quantization_pass.py 79.5 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
W
WangZhen 已提交
17
from ..... import compat as cpt
W
WangZhen 已提交
18
from .... import core
19
from ....framework import IrGraph
20
from ....framework import IrNode
21
from ....framework import Operator
W
WangZhen 已提交
22 23
from .... import unique_name

24 25 26 27
from ....framework import Program, program_guard, default_startup_program
from ....data import data
from ....layers import mean
from ....executor import scope_guard
28
from ....framework import _get_paddle_place
29

30 31
__all__ = [
    'QuantizationTransformPass', 'QuantizationFreezePass', 'ConvertToInt8Pass',
32 33
    'TransformForMobilePass', 'OutScaleForTrainingPass',
    'OutScaleForInferencePass', 'AddQuantDequantPass'
34
]
W
WangZhen 已提交
35

36 37 38 39 40 41 42 43 44
_fake_quant_op_list = [
    'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
    'fake_quantize_moving_average_abs_max', 'fake_channel_wise_quantize_abs_max'
]

_fake_dequant_op_list = [
    'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
]

45 46 47 48
_fake_quant_dequant_op_list = [
    'fake_quantize_dequantize_moving_average_abs_max'
]

49
_out_scale_op_list = [
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    "conv2d",
    "depthwise_conv2d",
    "mul",
    "matmul",
    "relu",
    "leaky_relu",
    "relu6",
    "sigmoid",
    "tanh",
    "prelu",
    "swish",
    "softmax",
    "batch_norm",
    "elementwise_add",
    "pool2d",
    "reshape2",
    "transpose2",
    "concat",
    "elementwise_mul",
    "scale",
70 71
    "hard_swish",
    "hard_sigmoid",
72
    "conv2d_transpose",
73 74 75 76
    "gru",
    "bilinear_interp",
    "nearest_interp",
    "trilinear_interp",
77 78
]

79 80 81
# list op real input and output names, to avoid processing input such as AxisTensor.
_op_real_in_out_name = {
    "conv2d": [["Input", "Filter"], ["Output"]],
82
    "depthwise_conv2d": [["Input", "Filter"], ["Output"]],
83
    "conv2d_transpose": [["Input", "Filter"], ["Output"]],
84
    "mul": [["X", "Y"], ["Out"]],
85
    "matmul": [["X", "Y"], ["Out"]],
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    "pool2d": [["X"], ["Out"]],
    "elementwise_add": [["X", "Y"], ["Out"]],
    "concat": [["X"], ["Out"]],
    "softmax": [["X"], ["Out"]],
    "argmax": [["X"], ["Out"]],
    "transpose": [["X"], ["Out"]],
    "equal": [["X", "Y"], ["Out"]],
    "gather": [["X"], ["Out"]],
    "greater_equal": [["X", "Y"], ["Out"]],
    "greater_than": [["X", "Y"], ["Out"]],
    "less_equal": [["X", "Y"], ["Out"]],
    "less_than": [["X", "Y"], ["Out"]],
    "mean": [["X"], ["Out"]],
    "not_equal": [["X", "Y"], ["Out"]],
    "reshape": [["X"], ["Out"]],
    "reshape2": [["X"], ["Out"]],
102
    "transpose2": [["X"], ["Out"]],
103 104 105 106 107 108 109 110 111
    "bilinear_interp": [["X"], ["Out"]],
    "nearest_interp": [["X"], ["Out"]],
    "trilinear_interp": [["X"], ["Out"]],
    "slice": [["Input"], ["Out"]],
    "squeeze": [["X"], ["Out"]],
    "elementwise_sub": [["X", "Y"], ["Out"]],
    "relu": [["X"], ["Out"]],
    "relu6": [["X"], ["Out"]],
    "leaky_relu": [["X"], ["Out"]],
112
    "prelu": [["X"], ["Out"]],
113 114
    "tanh": [["X"], ["Out"]],
    "swish": [["X"], ["Out"]],
115 116
    "dropout": [["X"], ["Out"]],
    "batch_norm": [["X"], ["Y"]],
117
    "sigmoid": [["X"], ["Out"]],
118 119
    "elementwise_mul": [["X", "Y"], ["Out"]],
    "scale": [["X"], ["Out"]],
120 121
    "hard_swish": [["X"], ["Out"]],
    "hard_sigmoid": [["X"], ["Out"]],
122
    "gru": [["Input", "Weight"], ["Hidden"]],
123
    "lstm": [["Input", "Weight"], ["Hidden"]],
124 125
}

