conv_mkldnn_op.cc 45.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include <unordered_map>
Y
Yu Yang 已提交
16 17
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/memory/malloc.h"
18
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29 30 31
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

A
Adam 已提交
32 33
inline void GetWeightsTz(std::vector<int64_t>& weights_tz,  // NOLINT
                         int groups, bool is_conv3d) {
Y
Yihua Xu 已提交
34
  if (groups > 1) {
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    if (is_conv3d) {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int dimension = weights_tz[2];
      int height = weights_tz[3];
      int width = weights_tz[4];
      weights_tz.resize(6);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = dimension;
      weights_tz[4] = height;
      weights_tz[5] = width;
    } else {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int height = weights_tz[2];
      int width = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = height;
      weights_tz[4] = width;
    }
Y
Yihua Xu 已提交
60 61 62
  }
}

63 64
inline MKLDNNMemoryFormat GetWeightsFormat(MKLDNNMemoryFormat format,
                                           int groups, bool is_conv3d) {
Y
Yihua Xu 已提交
65
  if (is_conv3d) {
66
    return (groups == 1) ? format : MKLDNNMemoryFormat::goidhw;
Y
Yihua Xu 已提交
67
  } else {
68
    return (groups == 1) ? format : MKLDNNMemoryFormat::goihw;
Y
Yihua Xu 已提交
69 70 71
  }
}

72 73
static mkldnn::memory::data_type GetDstType(bool is_int8,
                                            bool force_fp32_output,
74
                                            std::string fuse_activation,
75 76 77
                                            bool fuse_residual_conn,
                                            const Tensor* residual_param) {
  auto dst_dt = mkldnn::memory::data_type::f32;  // uint8_t, int8_t, float
78 79 80 81 82 83 84
  if (is_int8) {
    dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
                 ? mkldnn::memory::data_type::u8
                 : mkldnn::memory::data_type::s8;
    if (force_fp32_output) {
      dst_dt = mkldnn::memory::data_type::f32;
    }
85 86
    if (fuse_residual_conn && residual_param) {
      auto residual_dt = framework::ToMKLDNNDataType(residual_param->type());
87
      if (dst_dt != residual_dt) dst_dt = residual_dt;
88 89 90 91 92
    }
  }
  return dst_dt;
}

93
template <typename T, typename K>
94
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
95 96
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
97 98 99
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL Conv must use CPUPlace"));
100 101 102 103 104
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
    if (!is_INT8) {
      ComputeFP32(ctx);
    } else {
105
      std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
106 107 108
      bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
      bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
      auto residual_param = ctx.Input<Tensor>("ResidualData");
109
      auto dst_dt = GetDstType(true, force_fp32_output, fuse_activation,
110 111 112 113 114 115 116 117
                               fuse_residual_conn, residual_param);
      if (dst_dt == mkldnn::memory::data_type::f32) {
        ComputeINT8<float>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::u8) {
        ComputeINT8<uint8_t>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::s8) {
        ComputeINT8<int8_t>(ctx);
      }
118 119
    }
  }
120

121
  void ComputeFP32(const paddle::framework::ExecutionContext& ctx) const {
K
Krzysztof Binias 已提交
122 123
    const bool is_test = ctx.Attr<bool>("is_test");

124 125
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
126 127 128 129
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
130
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
131 132
    auto* output = ctx.Output<Tensor>("Output");

133
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
F
FDInSky 已提交
134 135 136 137 138 139
                      platform::errors::InvalidArgument(
                          "The input tensor's layout should be %d, but got %d.",
                          DataLayout::kMKLDNN, input->layout()));
    PADDLE_ENFORCE_NE(
        input->format(), MKLDNNMemoryFormat::undef,
        platform::errors::InvalidArgument("Wrong format set for Input tensor"));
140

F
FDInSky 已提交
141 142 143 144 145
    PADDLE_ENFORCE_EQ(
        filter->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
            "The Filter tensor's layout should be %d, but got %d.",
            DataLayout::kMKLDNN, filter->layout()));
A
Adam 已提交
146
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
                      platform::errors::InvalidArgument(
                          "Wrong format set for Filter tensor"));

    PADDLE_ENFORCE_GE(input->dims().size(), 4,
                      platform::errors::InvalidArgument(
                          "Input must be with 4 or 5 dimensions, i.e. NCHW or "
                          "NCDHW, but got dimension = %d .",
                          input->dims().size()));
    PADDLE_ENFORCE_LE(input->dims().size(), 5,
                      platform::errors::InvalidArgument(
                          "Input must be with 4 or 5 dimensions, i.e. NCHW or "
                          "NCDHW, but got dimension = %d .",
                          input->dims().size()));

