conv_mkldnn_op.cc 49.2 KB
Newer Older
A
Adam Osewski 已提交
1
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

A
Adam Osewski 已提交
15 16
#include <tuple>

17
#include "paddle/fluid/framework/expect.h"
18
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
19
#include "paddle/fluid/platform/cpu_info.h"
A
Adam Osewski 已提交
20
#include "paddle/fluid/platform/mkldnn_helper.h"
J
Jacek Czaja 已提交
21
#include "paddle/fluid/platform/mkldnn_reuse.h"
22 23 24

namespace paddle {
namespace operators {
A
Adam Osewski 已提交
25
namespace {
26

27 28 29
inline MKLDNNMemoryFormat GetWeightsFormat(const MKLDNNMemoryFormat format,
                                           const int groups,
                                           const bool is_conv3d) {
Y
Yihua Xu 已提交
30
  if (is_conv3d) {
31
    return (groups == 1) ? format : MKLDNNMemoryFormat::goidhw;
Y
Yihua Xu 已提交
32
  } else {
33
    return (groups == 1) ? format : MKLDNNMemoryFormat::goihw;
Y
Yihua Xu 已提交
34 35 36
  }
}

37 38
static dnnl::memory::data_type GetDstType(bool is_int8,
                                          bool is_bfloat16,
39 40 41 42 43
                                          bool force_fp32_output,
                                          std::string fuse_activation,
                                          bool fuse_residual_conn,
                                          const Tensor* residual_param) {
  auto dst_dt = dnnl::memory::data_type::f32;
44 45
  if (is_int8) {
    dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
46 47
                 ? dnnl::memory::data_type::u8
                 : dnnl::memory::data_type::s8;
48
    if (force_fp32_output) {
49
      dst_dt = dnnl::memory::data_type::f32;
50
    }
51
    if (fuse_residual_conn && residual_param) {
52 53
      auto residual_dt = framework::ToMKLDNNDataType(
          framework::TransToProtoVarType(residual_param->dtype()));
54
      if (dst_dt != residual_dt) dst_dt = residual_dt;
55
    }
56 57
  } else {
    if (!force_fp32_output && is_bfloat16) {
58
      dst_dt = dnnl::memory::data_type::bf16;
59
      if (fuse_residual_conn && residual_param) {
60 61
        dst_dt = framework::ToMKLDNNDataType(
            framework::TransToProtoVarType(residual_param->dtype()));
62 63
      }
    }
64 65 66 67
  }
  return dst_dt;
}

68
template <typename T, typename K, typename T_out>
69
class ConvMKLDNNHandlerT
70 71
    : public platform::MKLDNNHandlerT<T,
                                      dnnl::convolution_forward,
72 73
                                      dnnl::convolution_backward_data,
                                      dnnl::convolution_backward_weights> {
74
 public:
A
Adam Osewski 已提交
75
  ConvMKLDNNHandlerT(const framework::ExecutionContext& ctx,
76
                     const platform::MKLDNNDeviceContext& dev_ctx,
77
                     const dnnl::engine mkldnn_engine,
78 79 80 81 82
                     platform::Place cpu_place,
                     const Tensor* input,
                     const Tensor* filter,
                     const Tensor* bias,
                     Tensor* output,
83
                     const std::string& unique_name)
84 85
      : platform::MKLDNNHandlerT<T,
                                 dnnl::convolution_forward,
86 87
                                 dnnl::convolution_backward_data,
                                 dnnl::convolution_backward_weights>(
88 89 90 91 92
            dev_ctx,
            mkldnn_engine,
            cpu_place,
            platform::CreateKey(
                dev_ctx, phi::vectorize(input->dims()), unique_name)) {
93
    if (unlikely(!this->isCached())) {
94
      PADDLE_ENFORCE_EQ(
95 96
          input->layout(),
          framework::DataLayout::kMKLDNN,
97 98
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
99 100 101 102
              framework::DataLayout::kMKLDNN,
              input->layout()));
      PADDLE_ENFORCE_NE(input->format(),
                        MKLDNNMemoryFormat::undef,
103 104
                        platform::errors::InvalidArgument(
                            "Wrong format set for Input tensor"));
105

106
      PADDLE_ENFORCE_EQ(
107 108
          filter->layout(),
          framework::DataLayout::kMKLDNN,
109 110
          platform::errors::InvalidArgument(
              "The Filter tensor's layout should be %d, but got %d.",
111 112 113 114
              framework::DataLayout::kMKLDNN,
              filter->layout()));
      PADDLE_ENFORCE_NE(filter->format(),
                        MKLDNNMemoryFormat::undef,
115 116
                        platform::errors::InvalidArgument(
                            "Wrong format set for Filter tensor"));
K
Krzysztof Binias 已提交
117

118
      PADDLE_ENFORCE_GE(
119 120
          input->dims().size(),
          4,
121 122 123 124 125
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
      PADDLE_ENFORCE_LE(
126 127
          input->dims().size(),
          5,
128 129 130 131
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
132

133
      PADDLE_ENFORCE_GE(
134 135
          filter->dims().size(),
          4,
136 137 138 139 140
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
      PADDLE_ENFORCE_LE(
141 142
          filter->dims().size(),
          5,
143 144 145 146
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
147

148 149
      if (bias) {
        PADDLE_ENFORCE_EQ(
150 151
            bias->layout(),
            framework::DataLayout::kMKLDNN,
152 153
            platform::errors::InvalidArgument(
                "The Bias tensor's layout should be %d, but got %d.",
154 155 156 157
                framework::DataLayout::kMKLDNN,
                bias->layout()));
        PADDLE_ENFORCE_NE(bias->format(),
                          MKLDNNMemoryFormat::undef,
158 159
                          platform::errors::InvalidArgument(
                              "Got wrong format for Bias tensor."));
160

161 162
        PADDLE_ENFORCE_EQ(bias->dims().size(),
                          1,
163 164 165 166 167
                          platform::errors::InvalidArgument(
                              "Bias must only have 1 dimension, "
                              "i.e. X, but got dimension = %d .",
                              bias->dims().size()));
      }
F
FDInSky 已提交
168

