transforms.py 67.7 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
16
import numbers
L
LielinJiang 已提交
17
import random
18 19
import traceback
from collections.abc import Iterable, Sequence
L
LielinJiang 已提交
20 21 22

import numpy as np

23
import paddle
L
LielinJiang 已提交
24

25
from . import functional as F
L
LielinJiang 已提交
26

27
__all__ = []
L
LielinJiang 已提交
28 29


30 31 32 33 34
def _get_image_size(img):
    if F._is_pil_image(img):
        return img.size
    elif F._is_numpy_image(img):
        return img.shape[:2][::-1]
35
    elif F._is_tensor_image(img):
36 37 38 39 40 41
        if len(img.shape) == 3:
            return img.shape[1:][::-1]  # chw -> wh
        elif len(img.shape) == 4:
            return img.shape[2:][::-1]  # nchw -> wh
        else:
            raise ValueError(
42 43 44 45
                "The dim for input Tensor should be 3-D or 4-D, but received {}".format(
                    len(img.shape)
                )
            )
46 47 48 49
    else:
        raise TypeError("Unexpected type {}".format(type(img)))


50 51 52
def _check_input(
    value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True
):
53 54 55 56
    if isinstance(value, numbers.Number):
        if value < 0:
            raise ValueError(
                "If {} is a single number, it must be non negative.".format(
57 58 59
                    name
                )
            )
60 61 62 63 64
        value = [center - value, center + value]
        if clip_first_on_zero:
            value[0] = max(value[0], 0)
    elif isinstance(value, (tuple, list)) and len(value) == 2:
        if not bound[0] <= value[0] <= value[1] <= bound[1]:
65 66 67
            raise ValueError(
                "{} values should be between {}".format(name, bound)
            )
68 69
    else:
        raise TypeError(
70 71 72 73
            "{} should be a single number or a list/tuple with lenght 2.".format(
                name
            )
        )
74 75 76 77 78 79

    if value[0] == value[1] == center:
        value = None
    return value


80
class Compose:
L
LielinJiang 已提交
81 82 83 84 85
    """
    Composes several transforms together use for composing list of transforms
    together for a dataset transform.

    Args:
86
        transforms (list|tuple): List/Tuple of transforms to compose.
L
LielinJiang 已提交
87 88 89 90 91 92

    Returns:
        A compose object which is callable, __call__ for this Compose
        object will call each given :attr:`transforms` sequencely.

    Examples:
93

L
LielinJiang 已提交
94 95
        .. code-block:: python

96 97
            from paddle.vision.datasets import Flowers
            from paddle.vision.transforms import Compose, ColorJitter, Resize
L
LielinJiang 已提交
98 99 100 101 102 103

            transform = Compose([ColorJitter(), Resize(size=608)])
            flowers = Flowers(mode='test', transform=transform)

            for i in range(10):
                sample = flowers[i]
104
                print(sample[0].size, sample[1])
L
LielinJiang 已提交
105 106 107 108 109 110

    """

    def __init__(self, transforms):
        self.transforms = transforms

111
    def __call__(self, data):
L
LielinJiang 已提交
112 113
        for f in self.transforms:
            try:
114
                data = f(data)
L
LielinJiang 已提交
115 116
            except Exception as e:
                stack_info = traceback.format_exc()
117 118 119 120
                print(
                    "fail to perform transform [{}] with error: "
                    "{} and stack:\n{}".format(f, e, str(stack_info))
                )
L
LielinJiang 已提交
121 122 123 124 125 126 127 128 129 130 131 132
                raise e
        return data

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


133
class BaseTransform:
134 135
    """
    Base class of all transforms used in computer vision.
L
LielinJiang 已提交
136

137
    calling logic:
138

I
Infinity_lee 已提交
139 140
    .. code-block:: text

141 142 143
        if keys is None:
            _get_params -> _apply_image()
        else:
144
            _get_params -> _apply_*() for * in keys
145 146 147

    If you want to implement a self-defined transform method for image,
    rewrite _apply_* method in subclass.
L
LielinJiang 已提交
148

149 150 151 152
    Args:
        keys (list[str]|tuple[str], optional): Input type. Input is a tuple contains different structures,
            key is used to specify the type of input. For example, if your input
            is image type, then the key can be None or ("image"). if your input
153
            is (image, image) type, then the keys should be ("image", "image").
154 155 156 157
            if your input is (image, boxes), then the keys should be ("image", "boxes").

            Current available strings & data type are describe below:

I
Infinity_lee 已提交
158 159 160 161 162
                - "image": input image, with shape of (H, W, C)
                - "coords": coordinates, with shape of (N, 2)
                - "boxes": bounding boxes, with shape of (N, 4), "xyxy" format,the 1st "xy" represents
                  top left point of a box,the 2nd "xy" represents right bottom point.
                - "mask": map used for segmentation, with shape of (H, W, 1)
163

164 165
            You can also customize your data types only if you implement the corresponding
            _apply_*() methods, otherwise ``NotImplementedError`` will be raised.
166

L
LielinJiang 已提交
167
    Examples:
168

L
LielinJiang 已提交
169 170 171
        .. code-block:: python

            import numpy as np
172 173 174 175 176 177 178 179 180 181 182 183 184 185
            from PIL import Image
            import paddle.vision.transforms.functional as F
            from paddle.vision.transforms import BaseTransform

            def _get_image_size(img):
                if F._is_pil_image(img):
                    return img.size
                elif F._is_numpy_image(img):
                    return img.shape[:2][::-1]
                else:
                    raise TypeError("Unexpected type {}".format(type(img)))

            class CustomRandomFlip(BaseTransform):
                def __init__(self, prob=0.5, keys=None):
186
                    super().__init__(keys)
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
                    self.prob = prob

                def _get_params(self, inputs):
                    image = inputs[self.keys.index('image')]
                    params = {}
                    params['flip'] = np.random.random() < self.prob
                    params['size'] = _get_image_size(image)
                    return params

                def _apply_image(self, image):
                    if self.params['flip']:
                        return F.hflip(image)
                    return image

                # if you only want to transform image, do not need to rewrite this function
                def _apply_coords(self, coords):
                    if self.params['flip']:
                        w = self.params['size'][0]
                        coords[:, 0] = w - coords[:, 0]
                    return coords

                # if you only want to transform image, do not need to rewrite this function
                def _apply_boxes(self, boxes):
                    idxs = np.array([(0, 1), (2, 1), (0, 3), (2, 3)]).flatten()
                    coords = np.asarray(boxes).reshape(-1, 4)[:, idxs].reshape(-1, 2)
                    coords = self._apply_coords(coords).reshape((-1, 4, 2))
                    minxy = coords.min(axis=1)
                    maxxy = coords.max(axis=1)
                    trans_boxes = np.concatenate((minxy, maxxy), axis=1)
                    return trans_boxes
217

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
                # if you only want to transform image, do not need to rewrite this function
                def _apply_mask(self, mask):
                    if self.params['flip']:
                        return F.hflip(mask)
                    return mask

            # create fake inputs
            fake_img = Image.fromarray((np.random.rand(400, 500, 3) * 255.).astype('uint8'))
            fake_boxes = np.array([[2, 3, 200, 300], [50, 60, 80, 100]])
            fake_mask = fake_img.convert('L')

            # only transform for image:
            flip_transform = CustomRandomFlip(1.0)
            converted_img = flip_transform(fake_img)

            # transform for image, boxes and mask
            flip_transform = CustomRandomFlip(1.0, keys=('image', 'boxes', 'mask'))
            (converted_img, converted_boxes, converted_mask) = flip_transform((fake_img, fake_boxes, fake_mask))
            print('converted boxes', converted_boxes)
L
LielinJiang 已提交
237 238 239

    """

240 241
    def __init__(self, keys=None):
        if keys is None:
242
            keys = ("image",)
243 244
        elif not isinstance(keys, Sequence):
            raise ValueError(
245 246
                "keys should be a sequence, but got keys={}".format(keys)
            )
247 248 249
        for k in keys:
            if self._get_apply(k) is None:
                raise NotImplementedError(
250 251
                    "{} is unsupported data structure".format(k)
                )
252 253 254 255 256 257 258 259 260 261 262
        self.keys = keys

