conv_mkldnn_op.cc 47.3 KB
Newer Older
A
Adam Osewski 已提交
1
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

A
Adam Osewski 已提交
15 16
#include <tuple>

17
#include "paddle/fluid/framework/expect.h"
18
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
19
#include "paddle/fluid/platform/cpu_info.h"
A
Adam Osewski 已提交
20
#include "paddle/fluid/platform/mkldnn_helper.h"
J
Jacek Czaja 已提交
21
#include "paddle/fluid/platform/mkldnn_reuse.h"
22 23 24

namespace paddle {
namespace operators {
A
Adam Osewski 已提交
25
namespace {
26

27 28 29
inline MKLDNNMemoryFormat GetWeightsFormat(const MKLDNNMemoryFormat format,
                                           const int groups,
                                           const bool is_conv3d) {
Y
Yihua Xu 已提交
30
  if (is_conv3d) {
31
    return (groups == 1) ? format : MKLDNNMemoryFormat::goidhw;
Y
Yihua Xu 已提交
32
  } else {
33
    return (groups == 1) ? format : MKLDNNMemoryFormat::goihw;
Y
Yihua Xu 已提交
34 35 36
  }
}

37 38 39 40 41 42
static dnnl::memory::data_type GetDstType(bool is_int8, bool is_bfloat16,
                                          bool force_fp32_output,
                                          std::string fuse_activation,
                                          bool fuse_residual_conn,
                                          const Tensor* residual_param) {
  auto dst_dt = dnnl::memory::data_type::f32;
43 44
  if (is_int8) {
    dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
45 46
                 ? dnnl::memory::data_type::u8
                 : dnnl::memory::data_type::s8;
47
    if (force_fp32_output) {
48
      dst_dt = dnnl::memory::data_type::f32;
49
    }
50
    if (fuse_residual_conn && residual_param) {
51 52
      auto residual_dt = framework::ToMKLDNNDataType(
          framework::TransToProtoVarType(residual_param->dtype()));
53
      if (dst_dt != residual_dt) dst_dt = residual_dt;
54
    }
55 56
  } else {
    if (!force_fp32_output && is_bfloat16) {
57
      dst_dt = dnnl::memory::data_type::bf16;
58
      if (fuse_residual_conn && residual_param) {
59 60
        dst_dt = framework::ToMKLDNNDataType(
            framework::TransToProtoVarType(residual_param->dtype()));
61 62
      }
    }
63 64 65 66
  }
  return dst_dt;
}

67
template <typename T, typename K, typename T_out>
68
class ConvMKLDNNHandlerT
69 70 71
    : public platform::MKLDNNHandlerT<T, dnnl::convolution_forward,
                                      dnnl::convolution_backward_data,
                                      dnnl::convolution_backward_weights> {
72
 public:
A
Adam Osewski 已提交
73
  ConvMKLDNNHandlerT(const framework::ExecutionContext& ctx,
74
                     const platform::MKLDNNDeviceContext& dev_ctx,
75
                     const dnnl::engine mkldnn_engine,
76 77 78
                     platform::Place cpu_place, const Tensor* input,
                     const Tensor* filter, const Tensor* bias, Tensor* output,
                     const std::string& unique_name)
79 80 81
      : platform::MKLDNNHandlerT<T, dnnl::convolution_forward,
                                 dnnl::convolution_backward_data,
                                 dnnl::convolution_backward_weights>(
82
            dev_ctx, mkldnn_engine, cpu_place,
83
            platform::CreateKey(dev_ctx, phi::vectorize(input->dims()),
84
                                unique_name)) {
85
    if (unlikely(!this->isCached())) {
86
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
87
          input->layout(), framework::DataLayout::kMKLDNN,
88 89
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
90
              framework::DataLayout::kMKLDNN, input->layout()));
91 92 93
      PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Input tensor"));
94

95
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
96
          filter->layout(), framework::DataLayout::kMKLDNN,
97 98
          platform::errors::InvalidArgument(
              "The Filter tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
99
              framework::DataLayout::kMKLDNN, filter->layout()));
100 101 102
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Filter tensor"));
K
Krzysztof Binias 已提交
103

104 105 106 107 108 109 110 111 112 113 114 115
      PADDLE_ENFORCE_GE(
          input->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
      PADDLE_ENFORCE_LE(
          input->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
116

117 118 119 120 121 122 123 124 125 126 127 128
      PADDLE_ENFORCE_GE(
          filter->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
      PADDLE_ENFORCE_LE(
          filter->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
129

130 131
      if (bias) {
        PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
132
            bias->layout(), framework::DataLayout::kMKLDNN,
133 134
            platform::errors::InvalidArgument(
                "The Bias tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
135
                framework::DataLayout::kMKLDNN, bias->layout()));
136 137 138
        PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
                          platform::errors::InvalidArgument(
                              "Got wrong format for Bias tensor."));
139

140 141 142 143 144 145
        PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                          platform::errors::InvalidArgument(
                              "Bias must only have 1 dimension, "
                              "i.e. X, but got dimension = %d .",
                              bias->dims().size()));
      }
F
FDInSky 已提交
146

147 148 149
      const int groups = ctx.Attr<int>("groups");
      const std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
F
FDInSky 已提交
150

151
      const auto input_dims = input->dims();
152
      const auto data_dims = phi::slice_ddim(input_dims, 2, input_dims.size());
153 154
      const auto filter_dims = filter->dims();
      const auto filter_data_dims =
155
          phi::slice_ddim(filter_dims, 2, filter_dims.size());
156