169 170 171
      const int groups = ctx.Attr<int>("groups");
      const std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
F
FDInSky 已提交
172

173
      const auto input_dims = input->dims();
174
      const auto data_dims = phi::slice_ddim(input_dims, 2, input_dims.size());
175 176
      const auto filter_dims = filter->dims();
      const auto filter_data_dims =
177
          phi::slice_ddim(filter_dims, 2, filter_dims.size());
178

179
      const auto ksize = phi::vectorize(filter_data_dims);
180
      const bool is_test = ctx.Attr<bool>("is_test");
181

182 183
      auto strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
184

185 186
      auto paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
A
Adam 已提交
187

188 189 190
      auto dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));
A
Adam 已提交
191

192 193
      UpdatePaddingAndDilation(
          &paddings, &dilations, padding_algorithm, data_dims, strides, ksize);
A
Adam 已提交
194

195 196 197 198
      std::transform(
          dilations.begin(), dilations.end(), dilations.begin(), [](int64_t i) {
            return i - 1;
          });
199

200
      const auto src_tz = phi::vectorize(input->dims());
201

202
      auto weights_tz = phi::vectorize(filter->dims());
203
      platform::GetGroupConvWeightsTz(weights_tz, groups);
204

205
      const auto dst_tz = phi::vectorize(output->dims());
206

207
      const dnnl::memory::dims stride_dims = strides;
208
      const auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
209
      const dnnl::memory::dims dilations_dims = dilations;
A
Adam 已提交
210

211 212 213 214
      /* create memory descriptor for convolution without specified format
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
215
      auto chosen_memory_format = MKLDNNMemoryFormat::any;
216
      auto data_type = dnnl::memory::data_type::f32;
217 218
      if (ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16" ||
          std::is_same<T_out, platform::bfloat16>::value)
219
        data_type = dnnl::memory::data_type::bf16;
220

221
      dnnl::memory::desc src_md, weights_md;
A
Adam Osewski 已提交
222 223
      if (platform::is_int8<T>()) {
        src_md = platform::MKLDNNMemDesc(
224 225 226
            src_tz,
            framework::ToMKLDNNDataType(
                framework::TransToProtoVarType(input->dtype())),
A
Adam Osewski 已提交
227 228
            chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(
229
            weights_tz, dnnl::memory::data_type::s8, chosen_memory_format);
A
Adam Osewski 已提交
230 231 232
      } else {
        src_md =
            platform::MKLDNNMemDesc(src_tz, data_type, chosen_memory_format);
233 234
        weights_md = platform::MKLDNNMemDesc(
            weights_tz, data_type, MKLDNNMemoryFormat::any);
A
Adam Osewski 已提交
235 236
      }

237
      const auto dst_md = platform::MKLDNNMemDesc(
238
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
239 240
      const auto fwd_prop_kind = is_test ? dnnl::prop_kind::forward_inference
                                         : dnnl::prop_kind::forward_training;
241

242
      const dnnl::primitive_attr conv_attr = CreateConvAttrs(ctx);
A
Adam 已提交
243

244
      if (bias) {
245
        auto bias_tz = phi::vectorize(bias->dims());
246
        dnnl::memory::desc bias_md;
A
Adam Osewski 已提交
247 248
        if (platform::is_int8<T>()) {
          bias_md = platform::MKLDNNMemDesc(
249
              bias_tz, dnnl::memory::data_type::s32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
250
        } else {
251 252
          bias_md = platform::MKLDNNMemDesc(
              bias_tz, data_type, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
253
        }
254

255
        this->AcquireForwardPrimitiveDescriptor(
256 257 258 259 260 261 262 263 264 265 266
            conv_attr,
            fwd_prop_kind,
            dnnl::algorithm::convolution_direct,
            src_md,
            weights_md,
            bias_md,
            dst_md,
            stride_dims,
            dilations_dims,
            mkldnn_paddings[0],
            mkldnn_paddings[1]);
267
      } else {
268
        this->AcquireForwardPrimitiveDescriptor(
269 270 271 272 273 274 275 276 277 278
            conv_attr,
            fwd_prop_kind,
            dnnl::algorithm::convolution_direct,
            src_md,
            weights_md,
            dst_md,
            stride_dims,
            dilations_dims,
            mkldnn_paddings[0],
            mkldnn_paddings[1]);
279 280 281
      }
    }
  }
282

283 284
  ConvMKLDNNHandlerT(const framework::ExecutionContext& ctx,
                     const platform::MKLDNNDeviceContext& dev_ctx,
285 286 287 288 289 290 291 292 293 294
                     platform::Place cpu_place,
                     const Tensor* in,
                     const Tensor* filter,
                     const Tensor* bias,
                     const Tensor* out_grad,
                     Tensor* filter_grad,
                     Tensor* in_x_grad,
                     const std::string& unique_name)
      : platform::MKLDNNHandlerT<T,
                                 dnnl::convolution_forward,
295 296
                                 dnnl::convolution_backward_data,
                                 dnnl::convolution_backward_weights>(
297 298 299 300 301
            dev_ctx,
            dev_ctx.GetEngine(),
            cpu_place,
            platform::CreateKey(
                dev_ctx, phi::vectorize(in->dims()), unique_name)) {
302
    if (unlikely(!this->isBwdCached())) {
303
      PADDLE_ENFORCE_EQ(
304 305
          in->layout(),
          framework::DataLayout::kMKLDNN,
306 307
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
308 309 310 311
              framework::DataLayout::kMKLDNN,
              in->layout()));
      PADDLE_ENFORCE_NE(in->format(),
                        MKLDNNMemoryFormat::undef,
312 313 314 315
                        platform::errors::InvalidArgument(
                            "Got wrong format for Input tensor."));

      PADDLE_ENFORCE_EQ(
316 317
          filter->layout(),
          framework::DataLayout::kMKLDNN,
318 319
          platform::errors::InvalidArgument(
              "The filter tensor's layout should be %d, but got %d.",
320 321 322 323
              framework::DataLayout::kMKLDNN,
              filter->layout()));
      PADDLE_ENFORCE_NE(filter->format(),
                        MKLDNNMemoryFormat::undef,
324 325 326 327
                        platform::errors::InvalidArgument(
                            "Got wrong format for Filter tensor."));