        # storage some params get from function get_params()
        self.params = None

    def _get_params(self, inputs):
        pass

    def __call__(self, inputs):
        """Apply transform on single input data"""
        if not isinstance(inputs, tuple):
263
            inputs = (inputs,)
264 265 266 267 268 269 270 271 272 273 274

        self.params = self._get_params(inputs)

        outputs = []
        for i in range(min(len(inputs), len(self.keys))):
            apply_func = self._get_apply(self.keys[i])
            if apply_func is None:
                outputs.append(inputs[i])
            else:
                outputs.append(apply_func(inputs[i]))
        if len(inputs) > len(self.keys):
275
            outputs.extend(inputs[len(self.keys) :])
276 277 278 279 280 281

        if len(outputs) == 1:
            outputs = outputs[0]
        else:
            outputs = tuple(outputs)
        return outputs
L
LielinJiang 已提交
282

283 284
    def _get_apply(self, key):
        return getattr(self, "_apply_{}".format(key), None)
L
LielinJiang 已提交
285

286 287
    def _apply_image(self, image):
        raise NotImplementedError
L
LielinJiang 已提交
288

289 290
    def _apply_boxes(self, boxes):
        raise NotImplementedError
L
LielinJiang 已提交
291

292 293
    def _apply_mask(self, mask):
        raise NotImplementedError
L
LielinJiang 已提交
294

295 296 297 298

class ToTensor(BaseTransform):
    """Convert a ``PIL.Image`` or ``numpy.ndarray`` to ``paddle.Tensor``.

L
LielinJiang 已提交
299 300
    Converts a PIL.Image or numpy.ndarray (H x W x C) to a paddle.Tensor of shape (C x H x W).

301
    If input is a grayscale image (H x W), it will be converted to an image of shape (H x W x 1).
L
LielinJiang 已提交
302 303 304 305
    And the shape of output tensor will be (1 x H x W).

    If you want to keep the shape of output tensor as (H x W x C), you can set data_format = ``HWC`` .

306 307 308
    Converts a PIL.Image or numpy.ndarray in the range [0, 255] to a paddle.Tensor in the
    range [0.0, 1.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr,
    RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8.
309 310 311 312

    In the other cases, tensors are returned without scaling.

    Args:
313
        data_format (str, optional): Data format of output tensor, should be 'HWC' or
314 315
            'CHW'. Default: 'CHW'.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
316

317 318 319 320 321 322 323
    Shape:
        - img(PIL.Image|np.ndarray): The input image with shape (H x W x C).
        - output(np.ndarray): A tensor with shape (C x H x W) or (H x W x C) according option data_format.

    Returns:
        A callable object of ToTensor.

324
    Examples:
325

326 327 328 329 330 331 332 333
        .. code-block:: python

            import numpy as np
            from PIL import Image

            import paddle.vision.transforms as T
            import paddle.vision.transforms.functional as F

L
Liyulingyue 已提交
334
            fake_img = Image.fromarray((np.random.rand(4, 5, 3) * 255.).astype(np.uint8))
335 336 337 338

            transform = T.ToTensor()

            tensor = transform(fake_img)
339

L
Liyulingyue 已提交
340 341
            print(tensor.shape)
            # [3, 4, 5]
342

L
Liyulingyue 已提交
343 344
            print(tensor.dtype)
            # paddle.float32
345 346 347
    """

    def __init__(self, data_format='CHW', keys=None):
348
        super().__init__(keys)
349 350 351 352 353 354 355 356 357 358 359 360 361 362
        self.data_format = data_format

    def _apply_image(self, img):
        """
        Args:
            img (PIL.Image|np.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(img, self.data_format)


class Resize(BaseTransform):
L
LielinJiang 已提交
363 364 365 366 367 368 369 370
    """Resize the input Image to the given size.

    Args:
        size (int|list|tuple): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size)
371 372 373 374 375 376 377
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'.
            when use pil backend, support method are as following:
            - "nearest": Image.NEAREST,
            - "bilinear": Image.BILINEAR,
            - "bicubic": Image.BICUBIC,
            - "box": Image.BOX,
            - "lanczos": Image.LANCZOS,
378
            - "hamming": Image.HAMMING
379 380 381 382 383
            when use cv2 backend, support method are as following:
            - "nearest": cv2.INTER_NEAREST,
            - "bilinear": cv2.INTER_LINEAR,
            - "area": cv2.INTER_AREA,
            - "bicubic": cv2.INTER_CUBIC,
384 385
            - "lanczos": cv2.INTER_LANCZOS4
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
386

387 388 389 390 391 392 393
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A resized image.

    Returns:
        A callable object of Resize.

L
LielinJiang 已提交
394
    Examples:
395

L
LielinJiang 已提交
396 397 398
        .. code-block:: python

            import numpy as np
399
            from PIL import Image
400
            from paddle.vision.transforms import Resize
L
LielinJiang 已提交
401

402
            fake_img = Image.fromarray((np.random.rand(256, 300, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
403

404 405 406 407 408 409 410 411 412
            transform = Resize(size=224)
            converted_img = transform(fake_img)
            print(converted_img.size)
            # (262, 224)

            transform = Resize(size=(200,150))
            converted_img = transform(fake_img)
            print(converted_img.size)
            # (150, 200)
L
LielinJiang 已提交
413 414
    """

415
    def __init__(self, size, interpolation='bilinear', keys=None):
416
        super().__init__(keys)
417 418 419
        assert isinstance(size, int) or (
            isinstance(size, Iterable) and len(size) == 2
        )
L
LielinJiang 已提交
420 421 422
        self.size = size
        self.interpolation = interpolation

423
    def _apply_image(self, img):
L
LielinJiang 已提交
424 425 426
        return F.resize(img, self.size, self.interpolation)


427
class RandomResizedCrop(BaseTransform):
L
LielinJiang 已提交
428 429 430 431 432 433
    """Crop the input data to random size and aspect ratio.
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 1.33) of the original aspect ratio is made.
    After applying crop transfrom, the input data will be resized to given size.

    Args:
434
        size (int|list|tuple): Target size of output image, with (height, width) shape.
I
Infinity_lee 已提交
435 436 437
        scale (list|tuple, optional): Scale range of the cropped image before resizing, relatively to the origin
            image. Default: (0.08, 1.0).
        ratio (list|tuple, optional): Range of aspect ratio of the origin aspect ratio cropped. Default: (0.75, 1.33)
438 439 440 441 442 443 444
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'. when use pil backend,
            support method are as following:
            - "nearest": Image.NEAREST,
            - "bilinear": Image.BILINEAR,
            - "bicubic": Image.BICUBIC,
            - "box": Image.BOX,
            - "lanczos": Image.LANCZOS,
445
            - "hamming": Image.HAMMING
446 447 448 449 450
            when use cv2 backend, support method are as following:
            - "nearest": cv2.INTER_NEAREST,
            - "bilinear": cv2.INTER_LINEAR,
            - "area": cv2.INTER_AREA,
            - "bicubic": cv2.INTER_CUBIC,
451 452
            - "lanczos": cv2.INTER_LANCZOS4
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
453

454 455 456 457 458 459 460
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A cropped image.

    Returns:
        A callable object of RandomResizedCrop.

