderFromDataPrimitive(
      const framework::Tensor* filter, const int groups, const bool is_conv3d) {
    const K* filter_data = filter->data<K>();
555
    auto weights_tz = phi::vectorize(filter->dims());
556 557 558 559 560 561 562 563
    platform::GetGroupConvWeightsTz(weights_tz, groups);

    auto user_src_md = platform::MKLDNNMemDesc(
        weights_tz, platform::MKLDNNGetDataType<K>(),
        GetWeightsFormat(filter->format(), groups, is_conv3d));

    return this->AcquireMemoryWithReorder(
        user_src_md, this->bwd_pd_->weights_desc(),
A
Adam Osewski 已提交
564
        platform::to_void_cast<K>(filter_data), "@weights_mem_d_p", false);
565 566
  }

567
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorder(
568
      const framework::Tensor* input) {
569 570 571 572
    return this->AcquireMemoryWithReorderPrimitive(
        input, "@src_mem_p_user", "@src_mem_p_target", "@src_mem_p",
        this->fwd_pd_->src_desc());
  }
573

574
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorderFromWeightsPrimitive(
575 576 577 578 579 580
      const framework::Tensor* input) {
    return this->AcquireMemoryWithReorderPrimitive(
        input, "@src_mem_w_p_user", "@src_mem_w_p_target", "@src_mem_w_p",
        this->bwd_w_pd_->src_desc());
  }

581
  std::shared_ptr<dnnl::memory>
582 583 584 585 586 587 588
  AcquireDiffDstMemoryWithReorderFromWeightsPrimitive(
      const framework::Tensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
        out_grad, "@diff_dst_mem_w_p_user", "@diff_dst_mem_w_p_target",
        "@diff_dst_mem_w_p", this->bwd_w_pd_->diff_dst_desc());
  }

589
  std::shared_ptr<dnnl::memory>
590 591 592 593 594 595 596
  AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive(
      const framework::Tensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
        out_grad, "@diff_dst_mem_p_user", "@diff_dst_mem_p_target",
        "@diff_dst_mem_p", this->bwd_pd_->diff_dst_desc());
  }

597
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorderPrimitive(
598 599
      const framework::Tensor* in_mem, const char* key_mem_user,
      const char* key_mem_target, const char* key_mem,
600
      const dnnl::memory::desc& mem_md) {
601 602 603 604 605 606
    const T* in_mem_data = in_mem->data<T>();
    const std::string user_key_suffix{key_mem_user};
    auto user_mem_p = this->AcquireMemory(user_key_suffix);

    if (!user_mem_p) {
      auto user_mem_md = platform::MKLDNNMemDesc(
607
          phi::vectorize(in_mem->dims()), platform::MKLDNNGetDataType<T>(),
608
          in_mem->format());
609
      return this->AcquireMemoryWithReorder(
610
          user_mem_md, mem_md, platform::to_void_cast<T>(in_mem_data), key_mem);
611
    } else {
612 613
      const std::string target_key_suffix{key_mem_target};
      const auto target_mem_p = this->AcquireMemory(target_key_suffix);
A
Adam Osewski 已提交
614
      user_mem_p->set_data_handle(platform::to_void_cast<T>(in_mem_data));
615
      if (user_mem_p != target_mem_p) {
616
        this->AcquireReorder(user_mem_p, target_mem_p);
617
      }
618
      return target_mem_p;
619
    }
620 621
  }

622
  std::shared_ptr<dnnl::memory> AcquireWeightsMemoryWithReorder(
623
      const framework::Tensor* filter, const int groups, const bool is_conv3d,
624 625
      const bool is_test, const std::vector<float>& scale_data = {1.0f},
      int mask = 0) {
626 627 628
    // This is workaround to make execution faster, delete
    // if statement after including md inside Tensor
    auto weights_mem_p = this->AcquireMemory("@weights_mem_p_target");
629
    if (is_test && weights_mem_p) {
630
      return weights_mem_p;
631
    } else if (is_test) {
632
      const K* filter_data = filter->data<K>();
633
      auto weights_tz = phi::vectorize(filter->dims());
634
      platform::GetGroupConvWeightsTz(weights_tz, groups);
635 636

      auto user_src_md = platform::MKLDNNMemDesc(
637
          weights_tz, platform::MKLDNNGetDataType<K>(),
638 639 640 641
          GetWeightsFormat(filter->format(), groups, is_conv3d));

      return this->AcquireMemoryWithReorder(
          user_src_md, this->fwd_pd_->weights_desc(),
642 643
          platform::to_void_cast<K>(filter_data), "@weights_mem_p", is_test, {},
          scale_data, mask);
644 645
    } else {
      const T* filter_data = filter->data<T>();
646
      auto weights_tz = phi::vectorize(filter->dims());
647 648 649 650 651 652 653 654 655 656
      platform::GetGroupConvWeightsTz(weights_tz, groups);

      auto user_src_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(),
          GetWeightsFormat(filter->format(), groups, is_conv3d));

      return this->AcquireMemoryWithReorder(
          user_src_md, this->fwd_pd_->weights_desc(),
          platform::to_void_cast<T>(filter_data), "@weights_mem_p", is_test, {},
          scale_data, mask);
657
    }
658
  }
659