157
      const auto ksize = phi::vectorize(filter_data_dims);
158
      const bool is_test = ctx.Attr<bool>("is_test");
159

160 161
      auto strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
162

163 164
      auto paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
A
Adam 已提交
165

166 167 168
      auto dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));
A
Adam 已提交
169

170 171
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);
A
Adam 已提交
172

173 174
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
175

176
      const auto src_tz = phi::vectorize(input->dims());
177

178
      auto weights_tz = phi::vectorize(filter->dims());
179
      platform::GetGroupConvWeightsTz(weights_tz, groups);
180

181
      const auto dst_tz = phi::vectorize(output->dims());
182

183
      const dnnl::memory::dims stride_dims = strides;
184
      const auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
185
      const dnnl::memory::dims dilations_dims = dilations;
A
Adam 已提交
186

187 188 189 190
      /* create memory descriptor for convolution without specified format
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
191
      auto chosen_memory_format = MKLDNNMemoryFormat::any;
192
      auto data_type = dnnl::memory::data_type::f32;
193 194
      if (ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16" ||
          std::is_same<T_out, platform::bfloat16>::value)
195
        data_type = dnnl::memory::data_type::bf16;
196

197
      dnnl::memory::desc src_md, weights_md;
A
Adam Osewski 已提交
198 199
      if (platform::is_int8<T>()) {
        src_md = platform::MKLDNNMemDesc(
200 201 202
            src_tz,
            framework::ToMKLDNNDataType(
                framework::TransToProtoVarType(input->dtype())),
A
Adam Osewski 已提交
203 204
            chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(
205
            weights_tz, dnnl::memory::data_type::s8, chosen_memory_format);
A
Adam Osewski 已提交
206 207 208 209 210 211 212
      } else {
        src_md =
            platform::MKLDNNMemDesc(src_tz, data_type, chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(weights_tz, data_type,
                                             MKLDNNMemoryFormat::any);
      }

213
      const auto dst_md = platform::MKLDNNMemDesc(
214
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
215 216
      const auto fwd_prop_kind = is_test ? dnnl::prop_kind::forward_inference
                                         : dnnl::prop_kind::forward_training;
217

218
      const dnnl::primitive_attr conv_attr = CreateConvAttrs(ctx);
A
Adam 已提交
219

220
      if (bias) {
221
        auto bias_tz = phi::vectorize(bias->dims());
222
        dnnl::memory::desc bias_md;
A
Adam Osewski 已提交
223 224
        if (platform::is_int8<T>()) {
          bias_md = platform::MKLDNNMemDesc(
225
              bias_tz, dnnl::memory::data_type::s32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
226 227 228 229
        } else {
          bias_md = platform::MKLDNNMemDesc(bias_tz, data_type,
                                            MKLDNNMemoryFormat::x);
        }
230

231
        this->AcquireForwardPrimitiveDescriptor(
232
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
233
            src_md, weights_md, bias_md, dst_md, stride_dims, dilations_dims,
234 235
            mkldnn_paddings[0], mkldnn_paddings[1]);
      } else {
236
        this->AcquireForwardPrimitiveDescriptor(
237
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
238 239
            src_md, weights_md, dst_md, stride_dims, dilations_dims,
            mkldnn_paddings[0], mkldnn_paddings[1]);
240 241 242
      }
    }
  }
243

244 245 246 247 248 249
  ConvMKLDNNHandlerT(const framework::ExecutionContext& ctx,
                     const platform::MKLDNNDeviceContext& dev_ctx,
                     platform::Place cpu_place, const Tensor* in,
                     const Tensor* filter, const Tensor* bias,
                     const Tensor* out_grad, Tensor* filter_grad,
                     Tensor* in_x_grad, const std::string& unique_name)
250 251 252
      : platform::MKLDNNHandlerT<T, dnnl::convolution_forward,
                                 dnnl::convolution_backward_data,
                                 dnnl::convolution_backward_weights>(
253
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
254
            platform::CreateKey(dev_ctx, phi::vectorize(in->dims()),
255
                                unique_name)) {
256
    if (unlikely(!this->isBwdCached())) {
257
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
258
          in->layout(), framework::DataLayout::kMKLDNN,
259 260
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
261
              framework::DataLayout::kMKLDNN, in->layout()));
262 263 264 265 266
      PADDLE_ENFORCE_NE(in->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Got wrong format for Input tensor."));

      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
267
          filter->layout(), framework::DataLayout::kMKLDNN,
268 269
          platform::errors::InvalidArgument(
              "The filter tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
270
              framework::DataLayout::kMKLDNN, filter->layout()));
271 272 273 274 275
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Got wrong format for Filter tensor."));

      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
276
          out_grad->layout(), framework::DataLayout::kMKLDNN,
277 278
          platform::errors::InvalidArgument(
              "The output_grad tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
279
              framework::DataLayout::kMKLDNN, out_grad->layout()));
280 281 282 283 284
      PADDLE_ENFORCE_NE(out_grad->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for output_grad tensor"));

      PADDLE_ENFORCE_EQ(
285
          ctx.Attr<bool>("is_test"), false,
286 287 288 289 290 291 292 293 294 295 296 297 298 299
          platform::errors::InvalidArgument(
              "is_test attribute should be set to False in training phase."));

