layers.py 196.9 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import functools
16
import collections
Y
Yu Yang 已提交
17
import inspect
Z
zhangjinchao01 已提交
18 19 20

from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22 23 24 25
from .evaluators import *
from .poolings import MaxPooling, AvgPooling, BasePoolingType
from .attrs import *
from .default_decorators import *
26

Z
zhangjinchao01 已提交
27 28 29 30 31 32
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
33
__all__ = [
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
    'hsigmoid',
    'conv_projection',
    'mse_cost',
    'regression_cost',
    'classification_cost',
    'LayerOutput',
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
    'seq_concat_layer',
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
    'scaling_projection',
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
    'rotate_layer',
    'sum_to_one_norm_layer',
G
guosheng 已提交
79
    'row_l2_norm_layer',
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
    'gru_step_naive_layer',
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
    'warp_ctc_layer',
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
    'huber_cost',
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
    'printer_layer',
    'print_layer',
    'priorbox_layer',
    'cross_channel_norm_layer',
    'multibox_loss_layer',
    'detection_output_layer',
    'spp_layer',
    'pad_layer',
    'eos_layer',
    'smooth_l1_cost',
    'layer_support',
    'multiplex_layer',
    'row_conv_layer',
    'dropout_layer',
    'prelu_layer',
    'gated_unit_layer',
    'crop_layer',
    'clip_layer',
133
    'slice_projection',
134
    'kmax_sequence_score_layer',
Q
qijun 已提交
135
]
Z
zhangjinchao01 已提交
136 137 138 139 140 141 142


class LayerType(object):
    """
    Layer type enumerations.
    """

143 144 145 146 147 148 149 150
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
151
    POOLING_AVG = 'average'
152
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
153
    COST = 'cost'
154 155
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
156
    HSIGMOID = 'hsigmoid'
157 158 159 160 161 162
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
    POOL_LAYER = 'pool'
Z
zhangjinchao01 已提交
163 164 165
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
166
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
167 168 169 170
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
171
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
172 173 174 175 176 177 178

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
179
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
180 181 182
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
183
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
184
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
185
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
186 187 188 189 190 191 192 193 194 195 196

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
197
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
198
    BLOCK_EXPAND = "blockexpand"
199
    MAXOUT = "maxout"
Q
qijun 已提交
200
    SPP_LAYER = "spp"
D
dangqingqing 已提交
201
    PAD_LAYER = "pad"
W
wwhu 已提交
202
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
203
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
204 205 206

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
207 208
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
D
dangqingqing 已提交
209 210 211 212 213

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
214
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
215

216 217 218 219 220 221 222 223 224 225 226
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
    HUBER = 'huber'
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
227
    CROP_LAYER = 'crop'
G
guosheng 已提交
228
    CLIP_LAYER = 'clip'
Z
zhangjinchao01 已提交
229

230 231
    KMAX_SEQ_SCORE = 'kmax_seq_score'

Z
zhangjinchao01 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
252
    """
L
Luo Tao 已提交
253
    PaddlePaddle supports three sequence types:
254 255 256

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
257 258
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
259

L
Luo Tao 已提交
260
    Accordingly, AggregateLevel supports two modes:
261

L
Luo Tao 已提交
262
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
263
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
264 265
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
266
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
267 268 269
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
270 271
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
272 273 274
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
297
    :type parents: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
298 299
    """

Q
qijun 已提交
300 301 302 303 304 305 306 307 308
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
309
                 reverse=None):
Z
zhangjinchao01 已提交
310 311
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
312
        assert size is not None
Z
zhangjinchao01 已提交
313 314
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
315
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
316
        self.layer_type = layer_type
317 318
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
319 320 321 322 323 324 325 326
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
327
        self.reverse = reverse
Z
zhangjinchao01 已提交
328

329 330 331 332 333 334 335 336
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
337 338 339

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
340
DEVICE = 'device'
Z
zhangjinchao01 已提交
341 342 343


def layer_support(*attrs):
344
    attrs_list = list(attrs)
345
    attrs_list.append(DEVICE)
Q
qijun 已提交
346

Z
zhangjinchao01 已提交
347 348 349
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
350
            for attr in attrs_list:
Z
zhangjinchao01 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
367 368 369 370 371
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
411 412
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
413 414 415 416
    proj.origin = input
    return proj


417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
447 448
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
449 450 451 452
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


    :param input: Input layer, which must contains id fields.
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
492 493
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
494 495 496 497
    proj.origin = input
    return proj


498
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

    :param input: Input Layer.
529
    :type input: LayerOutput
Z
zhangjinchao01 已提交
530 531
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
532
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
533 534 535 536 537 538
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
539 540
        if size is None:
            size = input.size - offset
Q
qijun 已提交
541
        proj = IdentityOffsetProjection(
542
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
543 544 545 546
        proj.origin = input
    return proj


547 548
def slice_projection(input, slices):
    """
549 550
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
551 552

    .. math::
553
       output = [input.slices()]
554 555 556 557 558 559 560 561 562 563 564 565 566 567

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

    :param input: Input Layer.
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
568
    :type slices: pair of int
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

    :param input: Input Layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
608
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
609 610 611 612
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
613
@wrap_param_attr_default()
614
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
615
    """
616
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

630 631 632 633 634 635 636
    :param input: Input layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
637 638
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
639
    proj.origin = input
640
    return proj
Z
zhangjinchao01 已提交
641

642 643

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
644 645
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
646

Z
zhangjinchao01 已提交
647
    .. math::
L
Luo Tao 已提交
648
       out.row[i] += scale * (a.row[i] .* b.row[i])
649

Z
zhangjinchao01 已提交
650 651
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
652

Z
zhangjinchao01 已提交
653
    The example usage is:
654

Z
zhangjinchao01 已提交
655
    .. code-block:: python
656

L
Luo Tao 已提交
657
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
658

659 660 661 662
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
663 664
    :param scale: config scalar, default value is one.
    :type scale: float
665 666
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
667
    """
668 669 670
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
671
    a = kwargs.get('x', a)  # For Backward capacity.
672 673 674 675 676 677
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
678
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
679
    op.origin = [a, b]
680
    return op
Z
zhangjinchao01 已提交
681

682

Z
zhangjinchao01 已提交
683
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
684 685 686
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

    :param input: Input Sequence.
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
    :type padding_attr: bool|ParameterAttribute
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
723 724 725 726 727 728
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
742
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
        :param act: activation type.
        :type act: BaseActivation
        :param bias_attr: The Bias Attribute. If no bias, then pass False or
                          something not type of ParameterAttribute. None will
                          get a default Bias.
        :type bias_attr: ParameterAttribute or None means has bias. Any other
                         type means no bias.
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
759 760 761 762 763 764 765
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
766 767 768 769 770
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

771
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
772 773 774 775 776 777 778 779
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
780
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
781
            self.inputs.append(other)
782 783 784 785
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
786 787 788 789 790 791 792 793
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

794
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
795 796
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
797
        assert len(self.inputs) != 0
798
        ml = MixedLayer(
Z
zhangjinchao01 已提交
799 800 801 802 803
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
804
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
805 806 807
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
808
        self.finalized = True
Z
zhangjinchao01 已提交
809 810 811 812 813 814


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
815 816 817 818 819
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
    :param input: inputs layer. It is an optional parameter. If set,
                  then this function will just return layer's name.
    :param act: Activation Type.
    :type act: BaseActivation
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
864 865 866 867 868 869
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
870
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
871 872 873 874 875 876 877 878
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
L
Luo Tao 已提交
879
def data_layer(name, size, height=None, width=None, layer_attr=None):
Z
zhangjinchao01 已提交
880 881 882 883 884 885 886
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
887
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
888 889 890 891 892

    :param name: Name of this data layer.
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
893
    :param height: Height of this data layer, used for image
Y
Yu Yang 已提交
894
    :type height: int|None
L
Luo Tao 已提交
895
    :param width: Width of this data layer, used for image
Y
Yu Yang 已提交
896
    :type width: int|None
Z
zhangjinchao01 已提交
897 898
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
899
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
900 901
    :rtype: LayerOutput
    """
Q
qijun 已提交
902 903 904 905
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
L
Luo Tao 已提交
906 907
        height=height,
        width=width,
Q
qijun 已提交
908
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
909 910 911 912 913 914

    return LayerOutput(name, LayerType.DATA, size=size)


@wrap_name_default("embedding")
@wrap_param_attr_default()
915
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

    :param name: Name of this embedding layer.
    :type name: basestring
    :param input: The input layer for this embedding. NOTE: must be Index Data.
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer Config. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
931
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
932 933
    :rtype: LayerOutput
    """
Q
qijun 已提交
934 935 936 937 938 939
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
940 941 942 943 944 945 946 947 948
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
949 950 951 952 953 954 955
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
956 957 958 959 960 961 962 963 964 965 966 967
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
968
    which is equal to:
Z
zhangjinchao01 已提交
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
991
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
992 993 994 995
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
996
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
997 998
        param_attr = [param_attr]
    else:
999
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1000 1001 1002 1003
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1004
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1005 1006