660
  std::shared_ptr<dnnl::memory> AcquireBiasMemoryWithReorder(
661
      const framework::Tensor* bias, const bool is_test,
A
Adam Osewski 已提交
662
      const std::vector<float>& scale_data = {1.0f}, int mask = 0) {
663
    auto bias_mem_p = this->AcquireMemory("@bias_mem_p_target");
664
    if (is_test && bias_mem_p) {
665 666 667 668
      return bias_mem_p;
    } else {
      const K* bias_data = bias->data<K>();
      auto user_bias_md = platform::MKLDNNMemDesc(
669
          phi::vectorize(bias->dims()), platform::MKLDNNGetDataType<K>(),
670 671 672
          MKLDNNMemoryFormat::x);

      return this->AcquireMemoryWithReorder(
A
Adam Osewski 已提交
673
          user_bias_md, this->fwd_pd_->bias_desc(),
674
          platform::to_void_cast<K>(bias_data), "@bias_mem_p", is_test, {},
A
Adam Osewski 已提交
675
          scale_data, mask);
676
    }
677
  }
678

679
  std::shared_ptr<dnnl::memory> AcquireResidualMemory(
680
      const framework::Tensor* residual_param) {
681
    void* residual_data =
682 683
        framework::TransToProtoVarType(residual_param->dtype()) ==
                framework::DataTypeTrait<T_out>::DataType()
A
Adam Osewski 已提交
684 685
            ? platform::to_void_cast<T_out>(residual_param->data<T_out>())
            : platform::to_void_cast<T>(residual_param->data<T>());
686 687 688 689 690 691
    auto residual_mem_p = this->AcquireMemory("@user_residual_data_mem_p");
    if (residual_mem_p) {
      residual_mem_p->set_data_handle(residual_data);
      return residual_mem_p;
    } else {
      auto user_residual_md = platform::MKLDNNMemDesc(
692
          phi::vectorize(residual_param->dims()),
693 694
          framework::ToMKLDNNDataType(
              framework::TransToProtoVarType(residual_param->dtype())),
695
          residual_param->format());
696

697 698 699
      return this->AcquireMemoryFromPrimitive(user_residual_md, residual_data,
                                              "@user_residual_data_mem_p");
    }
700 701
  }

702
  std::shared_ptr<dnnl::memory> AcquireDstMemoryWithResidual(
703 704 705 706 707
      framework::Tensor* output, const framework::Tensor* residual_param) {
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (residual_param->format() !=
        platform::GetMKLDNNFormat(this->fwd_pd_->dst_desc())) {
      auto residual_memory_p = this->AcquireResidualMemory(residual_param);
708
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
709
      this->AcquireReorder(residual_memory_p, dst_memory_p);
710 711 712 713 714
    } else {
      // Changing ShareDataWith to TensorCopy results in performance drop
      // on ResNet architectures
      // (https://github.com/PaddlePaddle/Paddle/issues/22964)
      output->ShareDataWith(*residual_param);
715
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
716 717 718 719 720
    }
    return dst_memory_p;
  }
};

A
Adam Osewski 已提交
721 722
}  // anonymous namespace

723
template <typename T, typename K>
A
Adam Osewski 已提交
724
class ConvMKLDNNOpKernel : public framework::OpKernel<T> {
725
 public:
A
Adam Osewski 已提交
726
  void Compute(const framework::ExecutionContext& ctx) const override {
727
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
A
Adam Osewski 已提交
728
                      platform::errors::PreconditionNotMet(
729 730 731
                          "Operator DNNL Conv must use CPUPlace"));
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
732 733 734 735 736 737 738 739
    bool is_BFLOAT16 = ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16";
    auto residual_param = ctx.Input<Tensor>("ResidualData");
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    auto dst_dt =
        GetDstType(is_INT8, is_BFLOAT16, force_fp32_output, fuse_activation,
                   fuse_residual_conn, residual_param);
740
    if (!is_INT8) {
741
      if (dst_dt == dnnl::memory::data_type::f32) {
742
        ComputeFP32<float>(ctx);
743
      } else if (dst_dt == dnnl::memory::data_type::bf16) {
744 745
        ComputeFP32<platform::bfloat16>(ctx);
      }
746
    } else {
747
      if (dst_dt == dnnl::memory::data_type::f32) {
748
        ComputeINT8<float>(ctx);
749
      } else if (dst_dt == dnnl::memory::data_type::u8) {
750
        ComputeINT8<uint8_t>(ctx);
751
      } else if (dst_dt == dnnl::memory::data_type::s8) {
752 753
        ComputeINT8<int8_t>(ctx);
      }
754
    }
755
  }
756