L
LielinJiang 已提交
461
    Examples:
462

L
LielinJiang 已提交
463 464 465
        .. code-block:: python

            import numpy as np
466
            from PIL import Image
467
            from paddle.vision.transforms import RandomResizedCrop
L
LielinJiang 已提交
468 469 470

            transform = RandomResizedCrop(224)

471
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
472 473

            fake_img = transform(fake_img)
474 475
            print(fake_img.size)

L
LielinJiang 已提交
476 477
    """

478 479 480 481 482 483 484 485
    def __init__(
        self,
        size,
        scale=(0.08, 1.0),
        ratio=(3.0 / 4, 4.0 / 3),
        interpolation='bilinear',
        keys=None,
    ):
486
        super().__init__(keys)
487 488
        if isinstance(size, int):
            self.size = (size, size)
L
LielinJiang 已提交
489
        else:
490
            self.size = size
491 492
        assert scale[0] <= scale[1], "scale should be of kind (min, max)"
        assert ratio[0] <= ratio[1], "ratio should be of kind (min, max)"
L
LielinJiang 已提交
493 494 495 496
        self.scale = scale
        self.ratio = ratio
        self.interpolation = interpolation

497
    def _dynamic_get_param(self, image, attempts=10):
498
        width, height = _get_image_size(image)
L
LielinJiang 已提交
499 500 501 502 503 504 505 506 507 508 509
        area = height * width

        for _ in range(attempts):
            target_area = np.random.uniform(*self.scale) * area
            log_ratio = tuple(math.log(x) for x in self.ratio)
            aspect_ratio = math.exp(np.random.uniform(*log_ratio))

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if 0 < w <= width and 0 < h <= height:
510 511 512
                i = random.randint(0, height - h)
                j = random.randint(0, width - w)
                return i, j, h, w
L
LielinJiang 已提交
513 514 515 516 517 518 519 520 521

        # Fallback to central crop
        in_ratio = float(width) / float(height)
        if in_ratio < min(self.ratio):
            w = width
            h = int(round(w / min(self.ratio)))
        elif in_ratio > max(self.ratio):
            h = height
            w = int(round(h * max(self.ratio)))
522 523
        else:
            # return whole image
L
LielinJiang 已提交
524 525
            w = width
            h = height
526 527 528
        i = (height - h) // 2
        j = (width - w) // 2
        return i, j, h, w
L
LielinJiang 已提交
529

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
    def _static_get_param(self, image, attempts=10):
        width, height = _get_image_size(image)
        area = height * width
        log_ratio = tuple(math.log(x) for x in self.ratio)

        counter = paddle.full(
            shape=[1], fill_value=0, dtype='int32'
        )  # loop counter

        ten = paddle.full(
            shape=[1], fill_value=10, dtype='int32'
        )  # loop length

        i = paddle.zeros([1], dtype="int32")
        j = paddle.zeros([1], dtype="int32")
        h = paddle.ones([1], dtype="int32") * (height + 1)
        w = paddle.ones([1], dtype="int32") * (width + 1)

        def cond(counter, ten, i, j, h, w):
            return (counter < ten) and (w > width or h > height)

        def body(counter, ten, i, j, h, w):
            target_area = (
                paddle.uniform(shape=[1], min=self.scale[0], max=self.scale[1])
                * area
            )
            aspect_ratio = paddle.exp(
                paddle.uniform(shape=[1], min=log_ratio[0], max=log_ratio[1])
            )

            w = paddle.round(paddle.sqrt(target_area * aspect_ratio)).astype(
                'int32'
            )
            h = paddle.round(paddle.sqrt(target_area / aspect_ratio)).astype(
                'int32'
            )

            i = paddle.static.nn.cond(
                0 < w <= width and 0 < h <= height,
                lambda: paddle.uniform(shape=[1], min=0, max=height - h).astype(
                    "int32"
                ),
                lambda: i,
            )

            j = paddle.static.nn.cond(
                0 < w <= width and 0 < h <= height,
                lambda: paddle.uniform(shape=[1], min=0, max=width - w).astype(
                    "int32"
                ),
                lambda: j,
            )

            counter += 1

            return counter, ten, i, j, h, w

        counter, ten, i, j, h, w = paddle.static.nn.while_loop(
            cond, body, [counter, ten, i, j, h, w]
        )

        def central_crop(width, height):

            height = paddle.assign([height]).astype("float32")
            width = paddle.assign([width]).astype("float32")

            # Fallback to central crop
            in_ratio = width / height

            w, h = paddle.static.nn.cond(
                in_ratio < self.ratio[0],
                lambda: [
                    width.astype("int32"),
                    paddle.round(width / self.ratio[0]).astype("int32"),
                ],
                lambda: paddle.static.nn.cond(
                    in_ratio > self.ratio[1],
                    lambda: [
                        paddle.round(height * self.ratio[1]),
                        height.astype("int32"),
                    ],
                    lambda: [width.astype("int32"), height.astype("int32")],
                ),
            )
            i = (height.astype("int32") - h) // 2
            j = (width.astype("int32") - w) // 2

            return i, j, h, w, counter

        return paddle.static.nn.cond(
            0 < w <= width and 0 < h <= height,
            lambda: [i, j, h, w, counter],
            lambda: central_crop(width, height),
        )

625
    def _apply_image(self, img):
626 627 628 629
        if paddle.in_dynamic_mode():
            i, j, h, w = self._dynamic_get_param(img)
        else:
            i, j, h, w, counter = self._static_get_param(img)
L
LielinJiang 已提交
630

631
        cropped_img = F.crop(img, i, j, h, w)
L
LielinJiang 已提交
632 633 634
        return F.resize(cropped_img, self.size, self.interpolation)


635
class CenterCrop(BaseTransform):
L
LielinJiang 已提交
636 637 638
    """Crops the given the input data at the center.

    Args:
639 640 641
        size (int|list|tuple): Target size of output image, with (height, width) shape.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.

642 643 644 645 646 647 648
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A cropped image.

    Returns:
        A callable object of CenterCrop.

L
LielinJiang 已提交
649
    Examples:
650

L
LielinJiang 已提交
651 652 653
        .. code-block:: python

            import numpy as np
654
            from PIL import Image
655
            from paddle.vision.transforms import CenterCrop
L
LielinJiang 已提交
656 657 658

            transform = CenterCrop(224)

659
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
660 661

            fake_img = transform(fake_img)
662
            print(fake_img.size)
L
LielinJiang 已提交
663 664
    """

665
    def __init__(self, size, keys=None):
666
        super().__init__(keys)
667 668
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
L
LielinJiang 已提交
669
        else:
670
            self.size = size
L
LielinJiang 已提交
671

672 673
    def _apply_image(self, img):
        return F.center_crop(img, self.size)
L
LielinJiang 已提交
674 675


676
class RandomHorizontalFlip(BaseTransform):
L
LielinJiang 已提交
677 678 679
    """Horizontally flip the input data randomly with a given probability.

    Args:
B
Bin Lu 已提交
680
        prob (float, optional): Probability of the input data being flipped. Should be in [0, 1]. Default: 0.5
681
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
682

683 684 685 686 687 688 689
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A horiziotal flipped image.

    Returns:
        A callable object of RandomHorizontalFlip.

L
LielinJiang 已提交
690
    Examples:
691

L
LielinJiang 已提交
692 693 694
        .. code-block:: python

            import numpy as np
695
            from PIL import Image
696
            from paddle.vision.transforms import RandomHorizontalFlip
L
LielinJiang 已提交
697

B
Bin Lu 已提交
698
            transform = RandomHorizontalFlip(0.5)
L
LielinJiang 已提交
699

700
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
701 702

            fake_img = transform(fake_img)
703
            print(fake_img.size)
L
LielinJiang 已提交
704 705
    """

706
    def __init__(self, prob=0.5, keys=None):
707
        super().__init__(keys)
I
IMMORTAL 已提交
708
        assert 0 <= prob <= 1, "probability must be between 0 and 1"
L
LielinJiang 已提交
709 710
        self.prob = prob

711
    def _apply_image(self, img):
712 713 714 715 716 717
        if paddle.in_dynamic_mode():
            return self._dynamic_apply_image(img)
        else:
            return self._static_apply_image(img)

    def _dynamic_apply_image(self, img):
718 719
        if random.random() < self.prob:
            return F.hflip(img)
L
LielinJiang 已提交
720 721
        return img

722 723 724 725 726 727 728
    def _static_apply_image(self, img):
        return paddle.static.nn.cond(
            paddle.rand(shape=(1,)) < self.prob,
            lambda: F.hflip(img),
            lambda: img,
        )

L
LielinJiang 已提交
729

730
class RandomVerticalFlip(BaseTransform):
L
LielinJiang 已提交
731 732 733
    """Vertically flip the input data randomly with a given probability.

    Args:
734 735
        prob (float, optional): Probability of the input data being flipped. Default: 0.5
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
736

737 738 739 740 741 742 743
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A vertical flipped image.

    Returns:
        A callable object of RandomVerticalFlip.