    Layer(
Q
qijun 已提交
1007 1008 1009
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1010 1011 1012 1013 1014
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1015 1016 1017
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1018

1019

1020
@wrap_name_default("print")
1021
def printer_layer(input, format=None, name=None):
1022 1023
    """
    Print the output value of input layers. This layer is useful for debugging.
1024 1025 1026 1027 1028

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
1029
    :return: LayerOutput
1030
    """
1031 1032 1033 1034 1035
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1036 1037 1038

    Layer(
        name=name,
1039
        format=format,
1040
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1041
        inputs=[l.name for l in input], )
1042
    # this layer don't return anything, can not be input of other layer.
1043

X
xuwei06 已提交
1044 1045 1046 1047 1048 1049 1050
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1051

Y
yuan 已提交
1052
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1053
def priorbox_layer(input,
G
gaoyuan 已提交
1054
                   image,
G
gaoyuan 已提交
1055 1056 1057 1058 1059
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1060 1061 1062 1063 1064 1065 1066
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
G
gaoyuan 已提交
1067 1068
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1080
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1081 1082 1083
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1084
        inputs=[input.name, image.name],
Y
yuan 已提交
1085 1086 1087 1088 1089 1090
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1091 1092
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1093
        parents=[input, image],
G
gaoyuan 已提交
1094 1095 1096
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1097

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

    :param name: The Layer Name.
    :type name: basestring
Y
yangyaming 已提交
1114 1115
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1116
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1117
    :type input_conf: LayerOutput | List of LayerOutput
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1139
    input_loc_num = len(input_loc)
1140 1141 1142 1143 1144 1145

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1146
    input_conf_num = len(input_conf)
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
    box location.

    :param name: The Layer Name.
    :type name: basestring
Y
yangyaming 已提交
1188 1189
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1190
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1191
    :type input_conf: LayerOutput | List of LayerOutput.
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1213
    input_loc_num = len(input_loc)
1214 1215 1216 1217 1218 1219

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1220 1221
    input_conf_num = len(input_conf)

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


1250 1251
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1252 1253 1254 1255 1256
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1257

G
gaoyuan 已提交
1258 1259 1260 1261 1262 1263 1264 1265
    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1266
    assert input.num_filters is not None
G
gaoyuan 已提交
1267 1268
    Layer(
        name=name,
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1282 1283
    return LayerOutput(
        name,
1284
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1285 1286 1287 1288 1289
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1290 1291 1292 1293
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1294 1295 1296 1297
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1298
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1299
                  stride=-1,
Z
zhangjinchao01 已提交
1300 1301 1302 1303
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1304 1305
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1306 1307 1308
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1309
    operation. Note that for sequence with sub-sequence, the default value
1310 1311
    of stride is -1.

Z
zhangjinchao01 已提交
1312 1313 1314 1315 1316 1317
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1318
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1319

L
Luo Tao 已提交
1320 1321
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1322 1323 1324 1325 1326 1327 1328 1329
    :type agg_level: AggregateLevel
    :param name: layer name.
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
    :type pooling_type: BasePoolingType|None
L
Luo Tao 已提交
1330
    :param stride: The step size between successive pooling regions.
1331
    :type stride: Int
Z
zhangjinchao01 已提交
1332 1333 1334 1335
    :param bias_attr: Bias parameter attribute. False if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: The Extra Attributes for layer, such as dropout.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1336
    :return: LayerOutput object.
Y
Yu Yang 已提交
1337
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1338 1339
    """
    extra_dict = dict()
1340
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1341 1342
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1343 1344 1345 1346
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1347 1348
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1349 1350 1351
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1352 1353 1354 1355 1356 1357
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1358
        stride=stride,
Q
qijun 已提交
1359
        **extra_dict)
Z
zhangjinchao01 已提交
1360

Q
qijun 已提交
1361 1362
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1363

Q
qijun 已提交
1364

Z
zhangjinchao01 已提交
1365 1366
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1367
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1368 1369
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1370
@layer_support()
Q
qijun 已提交
1371 1372
def lstmemory(input,
              name=None,
1373
              size=None,
Q
qijun 已提交
1374 1375 1376 1377 1378 1379
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1380 1381 1382 1383 1384 1385 1386 1387
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1388
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1389

L
luotao02 已提交
1390
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1391

L
luotao02 已提交
1392
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1393

L
luotao02 已提交
1394
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1395

L
luotao02 已提交
1396
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1397 1398


C
caoying03 已提交
1399
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1400
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1401 1402 1403 1404
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1405

C
caoying03 已提交
1406
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1407 1408
    to config a simple plain lstm layer.

C
caoying03 已提交
1409 1410 1411 1412
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1413 1414 1415 1416 1417

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1418 1419
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
Z
zhangjinchao01 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
    :param input: input layer name.
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
    :param act: activation type, TanhActivation by default. :math:`h_t`
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation

    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1438
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1439 1440 1441 1442 1443 1444
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1445
    assert input.size is not None and input.size % 4 == 0
1446

1447 1448 1449 1450 1451
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1452 1453 1454
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1455

Q
qijun 已提交
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1466

Q
qijun 已提交
1467 1468 1469 1470 1471
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1472

Z
zhangjinchao01 已提交
1473 1474 1475

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1476
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1477 1478
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1479
@layer_support()
Q
qijun 已提交
1480
def grumemory(input,
1481
              size=None,
Q
qijun 已提交
1482 1483 1484 1485 1486 1487
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1509 1510
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1511 1512 1513 1514 1515

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1516 1517 1518
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1519 1520 1521 1522 1523

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1524
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1525
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1526 1527 1528
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1529

C
caoying03 已提交
1530 1531 1532
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
    :type name: None|basestring
    :param input: input layer.
    :type input: LayerOutput.
1544 1545
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1546
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
    :type reverse: bool
    :param act: activation type, TanhActivation by default. This activation
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1562
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1563 1564 1565 1566
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1567 1568 1569 1570 1571 1572
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1573 1574 1575
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1576

Q
qijun 已提交
1577 1578 1579 1580 1581 1582 1583 1584 1585
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1586

Q
qijun 已提交
1587 1588 1589 1590 1591
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1592

Z
zhangjinchao01 已提交
1593 1594 1595

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1596 1597
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1598
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1599
             stride=-1,
Z
zhangjinchao01 已提交
1600 1601 1602 1603
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1604 1605 1606
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1607
    of stride is -1.
1608

L
Luo Tao 已提交
1609 1610 1611 1612 1613 1614
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1615 1616 1617 1618 1619
    :param agg_level: Aggregated level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1620
    :param stride: The step size between successive pooling regions.
1621
    :type stride: Int
Z
zhangjinchao01 已提交
1622 1623
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1624
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1625 1626
    :rtype: LayerOutput
    """
1627 1628 1629 1630 1631 1632
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1633
    if agg_level == AggregateLevel.TO_SEQUENCE:
1634 1635
        assert stride == -1

Z
zhangjinchao01 已提交
1636 1637 1638 1639 1640
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1641
        stride=stride,
Q
qijun 已提交
1642 1643 1644 1645 1646 1647
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1648 1649 1650 1651


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1652 1653
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1654
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1655
              stride=-1,
Z
zhangjinchao01 已提交
1656 1657 1658 1659
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1660 1661 1662
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1663
    of stride is -1.
1664

L
Luo Tao 已提交
1665 1666 1667 1668 1669 1670
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1671 1672 1673 1674 1675
    :param agg_level: aggregation level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1676
    :param stride: The step size between successive pooling regions.
1677
    :type stride: Int
Z
zhangjinchao01 已提交
1678 1679
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1680
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1681 1682
    :rtype: LayerOutput
    """
1683 1684 1685 1686 1687 1688 1689

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1690
    if agg_level == AggregateLevel.TO_SEQUENCE:
1691 1692
        assert stride == -1

Z
zhangjinchao01 已提交
1693 1694 1695 1696 1697
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1698
        stride=stride,
Q
qijun 已提交
1699 1700 1701 1702 1703 1704
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1705 1706 1707


class ExpandLevel(object):
1708 1709 1710 1711 1712
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1713 1714
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1715 1716
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1717 1718
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1719 1720
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1721 1722
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1723 1724
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1725

1726

Z
zhangjinchao01 已提交
1727 1728
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1729 1730
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1731 1732
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1733
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1745
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759

    :param input: Input layer
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1760
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1761 1762 1763 1764 1765 1766 1767 1768 1769
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1770 1771 1772 1773 1774 1775
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1776 1777


X
xuwei06 已提交
1778
@wrap_name_default()
X
xuwei06 已提交
1779
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1780
@layer_support()
X
xuwei06 已提交
1781 1782 1783
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1784
                 act=None,
X
xuwei06 已提交
1785 1786
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1787
    """
X
xuwei06 已提交
1788
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1789