126 127 128 129
_conv_ops = ['conv2d', 'depthwise_conv2d', 'conv2d_transpose']

_channelwise_quant_axis1_ops = ['conv2d_transpose', 'mul']

W
WangZhen 已提交
130

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
def _get_op_input_var_names(op):
    """ """
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    var_names = []
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
    name_list = _op_real_in_out_name[op_name][0]
    for name in name_list:
        var_name = op.input(name)
        if isinstance(var_name, list):
            var_names.extend(var_name)
        else:
            var_names.append(var_name)
    return var_names


148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
def _get_input_name_index(op, input_var_name):
    """Get the input name and index of the var_name in the op"""
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
    res = None
    for argname in _op_real_in_out_name[op_name][0]:
        var_names = op.input(argname)
        for index, name in enumerate(var_names):
            if name == input_var_name:
                res = (argname, index)
    return res


163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
def _get_op_output_var_names(op):
    """ """
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    var_names = []
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
    name_list = _op_real_in_out_name[op_name][1]
    for name in name_list:
        var_name = op.output(name)
        if isinstance(var_name, list):
            var_names.extend(var_name)
        else:
            var_names.append(var_name)
    return var_names


180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
def _get_output_name_index(op, output_var_name):
    """Get the output name and index of the var_name in the op"""
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
    name_list = _op_real_in_out_name[op_name][1]
    res = None
    for name in name_list:
        var_name = op.output(name)
        for index, val in enumerate(var_name):
            if val == output_var_name:
                res = (name, index)
    return res


196 197 198 199
def _init_var_node(var_node, value, scope, place):
    assert isinstance(value,
                      np.ndarray), 'The type of value should be numpy array.'
    assert scope is not None, \
200
        'The scope cannot be set None.'
201
    assert place is not None, \
202
        'The place cannot be set None.'
203 204 205 206
    tensor = scope.var(var_node.name()).get_tensor()
    tensor.set(value, place)


207 208 209 210 211
def _is_input_all_not_persistable(graph, op_node):
    '''
    Analyse the real inputs of the op node are all not persistable.
    '''
    is_input_all_not_persistable = True
212 213 214 215
    for var_name in _get_op_input_var_names(op_node):
        in_node = graph._find_node_by_name(op_node.inputs, var_name)
        is_input_all_not_persistable = (is_input_all_not_persistable and \
            (not in_node.persistable()))
216 217 218
    return is_input_all_not_persistable


219 220 221 222 223 224 225 226 227 228 229 230 231 232
def _check_grandchild_op_node(op_node, grandchild_op_name):
    '''
    Check whether the fake_quant node has a grandchild op node named
    grandchild_op_name.
    '''
    for out1_var_node in op_node.outputs:
        for out1_op_node in out1_var_node.outputs:
            for out2_var_node in out1_op_node.outputs:
                for out2_op_node in out2_var_node.outputs:
                    if out2_op_node.name() == grandchild_op_name:
                        return True
    return False


233
class QuantizationTransformPass(object):
234
    """
235 236
    Quantize the ops that have weights. Add quant and dequant ops for
    the quantized ops's inputs.
237
    """
238
    _supported_quantizable_op_type = [
239
        'conv2d', 'depthwise_conv2d', 'conv2d_transpose', 'mul', 'matmul'
240
    ]
241