L
LielinJiang 已提交
744
    Examples:
745

L
LielinJiang 已提交
746 747 748
        .. code-block:: python

            import numpy as np
749
            from PIL import Image
750
            from paddle.vision.transforms import RandomVerticalFlip
L
LielinJiang 已提交
751

752
            transform = RandomVerticalFlip()
L
LielinJiang 已提交
753

754
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
755 756

            fake_img = transform(fake_img)
757 758
            print(fake_img.size)

L
LielinJiang 已提交
759 760
    """

761
    def __init__(self, prob=0.5, keys=None):
762
        super().__init__(keys)
I
IMMORTAL 已提交
763
        assert 0 <= prob <= 1, "probability must be between 0 and 1"
L
LielinJiang 已提交
764 765
        self.prob = prob

766
    def _apply_image(self, img):
767 768 769 770 771 772
        if paddle.in_dynamic_mode():
            return self._dynamic_apply_image(img)
        else:
            return self._static_apply_image(img)

    def _dynamic_apply_image(self, img):
773 774
        if random.random() < self.prob:
            return F.vflip(img)
L
LielinJiang 已提交
775 776
        return img

777 778 779 780 781 782 783
    def _static_apply_image(self, img):
        return paddle.static.nn.cond(
            paddle.rand(shape=(1,)) < self.prob,
            lambda: F.vflip(img),
            lambda: img,
        )

L
LielinJiang 已提交
784

785
class Normalize(BaseTransform):
L
LielinJiang 已提交
786 787 788 789 790 791
    """Normalize the input data with mean and standard deviation.
    Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels,
    this transform will normalize each channel of the input data.
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``

    Args:
792 793
        mean (int|float|list|tuple, optional): Sequence of means for each channel.
        std (int|float|list|tuple, optional): Sequence of standard deviations for each channel.
794
        data_format (str, optional): Data format of img, should be 'HWC' or
795 796 797
            'CHW'. Default: 'CHW'.
        to_rgb (bool, optional): Whether to convert to rgb. Default: False.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
798 799 800 801 802 803 804 805

    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A normalized array or tensor.

    Returns:
        A callable object of Normalize.

L
LielinJiang 已提交
806
    Examples:
807

L
LielinJiang 已提交
808
        .. code-block:: python
809 810
          :name: code-example
            import paddle
811
            from paddle.vision.transforms import Normalize
L
LielinJiang 已提交
812

813
            normalize = Normalize(mean=[127.5, 127.5, 127.5],
814 815
                                  std=[127.5, 127.5, 127.5],
                                  data_format='HWC')
L
LielinJiang 已提交
816

817
            fake_img = paddle.rand([300,320,3]).numpy() * 255.
L
LielinJiang 已提交
818 819 820

            fake_img = normalize(fake_img)
            print(fake_img.shape)
821 822 823
            # (300, 320, 3)
            print(fake_img.max(), fake_img.min())
            # 0.99999905 -0.999974
824

L
LielinJiang 已提交
825 826
    """

827 828 829
    def __init__(
        self, mean=0.0, std=1.0, data_format='CHW', to_rgb=False, keys=None
    ):
830
        super().__init__(keys)
L
LielinJiang 已提交
831 832 833 834
        if isinstance(mean, numbers.Number):
            mean = [mean, mean, mean]

        if isinstance(std, numbers.Number):
L
LielinJiang 已提交
835
            std = [std, std, std]
L
LielinJiang 已提交
836

837 838 839 840
        self.mean = mean
        self.std = std
        self.data_format = data_format
        self.to_rgb = to_rgb
L
LielinJiang 已提交
841

842
    def _apply_image(self, img):
843 844 845
        return F.normalize(
            img, self.mean, self.std, self.data_format, self.to_rgb
        )
L
LielinJiang 已提交
846 847


848 849
class Transpose(BaseTransform):
    """Transpose input data to a target format.
L
LielinJiang 已提交
850 851
    For example, most transforms use HWC mode image,
    while the Neural Network might use CHW mode input tensor.
852
    output image will be an instance of numpy.ndarray.
L
LielinJiang 已提交
853 854

    Args:
855 856
        order (list|tuple, optional): Target order of input data. Default: (2, 0, 1).
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
857

858 859
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
860
        - output(np.ndarray|Paddle.Tensor): A transposed array or tensor. If input
861 862 863 864 865
            is a PIL.Image, output will be converted to np.ndarray automatically.

    Returns:
        A callable object of Transpose.

L
LielinJiang 已提交
866
    Examples:
867

L
LielinJiang 已提交
868 869 870
        .. code-block:: python

            import numpy as np
871 872
            from PIL import Image
            from paddle.vision.transforms import Transpose
L
LielinJiang 已提交
873

874
            transform = Transpose()
L
LielinJiang 已提交
875

876
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
877 878 879

            fake_img = transform(fake_img)
            print(fake_img.shape)
880

L
LielinJiang 已提交
881 882
    """

883
    def __init__(self, order=(2, 0, 1), keys=None):
884
        super().__init__(keys)
885 886 887
        self.order = order

    def _apply_image(self, img):
888 889 890
        if F._is_tensor_image(img):
            return img.transpose(self.order)

891 892
        if F._is_pil_image(img):
            img = np.asarray(img)
L
LielinJiang 已提交
893

894 895
        if len(img.shape) == 2:
            img = img[..., np.newaxis]
896
        return img.transpose(self.order)
L
LielinJiang 已提交
897 898


899
class BrightnessTransform(BaseTransform):
L
LielinJiang 已提交
900 901 902 903
    """Adjust brightness of the image.

    Args:
        value (float): How much to adjust the brightness. Can be any
I
Infinity_lee 已提交
904
            non negative number. 0 gives the original image.
905
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
906

907 908 909 910 911 912 913
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in brghtness.

    Returns:
        A callable object of BrightnessTransform.

L
LielinJiang 已提交
914
    Examples:
915

L
LielinJiang 已提交
916 917 918
        .. code-block:: python

            import numpy as np
919
            from PIL import Image
920
            from paddle.vision.transforms import BrightnessTransform
L
LielinJiang 已提交
921 922 923

            transform = BrightnessTransform(0.4)

924
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
925 926

            fake_img = transform(fake_img)
927

L
LielinJiang 已提交
928 929
    """

930
    def __init__(self, value, keys=None):
931
        super().__init__(keys)
932
        self.value = _check_input(value, 'brightness')
L
LielinJiang 已提交
933

934 935
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
936 937
            return img

938 939
        brightness_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_brightness(img, brightness_factor)
L
LielinJiang 已提交
940 941


942
class ContrastTransform(BaseTransform):
L
LielinJiang 已提交
943 944 945 946
    """Adjust contrast of the image.

    Args:
        value (float): How much to adjust the contrast. Can be any
I
Infinity_lee 已提交
947
            non negative number. 0 gives the original image.
948
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
949

950 951 952 953 954 955 956
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in contrast.

    Returns:
        A callable object of ContrastTransform.

L
LielinJiang 已提交
957
    Examples:
958

L
LielinJiang 已提交
959 960 961
        .. code-block:: python

            import numpy as np
962
            from PIL import Image
963
            from paddle.vision.transforms import ContrastTransform
L
LielinJiang 已提交
964 965 966

            transform = ContrastTransform(0.4)

967
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
968 969

            fake_img = transform(fake_img)
970

L
LielinJiang 已提交
971 972
    """

973
    def __init__(self, value, keys=None):
974
        super().__init__(keys)
L
LielinJiang 已提交
975 976
        if value < 0:
            raise ValueError("contrast value should be non-negative")
977
        self.value = _check_input(value, 'contrast')
L
LielinJiang 已提交
978

979 980
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
981 982
            return img

983 984
        contrast_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_contrast(img, contrast_factor)
L
LielinJiang 已提交
985 986


987
class SaturationTransform(BaseTransform):
L
LielinJiang 已提交
988 989 990 991
    """Adjust saturation of the image.

    Args:
        value (float): How much to adjust the saturation. Can be any
I
Infinity_lee 已提交
992
            non negative number. 0 gives the original image.
993
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
994

995 996 997 998 999 1000 1001
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in saturation.

    Returns:
        A callable object of SaturationTransform.