X
xuwei06 已提交
1790
    If as_row_vector:
X
xuwei06 已提交
1791
    .. math::
X
xuwei06 已提交
1792 1793 1794 1795 1796
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1797 1798 1799 1800 1801

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1802
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1803 1804 1805 1806 1807 1808

    :param input: Input layer
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
    :param name: Layer name.
X
xuwei06 已提交
1809 1810 1811 1812 1813 1814
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
X
xuwei06 已提交
1815 1816
    :param act: Activation type.
    :type act: BaseActivation
X
xuwei06 已提交
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1827
        active_type=act.name,
X
xuwei06 已提交
1828
        num_filters=num_repeats,
X
xuwei06 已提交
1829
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1830
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1831 1832 1833 1834 1835
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1836
        activation=act,
Q
qijun 已提交
1837 1838
        parents=[input])

X
xuwei06 已提交
1839

1840 1841 1842
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1843
@layer_support(ERROR_CLIPPING, DROPOUT)
1844 1845 1846 1847 1848 1849 1850 1851
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1852
    the dimension of each instance is M, and the input reshape_size is N, then the
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

    :param input: Input layer.
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
    :param name: Layer name.
    :type name: basestring
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

    :param input: Input layer.
    :type input: list|tuple
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1923
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1924 1925
    :rtype: LayerOutput
    """
1926
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1927
    assert len(input) == 2
1928 1929 1930 1931 1932 1933 1934
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1935 1936 1937 1938
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
1939 1940 1941 1942 1943 1944
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
1945 1946


L
liaogang 已提交
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
1963
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
1964

L
liaogang 已提交
1965
    :param   input:        A input layer.
L
liaogang 已提交
1966
    :type    input:        LayerOutput.
L
liaogang 已提交
1967
    :param   out_size_x:   bilinear interpolation output width.
X
xuwei06 已提交
1968
    :type    out_size_x:   int|None
L
liaogang 已提交
1969
    :param   out_size_y:   bilinear interpolation output height.
L
liaogang 已提交
1970
    :type    out_size_y:   int|None
L
liaogang 已提交
1971
    :param   name:         The layer's name, which cna not be specified.
L
liaogang 已提交
1972
    :type    name:         None|basestring
L
liaogang 已提交
1973
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
1974 1975 1976 1977 1978 1979 1980
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
1981
    assert input.num_filters is not None
L
liaogang 已提交
1982
    num_channels = input.num_filters
Q
qijun 已提交
1983 1984 1985 1986 1987 1988 1989
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
1990
                channels=num_channels)),
Q
qijun 已提交
1991 1992 1993 1994 1995 1996 1997 1998 1999
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2000

Z
zhangjinchao01 已提交
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2028
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2029 2030
    :rtype: LayerOutput
    """
2031 2032 2033
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2034 2035 2036
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2037
        inputs=[weight.name, input.name],
Q
qijun 已提交
2038 2039 2040
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2041 2042 2043 2044 2045 2046


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2047
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2048 2049

    .. math::
2050
       y  = w x
Z
zhangjinchao01 已提交
2051

2052 2053 2054 2055 2056
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2072
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2073 2074
    :rtype: LayerOutput
    """
2075 2076 2077
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2078 2079 2080 2081
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2082 2083 2084
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2085 2086 2087 2088 2089 2090


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2091
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2110
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2111 2112 2113 2114 2115 2116
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2117 2118 2119
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2120 2121


2122 2123
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2124
def rotate_layer(input, height, width, name=None, layer_attr=None):
2125
    """
H
Haonan 已提交
2126 2127
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2128 2129

    .. math::
H
Haonan 已提交
2130
       y(j,i,:) = x(M-i-1,j,:)
2131

H
Haonan 已提交
2132
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2133 2134 2135 2136 2137 2138

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2139 2140
                          height=100,
                          width=100)
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153

    :param input: Input layer.
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2154 2155 2156
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2157
        width=width,
H
Haonan 已提交
2158 2159 2160 2161 2162 2163 2164 2165
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2166 2167


Z
zhangjinchao01 已提交
2168 2169
@wrap_name_default()
@layer_support()
2170
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2171 2172 2173 2174
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2175
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2176 2177 2178 2179 2180
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2181

2182 2183
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2184

L
Luo Tao 已提交
2185 2186 2187 2188 2189 2190
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

Z
zhangjinchao01 已提交
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
    :param name: layer name
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2203
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2204 2205
    :rtype: LayerOutput
    """
2206
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2207 2208 2209 2210 2211 2212
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2213
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2214
    else:
2215 2216
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2217 2218 2219 2220 2221 2222
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2223
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2224
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2225

2226

Z
zhangjinchao01 已提交
2227 2228
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2229
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2230
@layer_support()
Q
qijun 已提交
2231 2232
def hsigmoid(input,
             label,
2233
             num_classes=None,
Q
qijun 已提交
2234 2235 2236 2237
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2249
                        label=data_layer)
Z
zhangjinchao01 已提交
2250 2251 2252 2253 2254 2255 2256

    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
2257
    :type num_classes: int|None
L
luotao02 已提交
2258 2259
    :param name: layer name
    :type name: basestring
Z
zhangjinchao01 已提交
2260 2261 2262
    :param bias_attr: Bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
2263 2264
    :param param_attr: Parameter Attribute. None means default parameter.
    :type param_attr: ParameterAttribute|None
Z
zhangjinchao01 已提交
2265 2266
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2267
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2268 2269 2270 2271
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2272 2273 2274 2275 2276 2277 2278 2279 2280
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2281 2282 2283
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2284 2285 2286 2287 2288
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2289 2290
    ipts_for_layer = []
    parents = []
2291
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2292
        assert isinstance(each_input, LayerOutput)
2293
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2294 2295 2296 2297
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2298
    l = Layer(
Z
zhangjinchao01 已提交
2299 2300 2301 2302 2303
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2304 2305 2306
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2307

2308

Z
zhangjinchao01 已提交
2309 2310 2311 2312 2313
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2330 2331
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2332
    """
2333
    Convolution layer for image. Paddle can support both square and non-square
2334
    input currently.
Z
zhangjinchao01 已提交
2335 2336 2337 2338

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2339

2340
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2341
    and non-square input currently.
2342

X
xuwei06 已提交
2343
    The details of convolution transpose layer,
2344 2345 2346
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2347 2348 2349 2350
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2351 2352 2353
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2354
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2355 2356
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2357

L
Luo Tao 已提交
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

Z
zhangjinchao01 已提交
2368 2369 2370 2371
    :param name: Layer name.
    :type name: basestring
    :param input: Layer Input.
    :type input: LayerOutput
2372 2373 2374
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
    :type filter_size: int|tuple|list
C
caoying03 已提交
2375 2376 2377
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
2378
    :type filter_size_y: int|None
Z
zhangjinchao01 已提交
2379 2380 2381 2382 2383
    :param num_filters: Each filter group's number of filter
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2384 2385 2386
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
    :type stride: int|tuple|list
Z
zhangjinchao01 已提交
2387 2388
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2389 2390 2391
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
    :type padding: int|tuple|list
Z
zhangjinchao01 已提交
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
    :param bias_attr: Convolution bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2406 2407
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2408
    :param layer_type: specify the layer_type, default is None. If trans=True,
2409 2410
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2411
                       "cudnn_conv"
2412
    :type layer_type: String
D
dangqingqing 已提交
2413
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2414 2415 2416 2417 2418
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2419

Z
zhangjinchao01 已提交
2420
    if filter_size_y is None:
2421 2422 2423 2424 2425 2426
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2427
    if stride_y is None:
2428 2429 2430 2431 2432 2433
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2434
    if padding_y is None:
2435 2436 2437 2438 2439 2440 2441 2442
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2443
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2444 2445 2446 2447
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2448

2449 2450
    if layer_type:
        if trans:
2451
            assert layer_type in ["exconvt", "cudnn_convt"]
2452 2453 2454 2455 2456
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2457

X
xuwei06 已提交
2458
    l = Layer(
Z
zhangjinchao01 已提交
2459
        name=name,
Q
qijun 已提交
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2472 2473 2474 2475
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2476
        type=lt,
Q
qijun 已提交
2477 2478 2479 2480 2481 2482 2483 2484
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2485 2486 2487 2488


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2499 2500
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2501 2502 2503 2504 2505 2506 2507
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2536
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2537
    :type padding: int
2538 2539
    :param padding_y: pooling padding height. It's equal to padding by default.
    :type padding_y: int|None
Z
zhangjinchao01 已提交
2540 2541 2542 2543
    :param name: name of pooling layer
    :type name: basestring.
    :param input: layer's input
    :type input: LayerOutput
2544
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2545
    :type pool_size: int
2546 2547
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
    :type pool_size_y: int|None
Z
zhangjinchao01 已提交
2548 2549
    :param num_channels: number of input channel.
    :type num_channels: int
2550
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2551 2552
                      MaxPooling.
    :type pool_type: BasePoolingType
2553
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2554
    :type stride: int
2555 2556
    :param stride_y: stride height of pooling. It is equal to stride by default.
    :type stride_y: int|None
Z
zhangjinchao01 已提交
2557 2558
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2559 2560 2561 2562
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2563 2564
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