W
WangZhen 已提交
242
    def __init__(self,
243
                 scope=None,
244
                 place=None,
W
WangZhen 已提交
245 246 247 248
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
249
                 window_size=10000,
250
                 moving_rate=0.9,
251
                 skip_pattern=['skip_quant'],
252 253 254 255 256 257 258
                 quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'],
                 weight_quantize_func=None,
                 act_quantize_func=None,
                 weight_preprocess_func=None,
                 act_preprocess_func=None,
                 optimizer_func=None,
                 executor=None):
259
        r"""
260
        Constructor.
261

W
WangZhen 已提交
262
        Args:
263
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
264 265
                type, this pass will create some new parameters. The scope is used to
                initialize these new parameters.
266 267 268
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs. 
269
            weight_bits(int): quantization bit number for weights,
W
WangZhen 已提交
270
                the bias is not quantized.
271 272
            activation_bits(int): quantization bit number for activation.
            activation_quantize_type(str): quantization type for activation,
273 274 275 276 277
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
278
            weight_quantize_type(str): quantization type for weights,
279 280 281
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
282 283
            window_size(int): the window size for 'range_abs_max' quantization.
            moving_rate(float): the param for 'moving_average_abs_max' quantization.
284
            skip_pattern(str or str list): The user-defined quantization skip pattern, which
285
                will be presented in the name scope of an op. When the skip pattern is
286
                detected in an op's name scope, the corresponding op will not be quantized. 
287
            quantizable_op_type(list[str]): List the type of ops that will be quantized. 
288 289
                Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
                QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
            weight_quantize_func(function): Function that defines how to quantize weight.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization function and
                dequantization function, that is, the function's input is non-quantized
                weight and function returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'. Default is None.
            act_quantize_func(function): Function that defines how to quantize activation.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization and dequantization
                process, that is, the function's input is non-quantized activation and
                function returns dequantized activation. If None, will use quantization
                op defined by 'activation_quantize_type'. Default is None.
            weight_preprocess_func(function): Function that defines how to preprocess
                weight before quantization. Using this can quickly test if user's preprocess
                method works or not. The function's input is non-quantized weight and
                function returns processed weight to be quantized. If None, the weight will
                be quantized directly. Default is None.
            act_preprocess_func(function): Function that defines how to preprocess
                activation before quantization. Using this can quickly test if user's
                preprocess method works or not. The function's input is non-quantized
                activation and function returns processed activation to be quantized.
                If None, the activation will be quantized directly. Default is None.
            optimizer_func(function): Fuction return a optimizer. When 'is_test' is
                False and user want to use self-defined quantization function and
                preprocess function, this function must be set. Default is None.
            executor(Fluid.Executor): If user want to use self-defined quantization
                function and preprocess function, executor must be set for initialization.
317 318
                Default is None.

319

W
WangZhen 已提交
320 321
        Examples:
        .. code-block:: python
322 323 324 325
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
326
            from paddle.fluid.contrib.slim.graph import IrGraph
327 328
            from paddle.fluid import core

329
            graph = IrGraph(core.Graph(program.desc), for_test=False)
330
            place = fluid.CPUPlace()
331
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
332
            place)
333
            transform_pass.apply(graph)
W
WangZhen 已提交
334
        """
335
        self._scope = scope
336
        self._place = _get_paddle_place(place)
337 338
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
339
        self._skip_pattern = skip_pattern
340 341 342 343 344 345
        self._weight_quantize_func = weight_quantize_func
        self._act_quantize_func = act_quantize_func
        self._weight_preprocess_func = weight_preprocess_func
        self._act_preprocess_func = act_preprocess_func
        self._optimizer = optimizer_func
        self._exe = executor
346 347 348 349
        quant_type = [
            'abs_max', 'channel_wise_abs_max', 'range_abs_max',
            'moving_average_abs_max'
        ]
350 351
        assert activation_quantize_type != 'channel_wise_abs_max', \
            "The activation quantization type does not support 'channel_wise_abs_max'."
W
WangZhen 已提交
352 353
        if activation_quantize_type not in quant_type:
            raise ValueError(
354 355 356
                "Unknown activation_quantize_type : '%s'. It can only be "
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'." %
                (str(activation_quantize_type)))
W
WangZhen 已提交
357 358
        if weight_quantize_type not in quant_type:
            raise ValueError(
359
                "Unknown weight_quantize_type: '%s'. It can only be "
360 361
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' "
                "or 'moving_average_abs_max'." % (str(weight_quantize_type)))
W
WangZhen 已提交
362