L
LielinJiang 已提交
1002
    Examples:
1003

L
LielinJiang 已提交
1004 1005 1006
        .. code-block:: python

            import numpy as np
1007
            from PIL import Image
1008
            from paddle.vision.transforms import SaturationTransform
L
LielinJiang 已提交
1009 1010 1011

            transform = SaturationTransform(0.4)

1012
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
1013

L
LielinJiang 已提交
1014
            fake_img = transform(fake_img)
1015

L
LielinJiang 已提交
1016 1017
    """

1018
    def __init__(self, value, keys=None):
1019
        super().__init__(keys)
1020
        self.value = _check_input(value, 'saturation')
L
LielinJiang 已提交
1021

1022 1023
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
1024 1025
            return img

1026 1027
        saturation_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_saturation(img, saturation_factor)
L
LielinJiang 已提交
1028

L
LielinJiang 已提交
1029

1030
class HueTransform(BaseTransform):
L
LielinJiang 已提交
1031 1032 1033 1034
    """Adjust hue of the image.

    Args:
        value (float): How much to adjust the hue. Can be any number
I
Infinity_lee 已提交
1035
            between 0 and 0.5, 0 gives the original image.
1036
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
1037

1038 1039 1040 1041 1042 1043 1044
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in hue.

    Returns:
        A callable object of HueTransform.

L
LielinJiang 已提交
1045
    Examples:
1046

L
LielinJiang 已提交
1047 1048 1049
        .. code-block:: python

            import numpy as np
1050
            from PIL import Image
1051
            from paddle.vision.transforms import HueTransform
L
LielinJiang 已提交
1052 1053 1054

            transform = HueTransform(0.4)

1055
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1056 1057

            fake_img = transform(fake_img)
1058

L
LielinJiang 已提交
1059 1060
    """

1061
    def __init__(self, value, keys=None):
1062
        super().__init__(keys)
1063 1064 1065
        self.value = _check_input(
            value, 'hue', center=0, bound=(-0.5, 0.5), clip_first_on_zero=False
        )
L
LielinJiang 已提交
1066

1067 1068
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
1069 1070
            return img

1071 1072
        hue_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_hue(img, hue_factor)
L
LielinJiang 已提交
1073 1074


1075
class ColorJitter(BaseTransform):
L
LielinJiang 已提交
1076 1077 1078
    """Randomly change the brightness, contrast, saturation and hue of an image.

    Args:
I
Infinity_lee 已提交
1079 1080 1081 1082 1083 1084 1085 1086
        brightness (float, optional): How much to jitter brightness.
            Chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. Should be non negative numbers. Default: 0.
        contrast (float, optional): How much to jitter contrast.
            Chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. Should be non negative numbers. Default: 0.
        saturation (float, optional): How much to jitter saturation.
            Chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. Should be non negative numbers. Default: 0.
        hue (float, optional): How much to jitter hue.
            Chosen uniformly from [-hue, hue]. Should have 0<= hue <= 0.5. Default: 0.
1087
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
1088

1089 1090 1091 1092 1093 1094 1095
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A color jittered image.

    Returns:
        A callable object of ColorJitter.

L
LielinJiang 已提交
1096
    Examples:
1097

L
LielinJiang 已提交
1098 1099 1100
        .. code-block:: python

            import numpy as np
1101
            from PIL import Image
1102
            from paddle.vision.transforms import ColorJitter
L
LielinJiang 已提交
1103

1104
            transform = ColorJitter(0.4, 0.4, 0.4, 0.4)
L
LielinJiang 已提交
1105

1106
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1107 1108

            fake_img = transform(fake_img)
1109

L
LielinJiang 已提交
1110 1111
    """

1112 1113 1114
    def __init__(
        self, brightness=0, contrast=0, saturation=0, hue=0, keys=None
    ):
1115
        super().__init__(keys)
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
        self.brightness = brightness
        self.contrast = contrast
        self.saturation = saturation
        self.hue = hue

    def _get_param(self, brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
L
LielinJiang 已提交
1130
        transforms = []
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

        if brightness is not None:
            transforms.append(BrightnessTransform(brightness, self.keys))

        if contrast is not None:
            transforms.append(ContrastTransform(contrast, self.keys))

        if saturation is not None:
            transforms.append(SaturationTransform(saturation, self.keys))

        if hue is not None:
            transforms.append(HueTransform(hue, self.keys))
L
LielinJiang 已提交
1143 1144

        random.shuffle(transforms)
1145
        transform = Compose(transforms)
L
LielinJiang 已提交
1146

1147
        return transform
L
LielinJiang 已提交
1148

1149 1150 1151 1152
    def _apply_image(self, img):
        """
        Args:
            img (PIL Image): Input image.
L
LielinJiang 已提交
1153

1154 1155 1156
        Returns:
            PIL Image: Color jittered image.
        """
1157 1158 1159
        transform = self._get_param(
            self.brightness, self.contrast, self.saturation, self.hue
        )
1160 1161 1162 1163
        return transform(img)


class RandomCrop(BaseTransform):
L
LielinJiang 已提交
1164 1165 1166 1167 1168 1169
    """Crops the given CV Image at a random location.

    Args:
        size (sequence|int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
1170
        padding (int|sequence, optional): Optional padding on each border
1171
            of the image. If a sequence of length 4 is provided, it is used to pad left,
1172 1173
            top, right, bottom borders respectively. Default: None, without padding.
        pad_if_needed (boolean, optional): It will pad the image if smaller than the
L
LielinJiang 已提交
1174
            desired size to avoid raising an exception. Default: False.
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
        fill (float|tuple, optional): Pixel fill value for constant fill. If a tuple of
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant. Default: 0.
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default: 'constant'.

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value on the edge of the image

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                   padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                   will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image (repeating the last value on the edge)

                     padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                     will result in [2, 1, 1, 2, 3, 4, 4, 3]
1193
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1194

1195
    Shape
1196 1197 1198 1199 1200 1201
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A random cropped image.

    Returns:
        A callable object of RandomCrop.

L
LielinJiang 已提交
1202
    Examples:
1203

L
LielinJiang 已提交
1204
        .. code-block:: python
1205
          :name: code-example1
L
LielinJiang 已提交
1206

1207
            import paddle
1208
            from paddle.vision.transforms import RandomCrop
L
LielinJiang 已提交
1209 1210
            transform = RandomCrop(224)

1211 1212
            fake_img = paddle.randint(0, 255, shape=(3, 324,300), dtype = 'int32')
            print(fake_img.shape) # [3, 324, 300]
L
LielinJiang 已提交
1213

1214 1215
            crop_img = transform(fake_img)
            print(crop_img.shape) # [3, 224, 224]
L
LielinJiang 已提交
1216 1217
    """

1218 1219 1220 1221 1222 1223 1224 1225 1226
    def __init__(
        self,
        size,
        padding=None,
        pad_if_needed=False,
        fill=0,
        padding_mode='constant',
        keys=None,
    ):
1227
        super().__init__(keys)
L
LielinJiang 已提交
1228 1229 1230 1231 1232 1233
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.padding = padding
        self.pad_if_needed = pad_if_needed
1234 1235
        self.fill = fill
        self.padding_mode = padding_mode
L
LielinJiang 已提交
1236

1237
    def _get_param(self, img, output_size):
L
LielinJiang 已提交
1238 1239 1240
        """Get parameters for ``crop`` for a random crop.

        Args:
1241
            img (PIL Image): Image to be cropped.
L
LielinJiang 已提交
1242 1243 1244 1245 1246
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
1247
        w, h = _get_image_size(img)
L
LielinJiang 已提交
1248 1249 1250 1251
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

1252 1253 1254 1255 1256 1257
        if paddle.in_dynamic_mode():
            i = random.randint(0, h - th)
            j = random.randint(0, w - tw)
        else:
            i = paddle.randint(low=0, high=h - th)
            j = paddle.randint(low=0, high=w - tw)
L
LielinJiang 已提交
1258 1259
        return i, j, th, tw

1260
    def _apply_image(self, img):
L
LielinJiang 已提交
1261 1262
        """
        Args:
1263
            img (PIL Image): Image to be cropped.
L
LielinJiang 已提交
1264

1265 1266
        Returns:
            PIL Image: Cropped image.
L
LielinJiang 已提交
1267
        """
1268 1269 1270 1271
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)

        w, h = _get_image_size(img)
L
LielinJiang 已提交
1272 1273

        # pad the width if needed
1274
        if self.pad_if_needed and w < self.size[1]:
1275 1276 1277
            img = F.pad(
                img, (self.size[1] - w, 0), self.fill, self.padding_mode
            )
L
LielinJiang 已提交
1278
        # pad the height if needed
1279
        if self.pad_if_needed and h < self.size[0]:
1280 1281 1282
            img = F.pad(
                img, (0, self.size[0] - h), self.fill, self.padding_mode
            )
L
LielinJiang 已提交
1283

1284
        i, j, h, w = self._get_param(img, self.size)
L
LielinJiang 已提交
1285

1286
        return F.crop(img, i, j, h, w)
L
LielinJiang 已提交
1287 1288


1289
class Pad(BaseTransform):
L
LielinJiang 已提交
1290 1291 1292 1293
    """Pads the given CV Image on all sides with the given "pad" value.