    PADDLE_ENFORCE_GE(filter->dims().size(), 4,
                      platform::errors::InvalidArgument(
                          "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
                          "OIDHW, but got dimension = %d .",
                          filter->dims().size()));
    PADDLE_ENFORCE_LE(filter->dims().size(), 5,
                      platform::errors::InvalidArgument(
                          "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
                          "OIDHW, but got dimension = %d .",
                          filter->dims().size()));
171

172
    if (bias) {
F
FDInSky 已提交
173 174 175 176 177
      PADDLE_ENFORCE_EQ(
          bias->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument(
              "The Bias tensor's layout should be %d, but got %d.",
              DataLayout::kMKLDNN, bias->layout()));
A
Adam 已提交
178
      PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
179 180
                        platform::errors::InvalidArgument(
                            "Got wrong format for Bias tensor."));
181

F
FDInSky 已提交
182 183 184 185 186
      PADDLE_ENFORCE_EQ(
          bias->dims().size(), 1,
          platform::errors::InvalidArgument("Bias must only have 1 dimension, "
                                            "i.e. X, but got dimension = %d .",
                                            bias->dims().size()));
187
    }
188

A
Adam 已提交
189 190 191 192 193 194 195 196 197
    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
    std::vector<int64_t> dilations(begin(dilations_temp), end(dilations_temp));

198 199 200
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    float fuse_alpha = ctx.Attr<float>("fuse_alpha");
    float fuse_beta = ctx.Attr<float>("fuse_beta");
201
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
202
    int groups = ctx.Attr<int>("groups");
203
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
204
    bool is_conv3d = strides.size() == 3U;
205

206 207 208 209 210 211
    auto input_dims = input->dims();
    auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
    auto filter_dims = filter->dims();
    auto filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());

A
Adam 已提交
212
    auto ksize = framework::vectorize(filter_data_dims);
213 214 215 216

    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             data_dims, strides, ksize);

A
Adam 已提交
217 218
    std::vector<primitive> pipeline;

219
    PADDLE_ENFORCE(
220 221 222 223
        is_conv3d
            ? dilations.size() == 3 && dilations[0] == 1 && dilations[1] == 1 &&
                  dilations[2] == 1
            : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
224 225 226 227 228
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();

A
Adam 已提交
229 230
    auto src_tz = paddle::framework::vectorize(input->dims());
    auto weights_tz = paddle::framework::vectorize(filter->dims());
231
    int g = std::max(groups, 1);
A
Adam 已提交
232

233
    GetWeightsTz(weights_tz, g, is_conv3d);
A
Adam 已提交
234 235

    auto dst_tz = paddle::framework::vectorize(output->dims());
236

237
    // Get unique name for storing MKLDNN primitives
238
    const std::string key = platform::CreateKey(
H
hong 已提交
239
        src_tz, ctx.InputName("Input") + ctx.InputName("Filter"));
240

241
    auto src_format = input->format();
242
    MKLDNNMemoryFormat weights_format =
243 244 245 246 247 248
        GetWeightsFormat(filter->format(), g, is_conv3d);

    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
249 250 251 252 253

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
254 255 256 257
    // TODO(jczaja): This is workaround to make grad op UT's numerical
    // gradient computation proper as this op is called directly without
    // fetch op following it , so numercial grad is computed (in python)
    // using block formats which will give wrong results
258 259
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
260 261
        is_test ? MKLDNNMemoryFormat::any
                : platform::data_format_to_memory_format(data_format);
262

263
    weights_format = MKLDNNMemoryFormat::any;
264
    // Check the format for user's special output
265
    if (chosen_memory_format != MKLDNNMemoryFormat::any) {
266 267 268 269
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
270 271
    }

272
    auto src_md = platform::MKLDNNMemDesc(
273
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
274
    auto weights_md = platform::MKLDNNMemDesc(
275
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
A
Adam 已提交
276
    std::vector<int64_t> bias_tz;
277
    auto dst_md = platform::MKLDNNMemDesc(
278
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
279

280 281
    platform::ConvMKLDNNHandler handler(dev_ctx, mkldnn_engine, key);