757
  template <typename T_out>
A
Adam Osewski 已提交
758
  void ComputeFP32(const framework::ExecutionContext& ctx) const {
759
    auto& dev_ctx =
A
Adam Osewski 已提交
760
        ctx.template device_context<platform::MKLDNNDeviceContext>();
761
    const auto& mkldnn_engine = dev_ctx.GetEngine();
762

763
    const bool is_test = ctx.Attr<bool>("is_test");
764 765
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
    const bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
766

767 768 769 770 771
    const auto* input = ctx.Input<Tensor>("Input");
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
772

773
    ConvMKLDNNHandlerT<T, K, T_out> handler(
774 775
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
776

777
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
778

779
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
780
        filter, ctx.Attr<int>("groups"), is_conv3d, is_test);
781

782 783 784
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
785
      dst_memory_p =
786 787
          handler.AcquireDstMemoryWithResidual(output, residual_param);
    } else {
788
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
789
    }
790

791
    auto conv_p = handler.AcquireForwardPrimitive();
A
Adam 已提交
792

793
    std::unordered_map<int, dnnl::memory> args = {
794 795 796
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};
A
Adam 已提交
797

798
    if (bias) {
799
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(bias, is_test);
800
      args.insert({DNNL_ARG_BIAS, *bias_memory_p});
801
    }
802

803
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
804
    conv_p->execute(astream, args);
A
Adam 已提交
805
    astream.wait();
806

A
Adam Osewski 已提交
807 808
    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
809
  }
810

811
  template <typename T_out>
A
Adam Osewski 已提交
812
  void ComputeINT8(const framework::ExecutionContext& ctx) const {
813
    auto& dev_ctx =
A
Adam Osewski 已提交
814
        ctx.template device_context<platform::MKLDNNDeviceContext>();
815 816
    const auto& mkldnn_engine = dev_ctx.GetEngine();

A
Adam Osewski 已提交
817 818 819 820 821
    const std::string& fuse_activation =
        ctx.Attr<std::string>("fuse_activation");
    const bool& fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    const bool& force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
822

823 824
    bool unsigned_output =
        (fuse_activation == "relu" || fuse_activation == "relu6");
825 826
    bool need_s8_to_u8 = false;

A
Adam Osewski 已提交
827 828 829 830 831 832 833 834
    PADDLE_ENFORCE_NE(
        is_conv3d, true,
        platform::errors::Unimplemented(
            "OneDNN int8 convolution does not support 3D inputs currently"));
    PADDLE_ENFORCE_EQ(
        fuse_residual_conn && force_fp32_output, false,
        platform::errors::Unimplemented(
            "residual fusion does not support force output with fp32"));
A
Adam 已提交
835

A
Adam Osewski 已提交
836 837 838 839
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
840

A
Adam Osewski 已提交
841 842 843
    ConvMKLDNNHandlerT<T, K, T_out> handler(
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
844

A
Adam Osewski 已提交
845
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
F
FDInSky 已提交
846

A
Adam Osewski 已提交
847 848 849 850 851 852 853
    const auto& scale_weights_data =
        ctx.Attr<std::vector<float>>("Scale_weights");
    const bool is_multi_channel = scale_weights_data.size() > 1;
    const int& groups = ctx.Attr<int>("groups");
    int mask_reorder =
        is_multi_channel ? ((groups != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
854
        filter, groups, false, true, scale_weights_data, mask_reorder);
855

A
Adam Osewski 已提交
856 857 858
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
859
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
860 861 862 863 864 865
          output->dims(), residual_param->dims(),
          platform::errors::InvalidArgument(
              "Output and elementwise parameter need to have the "
              "same dimension sizes, but got output's dimension = %d"
              " and residual param's dimension =%d .",
              output->dims().size(), residual_param->dims().size()));
866
      dst_memory_p =
A
Adam Osewski 已提交
867 868
          handler.AcquireDstMemoryWithResidual(output, residual_param);
      need_s8_to_u8 = (platform::MKLDNNGetDataType<T_out>() ==
869
                       dnnl::memory::data_type::s8) &&
A
Adam Osewski 已提交
870 871 872 873
                      unsigned_output;
    } else {
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
    }
L
lidanqing 已提交
874

