build_strategy.cc 14.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/details/build_strategy.h"

D
dzhwinter 已提交
17 18
#include <glog/logging.h>
#include <memory>
19
#include <unordered_set>
Q
Qiao Longfei 已提交
20
#include <utility>
21
#include "paddle/fluid/framework/details/reduce_op_handle.h"
22
#include "paddle/fluid/framework/ir/graph.h"
D
dzhwinter 已提交
23
#include "paddle/fluid/framework/ir/graph_helper.h"
C
chengduo 已提交
24
#include "paddle/fluid/framework/ir/graph_printer.h"
W
WangZhen 已提交
25
#include "paddle/fluid/framework/ir/graph_to_program_pass.h"
26
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
27
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/multi_devices_graph_pass.h"
28

29 30
DECLARE_bool(use_mkldnn);

31 32 33 34
namespace paddle {
namespace framework {
namespace details {

35
static inline bool SeqOnlyAllReduceOps(const BuildStrategy &strategy) {
Y
Yancey1989 已提交
36 37
  // Should fix the allreduce op order if scheduling
  // them in multiple threads or processes to avoid hang.
Y
Yancey1989 已提交
38
  // NOTE: ParallelGraph would execute this pass on each graph, so
Y
Yancey1989 已提交
39
  // don't need to append it here.
Y
Yancey1989 已提交
40
  return (!strategy.enable_sequential_execution_ &&
Y
Yancey1989 已提交
41 42
          strategy.num_trainers_ > 1) &&
         !strategy.enable_parallel_graph_;
43 44
}

45 46 47 48
class ParallelExecutorPassBuilder : public ir::PassBuilder {
 public:
  explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy)
      : ir::PassBuilder(), strategy_(strategy) {
C
chengduo 已提交
49
    ResolveOptionConfliction();
C
chengduo 已提交
50

C
chengduo 已提交
51 52 53 54 55 56 57
    AppendPrintGraphPass("graph_viz_pass", "_original_graph");
    AppendPassWithCheck(strategy_.enable_sequential_execution_,
                        "sequential_execution_pass");
    AppendPassWithCheck(strategy_.sync_batch_norm_, "sync_batch_norm_pass");

    AppendOpFusePasses();
    AppendPrintGraphPass("graph_viz_pass", "_fused_graph");
58

C
chengduo 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71
    AppendMultiDevPass();
    AppendMultiGraphOptPasses();

    AppendPassToSetMkldnnAttr("mkldnn_placement_pass");
    // runtime_context_cache pass should be the last pass to enable the attr of
    // all original and fused operators. But no operators can be enabled this
    // attr if putting it after MultiDevPass.
    AppendPassWithCheck(strategy_.cache_runtime_context_,
                        "runtime_context_cache_pass");
    AppendPassWithCheck(strategy_.remove_unnecessary_lock_,
                        "modify_op_lock_and_record_event_pass");
    // Note: This pass is used to check whether the multi_device_graph is right.
    AppendPass("multi_devices_check_pass");
Z
Zeng Jinle 已提交
72

C
chengduo 已提交
73 74
    SetCollectiveContext();
  }
75

C
chengduo 已提交
76 77 78 79
  void ResolveOptionConfliction() {
    // Specifies the restrictions between different pass.
    if (strategy_.enable_parallel_graph_) {
      VLOG_IF(3, strategy_.fuse_all_optimizer_ops_)
80
          << "Currently, fuse_all_optimizer_ops doesn't work under "
C
chengduo 已提交
81 82
             "parallel_graph.";
      strategy_.fuse_all_optimizer_ops_ = false;
S
sneaxiy 已提交
83
    }
C
chengduo 已提交
84 85 86 87 88
    if (strategy_.is_distribution_) {
      VLOG_IF(3, strategy_.fuse_all_optimizer_ops_)
          << "Currently, fuse_all_optimizer_ops only works under "
             "Non-distributed mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
Q
qingqing01 已提交
89
    }
C
chengduo 已提交
90 91 92 93 94 95 96 97
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) {
      VLOG_IF(3, strategy_.fuse_all_optimizer_ops_)
          << "Currently, fuse_all_optimizer_ops only works under AllReduce "
             "mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
      VLOG_IF(3, strategy_.fuse_all_reduce_ops_)
          << "fuse_all_optimizer_ops only work in Reducer mode.";
      strategy_.fuse_all_reduce_ops_ = false;
D
dzhwinter 已提交
98
    }
99 100 101 102 103 104
    if (strategy_.async_mode_) {
      VLOG_IF(3, strategy_.fuse_all_optimizer_ops_)
          << "Currently, fuse_all_optimizer_ops doesn't work under "
             "async mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
    }
C
chengduo 已提交
105
  }
106