      PADDLE_ENFORCE_EQ(
328 329
          out_grad->layout(),
          framework::DataLayout::kMKLDNN,
330 331
          platform::errors::InvalidArgument(
              "The output_grad tensor's layout should be %d, but got %d.",
332 333 334 335
              framework::DataLayout::kMKLDNN,
              out_grad->layout()));
      PADDLE_ENFORCE_NE(out_grad->format(),
                        MKLDNNMemoryFormat::undef,
336 337 338 339
                        platform::errors::InvalidArgument(
                            "Wrong format set for output_grad tensor"));

      PADDLE_ENFORCE_EQ(
340 341
          ctx.Attr<bool>("is_test"),
          false,
342 343 344 345 346 347 348 349 350 351 352 353 354 355
          platform::errors::InvalidArgument(
              "is_test attribute should be set to False in training phase."));

      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));

      auto input_dims = in->dims();
356
      auto data_dims = phi::slice_ddim(input_dims, 2, input_dims.size());
357 358
      auto filter_dims = filter->dims();
      auto filter_data_dims =
359 360
          phi::slice_ddim(filter_dims, 2, filter_dims.size());
      auto ksize = phi::vectorize(filter_data_dims);
361

A
Adam Osewski 已提交
362 363
      std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
364 365
      UpdatePaddingAndDilation(
          &paddings, &dilations, padding_algorithm, data_dims, strides, ksize);
366

367 368
      auto src_tz = phi::vectorize(in->dims());
      auto weights_tz = phi::vectorize(filter->dims());
369

A
Adam Osewski 已提交
370
      int groups = ctx.Attr<int>("groups");
371 372
      int g = std::max(groups, 1);
      platform::GetGroupConvWeightsTz(weights_tz, g);
373
      auto dst_tz = phi::vectorize(out_grad->dims());
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395

      /* create memory descriptor for conv backward without specified format
       * ('any') which lets a primitive (conv backward in this case) choose
       * the memory format preferred for best performance
       */
      const auto chosen_memory_format = MKLDNNMemoryFormat::any;
      const auto weights_format = MKLDNNMemoryFormat::any;

      auto src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      const auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
      auto diff_src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
      auto diff_weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
      auto diff_dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);

      auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
396 397 398 399
      std::transform(
          dilations.begin(), dilations.end(), dilations.begin(), [](int64_t i) {
            return i - 1;
          });
400
      const dnnl::memory::dims dilations_dims = dilations;
401

402
      const dnnl::memory::dims stride_dims = strides;
403
      // Recreating FWD PD. For training there are no post ops in convolution
404
      dnnl::primitive_attr conv_attr;
405
      if (bias) {
406
        auto bias_tz = phi::vectorize(bias->dims());
407
        dnnl::memory::desc bias_md;
A
Adam Osewski 已提交
408 409
        if (platform::is_int8<T>()) {
          bias_md = platform::MKLDNNMemDesc(
410
              bias_tz, dnnl::memory::data_type::s32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
411 412
        } else {
          bias_md = platform::MKLDNNMemDesc(
413
              bias_tz, dnnl::memory::data_type::f32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
414
        }
415

416
        this->AcquireForwardPrimitiveDescriptor(
417 418 419 420 421 422 423 424 425 426
            conv_attr,
            dnnl::prop_kind::forward_training,
            dnnl::algorithm::convolution_direct,
            src_md,
            weights_md,
            bias_md,
            dst_md,
            stride_dims,
            dilations_dims,
            mkldnn_paddings[0],
427 428
            mkldnn_paddings[1]);
      } else {
429
        this->AcquireForwardPrimitiveDescriptor(
430 431 432 433 434 435 436 437 438
            conv_attr,
            dnnl::prop_kind::forward_training,
            dnnl::algorithm::convolution_direct,
            src_md,
            weights_md,
            dst_md,
            stride_dims,
            dilations_dims,
            mkldnn_paddings[0],
439 440 441
            mkldnn_paddings[1]);
      }

442
      this->AcquireBackwardPrimitiveDescriptor(
443 444 445 446 447 448 449
          dnnl::algorithm::convolution_direct,
          diff_src_md,
          weights_md,
          diff_dst_md,
          strides,
          dilations_dims,
          mkldnn_paddings[0],
450 451
          mkldnn_paddings[1]);

452
      this->AcquireBackwardWeightsPrimitiveDescriptor(
453 454 455 456 457 458 459
          dnnl::algorithm::convolution_direct,
          src_md,
          diff_weights_md,
          diff_dst_md,
          strides,
          dilations_dims,
          mkldnn_paddings[0],
460 461 462 463
          mkldnn_paddings[1]);
    }
  }

464 465 466 467 468 469 470 471 472 473 474 475 476
  std::shared_ptr<std::tuple<float, std::vector<float>>> get_int8_bias_scales(
      const framework::ExecutionContext& ctx) {
    // Get scales int8 bias key
    const std::string key_bs = this->key_ + "@bs";

    // Scales for int8 bias are to be cached to avoid
    // computing them each iteration
    auto bias_scale_tuple =
        std::static_pointer_cast<std::tuple<float, std::vector<float>>>(
            this->dev_ctx_.GetBlob(key_bs));
    if (bias_scale_tuple) return bias_scale_tuple;

    const auto* filter = ctx.Input<Tensor>("Filter");
477
    const auto& weights_tz = phi::vectorize(filter->dims());
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
    const int groups = std::max(ctx.Attr<int>("groups"), 1);

    const auto& scale_weights_data =
        ctx.Attr<std::vector<float>>("Scale_weights");
    const auto& scale_in_data = ctx.Attr<float>("Scale_in");

    bool is_multi_channel = scale_weights_data.size() > 1;
    int mask_reorder = is_multi_channel ? 1 << 0 : 1;

    int count = 1;
    if (is_multi_channel) {
      count *= weights_tz[0];
      if (groups > 1) {
        count *= weights_tz[1];
      }
    }