    Args:
        padding (int|list|tuple): Padding on each border. If a single int is provided this
1294 1295
            is used to pad all borders. If list/tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a list/tuple of length 4 is provided
L
LielinJiang 已提交
1296 1297
            this is the padding for the left, top, right and bottom borders
            respectively.
1298
        fill (int|list|tuple): Pixel fill value for constant fill. Default is 0. If a list/tuple of
L
LielinJiang 已提交
1299 1300 1301
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
1302 1303 1304 1305
            ``constant`` means pads with a constant value, this value is specified with fill.
            ``edge`` means pads with the last value at the edge of the image.
            ``reflect`` means pads with reflection of image (without repeating the last value on the edge)
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in reflect mode
L
LielinJiang 已提交
1306 1307
            will result in ``[3, 2, 1, 2, 3, 4, 3, 2]``.
            ``symmetric`` menas pads with reflection of image (repeating the last value on the edge)
1308
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in symmetric mode
L
LielinJiang 已提交
1309
            will result in ``[2, 1, 1, 2, 3, 4, 4, 3]``.
1310
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1311

1312 1313 1314 1315 1316 1317 1318
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A paded image.

    Returns:
        A callable object of Pad.

L
LielinJiang 已提交
1319
    Examples:
1320

L
LielinJiang 已提交
1321 1322 1323
        .. code-block:: python

            import numpy as np
1324
            from PIL import Image
1325
            from paddle.vision.transforms import Pad
L
LielinJiang 已提交
1326 1327 1328

            transform = Pad(2)

1329
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1330 1331

            fake_img = transform(fake_img)
1332
            print(fake_img.size)
L
LielinJiang 已提交
1333 1334
    """

1335
    def __init__(self, padding, fill=0, padding_mode='constant', keys=None):
L
LielinJiang 已提交
1336 1337 1338
        assert isinstance(padding, (numbers.Number, list, tuple))
        assert isinstance(fill, (numbers.Number, str, list, tuple))
        assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
1339 1340 1341 1342 1343 1344 1345

        if isinstance(padding, list):
            padding = tuple(padding)
        if isinstance(fill, list):
            fill = tuple(fill)

        if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
L
LielinJiang 已提交
1346
            raise ValueError(
1347 1348 1349
                "Padding must be an int or a 2, or 4 element tuple, not a "
                + "{} element tuple".format(len(padding))
            )
L
LielinJiang 已提交
1350

1351
        super().__init__(keys)
L
LielinJiang 已提交
1352 1353 1354 1355
        self.padding = padding
        self.fill = fill
        self.padding_mode = padding_mode

1356
    def _apply_image(self, img):
L
LielinJiang 已提交
1357 1358
        """
        Args:
1359 1360
            img (PIL Image): Image to be padded.

L
LielinJiang 已提交
1361
        Returns:
1362
            PIL Image: Padded image.
L
LielinJiang 已提交
1363 1364 1365 1366
        """
        return F.pad(img, self.padding, self.fill, self.padding_mode)


1367
def _check_sequence_input(x, name, req_sizes):
1368 1369 1370 1371 1372
    msg = (
        req_sizes[0]
        if len(req_sizes) < 2
        else " or ".join([str(s) for s in req_sizes])
    )
1373 1374 1375 1376 1377 1378
    if not isinstance(x, Sequence):
        raise TypeError(f"{name} should be a sequence of length {msg}.")
    if len(x) not in req_sizes:
        raise ValueError(f"{name} should be sequence of length {msg}.")


1379
def _setup_angle(x, name, req_sizes=(2,)):
1380 1381 1382
    if isinstance(x, numbers.Number):
        if x < 0:
            raise ValueError(
1383 1384
                f"If {name} is a single number, it must be positive."
            )
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
        x = [-x, x]
    else:
        _check_sequence_input(x, name, req_sizes)

    return [float(d) for d in x]


class RandomAffine(BaseTransform):
    """Random affine transformation of the image.

    Args:
        degrees (int|float|tuple): The angle interval of the random rotation.
            If set as a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees) in clockwise order. If set 0, will not rotate.
        translate (tuple, optional): Maximum absolute fraction for horizontal and vertical translations.
            For example translate=(a, b), then horizontal shift is randomly sampled in the range -img_width * a < dx < img_width * a
1401
            and vertical shift is randomly sampled in the range -img_height * b < dy < img_height * b.
1402
            Default is None, will not translate.
1403
        scale (tuple, optional): Scaling factor interval, e.g (a, b), then scale is randomly sampled from the range a <= scale <= b.
1404 1405
            Default is None, will keep original scale and not scale.
        shear (sequence or number, optional): Range of degrees to shear, ranges from -180 to 180 in clockwise order.
1406 1407
            If set as a number, a shear parallel to the x axis in the range (-shear, +shear) will be applied.
            Else if set as a sequence of 2 values a shear parallel to the x axis in the range (shear[0], shear[1]) will be applied.
1408 1409
            Else if set as a sequence of 4 values, a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
            Default is None, will not apply shear.
1410 1411 1412 1413 1414 1415
        interpolation (str, optional): Interpolation method. If omitted, or if the
            image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST
            according the backend.
            When use pil backend, support method are as following:
            - "nearest": Image.NEAREST,
            - "bilinear": Image.BILINEAR,
1416
            - "bicubic": Image.BICUBIC
1417 1418 1419
            When use cv2 backend, support method are as following:
            - "nearest": cv2.INTER_NEAREST,
            - "bilinear": cv2.INTER_LINEAR,
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
            - "bicubic": cv2.INTER_CUBIC
        fill (int|list|tuple, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
        center (2-tuple, optional): Optional center of rotation, (x, y).
            Origin is the upper left corner.
            Default is the center of the image.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.

    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An affined image.

    Returns:
        A callable object of RandomAffine.

    Examples:
1436

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
        .. code-block:: python

            import paddle
            from paddle.vision.transforms import RandomAffine

            transform = RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 10])

            fake_img = paddle.randn((3, 256, 300)).astype(paddle.float32)

            fake_img = transform(fake_img)
            print(fake_img.shape)
    """

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
    def __init__(
        self,
        degrees,
        translate=None,
        scale=None,
        shear=None,
        interpolation='nearest',
        fill=0,
        center=None,
        keys=None,
    ):
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2,))
1462

1463
        super().__init__(keys)
1464 1465 1466 1467
        assert interpolation in ['nearest', 'bilinear', 'bicubic']
        self.interpolation = interpolation

        if translate is not None:
1468
            _check_sequence_input(translate, "translate", req_sizes=(2,))
1469 1470 1471
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError(
1472 1473
                        "translation values should be between 0 and 1"
                    )
1474 1475 1476
        self.translate = translate

        if scale is not None:
1477
            _check_sequence_input(scale, "scale", req_sizes=(2,))
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
            self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
        else:
            self.shear = shear

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")
        self.fill = fill

        if center is not None:
1495
            _check_sequence_input(center, "center", req_sizes=(2,))
1496 1497
        self.center = center

1498 1499 1500
    def _get_param(
        self, img_size, degrees, translate=None, scale_ranges=None, shears=None
    ):
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
        """Get parameters for affine transformation

        Returns:
            params to be passed to the affine transformation
        """
        angle = random.uniform(degrees[0], degrees[1])

        if translate is not None:
            max_dx = float(translate[0] * img_size[0])
            max_dy = float(translate[1] * img_size[1])
            tx = int(random.uniform(-max_dx, max_dx))
            ty = int(random.uniform(-max_dy, max_dy))
            translations = (tx, ty)
        else:
            translations = (0, 0)

        if scale_ranges is not None:
            scale = random.uniform(scale_ranges[0], scale_ranges[1])
        else:
            scale = 1.0

        shear_x, shear_y = 0.0, 0.0
        if shears is not None:
            shear_x = random.uniform(shears[0], shears[1])
            if len(shears) == 4:
                shear_y = random.uniform(shears[2], shears[3])
        shear = (shear_x, shear_y)

        return angle, translations, scale, shear

    def _apply_image(self, img):
        """
        Args:
            img (PIL.Image|np.array): Image to be affine transformed.