      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));

      auto input_dims = in->dims();
300
      auto data_dims = phi::slice_ddim(input_dims, 2, input_dims.size());
301 302
      auto filter_dims = filter->dims();
      auto filter_data_dims =
303 304
          phi::slice_ddim(filter_dims, 2, filter_dims.size());
      auto ksize = phi::vectorize(filter_data_dims);
305

A
Adam Osewski 已提交
306 307
      std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
308 309 310
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);

311 312
      auto src_tz = phi::vectorize(in->dims());
      auto weights_tz = phi::vectorize(filter->dims());
313

A
Adam Osewski 已提交
314
      int groups = ctx.Attr<int>("groups");
315 316
      int g = std::max(groups, 1);
      platform::GetGroupConvWeightsTz(weights_tz, g);
317
      auto dst_tz = phi::vectorize(out_grad->dims());
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

      /* create memory descriptor for conv backward without specified format
       * ('any') which lets a primitive (conv backward in this case) choose
       * the memory format preferred for best performance
       */
      const auto chosen_memory_format = MKLDNNMemoryFormat::any;
      const auto weights_format = MKLDNNMemoryFormat::any;

      auto src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      const auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
      auto diff_src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
      auto diff_weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
      auto diff_dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);

      auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
342
      const dnnl::memory::dims dilations_dims = dilations;
343

344
      const dnnl::memory::dims stride_dims = strides;
345
      // Recreating FWD PD. For training there are no post ops in convolution
346
      dnnl::primitive_attr conv_attr;
347
      if (bias) {
348
        auto bias_tz = phi::vectorize(bias->dims());
349
        dnnl::memory::desc bias_md;
A
Adam Osewski 已提交
350 351
        if (platform::is_int8<T>()) {
          bias_md = platform::MKLDNNMemDesc(
352
              bias_tz, dnnl::memory::data_type::s32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
353 354
        } else {
          bias_md = platform::MKLDNNMemDesc(
355
              bias_tz, dnnl::memory::data_type::f32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
356
        }
357

358
        this->AcquireForwardPrimitiveDescriptor(
359
            conv_attr, dnnl::prop_kind::forward_training,
360 361 362 363
            dnnl::algorithm::convolution_direct, src_md, weights_md, bias_md,
            dst_md, stride_dims, dilations_dims, mkldnn_paddings[0],
            mkldnn_paddings[1]);
      } else {
364
        this->AcquireForwardPrimitiveDescriptor(
365
            conv_attr, dnnl::prop_kind::forward_training,
366 367 368 369 370
            dnnl::algorithm::convolution_direct, src_md, weights_md, dst_md,
            stride_dims, dilations_dims, mkldnn_paddings[0],
            mkldnn_paddings[1]);
      }

371
      this->AcquireBackwardPrimitiveDescriptor(
372
          dnnl::algorithm::convolution_direct, diff_src_md, weights_md,
373 374 375
          diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
          mkldnn_paddings[1]);

376
      this->AcquireBackwardWeightsPrimitiveDescriptor(
377
          dnnl::algorithm::convolution_direct, src_md, diff_weights_md,
378 379 380 381 382
          diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
          mkldnn_paddings[1]);
    }
  }

383 384 385 386 387 388 389 390 391 392 393 394 395
  std::shared_ptr<std::tuple<float, std::vector<float>>> get_int8_bias_scales(
      const framework::ExecutionContext& ctx) {
    // Get scales int8 bias key
    const std::string key_bs = this->key_ + "@bs";

    // Scales for int8 bias are to be cached to avoid
    // computing them each iteration
    auto bias_scale_tuple =
        std::static_pointer_cast<std::tuple<float, std::vector<float>>>(
            this->dev_ctx_.GetBlob(key_bs));
    if (bias_scale_tuple) return bias_scale_tuple;

    const auto* filter = ctx.Input<Tensor>("Filter");
396
    const auto& weights_tz = phi::vectorize(filter->dims());
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
    const int groups = std::max(ctx.Attr<int>("groups"), 1);

    const auto& scale_weights_data =
        ctx.Attr<std::vector<float>>("Scale_weights");
    const auto& scale_in_data = ctx.Attr<float>("Scale_in");

    bool is_multi_channel = scale_weights_data.size() > 1;
    int mask_reorder = is_multi_channel ? 1 << 0 : 1;

    int count = 1;
    if (is_multi_channel) {
      count *= weights_tz[0];
      if (groups > 1) {
        count *= weights_tz[1];
      }
    }

    bias_scale_tuple =
        std::make_shared<std::tuple<float, std::vector<float>>>(std::make_tuple(
            static_cast<float>(mask_reorder), std::vector<float>(count)));
    for (int i = 0; i < count; i++) {
      std::get<1>(*bias_scale_tuple)[i] = scale_in_data * scale_weights_data[i];
    }

    this->dev_ctx_.SetBlob(key_bs, bias_scale_tuple);

    return bias_scale_tuple;
  }

426
  std::tuple<float, std::vector<float>, float> get_int8_scales(
A
Adam Osewski 已提交
427 428
      const framework::ExecutionContext& ctx) const {
    const auto* filter = ctx.Input<Tensor>("Filter");
429
    const auto& weights_tz = phi::vectorize(filter->dims());
A
Adam Osewski 已提交
430 431 432 433 434 435 436 437 438

    const bool& force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    const bool& fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    const int groups = std::max(ctx.Attr<int>("groups"), 1);

    const auto& scale_in_data = ctx.Attr<float>("Scale_in");
    const auto& scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
    bool is_multi_channel = scale_weights_data.size() > 1;
439
    bool has_activation = !ctx.Attr<std::string>("fuse_activation").empty();
440 441 442 443 444 445 446
    float activation_scale = (!force_fp32_output && has_activation)
                                 ? ctx.Attr<float>("Scale_out")
                                 : 1.0f;

    float scale_out_data = (force_fp32_output || has_activation)
                               ? 1.0f
                               : ctx.Attr<float>("Scale_out");
A
Adam Osewski 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
    float sum_scale =
        fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;
    int count =
        is_multi_channel
            ? (groups > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
            : 1;
    std::vector<float> output_shift_scale(count);