    bias_scale_tuple =
        std::make_shared<std::tuple<float, std::vector<float>>>(std::make_tuple(
            static_cast<float>(mask_reorder), std::vector<float>(count)));
    for (int i = 0; i < count; i++) {
      std::get<1>(*bias_scale_tuple)[i] = scale_in_data * scale_weights_data[i];
    }

    this->dev_ctx_.SetBlob(key_bs, bias_scale_tuple);

    return bias_scale_tuple;
  }

507
  std::tuple<float, std::vector<float>, float> get_int8_scales(
A
Adam Osewski 已提交
508 509
      const framework::ExecutionContext& ctx) const {
    const auto* filter = ctx.Input<Tensor>("Filter");
510
    const auto& weights_tz = phi::vectorize(filter->dims());
A
Adam Osewski 已提交
511 512 513 514 515 516 517 518 519

    const bool& force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    const bool& fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    const int groups = std::max(ctx.Attr<int>("groups"), 1);

    const auto& scale_in_data = ctx.Attr<float>("Scale_in");
    const auto& scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
    bool is_multi_channel = scale_weights_data.size() > 1;
520
    bool has_activation = !ctx.Attr<std::string>("fuse_activation").empty();
521 522 523 524 525 526 527
    float activation_scale = (!force_fp32_output && has_activation)
                                 ? ctx.Attr<float>("Scale_out")
                                 : 1.0f;

    float scale_out_data = (force_fp32_output || has_activation)
                               ? 1.0f
                               : ctx.Attr<float>("Scale_out");
A
Adam Osewski 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
    float sum_scale =
        fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;
    int count =
        is_multi_channel
            ? (groups > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
            : 1;
    std::vector<float> output_shift_scale(count);

#pragma omp parallel for if (count > 50)
    for (int i = 0; i < count; i++) {
      if (scale_weights_data[i] == 0.0)
        // weights data will contain 0 in some models, then weights
        // scale couldn't be calculated
        output_shift_scale[i] = scale_out_data;
      else
        output_shift_scale[i] =
            static_cast<float>(static_cast<double>(scale_out_data) /
                               (static_cast<double>(scale_in_data) *
                                static_cast<double>(scale_weights_data[i])));
    }

549
    return std::make_tuple(sum_scale, output_shift_scale, activation_scale);
A
Adam Osewski 已提交
550 551
  }

552
  dnnl::primitive_attr CreateConvAttrs(const framework::ExecutionContext& ctx) {
553 554
    dnnl::primitive_attr conv_attr;
    dnnl::post_ops post_operations;
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574

    const bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");

    float sum_scale = 1.0f;
    float activation_scale = 1.0f;
    std::vector<float> output_shift_scale;
    if (platform::is_int8<T>()) {
      if (ctx.HasAttr("Sum_scale")) {
        sum_scale = ctx.Attr<float>("Sum_scale");
        activation_scale = ctx.Attr<float>("Activation_scale");
        output_shift_scale = ctx.Attr<std::vector<float>>("Output_shift_scale");
      } else {
        std::tie(sum_scale, output_shift_scale, activation_scale) =
            get_int8_scales(ctx);
      }

      if (output_shift_scale.size() > 0) {
        int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
        conv_attr.set_output_scales(mask, output_shift_scale);
      }
575
    }
576

577 578 579 580 581 582 583 584
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
      post_operations.append_sum(sum_scale);
    }
585

586
    platform::AppendActivation(ctx, post_operations, activation_scale);
587

588 589 590
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }
591

592
  std::shared_ptr<dnnl::memory>
593 594 595
  AcquireWeightsMemoryWithReorderFromDataPrimitive(
      const framework::Tensor* filter, const int groups, const bool is_conv3d) {
    const K* filter_data = filter->data<K>();
596
    auto weights_tz = phi::vectorize(filter->dims());
597 598 599
    platform::GetGroupConvWeightsTz(weights_tz, groups);

    auto user_src_md = platform::MKLDNNMemDesc(
600 601
        weights_tz,
        platform::MKLDNNGetDataType<K>(),
602 603 604
        GetWeightsFormat(filter->format(), groups, is_conv3d));

    return this->AcquireMemoryWithReorder(
605 606 607 608 609
        user_src_md,
        this->bwd_pd_->weights_desc(),
        platform::to_void_cast<K>(filter_data),
        "@weights_mem_d_p",
        false);
610 611
  }

612
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorder(
613
      const framework::Tensor* input) {
614 615 616 617 618
    return this->AcquireMemoryWithReorderPrimitive(input,
                                                   "@src_mem_p_user",
                                                   "@src_mem_p_target",
                                                   "@src_mem_p",
                                                   this->fwd_pd_->src_desc());
619
  }
620

621
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorderFromWeightsPrimitive(
622
      const framework::Tensor* input) {
623 624 625 626 627
    return this->AcquireMemoryWithReorderPrimitive(input,
                                                   "@src_mem_w_p_user",
                                                   "@src_mem_w_p_target",
                                                   "@src_mem_w_p",
                                                   this->bwd_w_pd_->src_desc());
628 629
  }

630
  std::shared_ptr<dnnl::memory>
631 632 633
  AcquireDiffDstMemoryWithReorderFromWeightsPrimitive(
      const framework::Tensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
634 635 636 637 638
        out_grad,
        "@diff_dst_mem_w_p_user",
        "@diff_dst_mem_w_p_target",
        "@diff_dst_mem_w_p",
        this->bwd_w_pd_->diff_dst_desc());
639 640
  }

641
  std::shared_ptr<dnnl::memory>
642 643 644
  AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive(
      const framework::Tensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
645 646 647 648 649
        out_grad,
        "@diff_dst_mem_p_user",
        "@diff_dst_mem_p_target",
        "@diff_dst_mem_p",
        this->bwd_pd_->diff_dst_desc());
650 651
  }