2575
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2576
        if (
Y
Yu Yang 已提交
2577
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2578
        else pool_type.name
2579 2580 2581 2582 2583

    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2584
    l = Layer(
Z
zhangjinchao01 已提交
2585 2586
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2599
                    padding_y=padding_y))
Q
qijun 已提交
2600
        ],
2601
        ceil_mode=ceil_mode,
Q
qijun 已提交
2602 2603 2604 2605 2606 2607 2608
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2609 2610


Q
qijun 已提交
2611 2612
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2613 2614 2615 2616 2617 2618
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2619 2620 2621 2622 2623
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2624 2625 2626 2627
    The example usage is:

    ..  code-block:: python

2628 2629 2630
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2631 2632
                        pool_type=MaxPooling())

Q
qijun 已提交
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
    :param name: layer name.
    :type name: basestring
    :param input: layer's input.
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2661
    l = Layer(
Q
qijun 已提交
2662 2663
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2664 2665 2666 2667 2668
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2669
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2681 2682 2683 2684
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2685
    l = Layer(
Q
qijun 已提交
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2705 2706 2707 2708


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2709 2710 2711 2712 2713 2714
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2715
                      layer_attr=None):
Z
zhangjinchao01 已提交
2716
    """
2717
    Response normalization across feature maps.
D
dangqingqing 已提交
2718 2719
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2720

L
Luo Tao 已提交
2721 2722 2723
    The example usage is:

    ..  code-block:: python
2724

L
Luo Tao 已提交
2725 2726
        norm = img_cmrnorm_layer(input=net, size=5)

Z
zhangjinchao01 已提交
2727
    :param name: layer name.
D
dangqingqing 已提交
2728
    :type name: None|basestring
Z
zhangjinchao01 已提交
2729 2730
    :param input: layer's input.
    :type input: LayerOutput
2731
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
2732
    :type size: int
D
dangqingqing 已提交
2733
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
2734
    :type scale: float
D
dangqingqing 已提交
2735
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
2736 2737 2738 2739 2740
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2741
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2742 2743 2744
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2745
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
2746 2747 2748


@wrap_bias_attr_default()
2749 2750
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
2751 2752
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
2753
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2754 2755 2756 2757 2758 2759 2760
def batch_norm_layer(input,
                     act=None,
                     name=None,
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
                     use_global_stats=None):
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
2782 2783 2784
    The example usage is:

    ..  code-block:: python
2785

L
Luo Tao 已提交
2786 2787
        norm = batch_norm_layer(input=net, act=ReluActivation())

Z
zhangjinchao01 已提交
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
    :param name: layer name.
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
    :param batch_norm_type: We have batch_norm and cudnn_batch_norm. batch_norm
                            supports both CPU and GPU. cudnn_batch_norm requires
                            cuDNN version greater or equal to v4 (>=v4). But
                            cudnn_batch_norm is faster and needs less memory
                            than batch_norm. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU and
                            batch_norm for CPU. Otherwise, select batch norm
                            type based on the specified type. If you use cudnn_batch_norm,
                            we suggested you use latest version, such as v5.1.
2802
    :type batch_norm_type: None|string, None or "batch_norm" or "cudnn_batch_norm"
Z
zhangjinchao01 已提交
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
    :type bias_attr: ParameterAttribute
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
    :type use_global_stats: bool|None.
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
D
dangqingqing 已提交
2830
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
2841
    l = Layer(
Z
zhangjinchao01 已提交
2842
        name=name,
Q
qijun 已提交
2843 2844
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
2845 2846 2847 2848 2849 2850
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
Q
qijun 已提交
2851
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
2852

Q
qijun 已提交
2853 2854 2855 2856 2857 2858 2859
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2887
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2888 2889 2890 2891 2892 2893
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2894 2895 2896
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2897 2898


G
guosheng 已提交
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
2935 2936 2937
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
2938
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2939
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
2962 2963 2964
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
2965 2966

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
2967 2968
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
    Please refer to dropout_layer for details.

    :param name: Layer name.
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param act: Activation Type, default is tanh.
    :type act: BaseActivation
    :param bias_attr: Bias attribute. If False, means no bias. None is default
                      bias.
    :type bias_attr: ParameterAttribute|bool
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2983
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2984 2985 2986 2987 2988 2989
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

2990
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2991 2992 2993 2994 2995 2996 2997
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
2998
    l = Layer(
Q
qijun 已提交
2999 3000 3001
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3002 3003
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3004
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3005

Q
qijun 已提交
3006 3007 3008 3009 3010 3011 3012
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3013 3014 3015 3016


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3017
@layer_support(DROPOUT, ERROR_CLIPPING)
3018
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3019 3020 3021 3022
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

3023 3024 3025 3026 3027 3028
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

Z
zhangjinchao01 已提交
3029 3030 3031
    :param name: Layer name.
    :type name: basestring
    :param input: input layers or projections
3032
    :type input: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
3033 3034 3035 3036
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3037
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3038 3039 3040 3041 3042 3043 3044 3045
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3046
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3047 3048

    def __is_type__(o, tp):
3049
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3071 3072
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3073

Q
qijun 已提交
3074 3075
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3076

3077 3078
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3079

3080
    layer = Layer(
Q
qijun 已提交
3081 3082
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3083 3084
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3085
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3086
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3087

3088
    sz = layer.config.size
Z
zhangjinchao01 已提交
3089

Q
qijun 已提交
3090 3091 3092 3093 3094 3095 3096 3097
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3098 3099
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3100
@wrap_bias_attr_default(has_bias=False)
3101
@layer_support(DROPOUT, ERROR_CLIPPING)
3102 3103 3104 3105
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
3106

3107
    Inputs:
X
xuwei06 已提交
3108
      - a = [a1, a2, ..., am]
3109
      - b = [b1, b2, ..., bn]
3110

X
xuwei06 已提交
3111 3112 3113 3114
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

    :param name: Layer name.
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
3132 3133 3134 3135
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3157
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3158 3159
def memory(name,
           size,
3160
           memory_name=None,
Q
qijun 已提交
3161 3162 3163 3164
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

3185 3186 3187 3188 3189 3190 3191 3192 3193
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
L
Liu Yiqun 已提交
3194

3195 3196 3197 3198 3199 3200 3201
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3202 3203 3204
    :type name: basestring
    :param size: size of memory.
    :type size: int
3205 3206 3207
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
3208
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3209 3210 3211 3212 3213 3214 3215 3216 3217
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
    :type boot_layer: LayerOutput|None
    :param boot_bias: boot layer's bias
    :type boot_bias: ParameterAttribute|None
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
3218
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3229 3230
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3231

3232 3233 3234 3235 3236 3237 3238 3239
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3240 3241

    lout = LayerOutput(
3242
        name=memory_name,
Q
qijun 已提交
3243 3244 3245
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3246 3247 3248 3249
    return lout


@wrap_bias_attr_default()
3250 3251
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3252 3253
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
3254
@layer_support()
Q
qijun 已提交
3255 3256
def lstm_step_layer(input,
                    state,
3257
                    size=None,
Q
qijun 已提交
3258 3259 3260 3261 3262 3263
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3264
    """
3265 3266
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3267 3268 3269

    ..  math::

3270
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3271

3272
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3273

3274
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3275

3276
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3277

L
luotao02 已提交
3278
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3279 3280


L
luotao02 已提交
3281
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3282
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3283
    input vectors.
Z
zhangjinchao01 已提交
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3294 3295
    This layer has two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, whose name is 'state' and can use
Z
zhangjinchao01 已提交
3296 3297 3298 3299
    :code:`get_output_layer` to extract this output.