282
    // create a conv primitive descriptor and save it for usage in backward
283
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
284 285
    auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                 : mkldnn::prop_kind::forward_training;
286
    if (bias) {
A
Adam 已提交
287
      bias_tz = paddle::framework::vectorize(bias->dims());
288
      auto bias_md = platform::MKLDNNMemDesc(
289
          bias_tz, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::x);
290
      conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
291
          src_md, weights_md, bias_md, dst_md, strides, paddings, mkldnn_engine,
292
          fuse_activation, fuse_alpha, fuse_beta, fuse_residual_conn,
293
          fwd_prop_kind);
294
    } else {
295 296
      conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
          src_md, weights_md, boost::none, dst_md, strides, paddings,
297 298
          mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
          fuse_residual_conn, fwd_prop_kind);
299
    }
300

301
    // create mkldnn memory from input tensors (data/weights)
302 303
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
304
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
305
        user_weights_md, to_void_cast<T>(filter_data));
306

307 308 309 310 311
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
    auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
        user_weights_memory_p, pipeline, is_test);
312

313
    std::shared_ptr<mkldnn::memory> dst_memory_p, user_residual_memory_p;
314

315
    if (fuse_residual_conn) {
316 317
      auto residual_param = ctx.Input<Tensor>("ResidualData");
      auto residual_param_data = residual_param->data<T>();
318

319 320
      PADDLE_ENFORCE_NE(
          residual_param_data, nullptr,
F
FDInSky 已提交
321 322 323 324 325 326 327 328 329 330
          platform::errors::InvalidArgument(
              "Provide data if you want MKLDNN conv+elementwise_add fusion"));
      PADDLE_ENFORCE_EQ(
          output->dims(), residual_param->dims(),
          platform::errors::InvalidArgument(
              "Output and elementwise parameter need to have the "
              "same dimension sizes, "
              "but got output's dimension = %d and residual param's dimension "
              "= %d .",
              output->dims().size(), residual_param->dims().size()));
331

332
      if (residual_param->format() != handler.GetDstFormat()) {
333 334
        auto output_data =
            output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
335
        auto residual_data_tz =
A
Adam 已提交
336
            paddle::framework::vectorize(residual_param->dims());
337 338 339 340 341
        auto residual_data_type =
            paddle::framework::ToMKLDNNDataType(residual_param->type());

        auto user_residual_md = platform::MKLDNNMemDesc(
            residual_data_tz, residual_data_type, residual_param->format());
342
        user_residual_memory_p = handler.AcquireResidualDataMemory(
343
            user_residual_md, to_void_cast<T>(residual_param_data));
344 345 346

        dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
            user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
347
      } else {
348 349 350 351 352
        // Changing ShareDataWith to TensorCopy results in performance drop
        // on ResNet architectures
        // (https://github.com/PaddlePaddle/Paddle/issues/22964)
        output->ShareDataWith(*residual_param);
        auto output_data = output->mutable_data<T>(ctx.GetPlace());
353 354
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
355
      }
356
    } else {
357 358
      auto output_data =
          output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
359 360
      dst_memory_p =
          handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
361
    }
362

A
Adam 已提交
363 364 365
    auto conv_p = handler.AcquireConvolution();

    mkldnn::stream astream(mkldnn_engine);
366 367 368
    if (bias) {
      const T* bias_data = bias->data<T>();
      auto user_bias_md = platform::MKLDNNMemDesc(
369
          {bias_tz}, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::x);
A
Adam 已提交
370
      auto user_bias_memory_p =
371 372
          handler.AcquireBiasMemory(user_bias_md, to_void_cast<T>(bias_data));

A
Adam 已提交
373
      auto bias_memory_p =
374
          handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
A
Adam 已提交
375 376 377 378 379 380

      conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                {MKLDNN_ARG_BIAS, *bias_memory_p},
                                {MKLDNN_ARG_DST, *dst_memory_p}});

381
    } else {
A
Adam 已提交
382 383 384
      conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                {MKLDNN_ARG_DST, *dst_memory_p}});
385
    }
A
Adam 已提交
386
    astream.wait();
387

388 389
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
390
  }
391
  template <typename T_out>
392 393 394 395 396 397 398 399 400 401
  void ComputeINT8(const paddle::framework::ExecutionContext& ctx) const {
    const bool is_test = ctx.Attr<bool>("is_test");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* output = ctx.Output<Tensor>("Output");