652
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorderPrimitive(
653 654 655 656
      const framework::Tensor* in_mem,
      const char* key_mem_user,
      const char* key_mem_target,
      const char* key_mem,
657
      const dnnl::memory::desc& mem_md) {
658 659 660 661 662
    const T* in_mem_data = in_mem->data<T>();
    const std::string user_key_suffix{key_mem_user};
    auto user_mem_p = this->AcquireMemory(user_key_suffix);

    if (!user_mem_p) {
663 664 665 666
      auto user_mem_md =
          platform::MKLDNNMemDesc(phi::vectorize(in_mem->dims()),
                                  platform::MKLDNNGetDataType<T>(),
                                  in_mem->format());
667
      return this->AcquireMemoryWithReorder(
668
          user_mem_md, mem_md, platform::to_void_cast<T>(in_mem_data), key_mem);
669
    } else {
670 671
      const std::string target_key_suffix{key_mem_target};
      const auto target_mem_p = this->AcquireMemory(target_key_suffix);
A
Adam Osewski 已提交
672
      user_mem_p->set_data_handle(platform::to_void_cast<T>(in_mem_data));
673
      if (user_mem_p != target_mem_p) {
674
        this->AcquireReorder(user_mem_p, target_mem_p);
675
      }
676
      return target_mem_p;
677
    }
678 679
  }

680
  std::shared_ptr<dnnl::memory> AcquireWeightsMemoryWithReorder(
681 682 683 684 685
      const framework::Tensor* filter,
      const int groups,
      const bool is_conv3d,
      const bool is_test,
      const std::vector<float>& scale_data = {1.0f},
686
      int mask = 0) {
687 688 689
    // This is workaround to make execution faster, delete
    // if statement after including md inside Tensor
    auto weights_mem_p = this->AcquireMemory("@weights_mem_p_target");
690
    if (is_test && weights_mem_p) {
691
      return weights_mem_p;
692
    } else if (is_test) {
693
      const K* filter_data = filter->data<K>();
694
      auto weights_tz = phi::vectorize(filter->dims());
695
      platform::GetGroupConvWeightsTz(weights_tz, groups);
696 697

      auto user_src_md = platform::MKLDNNMemDesc(
698 699
          weights_tz,
          platform::MKLDNNGetDataType<K>(),
700 701 702
          GetWeightsFormat(filter->format(), groups, is_conv3d));

      return this->AcquireMemoryWithReorder(
703 704 705 706 707 708 709 710
          user_src_md,
          this->fwd_pd_->weights_desc(),
          platform::to_void_cast<K>(filter_data),
          "@weights_mem_p",
          is_test,
          {},
          scale_data,
          mask);
711 712
    } else {
      const T* filter_data = filter->data<T>();
713
      auto weights_tz = phi::vectorize(filter->dims());
714 715 716
      platform::GetGroupConvWeightsTz(weights_tz, groups);

      auto user_src_md = platform::MKLDNNMemDesc(
717 718
          weights_tz,
          platform::MKLDNNGetDataType<T>(),
719 720 721
          GetWeightsFormat(filter->format(), groups, is_conv3d));

      return this->AcquireMemoryWithReorder(
722 723 724 725 726 727 728 729
          user_src_md,
          this->fwd_pd_->weights_desc(),
          platform::to_void_cast<T>(filter_data),
          "@weights_mem_p",
          is_test,
          {},
          scale_data,
          mask);
730
    }
731
  }
732

733
  std::shared_ptr<dnnl::memory> AcquireBiasMemoryWithReorder(
734 735 736 737
      const framework::Tensor* bias,
      const bool is_test,
      const std::vector<float>& scale_data = {1.0f},
      int mask = 0) {
738
    auto bias_mem_p = this->AcquireMemory("@bias_mem_p_target");
739
    if (is_test && bias_mem_p) {
740 741
      return bias_mem_p;
    } else {
742
      // if K is int8 (weights are int8) then biases are int32
743 744
      using K_Bias = typename std::
          conditional<std::is_same<K, int8_t>::value, int32_t, K>::type;
745 746 747 748 749
      if (std::is_same<K_Bias, int32_t>::value &&
          bias->dtype() != phi::DataType::INT32) {
        LOG(ERROR) << "Bias should be of type int32 but is " << bias->dtype();
      }
      const K_Bias* bias_data = bias->data<K_Bias>();
750 751 752 753
      auto user_bias_md =
          platform::MKLDNNMemDesc(phi::vectorize(bias->dims()),
                                  platform::MKLDNNGetDataType<K_Bias>(),
                                  MKLDNNMemoryFormat::x);
754 755

      return this->AcquireMemoryWithReorder(
756 757 758 759 760 761 762 763
          user_bias_md,
          this->fwd_pd_->bias_desc(),
          platform::to_void_cast<K_Bias>(bias_data),
          "@bias_mem_p",
          is_test,
          {},
          scale_data,
          mask);
764
    }
765
  }
766

767
  std::shared_ptr<dnnl::memory> AcquireResidualMemory(
768
      const framework::Tensor* residual_param) {
769
    void* residual_data =
770 771
        framework::TransToProtoVarType(residual_param->dtype()) ==
                framework::DataTypeTrait<T_out>::DataType()
A
Adam Osewski 已提交
772 773
            ? platform::to_void_cast<T_out>(residual_param->data<T_out>())
            : platform::to_void_cast<T>(residual_param->data<T>());
774 775 776 777 778 779
    auto residual_mem_p = this->AcquireMemory("@user_residual_data_mem_p");
    if (residual_mem_p) {
      residual_mem_p->set_data_handle(residual_data);
      return residual_mem_p;
    } else {
      auto user_residual_md = platform::MKLDNNMemDesc(
780
          phi::vectorize(residual_param->dims()),
781 782
          framework::ToMKLDNNDataType(
              framework::TransToProtoVarType(residual_param->dtype())),
783
          residual_param->format());
784

785 786
      return this->AcquireMemoryFromPrimitive(
          user_residual_md, residual_data, "@user_residual_data_mem_p");
787
    }
788 789
  }