#pragma omp parallel for if (count > 50)
    for (int i = 0; i < count; i++) {
      if (scale_weights_data[i] == 0.0)
        // weights data will contain 0 in some models, then weights
        // scale couldn't be calculated
        output_shift_scale[i] = scale_out_data;
      else
        output_shift_scale[i] =
            static_cast<float>(static_cast<double>(scale_out_data) /
                               (static_cast<double>(scale_in_data) *
                                static_cast<double>(scale_weights_data[i])));
    }

468
    return std::make_tuple(sum_scale, output_shift_scale, activation_scale);
A
Adam Osewski 已提交
469 470
  }

471
  dnnl::primitive_attr CreateConvAttrs(const framework::ExecutionContext& ctx) {
472 473
    dnnl::primitive_attr conv_attr;
    dnnl::post_ops post_operations;
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497

    const std::string fuse_activation =
        ctx.Attr<std::string>("fuse_activation");
    const float fuse_alpha = ctx.Attr<float>("fuse_alpha");
    const float fuse_beta = ctx.Attr<float>("fuse_beta");
    const bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");

    float sum_scale = 1.0f;
    float activation_scale = 1.0f;
    std::vector<float> output_shift_scale;
    if (platform::is_int8<T>()) {
      if (ctx.HasAttr("Sum_scale")) {
        sum_scale = ctx.Attr<float>("Sum_scale");
        activation_scale = ctx.Attr<float>("Activation_scale");
        output_shift_scale = ctx.Attr<std::vector<float>>("Output_shift_scale");
      } else {
        std::tie(sum_scale, output_shift_scale, activation_scale) =
            get_int8_scales(ctx);
      }

      if (output_shift_scale.size() > 0) {
        int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
        conv_attr.set_output_scales(mask, output_shift_scale);
      }
498
    }
499

500 501 502 503 504 505 506 507 508 509 510
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
      post_operations.append_sum(sum_scale);
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
511 512 513
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_relu, fuse_alpha,
                                     fuse_beta);
514
    } else if (fuse_activation == "relu6") {
515 516
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_bounded_relu,
517
                                     fuse_alpha, fuse_beta);
518 519 520 521
    } else if (fuse_activation == "swish") {
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_swish, fuse_alpha,
                                     fuse_beta);
J
jakpiase 已提交
522
    } else if (fuse_activation == "hard_swish") {
523 524
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_hardswish,
525
                                     fuse_alpha, fuse_beta);
526 527 528 529
    } else if (fuse_activation == "mish") {
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_mish, fuse_alpha,
                                     fuse_beta);
530
    } else if (fuse_activation == "hard_sigmoid") {
531 532
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_linear,
533
                                     fuse_alpha, fuse_beta);
534 535
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_clip, 0.0f, 1.0f);
B
baoachun 已提交
536
    } else if (fuse_activation == "gelu_tanh") {
537 538
      post_operations.append_eltwise(
          activation_scale, dnnl::algorithm::eltwise_gelu_tanh, 0.0f, 0.0f);
B
baoachun 已提交
539
    } else if (fuse_activation == "gelu_erf") {
540 541
      post_operations.append_eltwise(
          activation_scale, dnnl::algorithm::eltwise_gelu_erf, 0.0f, 0.0f);
542 543 544 545
    }
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }
546

547
  std::shared_ptr<dnnl::memory>
548 549 550
  AcquireWeightsMemoryWithReorderFromDataPrimitive(
      const framework::Tensor* filter, const int groups, const bool is_conv3d) {
    const K* filter_data = filter->data<K>();
551
    auto weights_tz = phi::vectorize(filter->dims());
552 553 554 555 556 557 558 559
    platform::GetGroupConvWeightsTz(weights_tz, groups);

    auto user_src_md = platform::MKLDNNMemDesc(
        weights_tz, platform::MKLDNNGetDataType<K>(),
        GetWeightsFormat(filter->format(), groups, is_conv3d));

    return this->AcquireMemoryWithReorder(
        user_src_md, this->bwd_pd_->weights_desc(),
A
Adam Osewski 已提交
560
        platform::to_void_cast<K>(filter_data), "@weights_mem_d_p", false);
561 562
  }

563
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorder(
564
      const framework::Tensor* input) {
565 566 567 568
    return this->AcquireMemoryWithReorderPrimitive(
        input, "@src_mem_p_user", "@src_mem_p_target", "@src_mem_p",
        this->fwd_pd_->src_desc());
  }
569

570
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorderFromWeightsPrimitive(
571 572 573 574 575 576
      const framework::Tensor* input) {
    return this->AcquireMemoryWithReorderPrimitive(
        input, "@src_mem_w_p_user", "@src_mem_w_p_target", "@src_mem_w_p",
        this->bwd_w_pd_->src_desc());
  }