402
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
F
FDInSky 已提交
403 404 405
                      platform::errors::InvalidArgument(
                          "The input tensor's layout should be %d, but got %d.",
                          DataLayout::kMKLDNN, input->layout()));
A
Adam 已提交
406
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419
                      platform::errors::InvalidArgument(
                          "Got wrong format for Input tensor."));

    PADDLE_ENFORCE_GE(input->dims().size(), 4,
                      platform::errors::InvalidArgument(
                          "Input must be with 4 or 5 dimensions, i.e. NCHW or "
                          "NCDHW, but got dimension = %d .",
                          input->dims().size()));
    PADDLE_ENFORCE_LE(input->dims().size(), 5,
                      platform::errors::InvalidArgument(
                          "Input must be with 4 or 5 dimensions, i.e. NCHW or "
                          "NCDHW, but got dimension = %d .",
                          input->dims().size()));
420

421
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
X
xiaolil1 已提交
422
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
423 424
    bool unsigned_output =
        (fuse_activation == "relu" || fuse_activation == "relu6");
425

426 427
    const T* input_data = input->data<T>();

A
Adam 已提交
428
    auto src_tz = paddle::framework::vectorize(input->dims());
429

X
xiaolil1 已提交
430 431
    mkldnn::memory::data_type src_dt =
        paddle::framework::ToMKLDNNDataType(input->type());
432

L
lidanqing 已提交
433
    std::string key = platform::CreateKey(
H
hong 已提交
434
        src_tz, src_dt, ctx.InputName("Input") + ctx.InputName("Filter"));
435

436 437
    const std::string key_conv_pd = key + "@conv_pd";
    bool need_s8_to_u8 = false;
438 439 440
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    std::shared_ptr<mkldnn::memory> src_memory_p;
    std::shared_ptr<mkldnn::memory> user_src_memory_p;
441
    std::shared_ptr<mkldnn::memory> dst_memory_p;
442
    std::vector<primitive> pipeline;
443
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
444 445 446 447 448 449
    std::shared_ptr<platform::ConvMKLDNNHandler> handler;

    // This is workaround for hacky implementation
    // of conv int8 mkl-dnn. Once conv fp32 and conv int8
    // are merged/unified, this will disappear
    std::string key_tid = "";
450 451
    if (platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id() ==
        platform::MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_Default) {
452
      key_tid = "-t:" + platform::ThreadIDasStr();
L
lidanqing 已提交
453
    }
454

455 456 457
    auto prim_key = key + key_tid + "@conv_p";
    auto dst_key = key + key_tid + "@dst_mem_p";
    auto src_key = key + key_tid + "@src_mem_p";
A
Adam 已提交
458 459
    auto weights_key = key + key_tid + "@weights_mem_p";
    auto bias_key = key + key_tid + "@bias_mem_p";
460
    auto user_src_key = key + key_tid + "@user_src_mem_p";
A
Adam 已提交
461
    auto user_residual_key = key + key_tid + "@user_residual_data_mem_p";
462 463 464 465 466 467
    auto src_reorder_key = key + key_tid + "@src_mem_preorder_p";
    auto residual_reorder_key = key + key_tid + "@residual_data_mem_preorder_p";

    conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx.GetBlob(prim_key));

A
Adam 已提交
468 469
    mkldnn::stream astream(mkldnn_engine);

470
    if (conv_p == nullptr || !is_test) {
471 472 473 474 475 476
      float fuse_alpha = ctx.Attr<float>("fuse_alpha");
      float fuse_beta = ctx.Attr<float>("fuse_beta");
      bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");

      auto* filter = ctx.Input<Tensor>("Filter");

F
FDInSky 已提交
477 478 479 480 481
      PADDLE_ENFORCE_EQ(
          filter->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument(
              "The filter tensor's layout should be %d, but got %d.",
              DataLayout::kMKLDNN, filter->layout()));
A
Adam 已提交
482
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495
                        platform::errors::InvalidArgument(
                            "Got wrong format for Filter tensor."));

      PADDLE_ENFORCE_GE(filter->dims().size(), 4,
                        platform::errors::InvalidArgument(
                            "Filter must be with 4 or 5 dimensions, i.e. OIHW "
                            "or OIDHW, but got dimensions = %d .",
                            filter->dims().size()));
      PADDLE_ENFORCE_LE(filter->dims().size(), 5,
                        platform::errors::InvalidArgument(
                            "Filter must be with 4 or 5 dimensions, i.e. OIHW "
                            "or OIDHW, but got dimensions = %d .",
                            filter->dims().size()));
496 497 498 499 500 501 502 503