363 364 365
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
366
        self._moving_rate = moving_rate
W
WangZhen 已提交
367

368 369
        self._quantizable_ops = quantizable_op_type
        for op in self._quantizable_ops:
370
            assert op in QuantizationTransformPass._supported_quantizable_op_type, \
371
                op + " is not supported for quantization."
372 373
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
374
        ]
375 376
        self._is_test = None
        self._global_step = None
W
WangZhen 已提交
377

378 379 380
        self.create_var_map = {}
        self.create_op_map = {}

381
    def apply(self, graph):
382 383 384 385 386 387 388
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
389 390
        Returns:
            None
391
        """
W
WangZhen 已提交
392
        assert isinstance(graph,
393 394
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
W
WangZhen 已提交
395 396
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
397
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
398
        processed_vars = []
W
WangZhen 已提交
399

400
        def _quant_preprocess(op_node):
401 402 403
            user_skipped = False
            if isinstance(self._skip_pattern, list):
                user_skipped = op_node.op().has_attr("op_namescope") and \
404 405
                               any(pattern in op_node.op().attr("op_namescope") \
                                   for pattern in self._skip_pattern)
406 407
            elif isinstance(self._skip_pattern, str):
                user_skipped = op_node.op().has_attr("op_namescope") and \
408 409
                               op_node.op().attr("op_namescope").find(
                                   self._skip_pattern) != -1
410

411
            if user_skipped:
412 413
                op_node.op()._set_attr("skip_quant", True)

W
WangZhen 已提交
414
        def _transform_forward(graph, op):
415
            op.op()._set_attr("quantization_type", "qat_with_weight")
416 417
            inputs = op.inputs
            for var_node in inputs:
418 419
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
420 421 422
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
423 424 425
                    name = var_node.name()
                    if name in processed_vars:
                        continue
426 427
                    is_weight = True if var_node.name() in persistable_vars \
                        else False
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456

                    # if var node is weight and weight_preprocess_func is not None,
                    # will insert weight preprocess func 
                    # to preorocess weight before quantization
                    # if var node is activation and act_preprocess_func is not None, 
                    # will insert activation preprocess func 
                    # to preorocess activation before quantization
                    if is_weight and self._weight_preprocess_func is not None:
                        var_node = self._insert_func(
                            graph, self._weight_preprocess_func, var_node, op)
                    elif not is_weight and self._act_preprocess_func is not None:
                        var_node = self._insert_func(
                            graph, self._act_preprocess_func, var_node, op)

                    # if var node is weight and weight_quantize_func is not None,
                    # will insert weight quantize func to quantize and dequantize weight
                    # if var node is activation and act_quantize_func is not None,
                    # will insert act quantize func to quantize and dequantize activation
                    if is_weight and self._weight_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._weight_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue
                    elif not is_weight and self._act_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._act_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue

W
WangZhen 已提交
457
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
458
                        else self._activation_bits
459 460
                    quant_type = self._weight_quantize_type if is_weight \
                        else self._activation_quantize_type
461 462 463 464 465 466 467 468
                    if quant_type == 'channel_wise_abs_max':  # Weight quantization
                        quant_axis = 1 if op.name() in \
                            _channelwise_quant_axis1_ops else 0
                        quant_var_node, scale_var_node = self._insert_channel_quant_op(
                            graph, var_node, name, quant_bits, quant_axis)
                        dequant_var_node = self._insert_channel_dequant_op(
                            graph, quant_var_node, [scale_var_node],
                            [quant_bits], quant_axis)
469 470
                    else:
                        quant_var_node, scale_var_node = self._insert_quant_op(
471
                            graph, var_node, name, quant_bits, quant_type)
472 473
                        dequant_var_node = self._insert_dequant_op(
                            graph, quant_var_node, scale_var_node, quant_bits)
474
                    dequantized_vars[name] = dequant_var_node
475
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
476 477 478

        def _transform_backward(graph, op):
            for var_node in op.inputs:
479 480
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
481 482
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
483
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
484