577
  std::shared_ptr<dnnl::memory>
578 579 580 581 582 583 584
  AcquireDiffDstMemoryWithReorderFromWeightsPrimitive(
      const framework::Tensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
        out_grad, "@diff_dst_mem_w_p_user", "@diff_dst_mem_w_p_target",
        "@diff_dst_mem_w_p", this->bwd_w_pd_->diff_dst_desc());
  }

585
  std::shared_ptr<dnnl::memory>
586 587 588 589 590 591 592
  AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive(
      const framework::Tensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
        out_grad, "@diff_dst_mem_p_user", "@diff_dst_mem_p_target",
        "@diff_dst_mem_p", this->bwd_pd_->diff_dst_desc());
  }

593
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorderPrimitive(
594 595
      const framework::Tensor* in_mem, const char* key_mem_user,
      const char* key_mem_target, const char* key_mem,
596
      const dnnl::memory::desc& mem_md) {
597 598 599 600 601 602
    const T* in_mem_data = in_mem->data<T>();
    const std::string user_key_suffix{key_mem_user};
    auto user_mem_p = this->AcquireMemory(user_key_suffix);

    if (!user_mem_p) {
      auto user_mem_md = platform::MKLDNNMemDesc(
603
          phi::vectorize(in_mem->dims()), platform::MKLDNNGetDataType<T>(),
604
          in_mem->format());
605
      return this->AcquireMemoryWithReorder(
606
          user_mem_md, mem_md, platform::to_void_cast<T>(in_mem_data), key_mem);
607
    } else {
608 609
      const std::string target_key_suffix{key_mem_target};
      const auto target_mem_p = this->AcquireMemory(target_key_suffix);
A
Adam Osewski 已提交
610
      user_mem_p->set_data_handle(platform::to_void_cast<T>(in_mem_data));
611
      if (user_mem_p != target_mem_p) {
612
        this->AcquireReorder(user_mem_p, target_mem_p);
613
      }
614
      return target_mem_p;
615
    }
616 617
  }

618
  std::shared_ptr<dnnl::memory> AcquireWeightsMemoryWithReorder(
619
      const framework::Tensor* filter, const int groups, const bool is_conv3d,
620 621
      const bool is_test, const std::vector<float>& scale_data = {1.0f},
      int mask = 0) {
622 623 624
    // This is workaround to make execution faster, delete
    // if statement after including md inside Tensor
    auto weights_mem_p = this->AcquireMemory("@weights_mem_p_target");
625
    if (is_test && weights_mem_p) {
626
      return weights_mem_p;
627
    } else if (is_test) {
628
      const K* filter_data = filter->data<K>();
629
      auto weights_tz = phi::vectorize(filter->dims());
630
      platform::GetGroupConvWeightsTz(weights_tz, groups);
631 632

      auto user_src_md = platform::MKLDNNMemDesc(
633
          weights_tz, platform::MKLDNNGetDataType<K>(),
634 635 636 637
          GetWeightsFormat(filter->format(), groups, is_conv3d));

      return this->AcquireMemoryWithReorder(
          user_src_md, this->fwd_pd_->weights_desc(),
638 639
          platform::to_void_cast<K>(filter_data), "@weights_mem_p", is_test, {},
          scale_data, mask);
640 641
    } else {
      const T* filter_data = filter->data<T>();
642
      auto weights_tz = phi::vectorize(filter->dims());
643 644 645 646 647 648 649 650 651 652
      platform::GetGroupConvWeightsTz(weights_tz, groups);

      auto user_src_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(),
          GetWeightsFormat(filter->format(), groups, is_conv3d));

      return this->AcquireMemoryWithReorder(
          user_src_md, this->fwd_pd_->weights_desc(),
          platform::to_void_cast<T>(filter_data), "@weights_mem_p", is_test, {},
          scale_data, mask);
653
    }
654
  }
655

656
  std::shared_ptr<dnnl::memory> AcquireBiasMemoryWithReorder(
657
      const framework::Tensor* bias, const bool is_test,
A
Adam Osewski 已提交
658
      const std::vector<float>& scale_data = {1.0f}, int mask = 0) {
659
    auto bias_mem_p = this->AcquireMemory("@bias_mem_p_target");
660
    if (is_test && bias_mem_p) {
661 662 663 664
      return bias_mem_p;
    } else {
      const K* bias_data = bias->data<K>();
      auto user_bias_md = platform::MKLDNNMemDesc(
665
          phi::vectorize(bias->dims()), platform::MKLDNNGetDataType<K>(),
666 667 668
          MKLDNNMemoryFormat::x);

      return this->AcquireMemoryWithReorder(
A
Adam Osewski 已提交
669
          user_bias_md, this->fwd_pd_->bias_desc(),
670
          platform::to_void_cast<K>(bias_data), "@bias_mem_p", is_test, {},
A
Adam Osewski 已提交
671
          scale_data, mask);
672
    }
673
  }
674