      PADDLE_ENFORCE_EQ(
          !fuse_residual_conn || !force_fp32_output, true,
          "residual fusion does not support force output with fp32");

      auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;

      if (bias) {
F
FDInSky 已提交
504 505 506 507 508
        PADDLE_ENFORCE_EQ(
            bias->layout(), DataLayout::kMKLDNN,
            platform::errors::InvalidArgument(
                "The bias tensor's layout should be %d, but got %d.",
                DataLayout::kMKLDNN, bias->layout()));
A
Adam 已提交
509
        PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
510 511
                          platform::errors::InvalidArgument(
                              "Got wrong format for Bias tensor."));
512 513

        PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
F
FDInSky 已提交
514 515 516 517
                          platform::errors::InvalidArgument(
                              "Bias must only have 1 dimension, i.e. X, but "
                              "got dimension = %d .",
                              bias->dims().size()));
518 519
      }

A
Adam 已提交
520 521 522 523 524 525 526 527 528 529
      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));

530 531
      std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
532 533 534 535

      bool is_conv3d = strides.size() == 3U;

      PADDLE_ENFORCE_NE(is_conv3d, true,
F
FDInSky 已提交
536 537 538
                        platform::errors::InvalidArgument(
                            "int8 does not support conv3d currently, should "
                            "set param is_conv3d as False"));
539

540 541 542 543 544 545
      auto input_dims = input->dims();
      auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
      auto filter_dims = filter->dims();
      auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());

A
Adam 已提交
546
      auto ksize = framework::vectorize(filter_data_dims);
547 548 549 550

      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);

551
      int groups = ctx.Attr<int>("groups");
A
Adam 已提交
552
      auto weights_tz = paddle::framework::vectorize(filter->dims());
553 554 555
      int g = std::max(groups, 1);

      GetWeightsTz(weights_tz, g, is_conv3d);
A
Adam 已提交
556
      auto dst_tz = paddle::framework::vectorize(output->dims());
557 558 559 560 561 562 563 564

      PADDLE_ENFORCE_EQ(
          is_conv3d
              ? dilations.size() == 3 && dilations[0] == 1 &&
                    dilations[1] == 1 && dilations[2] == 1
              : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
          true, "dilation in convolution is not implemented yet");

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
      const K* filter_data = filter->data<K>();
      auto scale_in_data = ctx.Attr<float>("Scale_in");
      auto scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
      auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
      auto scale_out_data =
          force_fp32_output ? 1.0f : ctx.Attr<float>("Scale_out");
      float sum_scale =
          fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;

      bool is_multi_channel = scale_weights_data.size() > 1;

      int count = is_multi_channel ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0]
                                            : (weights_tz)[0])
                                   : 1;
      std::vector<float> output_shift_scale(count);
#pragma omp parallel for if (count > 1)
      for (int i = 0; i < count; i++) {
        if (scale_weights_data[i] == 0.0)
          output_shift_scale[i] =
              scale_out_data;  // weights data will contain 0
                               // in some models, then weights
                               // scale couldn't be calculated
        else
          output_shift_scale[i] =
              static_cast<float>(static_cast<double>(scale_out_data) /
                                 (static_cast<double>(scale_in_data) *
                                  static_cast<double>(scale_weights_data[i])));
      }
L
lidanqing 已提交
593

594 595 596 597 598 599 600 601 602 603
      auto user_src_md =
          platform::MKLDNNMemDesc({src_tz}, src_dt, input->format());
      auto user_weights_md = platform::MKLDNNMemDesc(
          {weights_tz}, platform::MKLDNNGetDataType<K>(),
          ((g) == 1) ? MKLDNNMemoryFormat::oihw : MKLDNNMemoryFormat::goihw);

      /* create memory descriptor for convolution without specified format
      * ('any') which lets a primitive (convolution in this case) choose
      * the memory format preferred for best performance
      */
604
      auto chosen_memory_format = MKLDNNMemoryFormat::any;
605

A
Adam 已提交
606
      std::vector<int64_t> bias_tz;
607 608 609 610 611 612 613 614 615 616 617 618 619

      auto src_md =
          platform::MKLDNNMemDesc(src_tz, src_dt, chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, memory::data_type::s8, chosen_memory_format);
      auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);

      handler.reset(
          new platform::ConvMKLDNNHandler(dev_ctx, mkldnn_engine, key));
      // create a conv primitive descriptor and save it for usage in backward
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring
                                 : mkldnn::prop_kind::forward_training;
L
lidanqing 已提交
620