C
chengduo 已提交
107 108 109 110 111 112
  void AppendMultiGraphOptPasses() {
    // NOTE: fuse_all_reduce_ops will count the number of all_reduce operator
    // first, if the number is zero, fuse_all_reduce_ops will do nothing.
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "fuse_all_reduce_op_pass");
    AppendPrintGraphPass("multi_devices_print_pass", "_multi_devices_graph");
S
sneaxiy 已提交
113

C
chengduo 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    // experimental shows that the program will be faster if append
    // all_reduce_deps_pass here.
    bool append_all_reduce_deps_pass =
        !strategy_.enable_parallel_graph_ &&
        (SeqOnlyAllReduceOps(strategy_) ||
         strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce);
    AppendPassWithCheck(append_all_reduce_deps_pass, "all_reduce_deps_pass");

    bool append_backward_optimizer_op_deps_pass =
        strategy_.num_trainers_ > 1 && !strategy_.async_mode_ &&
        !strategy_.is_distribution_ &&
        strategy_.enable_backward_optimizer_op_deps_;
    AppendPassWithCheck(append_backward_optimizer_op_deps_pass,
                        "backward_optimizer_op_deps_pass");
  }
C
chengduo 已提交
129

C
chengduo 已提交
130 131 132 133 134
  void AppendOpFusePasses() {
    AppendPassWithCheck(strategy_.fuse_relu_depthwise_conv_,
                        "fuse_relu_depthwise_conv_pass");
    AppendPassWithCheck(strategy_.fuse_elewise_add_act_ops_,
                        "fuse_elewise_add_act_pass");
C
chengduo 已提交
135
    // for single card training, fuse_all_reduce_ops is unnecessary.
136
    // coalesce_grad_tensor_pass should be before of MultiDevPass.
C
chengduo 已提交
137 138
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "coalesce_grad_tensor_pass");
139
    // Fuse all the optimization operators.
C
chengduo 已提交
140 141 142
    // NOTE: fuse_all_xx_ops will count the number of xx operator first,
    // if the number is zero, fuse_all_reduce_ops will do nothing.
    // Currently, only one type of optimization algorithm can be fused.
C
chengduo 已提交
143
    if (strategy_.fuse_all_optimizer_ops_) {
144 145 146
      AppendPass("fuse_adam_op_pass");
      AppendPass("fuse_sgd_op_pass");
      AppendPass("fuse_momentum_op_pass");
C
chengduo 已提交
147
    }
C
chengduo 已提交
148
  }
C
chengduo 已提交
149

C
chengduo 已提交
150 151 152 153 154 155 156 157 158
  void SetCollectiveContext() const {
    CollectiveContext *context = CollectiveContext::GetInstance();
    context->endpoints_ = strategy_.trainers_endpoints_;
    context->trainer_id_ = strategy_.trainer_id_;
    PADDLE_ENFORCE_GE(strategy_.trainer_id_, 0, "trainer_id_ >= 0");
    if (strategy_.trainer_id_ > 0 && strategy_.trainers_endpoints_.size() > 0) {
      PADDLE_ENFORCE_LT(static_cast<size_t>(strategy_.trainer_id_),
                        strategy_.trainers_endpoints_.size(),
                        "trainer_id_ < endpoints_ size");
S
sneaxiy 已提交
159
    }
C
chengduo 已提交
160
    VLOG(1) << "CollectiveContext:" << context->String();
161 162
  }