        Returns:
            PIL.Image or np.array: Affine transformed image.
        """

        w, h = _get_image_size(img)
        img_size = [w, h]

1543 1544 1545
        ret = self._get_param(
            img_size, self.degrees, self.translate, self.scale, self.shear
        )
1546

1547 1548 1549 1550 1551 1552 1553
        return F.affine(
            img,
            *ret,
            interpolation=self.interpolation,
            fill=self.fill,
            center=self.center,
        )
1554 1555


1556
class RandomRotation(BaseTransform):
L
LielinJiang 已提交
1557 1558 1559 1560 1561 1562
    """Rotates the image by angle.

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees) clockwise order.
1563 1564 1565 1566 1567
        interpolation (str, optional): Interpolation method. If omitted, or if the
            image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST
            according the backend. when use pil backend, support method are as following:
            - "nearest": Image.NEAREST,
            - "bilinear": Image.BILINEAR,
1568
            - "bicubic": Image.BICUBIC
1569 1570 1571
            when use cv2 backend, support method are as following:
            - "nearest": cv2.INTER_NEAREST,
            - "bilinear": cv2.INTER_LINEAR,
1572
            - "bicubic": cv2.INTER_CUBIC
L
LielinJiang 已提交
1573 1574 1575 1576 1577 1578 1579
        expand (bool|optional): Optional expansion flag. Default: False.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple|optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
1580
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1581

1582 1583 1584 1585 1586 1587 1588
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A rotated image.

    Returns:
        A callable object of RandomRotation.

L
LielinJiang 已提交
1589
    Examples:
1590

L
LielinJiang 已提交
1591 1592 1593
        .. code-block:: python

            import numpy as np
1594 1595
            from PIL import Image
            from paddle.vision.transforms import RandomRotation
L
LielinJiang 已提交
1596

1597
            transform = RandomRotation(90)
L
LielinJiang 已提交
1598

1599
            fake_img = Image.fromarray((np.random.rand(200, 150, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1600 1601

            fake_img = transform(fake_img)
1602
            print(fake_img.size)
L
LielinJiang 已提交
1603 1604
    """

1605 1606 1607 1608 1609 1610 1611 1612 1613
    def __init__(
        self,
        degrees,
        interpolation='nearest',
        expand=False,
        center=None,
        fill=0,
        keys=None,
    ):
L
LielinJiang 已提交
1614 1615 1616
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError(
1617 1618
                    "If degrees is a single number, it must be positive."
                )
L
LielinJiang 已提交
1619 1620 1621 1622
            self.degrees = (-degrees, degrees)
        else:
            if len(degrees) != 2:
                raise ValueError(
1623 1624
                    "If degrees is a sequence, it must be of len 2."
                )
L
LielinJiang 已提交
1625 1626
            self.degrees = degrees

1627
        super().__init__(keys)
1628
        self.interpolation = interpolation
L
LielinJiang 已提交
1629 1630
        self.expand = expand
        self.center = center
1631
        self.fill = fill
L
LielinJiang 已提交
1632

1633
    def _get_param(self, degrees):
1634 1635 1636 1637 1638 1639
        if paddle.in_dynamic_mode():
            angle = random.uniform(degrees[0], degrees[1])
        else:
            angle = paddle.uniform(
                [1], dtype="float32", min=degrees[0], max=degrees[1]
            )
L
LielinJiang 已提交
1640 1641 1642

        return angle

1643
    def _apply_image(self, img):
L
LielinJiang 已提交
1644
        """
1645 1646 1647
        Args:
            img (PIL.Image|np.array): Image to be rotated.

L
LielinJiang 已提交
1648
        Returns:
1649
            PIL.Image or np.array: Rotated image.
L
LielinJiang 已提交
1650 1651
        """

1652
        angle = self._get_param(self.degrees)
L
LielinJiang 已提交
1653

1654 1655 1656
        return F.rotate(
            img, angle, self.interpolation, self.expand, self.center, self.fill
        )
L
LielinJiang 已提交
1657 1658


1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
class RandomPerspective(BaseTransform):
    """Random perspective transformation with a given probability.

    Args:
        prob (float, optional): Probability of using transformation, ranges from
            0 to 1, default is 0.5.
        distortion_scale (float, optional): Degree of distortion, ranges from
            0 to 1, default is 0.5.
        interpolation (str, optional): Interpolation method. If omitted, or if
            the image has only one channel, it is set to PIL.Image.NEAREST or
            cv2.INTER_NEAREST.
1670 1671 1672
            When use pil backend, support method are as following:
            - "nearest": Image.NEAREST,
            - "bilinear": Image.BILINEAR,
1673
            - "bicubic": Image.BICUBIC
1674 1675 1676
            When use cv2 backend, support method are as following:
            - "nearest": cv2.INTER_NEAREST,
            - "bilinear": cv2.INTER_LINEAR,
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
            - "bicubic": cv2.INTER_CUBIC
        fill (int|list|tuple, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.

    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A perspectived image.

    Returns:
        A callable object of RandomPerspective.

    Examples:
1690

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
        .. code-block:: python

            import paddle
            from paddle.vision.transforms import RandomPerspective

            transform = RandomPerspective(prob=1.0, distortion_scale=0.9)

            fake_img = paddle.randn((3, 200, 150)).astype(paddle.float32)

            fake_img = transform(fake_img)
            print(fake_img.shape)
    """

1704 1705 1706 1707 1708 1709 1710 1711
    def __init__(
        self,
        prob=0.5,
        distortion_scale=0.5,
        interpolation='nearest',
        fill=0,
        keys=None,
    ):
1712
        super().__init__(keys)
1713
        assert 0 <= prob <= 1, "probability must be between 0 and 1"
1714 1715 1716
        assert (
            0 <= distortion_scale <= 1
        ), "distortion_scale must be between 0 and 1"
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
        assert interpolation in ['nearest', 'bilinear', 'bicubic']
        assert isinstance(fill, (numbers.Number, str, list, tuple))

        self.prob = prob
        self.distortion_scale = distortion_scale
        self.interpolation = interpolation
        self.fill = fill

    def get_params(self, width, height, distortion_scale):
        """
        Returns:
            startpoints (list[list[int]]): [top-left, top-right, bottom-right, bottom-left] of the original image,
            endpoints (list[list[int]]): [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
        half_height = height // 2
        half_width = width // 2
        topleft = [
1734 1735
            int(random.uniform(0, int(distortion_scale * half_width) + 1)),
            int(random.uniform(0, int(distortion_scale * half_height) + 1)),
1736 1737 1738
        ]
        topright = [
            int(
1739 1740 1741 1742 1743
                random.uniform(
                    width - int(distortion_scale * half_width) - 1, width
                )
            ),
            int(random.uniform(0, int(distortion_scale * half_height) + 1)),
1744 1745 1746
        ]
        botright = [
            int(
1747 1748 1749 1750
                random.uniform(
                    width - int(distortion_scale * half_width) - 1, width
                )
            ),
1751
            int(
1752 1753 1754 1755
                random.uniform(
                    height - int(distortion_scale * half_height) - 1, height
                )
            ),
1756 1757
        ]
        botleft = [
1758
            int(random.uniform(0, int(distortion_scale * half_width) + 1)),
1759
            int(
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
                random.uniform(
                    height - int(distortion_scale * half_height) - 1, height
                )
            ),
        ]
        startpoints = [
            [0, 0],
            [width - 1, 0],
            [width - 1, height - 1],
            [0, height - 1],
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
        ]
        endpoints = [topleft, topright, botright, botleft]

        return startpoints, endpoints

    def _apply_image(self, img):
        """
        Args:
            img (PIL.Image|np.array|paddle.Tensor): Image to be Perspectively transformed.