    :param name: Layer's name.
    :type name: basestring
3300 3301
    :param size: Layer's size. NOTE: lstm layer's size, should be equal to
                 :code:`input.size/4`, and should be equal to
Z
zhangjinchao01 已提交
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param gate_act: Gate Activation Type. Default is sigmoid, and should
                          be sigmoid only.
    :type gate_act: BaseActivation
    :param state_act: State Activation Type. Default is sigmoid, and should
                           be sigmoid only.
    :type state_act: BaseActivation
    :param bias_attr: Bias Attribute.
    :type bias_attr: ParameterAttribute
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3320
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3321 3322
    :rtype: LayerOutput
    """
3323 3324 3325

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3326 3327 3328 3329 3330 3331 3332
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3333
        size=state.size,
Q
qijun 已提交
3334 3335
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3336

Q
qijun 已提交
3337 3338 3339 3340 3341 3342 3343
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3344 3345 3346


@wrap_bias_attr_default()
W
wangyang59 已提交
3347
@wrap_param_attr_default()
Q
qijun 已提交
3348
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3349 3350 3351
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3352 3353 3354 3355 3356 3357 3358
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3359
                   param_attr=None,
Q
qijun 已提交
3360
                   layer_attr=None):
Z
zhangjinchao01 已提交
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
    :param name:
    :param gate_act:
    :param bias_attr:
3371 3372
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
3373
    :param layer_attr:
D
dangqingqing 已提交
3374
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3375 3376 3377 3378 3379 3380 3381 3382
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3383 3384 3385 3386
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3387
        # backward model compatibility.
3388
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3389 3390 3391 3392
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3393
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3394
    return LayerOutput(
Q
qijun 已提交
3395 3396
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3397
        parents=[input, output_mem],
Q
qijun 已提交
3398 3399
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3400 3401


Y
Yu Yang 已提交
3402 3403 3404 3405
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3406
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
    GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING
    and DROPOUT.

    :param input:
    :param output_mem:
    :param size:
    :param name:
    :param act:
    :param gate_act:
    :param bias_attr:
    :param param_attr:
    :param layer_attr:
    :return:
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3474 3475 3476 3477
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3478 3479 3480 3481
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3482 3483 3484 3485 3486 3487 3488 3489 3490

    :param name: Layer's name.
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3491
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3492 3493 3494 3495 3496 3497 3498
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3499 3500 3501 3502 3503 3504 3505
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3506

Q
qijun 已提交
3507 3508 3509 3510 3511
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3512 3513 3514 3515 3516 3517 3518


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3519 3520 3521 3522 3523 3524 3525
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3526
    """
3527 3528
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3529

3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


    :param input: Input Layer
    :type input: LayerOutput
    :param act: activation.
    :type act: BaseActivation
    :param bias_attr: bias attribute.
    :type bias_attr: ParameterAttribute
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
    :param name: name of the layer
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3557
    :return: LayerOutput object.
3558
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3559
    """
Q
qijun 已提交
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3575 3576 3577 3578 3579 3580


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
3581 3582
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3583
    """
3584

Z
zhangjinchao01 已提交
3585 3586 3587
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
3588
        assert input.size is not None
Z
zhangjinchao01 已提交
3589
        if size is not None:
3590
            assert input.size == size
Z
zhangjinchao01 已提交
3591 3592


3593
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
3594
    """
3595
    DEPRECATED.
Z
zhangjinchao01 已提交
3596 3597 3598 3599 3600 3601 3602 3603
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3604
    return input
Z
zhangjinchao01 已提交
3605 3606 3607


@wrap_name_default("recurrent_group")
3608
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
3609
    """
C
caoying03 已提交
3610 3611 3612 3613 3614
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

    :type input: LayerOutput|StaticInput|SubsequenceInput|list|tuple

3659 3660
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3661
    :type reverse: bool
3662

3663 3664
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
3665 3666 3667 3668 3669 3670 3671 3672 3673

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

    :type targetInlink: LayerOutput|SubsequenceInput

D
dangqingqing 已提交
3674
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3675 3676 3677 3678
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

3679
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
3680
        input = [input]
3681
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3682 3683

    def is_in_links(x):
3684
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
3685 3686 3687 3688

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3689
        name=name,
3690 3691
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
3692 3693
    in_args = []
    for each_input in input:
3694
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
3695
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
3696
            mem = memory(
3697
                name=None,
Q
qijun 已提交
3698 3699
                size=each_input.input.size,
                boot_layer=each_input.input)
3700
            mem.set_input(mem)
Z
zhangjinchao01 已提交
3701
            in_args.append(mem)
3702 3703
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
3704

Z
zhangjinchao01 已提交
3705 3706 3707 3708 3709
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

3710 3711 3712 3713 3714 3715
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
3716 3717 3718

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
3719
    for layer_out in layer_outs:
3720 3721
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
3722 3723
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
3724 3725 3726 3727 3728
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

3729

Z
zhangjinchao01 已提交
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
3758 3759

    def before_real_step(self):
Q
qijun 已提交
3760 3761 3762 3763 3764 3765 3766 3767 3768
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
3769 3770 3771
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
3772
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

    :param input: Input layer name.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3796
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3797 3798 3799 3800
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3811

3812

H
Haonan 已提交
3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

    :param name: Layer name.
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
3849

Z
zhangjinchao01 已提交
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

L
luotao02 已提交
3866 3867
    :param name: Layer name.
    :type name: basestring
Z
zhangjinchao01 已提交
3868 3869 3870 3871 3872 3873
    :param input: Input layer name.
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3874
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3875 3876
    :rtype: LayerOutput
    """
Q
qijun 已提交
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3888 3889 3890


@wrap_name_default()
Q
qijun 已提交
3891 3892 3893 3894 3895 3896 3897
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
3898
                num_results_per_sample=None):
3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
3910
            with mixed_layer(size=512, name='rnn') as simple_rnn:
3911 3912 3913 3914
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

3915 3916 3917 3918 3919
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

3920 3921
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
3922 3923
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
3924 3925
                               bos_id=0,
                               eos_id=1,
3926
                               beam_size=5)
3927 3928 3929 3930 3931 3932 3933 3934 3935

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
3936
                 step, and it is applied to sequences with arbitrary length by
3937 3938 3939 3940 3941
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
3942 3943
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
3944
                  In beam_search, none of the input's type should be LayerOutput.
3945
    :type input: list
3946 3947 3948
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
3949
                   symbol is essential, since it is used to initialize the RNN
3950 3951 3952 3953 3954 3955 3956 3957
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
3958 3959
    :param max_length: Max generated sequence length.
    :type max_length: int
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
3970 3971
    :return: The generated word index.
    :rtype: LayerOutput
3972 3973
    """

Z
zhangjinchao01 已提交
3974 3975 3976 3977 3978
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
3979
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
3980 3981 3982 3983 3984 3985
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
3986 3987 3988
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
3989
        if isinstance(each_input, BaseGeneratedInput):
3990 3991
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
3992
            generated_input_index = i
3993

Z
zhangjinchao01 已提交
3994 3995 3996
        else:
            real_input.append(each_input)

3997
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
3998 3999 4000 4001 4002 4003 4004 4005

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4006 4007 4008 4009 4010 4011
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4012 4013 4014 4015 4016 4017

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4018
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4019 4020
        return predict

4021 4022
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4023

Q
qijun 已提交
4024

4025 4026
def __cost_input__(input, label, weight=None):
    """
4027
    inputs and parents for cost layers.
4028 4029 4030 4031
    """
    ipts = [Input(input.name), Input(label.name)]
    parents = [input, label]
    if weight is not None:
4032
        assert weight.size == 1
4033 4034 4035
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4036

Z
zhangjinchao01 已提交
4037 4038

@wrap_name_default()
L
luotao1 已提交
4039
@layer_support()
4040
def mse_cost(input, label, weight=None, name=None, coeff=1.0, layer_attr=None):
Z
zhangjinchao01 已提交
4041
    """
L
Luo Tao 已提交
4042 4043 4044 4045
    mean squared error cost:

    ..  math::

L
Liu Yiqun 已提交
4046
        \\frac{1}{N}\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4047 4048

    :param name: layer name.
4049
    :type name: basestring
Z
zhangjinchao01 已提交
4050
    :param input: Network prediction.
4051
    :type input: LayerOutput
Z
zhangjinchao01 已提交
4052
    :param label: Data label.
4053 4054 4055 4056
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
4057 4058
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4059 4060
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4061
    :return: LayerOutput object.
4062
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4063
    """
4064 4065
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4066 4067 4068 4069
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4070
        coeff=coeff,
Q
qijun 已提交
4071
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4072
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4073 4074


L
Luo Tao 已提交
4075 4076 4077
regression_cost = mse_cost


Z
zhangjinchao01 已提交
4078
@wrap_name_default("cost")
4079
@layer_support()
Q
qijun 已提交
4080 4081 4082 4083
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4084
                        evaluator=classification_error_evaluator,
4085 4086
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4087 4088 4089 4090 4091 4092 4093 4094 4095
    """
    classification cost Layer.