485
        if not self._is_test:
W
WangZhen 已提交
486
            self._create_global_step(graph)
487
        ops = graph.all_op_nodes()
488 489 490 491 492 493
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
            if op.name() in self._quantizable_ops or \
                    op.name() in self._quantizable_grad_ops:
                _quant_preprocess(op)
494 495
        # Insert mapping table to solve the problem in saving inference model.
        graph.out_node_mapping_table = dict()
W
WangZhen 已提交
496 497
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
W
WangZhen 已提交
498
        for op in ops:
499
            if op.name() in self._quantizable_ops:
500
                if not self._is_skip_quant(graph, op):
501
                    _transform_forward(graph, op)
W
WangZhen 已提交
502 503
        # The loop for renaming the inputs of backward op.
        for op in ops:
504
            if op.name() in self._quantizable_grad_ops:
W
WangZhen 已提交
505
                _transform_backward(graph, op)
Z
Zhen Wang 已提交
506
        graph.resolve_hazard()
507
        return graph
W
WangZhen 已提交
508

W
WangZhen 已提交
509
    def _create_global_step(self, graph):
510 511
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
512
            counter_name = cpt.to_text('@STEP_COUNTER@')
513
            for node in graph.all_var_nodes():
W
WangZhen 已提交
514
                if node.name() == counter_name:
515 516
                    self._global_step = node
            if self._global_step is None:
517
                global_step_in = graph.create_persistable_node(
W
WangZhen 已提交
518 519 520 521
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
522 523 524 525 526 527
                _init_var_node(
                    global_step_in,
                    np.zeros(
                        [1], dtype='int64'),
                    self._scope,
                    self._place)
W
WangZhen 已提交
528 529
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
530
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
531 532
                increment_op = graph.create_op_node(
                    op_type='increment',
533 534 535 536 537
                    attrs={
                        'step': 1.0,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    },
W
WangZhen 已提交
538 539
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
540 541 542
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
543

544
    def _insert_quant_op(self, graph, var_node, name, quant_bits, quant_type):
W
WangZhen 已提交
545 546 547 548
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
549 550
            return self._insert_quant_abs_max_op(graph, var_node, name,
                                                 quant_bits)
W
WangZhen 已提交
551
        elif quant_type == 'range_abs_max':
552
            return self._insert_quant_range_abs_max_op(graph, var_node, name,
W
WangZhen 已提交
553
                                                       quant_bits)
554
        elif quant_type == 'moving_average_abs_max':
555 556
            return self._insert_quant_moving_average_abs_max_op(
                graph, var_node, name, quant_bits)
W
WangZhen 已提交
557

558
    def _insert_quant_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
559 560 561 562 563 564
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
565
            name=self._quantized_var_name(name),
566 567 568
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
569
        scale_var_node = graph.create_persistable_node(
570
            name=self._quantized_scale_name(name),
571
            var_type=var_node.type(),
572
            shape=[1],
573
            var_dtype=var_node.dtype())
574 575 576 577 578 579 580 581
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_var_node,
            np.zeros(
                scale_var_node.shape(), dtype=data_type),
            self._scope,
            self._place)
W
WangZhen 已提交
582 583
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
584 585 586 587
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
588 589 590
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
591 592 593
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
594 595
        return quant_var_node, scale_var_node

596
    def _insert_quant_range_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
597 598 599 600 601 602
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
603
            name=self._quantized_var_name(name),
604 605 606
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
607