621
      if (bias) {
A
Adam 已提交
622
        bias_tz = paddle::framework::vectorize(bias->dims());
623 624 625 626 627 628 629 630 631 632 633 634
        auto bias_md = platform::MKLDNNMemDesc(bias_tz, memory::data_type::s32,
                                               MKLDNNMemoryFormat::x);
        conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
            src_md, weights_md, bias_md, dst_md, strides, paddings,
            mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
            fuse_residual_conn, propagation, output_shift_scale, sum_scale);
      } else {
        conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
            src_md, weights_md, boost::none, dst_md, strides, paddings,
            mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
            fuse_residual_conn, propagation, output_shift_scale, sum_scale);
      }
L
lidanqing 已提交
635

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
      // create mkldnn memory from input tensors (data/weights)
      user_src_memory_p =
          handler->AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
      auto user_weights_memory_p = handler->AcquireWeightsMemory(
          user_weights_md, to_void_cast<K>(filter_data));

      // create reorder primitive if the input format is not the preferred one
      src_memory_p =
          handler->AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);

      std::shared_ptr<mkldnn::memory> weights_memory_p;
      int mask_reorder =
          is_multi_channel ? ((g != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
      weights_memory_p = handler->AcquireWeightsMemoryFromPrimitive(
          user_weights_memory_p, pipeline, is_test, true, scale_weights_data,
          mask_reorder);

      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
F
FDInSky 已提交
655 656 657 658 659 660 661
        PADDLE_ENFORCE_EQ(
            output->dims(), residual_param->dims(),
            platform::errors::InvalidArgument(
                "Output and elementwise parameter need to have the "
                "same dimension sizes, but got output's dimension = %d"
                " and residual param's dimension =%d .",
                output->dims().size(), residual_param->dims().size()));
662 663 664 665
        auto residual_dt =
            paddle::framework::ToMKLDNNDataType(residual_param->type());
        if (residual_param->format() != handler->GetDstFormat()) {
          auto residual_data_tz =
A
Adam 已提交
666
              paddle::framework::vectorize(residual_param->dims());
667 668 669 670 671 672
          auto user_residual_md = platform::MKLDNNMemDesc(
              residual_data_tz, residual_dt, residual_param->format());
          dst_memory_p = platform::SetDstMemory<T_out>(
              ctx, output, residual_param, user_residual_md, handler,
              &pipeline);
        } else {
673
          output->ShareDataWith(*residual_param);
674 675 676 677 678 679 680 681
          dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
        }
        need_s8_to_u8 =
            (platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
            unsigned_output;
      } else {
        dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
      }
L
lidanqing 已提交
682

683 684
      // create convolution op primitive
      auto scale_bias_key = key + "@scale_bias";
A
Adam 已提交
685
      conv_p = handler->AcquireConvolution();
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
      if (bias) {
        const K* bias_data = bias->data<K>();
        auto user_bias_md = platform::MKLDNNMemDesc(
            {bias_tz}, platform::MKLDNNGetDataType<K>(), MKLDNNMemoryFormat::x);
        auto user_bias_memory_p = handler->AcquireBiasMemory(
            user_bias_md, to_void_cast<K>(bias_data));
        std::shared_ptr<mkldnn::memory> bias_memory_p;
        int mask_reorder = is_multi_channel ? 1 << 0 : 1;
        int count =
            is_multi_channel
                ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
                : 1;
        std::vector<float> scale_bias_data(count);
#pragma omp parallel for if (count > 1)
        for (int i = 0; i < count; i++) {
          scale_bias_data[i] = scale_in_data * scale_weights_data[i];
        }
        bias_memory_p = handler->AcquireBiasMemoryFromPrimitive(
            user_bias_memory_p, pipeline, is_test, true, scale_bias_data,
            mask_reorder);
A
Adam 已提交
706 707 708 709
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_BIAS, *bias_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
710
      } else {
A
Adam 已提交
711 712 713
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
714 715
      }
    } else {
A
Adam 已提交
716
      auto src_memory_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
717 718 719 720 721 722 723
          dev_ctx.GetBlob(src_reorder_key));
      src_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(src_key));
      if (src_memory_reorder_p) {
        user_src_memory_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_src_key));
        user_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
A
Adam 已提交
724 725 726
        src_memory_reorder_p->execute(astream, *user_src_memory_p,
                                      *src_memory_p);
        astream.wait();
727 728 729
      } else if (src_memory_p) {
        src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      }
A
Adam 已提交
730 731
      auto weights_memory_p = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(weights_key));
732 733 734 735 736 737 738 739 740
      dst_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(dst_key));
      conv_pd =
          std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
              dev_ctx.GetBlob(key_conv_pd));
      if (conv_pd) {
        handler.reset(new platform::ConvMKLDNNHandler(conv_pd, dev_ctx,
                                                      mkldnn_engine, key));
      }
L
lidanqing 已提交
741