A
Adam Osewski 已提交
875 876 877
    auto conv_p = handler.AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> args = {
878 879 880
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};
A
Adam 已提交
881

A
Adam Osewski 已提交
882
    if (bias) {
883 884 885 886 887 888 889 890 891 892 893 894
      std::vector<float> bias_scales;
      auto p_scales_tuple =
          std::make_shared<std::tuple<float, std::vector<float>>>(
              std::make_tuple(static_cast<float>(mask_reorder), bias_scales));
      if (ctx.HasAttr("Bias_scales")) {
        bias_scales = ctx.Attr<std::vector<float>>("Bias_scales");
        p_scales_tuple =
            std::make_shared<std::tuple<float, std::vector<float>>>(
                std::make_tuple(static_cast<float>(mask_reorder), bias_scales));
      } else {
        p_scales_tuple = handler.get_int8_bias_scales(ctx);
      }
A
Adam Osewski 已提交
895
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(
896
          bias, true, std::get<1>(*p_scales_tuple),
897
          std::get<0>(*p_scales_tuple));
898
      args.insert({DNNL_ARG_BIAS, *bias_memory_p});
899
    }
A
Adam Osewski 已提交
900 901 902

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    conv_p->execute(astream, args);
A
Adam 已提交
903
    astream.wait();
A
Adam Osewski 已提交
904

905
    if (need_s8_to_u8) {
X
xiaolil1 已提交
906 907
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }
A
Adam Osewski 已提交
908 909 910

    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
911
  }
912 913
};

914
template <typename T, typename K>
A
Adam Osewski 已提交
915
class ConvMKLDNNGradOpKernel : public framework::OpKernel<T> {
916
 public:
A
Adam Osewski 已提交
917
  void Compute(const framework::ExecutionContext& ctx) const override {
918
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
A
Adam Osewski 已提交
919
                      platform::errors::PreconditionNotMet(
920
                          "Operator DNNL ConvGrad must use CPUPlace"));
921 922
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
923 924 925 926
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
927 928
    const Tensor* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
929 930 931 932 933 934 935
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    if (!input_grad && !filter_grad) return;

936 937 938 939 940
    // TODO(jczaja): Are all tensors really needed?
    ConvMKLDNNHandlerT<T, K, T> handler(
        ctx, dev_ctx, ctx.GetPlace(), input, filter, bias, output_grad,
        filter_grad, input_grad,
        ctx.InputName("Input") + ctx.InputName("Filter"));
941 942

    // create mkldnn memory from input tensors (data/weights)
943
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
944

945 946 947 948 949 950
    if (filter_grad) {
      auto src_memory_p =
          handler.AcquireSrcMemoryWithReorderFromWeightsPrimitive(input);
      auto diff_dst_memory_p =
          handler.AcquireDiffDstMemoryWithReorderFromWeightsPrimitive(
              output_grad);
951

952 953
      // For convoluition with groups write filter grad into
      // oneDNN buffer and then we reorder it into filter_grad tensor
954
      int g = std::max(ctx.Attr<int>("groups"), 1);
955
      auto diff_weights_memory_p =
956 957
          g > 1 ? handler.AcquireDiffWeightsMemory()
                : handler.AcquireDiffWeightsMemory(filter_grad);
958

959
      auto conv_bwd_weights_p = handler.AcquireBackwardWeightsPrimitive();
960

A
Adam 已提交
961 962
      // TODO(grygielski) why no bias_diff?
      conv_bwd_weights_p->execute(
963 964 965
          astream, {{DNNL_ARG_SRC, *src_memory_p},
                    {DNNL_ARG_DIFF_DST, *diff_dst_memory_p},
                    {DNNL_ARG_DIFF_WEIGHTS, *diff_weights_memory_p}});
A
Adam 已提交
966
      astream.wait();
967

A
Adam Osewski 已提交
968
      filter_grad->set_layout(framework::DataLayout::kMKLDNN);
969 970
      // in OneDNN groups in convolution are treated as separate dimension
      // which is not the case in paddlepaddle
A
Adam Osewski 已提交
971
      auto filter_fmt = platform::GetMKLDNNFormat(*diff_weights_memory_p);
972 973 974 975