790
  std::shared_ptr<dnnl::memory> AcquireDstMemoryWithResidual(
791 792 793 794 795
      framework::Tensor* output, const framework::Tensor* residual_param) {
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (residual_param->format() !=
        platform::GetMKLDNNFormat(this->fwd_pd_->dst_desc())) {
      auto residual_memory_p = this->AcquireResidualMemory(residual_param);
796
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
797
      this->AcquireReorder(residual_memory_p, dst_memory_p);
798 799 800 801 802
    } else {
      // Changing ShareDataWith to TensorCopy results in performance drop
      // on ResNet architectures
      // (https://github.com/PaddlePaddle/Paddle/issues/22964)
      output->ShareDataWith(*residual_param);
803
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
804 805 806 807 808
    }
    return dst_memory_p;
  }
};

A
Adam Osewski 已提交
809 810
}  // anonymous namespace

811
template <typename T, typename K>
A
Adam Osewski 已提交
812
class ConvMKLDNNOpKernel : public framework::OpKernel<T> {
813
 public:
A
Adam Osewski 已提交
814
  void Compute(const framework::ExecutionContext& ctx) const override {
815 816
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()),
                      true,
A
Adam Osewski 已提交
817
                      platform::errors::PreconditionNotMet(
818 819 820
                          "Operator DNNL Conv must use CPUPlace"));
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
821 822 823 824 825
    bool is_BFLOAT16 = ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16";
    auto residual_param = ctx.Input<Tensor>("ResidualData");
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
826 827 828 829 830 831
    auto dst_dt = GetDstType(is_INT8,
                             is_BFLOAT16,
                             force_fp32_output,
                             fuse_activation,
                             fuse_residual_conn,
                             residual_param);
832
    if (!is_INT8) {
833
      if (dst_dt == dnnl::memory::data_type::f32) {
834
        ComputeFP32<float>(ctx);
835
      } else if (dst_dt == dnnl::memory::data_type::bf16) {
836 837
        ComputeFP32<platform::bfloat16>(ctx);
      }
838
    } else {
839
      if (dst_dt == dnnl::memory::data_type::f32) {
840
        ComputeINT8<float>(ctx);
841
      } else if (dst_dt == dnnl::memory::data_type::u8) {
842
        ComputeINT8<uint8_t>(ctx);
843
      } else if (dst_dt == dnnl::memory::data_type::s8) {
844 845
        ComputeINT8<int8_t>(ctx);
      }
846
    }
847
  }
848

849
  template <typename T_out>
A
Adam Osewski 已提交
850
  void ComputeFP32(const framework::ExecutionContext& ctx) const {
851
    auto& dev_ctx =
A
Adam Osewski 已提交
852
        ctx.template device_context<platform::MKLDNNDeviceContext>();
853
    const auto& mkldnn_engine = dev_ctx.GetEngine();
854

855
    const bool is_test = ctx.Attr<bool>("is_test");
856 857
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
    const bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
858

859 860 861 862 863
    const auto* input = ctx.Input<Tensor>("Input");
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
864

865
    ConvMKLDNNHandlerT<T, K, T_out> handler(
866 867 868 869 870 871 872 873 874
        ctx,
        dev_ctx,
        mkldnn_engine,
        ctx.GetPlace(),
        input,
        filter,
        bias,
        output,
        ctx.InputName("Input") + ctx.InputName("Filter"));
875

876
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
877

878
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
879
        filter, ctx.Attr<int>("groups"), is_conv3d, is_test);
880

881 882 883
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
884
      dst_memory_p =
885 886
          handler.AcquireDstMemoryWithResidual(output, residual_param);
    } else {
887
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
888
    }
889

890
    auto conv_p = handler.AcquireForwardPrimitive();
A
Adam 已提交
891

892
    std::unordered_map<int, dnnl::memory> args = {
893 894 895
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};
A
Adam 已提交
896

897
    if (bias) {
898
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(bias, is_test);
899
      args.insert({DNNL_ARG_BIAS, *bias_memory_p});
900
    }
901

902
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
903
    conv_p->execute(astream, args);
A
Adam 已提交
904
    astream.wait();
905

A
Adam Osewski 已提交
906 907
    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
908
  }
909

910
  template <typename T_out>
A
Adam Osewski 已提交
911
  void ComputeINT8(const framework::ExecutionContext& ctx) const {
912
    auto& dev_ctx =
A
Adam Osewski 已提交
913
        ctx.template device_context<platform::MKLDNNDeviceContext>();
914 915
    const auto& mkldnn_engine = dev_ctx.GetEngine();

A
Adam Osewski 已提交
916 917 918 919 920
    const std::string& fuse_activation =
        ctx.Attr<std::string>("fuse_activation");
    const bool& fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    const bool& force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
921

922 923
    bool unsigned_output =
        (fuse_activation == "relu" || fuse_activation == "relu6");
924 925
    bool need_s8_to_u8 = false;

A
Adam Osewski 已提交
926
    PADDLE_ENFORCE_NE(
927 928
        is_conv3d,
        true,
A
Adam Osewski 已提交
929 930 931
        platform::errors::Unimplemented(
            "OneDNN int8 convolution does not support 3D inputs currently"));
    PADDLE_ENFORCE_EQ(
932 933
        fuse_residual_conn && force_fp32_output,
        false,
A
Adam Osewski 已提交
934 935
        platform::errors::Unimplemented(
            "residual fusion does not support force output with fp32"));
A
Adam 已提交
936

A
Adam Osewski 已提交
937 938 939 940
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
941

A
Adam Osewski 已提交
942
    ConvMKLDNNHandlerT<T, K, T_out> handler(
943 944 945 946 947 948 949 950 951
        ctx,
        dev_ctx,
        mkldnn_engine,
        ctx.GetPlace(),
        input,
        filter,
        bias,
        output,
        ctx.InputName("Input") + ctx.InputName("Filter"));
952

A
Adam Osewski 已提交
953
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
F
FDInSky 已提交
954

A
Adam Osewski 已提交
955 956 957 958 959 960 961
    const auto& scale_weights_data =
        ctx.Attr<std::vector<float>>("Scale_weights");
    const bool is_multi_channel = scale_weights_data.size() > 1;
    const int& groups = ctx.Attr<int>("groups");
    int mask_reorder =
        is_multi_channel ? ((groups != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
962
        filter, groups, false, true, scale_weights_data, mask_reorder);
963