    :param name: layer name.
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
4096 4097 4098
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
Z
zhangjinchao01 已提交
4099
    :param evaluator: Evaluator method.
4100 4101
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
4102 4103
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
4104
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4105 4106 4107 4108 4109
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4110 4111 4112

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4113 4114 4115 4116
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4117
        coeff=coeff,
Q
qijun 已提交
4118
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4129
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4130

4131
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4132 4133 4134 4135 4136
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4137
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4138

4139

Q
qijun 已提交
4140 4141 4142 4143 4144 4145 4146 4147 4148
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4149 4150
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

4161 4162
       op = conv_operator(img=input1,
                          filter=input2,
4163
                          filter_size=3,
Z
zhangjinchao01 已提交
4164 4165 4166
                          num_filters=64,
                          num_channels=64)

4167 4168 4169 4170
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
4171 4172
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
4173 4174 4175
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
4176
    :type filter_size_y: int
4177 4178
    :param num_filters: channel of output data.
    :type num_filters: int
4179 4180
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
4181
    :param stride: The x dimension of the stride.
L
luotao02 已提交
4182
    :type stride: int
Z
zhangjinchao01 已提交
4183
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
4184
    :type stride_y: int
Z
zhangjinchao01 已提交
4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4198

4199 4200
    if num_channels is None:
        num_channels = img.num_filters
4201 4202 4203

    assert isinstance(filter, LayerOutput)
    if filter.size is not None:
4204
        filter.size = filter_size * filter_size_y * num_filters * num_channels
4205

4206 4207 4208
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4220

4221
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4222 4223
    return op

Q
qijun 已提交
4224

4225
@wrap_param_attr_default()
Q
qijun 已提交
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4236 4237
                    param_attr=None,
                    trans=False):
4238 4239 4240 4241 4242 4243 4244 4245 4246
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4247
       proj = conv_projection(input=input1,
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

    :param input: input layer
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
4262 4263
    :param num_channels: channel of input data.
    :type num_channels: int
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
4276 4277
    :param trans: whether it is convTrans or conv
    :type trans: boolean
4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4308
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4309 4310 4311 4312 4313
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4314 4315 4316
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4329 4330 4331 4332

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4333

D
dangqingqing 已提交
4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
4351

D
dangqingqing 已提交
4352
    For example,
4353

4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4375 4376

    The simply usage is:
D
dangqingqing 已提交
4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

    :param input: layer's input.
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
    :type pad_c: list|None
    :param pad_h: padding size in height dimension.
    :type pad_h: list|None
    :param pad_w: padding size in width dimension.
    :type pad_w: list|None
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param name: layer name.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4438
@wrap_name_default()
L
luotao1 已提交
4439 4440
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4452 4453 4454 4455
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4456 4457 4458 4459 4460

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4461
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4462 4463 4464

    :param name: layer name
    :type name: basestring
4465 4466
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4467
    :param b: input layer b.
4468
    :type b: LayerOutput
L
luotao1 已提交
4469 4470
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4471
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4472 4473
    :rtype: LayerOutput
    """
4474 4475
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4476 4477 4478
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4479
        inputs=[a.name, b.name],
Q
qijun 已提交
4480
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4481

Q
qijun 已提交
4482 4483
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4484 4485 4486 4487 4488


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4489
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4490
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4491 4492 4493 4494 4495 4496 4497 4498
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4499 4500 4501 4502 4503
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4504
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4505 4506

    In this formular:
4507 4508
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4509 4510
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4511
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4512 4513 4514 4515 4516

    The simple usage is:

    .. code-block:: python

4517
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4518 4519 4520

    :param name: layer name
    :type name: basestring
4521 4522 4523 4524
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4525
    :param size: the layer dimension.
L
luotao02 已提交
4526
    :type size: int.
Z
zhangjinchao01 已提交
4527 4528 4529
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4530
    :type param_attr: ParameterAttribute
Z
zhangjinchao01 已提交
4531 4532 4533 4534 4535 4536
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4537
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4538 4539
    :rtype: LayerOutput
    """
4540
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4541 4542 4543 4544 4545 4546
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4547 4548 4549 4550
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4551 4552 4553 4554 4555 4556


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
4557
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
4558 4559
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4560
                       select=None,
Q
qijun 已提交
4561 4562
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4563 4564 4565
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4566 4567 4568
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4579
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4580 4581 4582 4583 4584

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput|list|tuple
4585 4586
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4587
                   If is None, acts exactly like fc_layer.
4588
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4601
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4602 4603 4604 4605
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4606
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4607 4608
        param_attr = [param_attr]
    else:
4609
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4610 4611 4612 4613
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4614 4615 4616 4617
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4618
    Layer(
Q
qijun 已提交
4619 4620 4621
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4622 4623 4624
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4625
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4626 4627 4628 4629
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4630 4631 4632 4633 4634 4635 4636
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4637 4638 4639


@wrap_name_default()
L
luotao1 已提交
4640 4641
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4656 4657
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4658
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4659 4660
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4661
    l = Layer(
Z
zhangjinchao01 已提交
4662 4663 4664
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4665 4666 4667
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4668 4669 4670


@wrap_name_default()
L
luotao1 已提交
4671
@layer_support()
Q
qijun 已提交
4672 4673 4674 4675
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4676
                          layer_attr=None):
Z
zhangjinchao01 已提交
4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
4698 4699
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4700
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4701 4702 4703 4704 4705 4706 4707 4708
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
4709 4710 4711
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
4712 4713 4714


@wrap_name_default()
L
luotao1 已提交
4715
@layer_support()
Q
qijun 已提交
4716
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4717
    """
4718 4719 4720 4721
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
4722 4723 4724

    .. math::

4725
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
4726

4727 4728 4729 4730 4731
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
4732

4733
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
4734 4735

    In this formular:
4736 4737 4738 4739 4740 4741
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
4742 4743 4744 4745 4746

    The simple usage is:

    .. code-block:: python

4747
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
4748 4749
                                       size=elem_dim)

4750 4751 4752 4753
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
4754 4755 4756 4757
    :param size: the dimension of this layer.
    :type size: int
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4758 4759
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4760
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4761 4762
    :rtype: LayerOutput
    """
4763 4764 4765 4766
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
4767
            size = vectors.size / weights.size
4768 4769
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
4770 4771
    Layer(
        name=name,
4772
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
4773
        size=size,
4774
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
4775 4776 4777
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
4778

4779

4780
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
4781

4782

Z
zhangjinchao01 已提交
4783
@wrap_name_default()
L
luotao1 已提交
4784
@layer_support()
Z
zhangjinchao01 已提交
4785 4786 4787 4788 4789 4790 4791
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
4792
                       num_channels=None,
L
luotao1 已提交
4793 4794
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4795 4796
    """
    Expand feature map to minibatch matrix.
4797
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
4798
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
4799 4800 4801 4802 4803 4804 4805 4806 4807 4808

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
4809
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
4810 4811
    convolution neural network, and before recurrent neural network.

4812 4813 4814 4815
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
4816
       block_expand = block_expand_layer(input=layer,
4817
                                         num_channels=128,
4818 4819 4820 4821 4822
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

Z
zhangjinchao01 已提交
4823 4824
    :param input: The input layer.
    :type input: LayerOutput
4825 4826
    :param num_channels: The channel number of input layer.
    :type num_channels: int|None
Z
zhangjinchao01 已提交
4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
L
luotao1 已提交
4841 4842
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4843
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4844 4845
    :rtype: LayerOutput
    """
4846 4847 4848
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
4866 4867


4868 4869
@wrap_name_default()
@layer_support()
4870
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
4871 4872 4873 4874 4875
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

4876
    So groups should be larger than 1, and the num of channels should be able
4877 4878
    to devided by groups.

X
xuwei06 已提交
4879 4880 4881 4882 4883 4884 4885 4886
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

4887
    Please refer to Paper:
4888 4889 4890 4891
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
4892

4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

    :param input: The input layer.
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
    :type num_channels: int|None
    :param groups: The group number of input layer.
    :type groups: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
4922 4923 4924 4925 4926 4927 4928 4929 4930
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
4931 4932


Z
zhangjinchao01 已提交
4933
@wrap_name_default()
L
luotao1 已提交
4934
@layer_support()
Q
qijun 已提交
4935 4936 4937 4938 4939
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
4940
              layer_attr=None):
Z
zhangjinchao01 已提交
4941 4942 4943 4944 4945
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

4946 4947
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
4948 4949
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
4950 4951 4952 4953 4954 4955 4956 4957

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

C
caoying03 已提交
4958
    The example usage is:
Z
zhangjinchao01 已提交
4959 4960 4961 4962 4963 4964 4965 4966

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

4967
    :param input: The input layer.
Z
zhangjinchao01 已提交
4968 4969 4970
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
4971
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
4972
    :type size: int
4973 4974
    :param name: The name of this layer
    :type name: basestring|None
Z
zhangjinchao01 已提交
4975 4976
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
4977 4978
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4979
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4980 4981 4982 4983
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
4984 4985 4986 4987 4988
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
4989
    Layer(
4990 4991 4992 4993
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
4994
        inputs=[input.name, label.name],
Q
qijun 已提交
4995
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4996 4997
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

4998

4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5010
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5011
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

    To use warp_ctc layer, you need to specify the path of :code:`libwarpctc.so`,
    using following methods:

    1. Set it in :code:`paddle.init` (python api) or :code:`paddle_init` (c api),
    such as :code:`paddle.init(use_gpu=True,
    warpctc_dir=your_paddle_source_dir/third_party/install/warpctc/lib)`.