163
  // Convert graph to run on multi-devices.
C
chengduo 已提交
164
  void AppendMultiDevPass() {
C
chengduo 已提交
165
    ir::Pass *multi_devices_pass = nullptr;
Q
Qiao Longfei 已提交
166 167 168
    if (strategy_.async_mode_) {
      multi_devices_pass = AppendPass("async_multi_devices_pass").get();
    } else if (strategy_.is_distribution_) {
169 170
      multi_devices_pass = AppendPass("dist_multi_devices_pass").get();
    } else {
C
chengduo 已提交
171 172 173 174 175 176 177 178 179 180 181
      switch (strategy_.reduce_) {
        case BuildStrategy::ReduceStrategy::kAllReduce:
          multi_devices_pass =
              AppendPass("all_reduce_mode_multi_devices_pass").get();
          break;
        case BuildStrategy::ReduceStrategy::kReduce:
          multi_devices_pass =
              AppendPass("reduce_mode_multi_devices_pass").get();
          break;
        default:
          PADDLE_THROW("Unknown reduce strategy.");
182 183 184 185 186 187
      }
    }
    multi_devices_pass->SetNotOwned<const BuildStrategy>("strategy",
                                                         &strategy_);
  }

C
chengduo 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
  void AppendPrintGraphPass(const std::string &pass_name,
                            const std::string &debug_file_suffix) {
    if (!strategy_.debug_graphviz_path_.empty()) {
      auto viz_pass = AppendPass(pass_name);
      const std::string graph_path = string::Sprintf(
          "%s%s", strategy_.debug_graphviz_path_.c_str(), debug_file_suffix);
      viz_pass->Set<std::string>(ir::kGraphvizPath,
                                 new std::string(graph_path));
    }
  }

  void AppendPassWithCheck(bool append_pass, const std::string &pass_name) {
    if (append_pass) {
      AppendPass(pass_name);
    }
  }

  void AppendPassToSetMkldnnAttr(const std::string &pass_name) {
#ifdef PADDLE_WITH_MKLDNN
    if (FLAGS_use_mkldnn) {
      AppendPass(pass_name);
    } else if (!strategy_.mkldnn_enabled_op_types_.empty()) {
      LOG(WARNING)
          << "mkldnn_enabled_op_types specify the operator type list to "
             "use MKLDNN acceleration. It is null in default, means "
             "that all the operators supported by MKLDNN will be "
             "accelerated. And it should not be set when "
             "FLAGS_use_mkldnn=false.";
    }
#else
    PADDLE_ENFORCE(!FLAGS_use_mkldnn,
                   "Please compile with MKLDNN first to use MKLDNN");
#endif
  }

223 224 225 226
 private:
  BuildStrategy strategy_;
};

227
std::shared_ptr<ir::PassBuilder> BuildStrategy::CreatePassesFromStrategy(
X
Xin Pan 已提交
228 229
    bool finalize_strategy) const {
  if (is_finalized_) {
230 231
    return pass_builder_;
  }
232
  pass_builder_.reset(new ParallelExecutorPassBuilder(*this));
X
Xin Pan 已提交
233 234
  if (finalize_strategy) {
    is_finalized_ = true;
235
  }
X
fix  
Xin Pan 已提交
236
  return pass_builder_;
237 238
}

239
bool BuildStrategy::IsMultiDevPass(const std::string &pass_name) const {
240
  return framework::ir::MultiDevSSAGraphBuilder().count(pass_name) > 0;
241 242
}

243 244 245 246 247
ir::Graph *BuildStrategy::Apply(ir::Graph *graph,
                                const std::vector<platform::Place> &places,
                                const std::string &loss_var_name,
                                const std::vector<Scope *> &local_scopes,
                                const size_t &nranks,
P
peizhilin 已提交
248
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
249 250
                                const bool use_cuda,
                                platform::NCCLCommunicator *nccl_ctxs) const {
251
#else
252
                                const bool use_cuda) const {
253
#endif
254
  VLOG(3) << "apply all passes";
255 256
  // Create a default one if not finalized by user.
  CreatePassesFromStrategy(false);
X
fix  
Xin Pan 已提交
257 258

  for (std::shared_ptr<ir::Pass> &pass : pass_builder_->AllPasses()) {
G
gongweibao 已提交
259
    VLOG(3) << "BuildStrategy::Apply pass:" << pass->Type();
260 261 262
    if (IsMultiDevPass(pass->Type())) {
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
263 264
      pass->Erase(ir::kLossVarName);
      pass->SetNotOwned<const std::string>(ir::kLossVarName, &loss_var_name);
265 266
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
X
fix  
Xin Pan 已提交
267
                                                    &local_scopes);
268 269
      pass->Erase(ir::kNRanks);
      pass->Set<size_t>(ir::kNRanks, new size_t(nranks));
Y
Yancey1989 已提交
270