675
  std::shared_ptr<dnnl::memory> AcquireResidualMemory(
676
      const framework::Tensor* residual_param) {
677
    void* residual_data =
678 679
        framework::TransToProtoVarType(residual_param->dtype()) ==
                framework::DataTypeTrait<T_out>::DataType()
A
Adam Osewski 已提交
680 681
            ? platform::to_void_cast<T_out>(residual_param->data<T_out>())
            : platform::to_void_cast<T>(residual_param->data<T>());
682 683 684 685 686 687
    auto residual_mem_p = this->AcquireMemory("@user_residual_data_mem_p");
    if (residual_mem_p) {
      residual_mem_p->set_data_handle(residual_data);
      return residual_mem_p;
    } else {
      auto user_residual_md = platform::MKLDNNMemDesc(
688
          phi::vectorize(residual_param->dims()),
689 690
          framework::ToMKLDNNDataType(
              framework::TransToProtoVarType(residual_param->dtype())),
691
          residual_param->format());
692

693 694 695
      return this->AcquireMemoryFromPrimitive(user_residual_md, residual_data,
                                              "@user_residual_data_mem_p");
    }
696 697
  }

698
  std::shared_ptr<dnnl::memory> AcquireDstMemoryWithResidual(
699 700 701 702 703
      framework::Tensor* output, const framework::Tensor* residual_param) {
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (residual_param->format() !=
        platform::GetMKLDNNFormat(this->fwd_pd_->dst_desc())) {
      auto residual_memory_p = this->AcquireResidualMemory(residual_param);
704
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
705
      this->AcquireReorder(residual_memory_p, dst_memory_p);
706 707 708 709 710
    } else {
      // Changing ShareDataWith to TensorCopy results in performance drop
      // on ResNet architectures
      // (https://github.com/PaddlePaddle/Paddle/issues/22964)
      output->ShareDataWith(*residual_param);
711
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
712 713 714 715 716
    }
    return dst_memory_p;
  }
};

A
Adam Osewski 已提交
717 718
}  // anonymous namespace

719
template <typename T, typename K>
A
Adam Osewski 已提交
720
class ConvMKLDNNOpKernel : public framework::OpKernel<T> {
721
 public:
A
Adam Osewski 已提交
722
  void Compute(const framework::ExecutionContext& ctx) const override {
723
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
A
Adam Osewski 已提交
724
                      platform::errors::PreconditionNotMet(
725 726 727
                          "Operator DNNL Conv must use CPUPlace"));
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
728 729 730 731 732 733 734 735
    bool is_BFLOAT16 = ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16";
    auto residual_param = ctx.Input<Tensor>("ResidualData");
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    auto dst_dt =
        GetDstType(is_INT8, is_BFLOAT16, force_fp32_output, fuse_activation,
                   fuse_residual_conn, residual_param);
736
    if (!is_INT8) {
737
      if (dst_dt == dnnl::memory::data_type::f32) {
738
        ComputeFP32<float>(ctx);
739
      } else if (dst_dt == dnnl::memory::data_type::bf16) {
740 741
        ComputeFP32<platform::bfloat16>(ctx);
      }
742
    } else {
743
      if (dst_dt == dnnl::memory::data_type::f32) {
744
        ComputeINT8<float>(ctx);
745
      } else if (dst_dt == dnnl::memory::data_type::u8) {
746
        ComputeINT8<uint8_t>(ctx);
747
      } else if (dst_dt == dnnl::memory::data_type::s8) {
748 749
        ComputeINT8<int8_t>(ctx);
      }
750
    }
751
  }
752

753
  template <typename T_out>
A
Adam Osewski 已提交
754
  void ComputeFP32(const framework::ExecutionContext& ctx) const {
755
    auto& dev_ctx =
A
Adam Osewski 已提交
756
        ctx.template device_context<platform::MKLDNNDeviceContext>();
757
    const auto& mkldnn_engine = dev_ctx.GetEngine();
758

759
    const bool is_test = ctx.Attr<bool>("is_test");
760 761
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
    const bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
762

763 764 765 766 767
    const auto* input = ctx.Input<Tensor>("Input");
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
768

769
    ConvMKLDNNHandlerT<T, K, T_out> handler(
770 771
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
772

773
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
774

775
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
776
        filter, ctx.Attr<int>("groups"), is_conv3d, is_test);
777

778 779 780
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
781
      dst_memory_p =
782 783
          handler.AcquireDstMemoryWithResidual(output, residual_param);
    } else {
784
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
785
    }
786

787
    auto conv_p = handler.AcquireForwardPrimitive();
A
Adam 已提交
788

789
    std::unordered_map<int, dnnl::memory> args = {
790 791 792
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};
A
Adam 已提交
793

794
    if (bias) {
795
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(bias, is_test);
796
      args.insert({DNNL_ARG_BIAS, *bias_memory_p});
797
    }
798

799
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
800
    conv_p->execute(astream, args);
A
Adam 已提交
801
    astream.wait();
802

A
Adam Osewski 已提交
803 804
    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
805
  }
806

807
  template <typename T_out>
A
Adam Osewski 已提交
808
  void ComputeINT8(const framework::ExecutionContext& ctx) const {
809
    auto& dev_ctx =
A
Adam Osewski 已提交
810
        ctx.template device_context<platform::MKLDNNDeviceContext>();
811 812
    const auto& mkldnn_engine = dev_ctx.GetEngine();

A
Adam Osewski 已提交
813 814 815 816 817
    const std::string& fuse_activation =
        ctx.Attr<std::string>("fuse_activation");
    const bool& fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    const bool& force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
818

819 820
    bool unsigned_output =
        (fuse_activation == "relu" || fuse_activation == "relu6");
821 822
    bool need_s8_to_u8 = false;