    2. Set environment variable LD_LIBRARY_PATH on Linux or DYLD_LIBRARY_PATH
    on Mac OS. For instance, :code:`export
    LD_LIBRARY_PATH=your_paddle_source_dir/third_party/install/warpctc/lib:$LD_LIBRARY_PATH`.
5029 5030 5031 5032

    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
L
Liu Yiqun 已提交
5033
    icml2006_GravesFGS06.pdf>`_.
5034 5035 5036

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
L
Liu Yiqun 已提交
5037 5038 5039
          label needed by CTC, you need to use (num_classes + 1) as the input size.
          Thus, the size of both warp_ctc layer and 'input' layer should be set to
          num_classes + 1.
5040 5041
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
5042
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
5043
          'linear' activation is expected instead in the 'input' layer.
5044

C
caoying03 已提交
5045
    The example usage is:
5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
    :param name: The name of this layer, which can not specify.
    :type name: basestring|None
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5091
@wrap_name_default()
5092
@wrap_param_attr_default()
L
luotao1 已提交
5093
@layer_support()
Q
qijun 已提交
5094 5095 5096 5097 5098 5099
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5100
              coeff=1.0,
L
luotao1 已提交
5101
              layer_attr=None):
Z
zhangjinchao01 已提交
5102 5103 5104 5105
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5106
    The example usage is:
Z
zhangjinchao01 已提交
5107 5108 5109 5110 5111 5112 5113 5114 5115 5116

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
5117
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5118 5119 5120 5121 5122 5123 5124 5125 5126
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
5127 5128
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5129 5130
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5131
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5132 5133 5134 5135 5136
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5137 5138 5139 5140 5141 5142
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5143

Q
qijun 已提交
5144
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5145 5146 5147 5148
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5149 5150 5151 5152
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5153
        coeff=coeff,
Q
qijun 已提交
5154
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5155 5156 5157
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5158 5159 5160 5161
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5162

5163

Z
zhangjinchao01 已提交
5164
@wrap_name_default()
5165
@wrap_param_attr_default()
L
luotao1 已提交
5166
@layer_support()
Q
qijun 已提交
5167 5168 5169 5170 5171
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5172
                       layer_attr=None):
Z
zhangjinchao01 已提交
5173 5174 5175 5176 5177 5178 5179
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

C
caoying03 已提交
5180
    The example usage is:
L
Luo Tao 已提交
5181 5182 5183 5184 5185 5186

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5187 5188 5189 5190 5191 5192 5193 5194 5195 5196
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5197 5198
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5199
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5200 5201 5202 5203 5204 5205
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5206
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5207 5208 5209 5210
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5211 5212 5213 5214
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5215
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5216 5217 5218
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5219 5220 5221 5222
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5223

Q
qijun 已提交
5224

Y
Yu Yang 已提交
5225
@wrap_act_default(act=SigmoidActivation())
5226
@wrap_bias_attr_default(has_bias=True)
5227
@wrap_param_attr_default()
5228 5229
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5230 5231
def nce_layer(input,
              label,
C
caoying03 已提交
5232
              num_classes=None,
Y
Yu Yang 已提交
5233
              act=None,
5234
              param_attr=None,
Q
qijun 已提交
5235 5236 5237 5238 5239 5240
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5241 5242 5243 5244 5245 5246 5247 5248 5249
    """
    Noise-contrastive estimation.
    Implements the method in the following paper:
    A fast and simple algorithm for training neural probabilistic language models.

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5250 5251
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

    :param name: layer name
    :type name: basestring
    :param input: input layers. It could be a LayerOutput of list/tuple of LayerOutput.
    :type input: LayerOutput|list|tuple|collections.Sequence
    :param label: label layer
    :type label: LayerOutput
    :param weight: weight layer, can be None(default)
    :type weight: LayerOutput
    :param num_classes: number of classes.
5263
    :type num_classes: int
Y
Yu Yang 已提交
5264 5265
    :param act: Activation, default is Sigmoid.
    :type act: BaseActivation
5266 5267
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
5268
    :param num_neg_samples: number of negative samples. Default is 10.
5269
    :type num_neg_samples: int
5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282
    :param neg_distribution: The distribution for generating the random negative labels.
                             A uniform distribution will be used if not provided.
                             If not None, its length must be equal to num_classes.
    :type neg_distribution: list|tuple|collections.Sequence|None
    :param bias_attr: Bias parameter attribute. True if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: layer name.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5283 5284 5285 5286 5287 5288 5289 5290
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5291
    assert isinstance(input, collections.Sequence)
5292

5293 5294
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5295 5296
    if num_classes is None:
        num_classes = label.size
5297 5298 5299
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5300
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
Y
Yu Yang 已提交
5301 5302
    if not isinstance(act, BaseActivation):
        raise TypeError()
5303

5304 5305
    ipts_for_layer = []
    parents = []
5306
    for each_input, attr in zip(input, param_attr):
5307
        assert isinstance(each_input, LayerOutput)
5308
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5319
    l = Layer(
5320 5321 5322 5323
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
Y
Yu Yang 已提交
5324
        active_type=act.name,
5325 5326 5327
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5328 5329
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5330 5331 5332 5333 5334
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
        activation=act)
Q
qijun 已提交
5335

5336

Z
zhangjinchao01 已提交
5337 5338 5339
"""
following are cost Layers.
"""
5340 5341


Z
zhangjinchao01 已提交
5342
@wrap_name_default()
L
luotao1 已提交
5343
@layer_support()
Q
qijun 已提交
5344 5345 5346 5347 5348 5349 5350
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5351
    """
5352
    A cost Layer for learning to rank using gradient descent. Details can refer
5353 5354
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
5355 5356 5357 5358 5359
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
5360
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5361

L
luotao02 已提交
5362
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5363

L
luotao02 已提交
5364
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5365 5366 5367 5368 5369 5370 5371 5372

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5373
    The example usage is:
Z
zhangjinchao01 已提交
5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5394 5395
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5396
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5409 5410 5411 5412 5413 5414
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5415

X
xuwei06 已提交
5416
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5417

5418

Z
zhangjinchao01 已提交
5419
@wrap_name_default()
L
luotao1 已提交
5420
@layer_support()
Q
qijun 已提交
5421 5422 5423 5424 5425 5426
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5427 5428 5429
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5430
    The example usage is:
Z
zhangjinchao01 已提交
5431 5432 5433 5434 5435 5436 5437 5438

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5439
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
                     e.g., 5 for NDCG@5. It must be less than for equal to the
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
5451 5452 5453
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
5454 5455 5456
    :type max_sort_size: int
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5457 5458
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5459
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5460 5461
    :rtype: LayerOutput
    """
5462 5463 5464
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5465 5466 5467 5468 5469 5470 5471
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5472

Q
qijun 已提交
5473 5474
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5475

5476

Z
zhangjinchao01 已提交
5477
@wrap_name_default()
L
luotao1 已提交
5478
@layer_support()
5479 5480 5481 5482 5483 5484
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5485 5486 5487
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5488 5489
    The example usage is:

Z
zhangjinchao01 已提交
5490 5491
    .. code-block:: python

X
xuwei06 已提交
5492
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5493
                            label=label_layer)
Z
zhangjinchao01 已提交
5494 5495 5496 5497 5498 5499 5500

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
5501 5502
    :param coeff: The cost is multiplied with coeff.
                  The coefficient affects the gradient in the backward.
Z
zhangjinchao01 已提交
5503
    :type coeff: float.
5504 5505 5506 5507
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
L
luotao1 已提交
5508 5509
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5510
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5511 5512 5513
    :rtype: LayerOutput.
    """

5514
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5515 5516 5517
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5518
        inputs=ipts,
Q
qijun 已提交
5519 5520
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5521
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5522

5523

Z
zhangjinchao01 已提交
5524
@wrap_name_default()
L
luotao1 已提交
5525
@layer_support()
Q
qijun 已提交
5526 5527 5528 5529
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5530 5531
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5532 5533
    """
    A loss layer for multi class entropy with selfnorm.
5534
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5535

C
caoying03 已提交
5536 5537
    The example usage is:

Z
zhangjinchao01 已提交
5538 5539
    .. code-block:: python

X
xuwei06 已提交
5540
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5541
                                          label=label_layer)
Z
zhangjinchao01 已提交
5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
    :type softmax_selfnorm_alpha: float.
L
luotao1 已提交
5553 5554
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5555
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5556 5557
    :rtype: LayerOutput.
    """
Q
qijun 已提交
5558 5559 5560 5561 5562 5563 5564
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5565

Q
qijun 已提交
5566 5567 5568 5569 5570
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5571

5572

X
xuwei06 已提交
5573 5574 5575 5576 5577 5578
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
    A loss layer which calculate the sum of the input as loss

C
caoying03 已提交
5579 5580
    The example usage is:

X
xuwei06 已提交
5581 5582
    .. code-block:: python

L
Luo Tao 已提交
5583
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5584 5585 5586 5587 5588 5589 5590 5591 5592 5593

    :param input: The first input layer.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5594
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5595 5596 5597 5598 5599
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5600

Q
qijun 已提交
5601
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5602 5603


Z
zhangjinchao01 已提交
5604
@wrap_name_default()
L
luotao1 已提交
5605 5606
@layer_support()
def huber_cost(input, label, name=None, coeff=1.0, layer_attr=None):
Z
zhangjinchao01 已提交
5607 5608 5609
    """
    A loss layer for huber loss.