P
peizhilin 已提交
271
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
272
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
C
chengduo 已提交
273
      pass->Erase(kNCCLCtxs);
274
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
275
#endif
C
chengduo 已提交
276
    } else if (pass->Type() == "fuse_all_reduce_op_pass") {
C
chengduo 已提交
277 278 279 280 281 282
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
                                                    &local_scopes);
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
C
chengduo 已提交
283 284 285 286 287 288
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
      pass->Erase(kNCCLCtxs);
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
289
#endif
290
    } else if (pass->Type() == "coalesce_grad_tensor_pass") {
C
chengduo 已提交
291 292 293 294 295
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
                                                    &local_scopes);
S
sneaxiy 已提交
296
    } else if (pass->Type() == "sequential_execution_pass") {
297 298
      LOG(INFO) << "set enable_sequential_execution:"
                << enable_sequential_execution_;
299
    } else if (pass->Type() == "all_reduce_deps_pass") {
300
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
301
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
302
      pass->Erase(kNCCLCtxs);
303
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
304 305 306 307
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
#endif
308 309
      LOG(INFO) << "SeqOnlyAllReduceOps:" << SeqOnlyAllReduceOps(*this)
                << ", num_trainers:" << num_trainers_;
310 311 312 313 314 315
    } else if (pass->Type() == "fuse_relu_depthwise_conv_pass") {
      if (!use_cuda) {
        LOG(WARNING) << "fuse_relu_depthwise_conv_pass is only supported on "
                        "GPU, skipped.";
        continue;
      }
316 317 318
    } else if (pass->Type() == "mkldnn_placement_pass") {
      pass->Set("mkldnn_enabled_op_types",
                new std::unordered_set<std::string>(mkldnn_enabled_op_types_));
319 320 321 322 323 324
    } else if (pass->Type() == "backward_optimizer_op_deps_pass") {
      if (!use_cuda) {
        VLOG(1) << "backward_optimizer_op_deps_pass is only supported on "
                   "GPU, skipped.";
        continue;
      }
X
fix  
Xin Pan 已提交
325
    }
326
    VLOG(3) << "Start Apply Pass " << pass->Type();
327
    graph = pass->Apply(graph);
328
    VLOG(3) << "Finish Apply Pass " << pass->Type();
X
fix  
Xin Pan 已提交
329
  }
Q
Qiao Longfei 已提交
330
  VLOG(3) << "All Passes Applied";
331 332
  return graph;
}
D
dzhwinter 已提交
333

334 335 336 337
}  // namespace details
}  // namespace framework
}  // namespace paddle

Q
qingqing01 已提交
338
USE_PASS(sync_batch_norm_pass);
339
USE_PASS(fuse_relu_depthwise_conv_pass);
340 341
USE_PASS(fuse_elewise_add_act_pass);
USE_PASS(graph_viz_pass);
342
USE_PASS(multi_batch_merge_pass);
343
USE_PASS(reduce_mode_multi_devices_pass);
C
chengduo 已提交
344
USE_PASS(all_reduce_mode_multi_devices_pass);
345
USE_PASS(dist_multi_devices_pass);
346 347
USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass);
S
sneaxiy 已提交
348
USE_PASS(sequential_execution_pass);
349
USE_PASS(all_reduce_deps_pass);
350
USE_PASS(backward_optimizer_op_deps_pass);
S
sneaxiy 已提交
351
USE_PASS(modify_op_lock_and_record_event_pass);
M
minqiyang 已提交
352
USE_PASS(lock_free_optimize_pass);
353
USE_PASS(coalesce_grad_tensor_pass);
W
WangZhen 已提交
354
USE_PASS(graph_to_program_pass);
C
chengduo 已提交
355 356
USE_PASS(fuse_adam_op_pass);
USE_PASS(fuse_sgd_op_pass);
C
chengduo 已提交
357
USE_PASS(fuse_momentum_op_pass);
C
chengduo 已提交
358
USE_PASS(fuse_all_reduce_op_pass);
359
USE_PASS(runtime_context_cache_pass);
360 361 362
#ifdef PADDLE_WITH_MKLDNN
USE_PASS(mkldnn_placement_pass);
#endif