A
Adam Osewski 已提交
964 965 966
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
967
      PADDLE_ENFORCE_EQ(
968 969
          output->dims(),
          residual_param->dims(),
A
Adam Osewski 已提交
970 971 972 973
          platform::errors::InvalidArgument(
              "Output and elementwise parameter need to have the "
              "same dimension sizes, but got output's dimension = %d"
              " and residual param's dimension =%d .",
974 975
              output->dims().size(),
              residual_param->dims().size()));
976
      dst_memory_p =
A
Adam Osewski 已提交
977 978
          handler.AcquireDstMemoryWithResidual(output, residual_param);
      need_s8_to_u8 = (platform::MKLDNNGetDataType<T_out>() ==
979
                       dnnl::memory::data_type::s8) &&
A
Adam Osewski 已提交
980 981 982 983
                      unsigned_output;
    } else {
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
    }
L
lidanqing 已提交
984

A
Adam Osewski 已提交
985 986 987
    auto conv_p = handler.AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> args = {
988 989 990
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};
A
Adam 已提交
991

A
Adam Osewski 已提交
992
    if (bias) {
993 994 995 996 997 998 999 1000 1001 1002 1003 1004
      std::vector<float> bias_scales;
      auto p_scales_tuple =
          std::make_shared<std::tuple<float, std::vector<float>>>(
              std::make_tuple(static_cast<float>(mask_reorder), bias_scales));
      if (ctx.HasAttr("Bias_scales")) {
        bias_scales = ctx.Attr<std::vector<float>>("Bias_scales");
        p_scales_tuple =
            std::make_shared<std::tuple<float, std::vector<float>>>(
                std::make_tuple(static_cast<float>(mask_reorder), bias_scales));
      } else {
        p_scales_tuple = handler.get_int8_bias_scales(ctx);
      }
1005 1006 1007 1008 1009
      auto bias_memory_p =
          handler.AcquireBiasMemoryWithReorder(bias,
                                               true,
                                               std::get<1>(*p_scales_tuple),
                                               std::get<0>(*p_scales_tuple));
1010
      args.insert({DNNL_ARG_BIAS, *bias_memory_p});
1011
    }
A
Adam Osewski 已提交
1012 1013 1014

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    conv_p->execute(astream, args);
A
Adam 已提交
1015
    astream.wait();
A
Adam Osewski 已提交
1016

1017
    if (need_s8_to_u8) {
X
xiaolil1 已提交
1018 1019
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }
A
Adam Osewski 已提交
1020 1021 1022

    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
1023
  }
1024 1025
};

1026
template <typename T, typename K>
A
Adam Osewski 已提交
1027
class ConvMKLDNNGradOpKernel : public framework::OpKernel<T> {
1028
 public:
A
Adam Osewski 已提交
1029
  void Compute(const framework::ExecutionContext& ctx) const override {
1030 1031
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()),
                      true,
A
Adam Osewski 已提交
1032
                      platform::errors::PreconditionNotMet(
1033
                          "Operator DNNL ConvGrad must use CPUPlace"));
1034 1035
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
1036 1037 1038 1039
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
1040 1041
    const Tensor* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
1042 1043 1044 1045 1046 1047 1048
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    if (!input_grad && !filter_grad) return;

1049 1050
    // TODO(jczaja): Are all tensors really needed?
    ConvMKLDNNHandlerT<T, K, T> handler(
1051 1052 1053 1054 1055 1056 1057 1058 1059
        ctx,
        dev_ctx,
        ctx.GetPlace(),
        input,
        filter,
        bias,
        output_grad,
        filter_grad,
        input_grad,
1060
        ctx.InputName("Input") + ctx.InputName("Filter"));
1061 1062

    // create mkldnn memory from input tensors (data/weights)
1063
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
1064

1065 1066 1067 1068 1069 1070
    if (filter_grad) {
      auto src_memory_p =
          handler.AcquireSrcMemoryWithReorderFromWeightsPrimitive(input);
      auto diff_dst_memory_p =
          handler.AcquireDiffDstMemoryWithReorderFromWeightsPrimitive(
              output_grad);
1071

1072 1073
      // For convoluition with groups write filter grad into
      // oneDNN buffer and then we reorder it into filter_grad tensor
1074
      int g = std::max(ctx.Attr<int>("groups"), 1);
1075
      auto diff_weights_memory_p =
1076 1077
          g > 1 ? handler.AcquireDiffWeightsMemory()
                : handler.AcquireDiffWeightsMemory(filter_grad);
1078

1079
      auto conv_bwd_weights_p = handler.AcquireBackwardWeightsPrimitive();
1080

A
Adam 已提交
1081 1082
      // TODO(grygielski) why no bias_diff?
      conv_bwd_weights_p->execute(
1083 1084 1085 1086
          astream,
          {{DNNL_ARG_SRC, *src_memory_p},
           {DNNL_ARG_DIFF_DST, *diff_dst_memory_p},
           {DNNL_ARG_DIFF_WEIGHTS, *diff_weights_memory_p}});
A
Adam 已提交
1087
      astream.wait();
1088

A
Adam Osewski 已提交
1089
      filter_grad->set_layout(framework::DataLayout::kMKLDNN);
1090 1091
      // in OneDNN groups in convolution are treated as separate dimension
      // which is not the case in paddlepaddle
A
Adam Osewski 已提交
1092
      auto filter_fmt = platform::GetMKLDNNFormat(*diff_weights_memory_p);
1093 1094 1095 1096