A
Adam Osewski 已提交
823 824 825 826 827 828 829 830
    PADDLE_ENFORCE_NE(
        is_conv3d, true,
        platform::errors::Unimplemented(
            "OneDNN int8 convolution does not support 3D inputs currently"));
    PADDLE_ENFORCE_EQ(
        fuse_residual_conn && force_fp32_output, false,
        platform::errors::Unimplemented(
            "residual fusion does not support force output with fp32"));
A
Adam 已提交
831

A
Adam Osewski 已提交
832 833 834 835
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
836

A
Adam Osewski 已提交
837 838 839
    ConvMKLDNNHandlerT<T, K, T_out> handler(
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
840

A
Adam Osewski 已提交
841
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
F
FDInSky 已提交
842

A
Adam Osewski 已提交
843 844 845 846 847 848 849
    const auto& scale_weights_data =
        ctx.Attr<std::vector<float>>("Scale_weights");
    const bool is_multi_channel = scale_weights_data.size() > 1;
    const int& groups = ctx.Attr<int>("groups");
    int mask_reorder =
        is_multi_channel ? ((groups != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
850
        filter, groups, false, true, scale_weights_data, mask_reorder);
851

A
Adam Osewski 已提交
852 853 854
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
855
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
856 857 858 859 860 861
          output->dims(), residual_param->dims(),
          platform::errors::InvalidArgument(
              "Output and elementwise parameter need to have the "
              "same dimension sizes, but got output's dimension = %d"
              " and residual param's dimension =%d .",
              output->dims().size(), residual_param->dims().size()));
862
      dst_memory_p =
A
Adam Osewski 已提交
863 864
          handler.AcquireDstMemoryWithResidual(output, residual_param);
      need_s8_to_u8 = (platform::MKLDNNGetDataType<T_out>() ==
865
                       dnnl::memory::data_type::s8) &&
A
Adam Osewski 已提交
866 867 868 869
                      unsigned_output;
    } else {
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
    }
L
lidanqing 已提交
870

A
Adam Osewski 已提交
871 872 873
    auto conv_p = handler.AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> args = {
874 875 876
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};
A
Adam 已提交
877

A
Adam Osewski 已提交
878
    if (bias) {
879 880 881 882 883 884 885 886 887 888 889 890
      std::vector<float> bias_scales;
      auto p_scales_tuple =
          std::make_shared<std::tuple<float, std::vector<float>>>(
              std::make_tuple(static_cast<float>(mask_reorder), bias_scales));
      if (ctx.HasAttr("Bias_scales")) {
        bias_scales = ctx.Attr<std::vector<float>>("Bias_scales");
        p_scales_tuple =
            std::make_shared<std::tuple<float, std::vector<float>>>(
                std::make_tuple(static_cast<float>(mask_reorder), bias_scales));
      } else {
        p_scales_tuple = handler.get_int8_bias_scales(ctx);
      }
A
Adam Osewski 已提交
891
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(
892
          bias, true, std::get<1>(*p_scales_tuple),
893
          std::get<0>(*p_scales_tuple));
894
      args.insert({DNNL_ARG_BIAS, *bias_memory_p});
895
    }
A
Adam Osewski 已提交
896 897 898

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    conv_p->execute(astream, args);
A
Adam 已提交
899
    astream.wait();
A
Adam Osewski 已提交
900

901
    if (need_s8_to_u8) {
X
xiaolil1 已提交
902 903
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }
A
Adam Osewski 已提交
904 905 906

    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
907
  }
908 909
};

910
template <typename T, typename K>
A
Adam Osewski 已提交
911
class ConvMKLDNNGradOpKernel : public framework::OpKernel<T> {
912
 public:
A
Adam Osewski 已提交
913
  void Compute(const framework::ExecutionContext& ctx) const override {
914
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
A
Adam Osewski 已提交
915
                      platform::errors::PreconditionNotMet(
916
                          "Operator DNNL ConvGrad must use CPUPlace"));
917 918
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
919 920 921 922
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
923 924
    const Tensor* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
925 926 927 928 929 930 931
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    if (!input_grad && !filter_grad) return;

932 933 934 935 936
    // TODO(jczaja): Are all tensors really needed?
    ConvMKLDNNHandlerT<T, K, T> handler(
        ctx, dev_ctx, ctx.GetPlace(), input, filter, bias, output_grad,
        filter_grad, input_grad,
        ctx.InputName("Input") + ctx.InputName("Filter"));
937 938

    // create mkldnn memory from input tensors (data/weights)
939
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
940

941 942 943 944 945 946
    if (filter_grad) {
      auto src_memory_p =
          handler.AcquireSrcMemoryWithReorderFromWeightsPrimitive(input);
      auto diff_dst_memory_p =
          handler.AcquireDiffDstMemoryWithReorderFromWeightsPrimitive(
              output_grad);
947

948 949
      // For convoluition with groups write filter grad into
      // oneDNN buffer and then we reorder it into filter_grad tensor
950
      int g = std::max(ctx.Attr<int>("groups"), 1);
951
      auto diff_weights_memory_p =
952 953
          g > 1 ? handler.AcquireDiffWeightsMemory()
                : handler.AcquireDiffWeightsMemory(filter_grad);
954

955
      auto conv_bwd_weights_p = handler.AcquireBackwardWeightsPrimitive();
956

A
Adam 已提交
957 958
      // TODO(grygielski) why no bias_diff?
      conv_bwd_weights_p->execute(
959 960 961
          astream, {{DNNL_ARG_SRC, *src_memory_p},
                    {DNNL_ARG_DIFF_DST, *diff_dst_memory_p},
                    {DNNL_ARG_DIFF_WEIGHTS, *diff_weights_memory_p}});
A
Adam 已提交
962
      astream.wait();
963