C
caoying03 已提交
5610 5611
    The example usage is:

Z
zhangjinchao01 已提交
5612 5613
    .. code-block:: python

X
xuwei06 已提交
5614
       cost = huber_cost(input=input_layer,
L
Luo Tao 已提交
5615
                         label=label_layer)
Z
zhangjinchao01 已提交
5616 5617 5618 5619 5620 5621 5622 5623 5624

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
L
luotao1 已提交
5625 5626
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5627
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5628 5629
    :rtype: LayerOutput.
    """
5630 5631 5632
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
5633 5634 5635 5636 5637 5638
    Layer(
        name=name,
        type=LayerType.HUBER,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5639
    return LayerOutput(name, LayerType.HUBER, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
5640

5641

Z
zhangjinchao01 已提交
5642
@wrap_name_default()
L
luotao1 已提交
5643
@layer_support()
Q
qijun 已提交
5644 5645 5646 5647
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
5648
                                     layer_attr=None):
Z
zhangjinchao01 已提交
5649 5650 5651
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
5652 5653
    The example usage is:

Z
zhangjinchao01 已提交
5654 5655
    .. code-block:: python

X
xuwei06 已提交
5656
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
5657
                                               label=label_layer)
Z
zhangjinchao01 已提交
5658 5659 5660 5661 5662 5663 5664 5665 5666

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5667 5668
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5669
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5670 5671 5672
    :rtype: LayerOutput
    """

5673 5674
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
Q
qijun 已提交
5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690
        logger.log(
            logging.WARN,
            "%s is not recommend for multi_binary_label_cross_entropy's activation, "
            "maybe the sigmoid is better" % repr(input.activation))

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
5691 5692 5693 5694


@wrap_name_default()
@layer_support()
5695
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
5696 5697
    """
    This is a L1 loss but more smooth. It requires that the
D
dangqingqing 已提交
5698
    size of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
5699 5700 5701 5702 5703 5704 5705 5706 5707

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

5708
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
5709

D
dangqingqing 已提交
5710 5711 5712
    More details can be found by referring to `Fast R-CNN
    <https://arxiv.org/pdf/1504.08083v2.pdf>`_

C
caoying03 已提交
5713 5714
    The example usage is:

D
dangqingqing 已提交
5715 5716
    .. code-block:: python

5717 5718
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
5719 5720 5721 5722 5723 5724 5725

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
5726 5727
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
5741
        coeff=coeff,
D
dangqingqing 已提交
5742 5743 5744
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
    This layer multiplex multiple layers according to the index,
    which is provided by the first input layer.
    inputs[0]: the index of the layer to output of size batchSize.
    inputs[1:N]; the candidate output data.
    For each index i from 0 to batchSize -1, the output is the i-th row of the
    (index[i] + 1)-th layer.

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
5764 5765
    The example usage is:

W
wwhu 已提交
5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
5798 5799


5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """
    @TODO(yuyang18): Add comments.

    :param name:
    :param input:
    :param dropout_rate:
    :return:
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
5816 5817


D
dangqingqing 已提交
5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
    introduced in paper of `Deep Speech 2: End-toEnd Speech Recognition
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
    efficient manner to improve unidirectional recurrent neural networks.
5840

D
dangqingqing 已提交
5841 5842 5843 5844 5845
    The connection of row convolution is different form the 1D sequence
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
5846

D
dangqingqing 已提交
5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


    :param input: The input layer.
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
    :param act: Activation Type. Default is linear activation.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute. If None, the parameter will be
                       initialized smartly. It's better set it by yourself.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput

    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
5890 5891


5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
    The Parameter Relu activation that actives outputs with a learnable weight.

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
5911 5912 5913 5914 5915 5916
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

5917 5918 5919 5920 5921
    :param name: Name of this layer.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param partial_sum: this parameter makes a group of inputs share a same weight.
C
caoying03 已提交
5922 5923 5924 5925 5926 5927

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share a same weight.
        - partial_sum = number of outputs, indicates all elements share a same weight.

    :type partial_sum: int
5928 5929 5930 5931 5932 5933 5934 5935
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer configurations. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

5936
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
C
caoying03 已提交
5937
    assert isinstance(param_attr, ParameterAttribute)
5938 5939 5940

    l = Layer(
        name=name,
C
caoying03 已提交
5941
        type=LayerType.PRELU,
C
caoying03 已提交
5942
        inputs=Input(input.name, **param_attr.attr),
5943 5944 5945 5946 5947 5948 5949
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)
5950 5951


5952
@wrap_name_default()
C
caoying03 已提交
5953
@layer_support(ERROR_CLIPPING, DROPOUT)
5954 5955 5956 5957 5958 5959 5960
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
5961 5962
                     gate_bias_attr=True,
                     inproj_attr=None,
5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
    prodict between :match:`X'` and :math:`\sigma` is finally returned.

    Reference:
        Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

    :param input: input for this layer.
    :type input: LayerOutput
    :param size: output size of the gated unit.
    :type size: int
    :param act: activation type of the projected input.
    :type act: BaseActivation
    :param name: name of this layer.
    :type name: basestring
    :param gate_attr: Attributes to tune the gate output, for example, error
        clipping threshold, dropout and so on. See ExtraLayerAttribute for
        more details.
    :type gate_attr: ExtraLayerAttribute|None
    :param gate_param_attr: Attributes to tune the learnable projected matrix
        parameter of the gate.
    :type gate_param_attr: ParameterAttribute|None
C
caoying03 已提交
5999 6000 6001 6002 6003 6004
    :param gate_bias_attr: Attributes to tune the learnable bias of the gate.
    :type gate_bias_attr: ParameterAttribute|None
    :param inproj_attr: Attributes to the tune the projected input, for
        example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
    :type inproj_attr: ExtraLayerAttribute|None
6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026
    :param inproj_param_attr: Attributes to tune the learnable parameter of
        the projection of input.
    :type inproj_param_attr: ParameterAttribute|None
    :param inproj_bias_attr: Attributes to tune the learnable bias of
        projection of the input.
    :type inproj_bias_attr: ParameterAttribute|None
    :param layer_attr: Attributes to tune the final output of the gated unit,
        for example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6027
        layer_attr=inproj_attr,
6028 6029 6030 6031 6032 6033 6034 6035 6036
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6037
        param_attr=gate_param_attr,
6038 6039 6040 6041 6042
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6043 6044


6045 6046
@wrap_name_default()
@layer_support()
6047
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6048
    """
6049
    The crop layer crops images by offset and shape. User can set crop shape by
6050
    args 'shape' explicitly or by reference input layer.
6051

6052 6053 6054
    The example usage is:

    .. code-block:: python
W
whs 已提交
6055
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6056 6057 6058 6059

    :param input: The input layer.If two inputs were setted,
                    the second input will be regarded as reference input
    :type input: LayerOutput or Sequence
6060 6061
    :param offset: The crop offset
    :type offset: Sequence
6062 6063 6064 6065 6066 6067 6068
    :param axis: start axis to be cropped. To image input layer:
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
    :type partial_sum: int
    :param shape: The shape to be cropped. Default is None.
6069
    :type shape: Sequence | None
6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091
    :param name: Name of this layer.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6092 6093 6094


@wrap_name_default("clip")
6095
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6096 6097 6098 6099 6100 6101 6102 6103 6104
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6105
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6106 6107 6108 6109 6110

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
6111 6112 6113 6114
    :param min: The lower threshold for clipping.
    :type min: double
    :param max: The upper threshold for clipping.
    :type max: double
6115 6116
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6117 6118 6119 6120 6121
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6122 6123
        min=min,
        max=max)
G
guosheng 已提交
6124 6125
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6126 6127 6128 6129 6130


@wrap_name_default()
@layer_support()
def kmax_sequence_score_layer(input, name=None, beam_size=1):
6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149
    """
    This layer accepts one input which is scores over a sequence or a nested
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

        kmax_indices = kmax_sequence_score_layer(input=input_layer, beam_size)


    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. It is scores over a sequence or a nested
        sequence and its size must be 1.
    :type input: LayerOutput.
    :param beam_size: squence indices with top beam_size scores are returned.
    :type beam_size: double
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6150
    assert isinstance(input, LayerOutput), ("kmax_sequence_score_layer "
6151
                                            "accepts only one input.")
6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163
    assert input.size == 1, (
        "input of kmax_sequence_score_layer is a score"
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)