      // For convolution with groups convert from blocked to NCHW
      // otherwise there will be problems in next operators working on this data
      if (g > 1) {
976 977
        dnnl::memory::data_type in_type = framework::ToMKLDNNDataType(
            framework::TransToProtoVarType(filter->dtype()));
978 979
        // for 3d conv with groups (six dimensional data reorder to goidhw)
        // for 2d conv with groups (five dimensional data reorder to goihw)
980
        // auto weights_tz = phi::vectorize(filter->dims());
981 982

        auto weights_tz = diff_weights_memory_p->get_desc().dims();
983 984 985
        dnnl::memory::format_tag out_format =
            weights_tz.size() == 6 ? dnnl::memory::format_tag::goidhw
                                   : dnnl::memory::format_tag::goihw;
986 987 988
        platform::ReorderMKLDNNHandler handler(
            weights_tz, framework::TransToProtoVarType(filter->dtype()),
            in_type, mkldnn_engine);
989 990 991 992 993 994
        auto reorder_dst_memory_p =
            handler.AcquireDstMemory(filter_grad, out_format, ctx.GetPlace());

        auto reorder_p =
            handler.AcquireReorder(reorder_dst_memory_p, diff_weights_memory_p);

995
        {
C
chenjian 已提交
996 997 998
          platform::RecordEvent record_reorder(
              "int_reorder", platform::TracerEventType::UserDefined, 2,
              platform::EventRole::kUniqueOp);
999 1000 1001 1002
          reorder_p->execute(astream, *diff_weights_memory_p,
                             *reorder_dst_memory_p);
          astream.wait();
        }
1003 1004 1005 1006

        // So here we have a data in goihw , which can be interpreted as OIHW
        // (OIDHW for conv3d)
        // because filter_grad shape is set for OIHW (OIDHW for conv3d)
1007 1008 1009
        dnnl::memory::format_tag target_format =
            weights_tz.size() == 6 ? dnnl::memory::format_tag::oidhw
                                   : dnnl::memory::format_tag::oihw;
1010 1011 1012 1013
        filter_grad->set_format(target_format);
      } else {
        filter_grad->set_format(filter_fmt);
      }
1014 1015
    }
    if (input_grad) {
1016 1017 1018 1019
      auto weights_memory_p =
          handler.AcquireWeightsMemoryWithReorderFromDataPrimitive(
              filter, ctx.Attr<int>("groups"),
              ctx.Attr<std::vector<int>>("strides").size() == 3U);
1020

1021 1022 1023 1024
      auto diff_dst_memory_p =
          handler.AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive(
              output_grad);
      auto diff_src_memory_p = handler.AcquireDiffSrcMemory(input_grad);
1025

1026
      auto conv_bwd_data_p = handler.AcquireBackwardPrimitive();
1027

A
Adam 已提交
1028
      conv_bwd_data_p->execute(astream,
1029 1030 1031
                               {{DNNL_ARG_WEIGHTS, *weights_memory_p},
                                {DNNL_ARG_DIFF_DST, *diff_dst_memory_p},
                                {DNNL_ARG_DIFF_SRC, *diff_src_memory_p}});
A
Adam 已提交
1032
      astream.wait();
1033

A
Adam Osewski 已提交
1034 1035
      input_grad->set_layout(framework::DataLayout::kMKLDNN);
      input_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory_p));
1036
    }
X
xiaolil1 已提交
1037
  }
1038
};
1039

1040 1041 1042 1043 1044
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
1045 1046 1047
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1048
                                    ops::ConvMKLDNNOpKernel<float, float>);
1049

1050 1051 1052 1053
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    conv2d, MKLDNN, ::paddle::platform::CPUPlace, BF16, ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNOpKernel<paddle::platform::bfloat16, float>);

1054 1055
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
1056
                                    ops::kConvMKLDNNINT8,
1057
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);
1058 1059 1060

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
1061
                                    ops::kConvMKLDNNINT8,
1062
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
1063 1064 1065 1066

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1067
                                    ops::ConvMKLDNNGradOpKernel<float, float>);
1068

1069 1070 1071
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace, BF16,
    ops::kConvMKLDNNFP32,
1072 1073
    ops::ConvMKLDNNGradOpKernel<paddle::platform::bfloat16,
                                paddle::platform::bfloat16>);
1074

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    depthwise_conv2d, MKLDNN, ::paddle::platform::CPUPlace, BF16,
    ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNOpKernel<paddle::platform::bfloat16, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
                                    ops::kConvMKLDNNINT8,
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
                                    ops::kConvMKLDNNINT8,
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    depthwise_conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace, BF16,
    ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNGradOpKernel<paddle::platform::bfloat16, float>);

1105 1106 1107
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1108
                                    ops::ConvMKLDNNOpKernel<float, float>);
1109 1110 1111 1112

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1113
                                    ops::ConvMKLDNNGradOpKernel<float, float>);