      // For convolution with groups convert from blocked to NCHW
      // otherwise there will be problems in next operators working on this data
      if (g > 1) {
1097 1098
        dnnl::memory::data_type in_type = framework::ToMKLDNNDataType(
            framework::TransToProtoVarType(filter->dtype()));
1099 1100
        // for 3d conv with groups (six dimensional data reorder to goidhw)
        // for 2d conv with groups (five dimensional data reorder to goihw)
1101
        // auto weights_tz = phi::vectorize(filter->dims());
1102 1103

        auto weights_tz = diff_weights_memory_p->get_desc().dims();
1104 1105 1106
        dnnl::memory::format_tag out_format =
            weights_tz.size() == 6 ? dnnl::memory::format_tag::goidhw
                                   : dnnl::memory::format_tag::goihw;
1107
        platform::ReorderMKLDNNHandler handler(
1108 1109 1110 1111
            weights_tz,
            framework::TransToProtoVarType(filter->dtype()),
            in_type,
            mkldnn_engine);
1112 1113 1114 1115 1116 1117
        auto reorder_dst_memory_p =
            handler.AcquireDstMemory(filter_grad, out_format, ctx.GetPlace());

        auto reorder_p =
            handler.AcquireReorder(reorder_dst_memory_p, diff_weights_memory_p);

1118
        {
C
chenjian 已提交
1119
          platform::RecordEvent record_reorder(
1120 1121 1122
              "int_reorder",
              platform::TracerEventType::UserDefined,
              2,
C
chenjian 已提交
1123
              platform::EventRole::kUniqueOp);
1124 1125
          reorder_p->execute(
              astream, *diff_weights_memory_p, *reorder_dst_memory_p);
1126 1127
          astream.wait();
        }
1128 1129 1130 1131

        // So here we have a data in goihw , which can be interpreted as OIHW
        // (OIDHW for conv3d)
        // because filter_grad shape is set for OIHW (OIDHW for conv3d)
1132 1133 1134
        dnnl::memory::format_tag target_format =
            weights_tz.size() == 6 ? dnnl::memory::format_tag::oidhw
                                   : dnnl::memory::format_tag::oihw;
1135 1136 1137 1138
        filter_grad->set_format(target_format);
      } else {
        filter_grad->set_format(filter_fmt);
      }
1139 1140
    }
    if (input_grad) {
1141 1142
      auto weights_memory_p =
          handler.AcquireWeightsMemoryWithReorderFromDataPrimitive(
1143 1144
              filter,
              ctx.Attr<int>("groups"),
1145
              ctx.Attr<std::vector<int>>("strides").size() == 3U);
1146

1147 1148 1149 1150
      auto diff_dst_memory_p =
          handler.AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive(
              output_grad);
      auto diff_src_memory_p = handler.AcquireDiffSrcMemory(input_grad);
1151

1152
      auto conv_bwd_data_p = handler.AcquireBackwardPrimitive();
1153

A
Adam 已提交
1154
      conv_bwd_data_p->execute(astream,
1155 1156 1157
                               {{DNNL_ARG_WEIGHTS, *weights_memory_p},
                                {DNNL_ARG_DIFF_DST, *diff_dst_memory_p},
                                {DNNL_ARG_DIFF_SRC, *diff_src_memory_p}});
A
Adam 已提交
1158
      astream.wait();
1159

A
Adam Osewski 已提交
1160 1161
      input_grad->set_layout(framework::DataLayout::kMKLDNN);
      input_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory_p));
1162
    }
X
xiaolil1 已提交
1163
  }
1164
};
1165

1166 1167 1168 1169 1170
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

1171 1172 1173 1174
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    FP32,
X
Xin Pan 已提交
1175
                                    ops::kConvMKLDNNFP32,
1176
                                    ops::ConvMKLDNNOpKernel<float, float>);
1177

1178
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
1179 1180 1181 1182 1183
    conv2d,
    MKLDNN,
    ::paddle::platform::CPUPlace,
    BF16,
    ops::kConvMKLDNNFP32,
1184 1185
    ops::ConvMKLDNNOpKernel<paddle::platform::bfloat16, float>);

1186 1187 1188 1189
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    U8,
1190
                                    ops::kConvMKLDNNINT8,
1191
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);
1192

1193 1194 1195 1196
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    U8WS8,
1197 1198 1199
                                    ops::kConvMKLDNNINT8WS8,
                                    ops::ConvMKLDNNOpKernel<uint8_t, int8_t>);

1200 1201 1202 1203
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    S8,
1204
                                    ops::kConvMKLDNNINT8,
1205
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
1206

1207 1208 1209 1210
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    S8WS8,
1211 1212 1213
                                    ops::kConvMKLDNNINT8WS8,
                                    ops::ConvMKLDNNOpKernel<int8_t, int8_t>);

1214 1215 1216 1217
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    FP32,
X
Xin Pan 已提交
1218
                                    ops::kConvMKLDNNFP32,
1219
                                    ops::ConvMKLDNNGradOpKernel<float, float>);
1220

1221
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
1222 1223 1224 1225
    conv2d_grad,
    MKLDNN,
    ::paddle::platform::CPUPlace,
    BF16,
1226
    ops::kConvMKLDNNFP32,
1227 1228
    ops::ConvMKLDNNGradOpKernel<paddle::platform::bfloat16,
                                paddle::platform::bfloat16>);
1229

1230 1231 1232 1233
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    FP32,
1234 1235 1236 1237
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
1238 1239 1240 1241
    depthwise_conv2d,
    MKLDNN,
    ::paddle::platform::CPUPlace,
    BF16,
1242 1243 1244
    ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNOpKernel<paddle::platform::bfloat16, float>);

1245 1246 1247 1248
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    U8,
1249 1250 1251
                                    ops::kConvMKLDNNINT8,
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);

1252 1253 1254 1255
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    S8,
1256 1257 1258
                                    ops::kConvMKLDNNINT8,
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);

1259 1260 1261 1262
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d_grad,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    FP32,
1263 1264 1265 1266
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
1267 1268 1269 1270
    depthwise_conv2d_grad,
    MKLDNN,
    ::paddle::platform::CPUPlace,
    BF16,
1271 1272 1273
    ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNGradOpKernel<paddle::platform::bfloat16, float>);

1274 1275 1276 1277
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    FP32,
1278
                                    ops::kConvMKLDNNFP32,
1279
                                    ops::ConvMKLDNNOpKernel<float, float>);
1280

1281 1282 1283 1284
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    FP32,
1285
                                    ops::kConvMKLDNNFP32,
1286
                                    ops::ConvMKLDNNGradOpKernel<float, float>);