742 743
      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
744
        output->ShareDataWith(*residual_param);
745 746 747
        need_s8_to_u8 =
            (platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
            unsigned_output;
X
xiaolil1 已提交
748
      }
749
      platform::SetDstMemoryHandler<T_out>(ctx, output, handler, dst_memory_p);
L
lidanqing 已提交
750

A
Adam 已提交
751
      auto residual_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
752 753
          dev_ctx.GetBlob(residual_reorder_key));
      if (residual_reorder_p) {
A
Adam 已提交
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
        auto user_residual_data_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_residual_key));
        residual_reorder_p->execute(astream, *user_residual_data_p,
                                    *dst_memory_p);
        astream.wait();
      }

      auto bias_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(bias_key));

      if (bias_memory_p) {
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_BIAS, *bias_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
      } else {
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
773 774
      }
    }
A
Adam 已提交
775
    astream.wait();
776
    if (need_s8_to_u8) {
X
xiaolil1 已提交
777 778
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }
779 780 781
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
  }
782 783 784
};

template <typename T>
785
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
786 787
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
788 789 790
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL ConvGrad must use CPUPlace"));
791 792
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
793 794 795 796 797 798 799 800 801
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

802
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
F
FDInSky 已提交
803 804 805
                      platform::errors::InvalidArgument(
                          "The input tensor's layout should be %d, but got %d.",
                          DataLayout::kMKLDNN, input->layout()));
A
Adam 已提交
806
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
807 808
                      platform::errors::InvalidArgument(
                          "Got wrong format for Input tensor."));
809

F
FDInSky 已提交
810 811 812 813 814
    PADDLE_ENFORCE_EQ(
        filter->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
            "The filter tensor's layout should be %d, but got %d.",
            DataLayout::kMKLDNN, filter->layout()));
A
Adam 已提交
815
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
816 817
                      platform::errors::InvalidArgument(
                          "Got wrong format for Filter tensor."));
818

F
FDInSky 已提交
819 820 821 822 823
    PADDLE_ENFORCE_EQ(
        output_grad->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
            "The output_grad tensor's layout should be %d, but got %d.",
            DataLayout::kMKLDNN, output_grad->layout()));
A
Adam 已提交
824
    PADDLE_ENFORCE_NE(output_grad->format(), MKLDNNMemoryFormat::undef,
825 826 827 828
                      "Wrong format set for output_grad tensor");

    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"), false,
F
FDInSky 已提交
829 830
        platform::errors::InvalidArgument(
            "is_test attribute should be set to False in training phase."));
831

832 833
    if (!input_grad && !filter_grad) return;

A
Adam 已提交
834 835 836 837 838 839 840 841 842
    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
    std::vector<int64_t> dilations(begin(dilations_temp), end(dilations_temp));

843
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
A
Adam 已提交
844

845
    int groups = ctx.Attr<int>("groups");
846

847
    bool is_conv3d = strides.size() == 3U;
848 849 850 851 852 853
    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

854 855 856 857 858 859
    auto input_dims = input->dims();
    auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
    auto filter_dims = filter->dims();
    auto filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());

A
Adam 已提交
860
    auto ksize = framework::vectorize(filter_data_dims);
861 862 863 864

    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             data_dims, strides, ksize);

A
Adam 已提交
865 866 867
    auto src_tz = paddle::framework::vectorize(input->dims());
    auto weights_tz = paddle::framework::vectorize(filter->dims());

868
    int g = std::max(groups, 1);
869
    GetWeightsTz(weights_tz, g, is_conv3d);
A
Adam 已提交
870 871
    auto dst_tz = paddle::framework::vectorize(output_grad->dims());

872
    auto src_format = input->format();
873
    MKLDNNMemoryFormat weights_format =
Y
Yihua Xu 已提交
874
        GetWeightsFormat(filter->format(), g, is_conv3d);
875