        Returns:
            PIL.Image|np.array|paddle.Tensor: Perspectively transformed image.
        """

        width, height = _get_image_size(img)

        if random.random() < self.prob:
1787 1788 1789 1790 1791 1792
            startpoints, endpoints = self.get_params(
                width, height, self.distortion_scale
            )
            return F.perspective(
                img, startpoints, endpoints, self.interpolation, self.fill
            )
1793 1794 1795
        return img


1796
class Grayscale(BaseTransform):
L
LielinJiang 已提交
1797 1798 1799
    """Converts image to grayscale.

    Args:
I
Infinity_lee 已提交
1800
        num_output_channels (int, optional): (1 or 3) number of channels desired for output image. Default: 1.
1801
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1802 1803 1804

    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
1805
        - output(PIL.Image|np.ndarray|Paddle.Tensor): Grayscale version of the input image.
1806 1807 1808
            - If output_channels == 1 : returned image is single channel
            - If output_channels == 3 : returned image is 3 channel with r == g == b

L
LielinJiang 已提交
1809
    Returns:
1810
        A callable object of Grayscale.
L
LielinJiang 已提交
1811 1812

    Examples:
1813

L
LielinJiang 已提交
1814 1815 1816
        .. code-block:: python

            import numpy as np
1817
            from PIL import Image
1818
            from paddle.vision.transforms import Grayscale
L
LielinJiang 已提交
1819 1820 1821

            transform = Grayscale()

1822
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1823 1824

            fake_img = transform(fake_img)
1825
            print(np.array(fake_img).shape)
L
LielinJiang 已提交
1826 1827
    """

1828
    def __init__(self, num_output_channels=1, keys=None):
1829
        super().__init__(keys)
1830
        self.num_output_channels = num_output_channels
L
LielinJiang 已提交
1831

1832
    def _apply_image(self, img):
L
LielinJiang 已提交
1833 1834
        """
        Args:
1835 1836
            img (PIL Image): Image to be converted to grayscale.

L
LielinJiang 已提交
1837
        Returns:
1838
            PIL Image: Randomly grayscaled image.
L
LielinJiang 已提交
1839
        """
1840
        return F.to_grayscale(img, self.num_output_channels)
1841 1842 1843 1844 1845 1846 1847


class RandomErasing(BaseTransform):
    """Erase the pixels in a rectangle region selected randomly.

    Args:
        prob (float, optional): Probability of the input data being erased. Default: 0.5.
1848
        scale (sequence, optional): The proportional range of the erased area to the input image.
1849 1850 1851
                                    Default: (0.02, 0.33).
        ratio (sequence, optional): Aspect ratio range of the erased area. Default: (0.3, 3.3).
        value (int|float|sequence|str, optional): The value each pixel in erased area will be replaced with.
1852 1853 1854
                               If value is a single number, all pixels will be erased with this value.
                               If value is a sequence with length 3, the R, G, B channels will be ereased
                               respectively. If value is set to "random", each pixel will be erased with
1855 1856 1857
                               random values. Default: 0.
        inplace (bool, optional): Whether this transform is inplace. Default: False.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1858

1859
    Shape:
1860
        - img(paddle.Tensor | np.array | PIL.Image): The input image. For Tensor input, the shape should be (C, H, W).
1861 1862 1863 1864 1865 1866 1867
                 For np.array input, the shape should be (H, W, C).
        - output(paddle.Tensor | np.array | PIL.Image): A random erased image.

    Returns:
        A callable object of RandomErasing.

    Examples:
1868

1869 1870 1871
        .. code-block:: python

            import paddle
1872

1873 1874
            fake_img = paddle.randn((3, 10, 10)).astype(paddle.float32)
            transform = paddle.vision.transforms.RandomErasing()
J
JYChen 已提交
1875 1876 1877
            result = transform(fake_img)

            print(result)
1878 1879
    """

1880 1881 1882 1883 1884 1885 1886 1887 1888
    def __init__(
        self,
        prob=0.5,
        scale=(0.02, 0.33),
        ratio=(0.3, 3.3),
        value=0,
        inplace=False,
        keys=None,
    ):
1889
        super().__init__(keys)
1890
        assert isinstance(
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
            scale, (tuple, list)
        ), "scale should be a tuple or list"
        assert (
            scale[0] >= 0 and scale[1] <= 1 and scale[0] <= scale[1]
        ), "scale should be of kind (min, max) and in range [0, 1]"
        assert isinstance(
            ratio, (tuple, list)
        ), "ratio should be a tuple or list"
        assert (
            ratio[0] >= 0 and ratio[0] <= ratio[1]
        ), "ratio should be of kind (min, max)"
        assert (
            prob >= 0 and prob <= 1
        ), "The probability should be in range [0, 1]"
        assert isinstance(
            value, (numbers.Number, str, tuple, list)
        ), "value should be a number, tuple, list or str"
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
        if isinstance(value, str) and value != "random":
            raise ValueError("value must be 'random' when type is str")

        self.prob = prob
        self.scale = scale
        self.ratio = ratio
        self.value = value
        self.inplace = inplace

    def _get_param(self, img, scale, ratio, value):
        """Get parameters for ``erase`` for a random erasing.

        Args:
            img (paddle.Tensor | np.array | PIL.Image): Image to be erased.
1922
            scale (sequence, optional): The proportional range of the erased area to the input image.
1923 1924
            ratio (sequence, optional): Aspect ratio range of the erased area.
            value (sequence | None): The value each pixel in erased area will be replaced with.
1925
                               If value is a sequence with length 3, the R, G, B channels will be ereased
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
                               respectively. If value is None, each pixel will be erased with random values.

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erase.
        """
        if F._is_pil_image(img):
            shape = np.asarray(img).astype(np.uint8).shape
            h, w, c = shape[-3], shape[-2], shape[-1]
        elif F._is_numpy_image(img):
            h, w, c = img.shape[-3], img.shape[-2], img.shape[-1]
        elif F._is_tensor_image(img):
            c, h, w = img.shape[-3], img.shape[-2], img.shape[-1]

        img_area = h * w
        log_ratio = np.log(ratio)
        for _ in range(10):
            erase_area = np.random.uniform(*scale) * img_area
            aspect_ratio = np.exp(np.random.uniform(*log_ratio))
            erase_h = int(round(np.sqrt(erase_area * aspect_ratio)))
            erase_w = int(round(np.sqrt(erase_area / aspect_ratio)))
            if erase_h >= h or erase_w >= w:
                continue
            if F._is_tensor_image(img):
                if value is None:
1950
                    v = paddle.normal(shape=[c, erase_h, erase_w]).astype(
1951 1952
                        img.dtype
                    )
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
                else:
                    v = paddle.to_tensor(value, dtype=img.dtype)[:, None, None]
            else:
                if value is None:
                    v = np.random.normal(size=[erase_h, erase_w, c]) * 255
                else:
                    v = np.array(value)[None, None, :]
            top = np.random.randint(0, h - erase_h + 1)
            left = np.random.randint(0, w - erase_w + 1)

            return top, left, erase_h, erase_w, v

        return 0, 0, h, w, img

    def _apply_image(self, img):
        """
        Args:
            img (paddle.Tensor | np.array | PIL.Image): Image to be Erased.

        Returns:
            output (paddle.Tensor np.array | PIL.Image): A random erased image.
        """

        if random.random() < self.prob:
            if isinstance(self.value, numbers.Number):
                value = [self.value]
            elif isinstance(self.value, str):
                value = None
            else:
                value = self.value
            if value is not None and not (len(value) == 1 or len(value) == 3):
                raise ValueError(
                    "Value should be a single number or a sequence with length equals to image's channel."
                )
1987
            top, left, erase_h, erase_w, v = self._get_param(
1988 1989
                img, self.scale, self.ratio, value
            )
1990 1991
            return F.erase(img, top, left, erase_h, erase_w, v, self.inplace)
        return img