A
Adam Osewski 已提交
964
      filter_grad->set_layout(framework::DataLayout::kMKLDNN);
965 966
      // in OneDNN groups in convolution are treated as separate dimension
      // which is not the case in paddlepaddle
A
Adam Osewski 已提交
967
      auto filter_fmt = platform::GetMKLDNNFormat(*diff_weights_memory_p);
968 969 970 971

      // For convolution with groups convert from blocked to NCHW
      // otherwise there will be problems in next operators working on this data
      if (g > 1) {
972 973
        dnnl::memory::data_type in_type = framework::ToMKLDNNDataType(
            framework::TransToProtoVarType(filter->dtype()));
974 975
        // for 3d conv with groups (six dimensional data reorder to goidhw)
        // for 2d conv with groups (five dimensional data reorder to goihw)
976
        // auto weights_tz = phi::vectorize(filter->dims());
977 978

        auto weights_tz = diff_weights_memory_p->get_desc().dims();
979 980 981
        dnnl::memory::format_tag out_format =
            weights_tz.size() == 6 ? dnnl::memory::format_tag::goidhw
                                   : dnnl::memory::format_tag::goihw;
982 983 984
        platform::ReorderMKLDNNHandler handler(
            weights_tz, framework::TransToProtoVarType(filter->dtype()),
            in_type, mkldnn_engine);
985 986 987 988 989 990
        auto reorder_dst_memory_p =
            handler.AcquireDstMemory(filter_grad, out_format, ctx.GetPlace());

        auto reorder_p =
            handler.AcquireReorder(reorder_dst_memory_p, diff_weights_memory_p);

991
        {
C
chenjian 已提交
992 993 994
          platform::RecordEvent record_reorder(
              "int_reorder", platform::TracerEventType::UserDefined, 2,
              platform::EventRole::kUniqueOp);
995 996 997 998
          reorder_p->execute(astream, *diff_weights_memory_p,
                             *reorder_dst_memory_p);
          astream.wait();
        }
999 1000 1001 1002

        // So here we have a data in goihw , which can be interpreted as OIHW
        // (OIDHW for conv3d)
        // because filter_grad shape is set for OIHW (OIDHW for conv3d)
1003 1004 1005
        dnnl::memory::format_tag target_format =
            weights_tz.size() == 6 ? dnnl::memory::format_tag::oidhw
                                   : dnnl::memory::format_tag::oihw;
1006 1007 1008 1009
        filter_grad->set_format(target_format);
      } else {
        filter_grad->set_format(filter_fmt);
      }
1010 1011
    }
    if (input_grad) {
1012 1013 1014 1015
      auto weights_memory_p =
          handler.AcquireWeightsMemoryWithReorderFromDataPrimitive(
              filter, ctx.Attr<int>("groups"),
              ctx.Attr<std::vector<int>>("strides").size() == 3U);
1016

1017 1018 1019 1020
      auto diff_dst_memory_p =
          handler.AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive(
              output_grad);
      auto diff_src_memory_p = handler.AcquireDiffSrcMemory(input_grad);
1021

1022
      auto conv_bwd_data_p = handler.AcquireBackwardPrimitive();
1023

A
Adam 已提交
1024
      conv_bwd_data_p->execute(astream,
1025 1026 1027
                               {{DNNL_ARG_WEIGHTS, *weights_memory_p},
                                {DNNL_ARG_DIFF_DST, *diff_dst_memory_p},
                                {DNNL_ARG_DIFF_SRC, *diff_src_memory_p}});
A
Adam 已提交
1028
      astream.wait();
1029

A
Adam Osewski 已提交
1030 1031
      input_grad->set_layout(framework::DataLayout::kMKLDNN);
      input_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory_p));
1032
    }
X
xiaolil1 已提交
1033
  }
1034
};
1035

1036 1037 1038 1039 1040
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
1041 1042 1043
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1044
                                    ops::ConvMKLDNNOpKernel<float, float>);
1045

1046 1047 1048 1049
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    conv2d, MKLDNN, ::paddle::platform::CPUPlace, BF16, ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNOpKernel<paddle::platform::bfloat16, float>);

1050 1051
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
1052
                                    ops::kConvMKLDNNINT8,
1053
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);
1054 1055 1056

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
1057
                                    ops::kConvMKLDNNINT8,
1058
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
1059 1060 1061 1062

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1063
                                    ops::ConvMKLDNNGradOpKernel<float, float>);
1064

1065 1066 1067
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace, BF16,
    ops::kConvMKLDNNFP32,
1068 1069
    ops::ConvMKLDNNGradOpKernel<paddle::platform::bfloat16,
                                paddle::platform::bfloat16>);
1070

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    depthwise_conv2d, MKLDNN, ::paddle::platform::CPUPlace, BF16,
    ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNOpKernel<paddle::platform::bfloat16, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
                                    ops::kConvMKLDNNINT8,
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
                                    ops::kConvMKLDNNINT8,
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    depthwise_conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace, BF16,
    ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNGradOpKernel<paddle::platform::bfloat16, float>);

1101 1102 1103
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1104
                                    ops::ConvMKLDNNOpKernel<float, float>);
1105 1106 1107 1108

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1109
                                    ops::ConvMKLDNNGradOpKernel<float, float>);