876
    // Get an unique name from "argument" name of "input" and "Filter" variable
J
Jacek Czaja 已提交
877
    // as well as attributes of primitive to be created
878
    // This name will be used as key when saving info into device context
879
    const std::string key = platform::CreateKey(
H
hong 已提交
880
        src_tz, ctx.InputName("Input") + ctx.InputName("Filter"));
881 882

    const std::string key_conv_pd = key + "@conv_pd";
883
    std::vector<primitive> pipeline;
884

885 886
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
887
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
888
    auto user_weights_md = platform::MKLDNNMemDesc(
889
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
890 891
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
892 893 894 895 896

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
897 898 899 900 901 902 903 904 905

    // TODO(jczaja): Once GRAD NHWC is working then format 'any'
    // should be used exclusively. But till forward pass enforce
    // NCHW for training we need to have NCHW here as well
    // to avoid performance degradation in relu_grad and pool2d_grad
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

906
    weights_format = MKLDNNMemoryFormat::any;
907 908 909 910 911 912 913
    // Check the format for user's special output
    if (chosen_memory_format != MKLDNNMemoryFormat::any) {
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
    }
914

915
    auto src_md = platform::MKLDNNMemDesc(
916
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
917
    auto diff_src_md = platform::MKLDNNMemDesc(
918
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
919
    auto weights_md = platform::MKLDNNMemDesc(
920
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
921
    auto diff_weights_md = platform::MKLDNNMemDesc(
922
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
923
    auto diff_dst_md = platform::MKLDNNMemDesc(
924
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
925
    // Retrieve conv_pd from device context
926 927 928
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
929
    PADDLE_ENFORCE_NE(conv_pd, nullptr,
F
FDInSky 已提交
930 931
                      platform::errors::InvalidArgument(
                          "Fail to find conv_pd in device context"));
932

933 934
    auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);

935 936
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
A
Adam 已提交
937 938 939
        mkldnn::algorithm::convolution_direct, src_md, diff_weights_md,
        diff_dst_md, strides, mkldnn_paddings[0], mkldnn_paddings[1]);

940 941 942 943 944 945
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
A
Adam 已提交
946 947 948
        mkldnn::algorithm::convolution_direct, diff_src_md, weights_md,
        diff_dst_md, strides, mkldnn_paddings[0], mkldnn_paddings[1]);

949 950 951 952
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

J
Jacek Czaja 已提交
953 954 955
    platform::ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd,
                                        conv_bwd_weights_pd, dev_ctx,
                                        mkldnn_engine, key);
956 957 958 959 960 961 962 963

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));
A
Adam 已提交
964
    mkldnn::stream astream(mkldnn_engine);
965
    if (filter_grad) {
966 967
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
968

969 970 971 972
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

973
      const size_t size = handler.GetDiffWeightsMemorySize();
974
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);
975

976 977 978 979
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

A
Adam 已提交
980
      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights();
981

A
Adam 已提交
982 983 984 985 986 987
      // TODO(grygielski) why no bias_diff?
      conv_bwd_weights_p->execute(
          astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                    {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_4filter_p},
                    {MKLDNN_ARG_DIFF_WEIGHTS, *diff_weights_memory_p}});
      astream.wait();
988

989 990
      filter_grad->set_layout(DataLayout::kMKLDNN);
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
991 992
    }
    if (input_grad) {
993 994 995 996 997 998 999
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

1000
      const size_t size = handler.GetDiffSourceMemorySize();
1001
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);
1002

1003 1004 1005
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

A
Adam 已提交
1006
      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData();
1007

A
Adam 已提交
1008 1009 1010 1011 1012
      conv_bwd_data_p->execute(astream,
                               {{MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_4data_p},
                                {MKLDNN_ARG_DIFF_SRC, *diff_src_memory_p}});
      astream.wait();
1013

1014 1015
      input_grad->set_layout(DataLayout::kMKLDNN);
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
1016
    }
X
xiaolil1 已提交
1017
  }
1018
};
1019

1020 1021 1022 1023 1024
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
1025 1026 1027
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1028
                                    ops::ConvMKLDNNOpKernel<float, float>);
1029 1030 1031

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
1032
                                    ops::kConvMKLDNNINT8,
1033
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);
1034 1035 1036

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
1037
                                    ops::kConvMKLDNNINT8,
1038
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
1039 1040 1041 1042 1043

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);
1044 1045 1046 1047

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1048
                                    ops::ConvMKLDNNOpKernel<float, float>);
1049 1050 1051 1052 1053

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);