608
        scale_in_node = graph.create_persistable_node(
609
            name=self._quantized_scale_name(name),
W
WangZhen 已提交
610 611
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
612
            var_dtype=var_node.dtype())
613 614
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
615 616 617 618 619 620
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
W
WangZhen 已提交
621 622 623 624 625

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

626
        if not self._is_test:
W
WangZhen 已提交
627
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
628
            scales_node = graph.create_persistable_node(
W
WangZhen 已提交
629 630
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
631
                shape=[self._window_size],
632
                var_dtype=var_node.dtype())
633 634
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
635 636 637 638 639 640 641
            _init_var_node(
                scales_node,
                np.zeros(
                    [self._window_size], dtype=data_type),
                self._scope,
                self._place)

642
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
643 644
            outputs['OutScales'] = scales_node
        attrs = {
645
            'window_size': self._window_size,
W
WangZhen 已提交
646
            'bit_length': quant_bits,
647 648
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
W
WangZhen 已提交
649 650 651 652 653 654 655
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

656 657 658 659
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
660

661 662 663
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
664 665 666

        return quant_var_node, scale_out_node

667
    def _insert_quant_moving_average_abs_max_op(self, graph, var_node, name,
668 669 670 671
                                                quant_bits):
        """Insert fake_quantize_moving_average_abs_max
        """
        quant_var_node = graph.create_var_node(
672
            name=self._quantized_var_name(name),
673 674 675 676
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
677
            name=self._quantized_scale_name(name),
678 679 680
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
681 682
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
683 684 685 686 687 688
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
689 690 691 692 693 694 695 696 697 698

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
699 700
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
701
            _init_var_node(
702
                state_in_node,
703 704 705 706
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
707 708 709 710 711
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
712 713 714 715 716 717
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node

754 755
    def _insert_channel_quant_op(self, graph, var_node, name, quant_bits,
                                 quant_axis):
756 757 758 759 760 761
        """
        Insert fake_channel_wise_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
762
            name=self._quantized_var_name(name),
763 764 765
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
766
        scale_var_node = graph.create_persistable_node(
767
            name=self._quantized_scale_name(name),
768
            var_type=var_node.type(),
769
            shape=[var_node.shape()[quant_axis]],
770
            var_dtype=var_node.dtype())
771 772 773 774 775 776 777 778
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_var_node,
            np.zeros(
                scale_var_node.shape(), dtype=data_type),
            self._scope,
            self._place)
779 780 781 782
        quant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_quantize_abs_max',
            attrs={
                'bit_length': quant_bits,
783
                'quant_axis': quant_axis,
784
                'is_test': self._is_test,
785 786 787 788 789 790 791 792 793 794
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
        return quant_var_node, scale_var_node

W
WangZhen 已提交
795 796 797 798 799 800 801 802
    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
803 804 805
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
806 807 808
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
809 810 811 812
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
813 814 815
            inputs={'X': var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
816 817 818
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
819 820
        return dequant_var_node

821
    def _insert_channel_dequant_op(self, graph, var_node, scale_var_nodes,
822
                                   quant_bits, quant_axis):
823 824 825 826 827 828 829 830 831 832 833 834 835 836
        """
        Insert fake_channel_wise_dequantize_max_abs in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': quant_bits,
837
                'quant_axis': quant_axis,
838 839 840 841 842 843 844 845 846 847 848
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node,
                    'Scales': scale_var_nodes},
            outputs={'Out': dequant_var_node})
        graph.link_to(var_node, dequant_op_node)
        for scale_n in scale_var_nodes:
            graph.link_to(scale_n, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
    def _create_new_node(self, graph, in_node):
        """
        create a node that same with in_node in graph
        Args:
            graph(IrGraph): create node in graph.
            in_node(IrVarNode): create node that same with in_node.
        Returns:
            created new node
        """
        key = ''
        for inp in in_node.inputs:
            key = key + inp.name()
        key = key + in_node.name()
        for inp in in_node.outputs:
            key = key + inp.name()

        if key in self.create_var_map.keys():
            new_node = self.create_var_map[key]
        elif in_node.is_ctrl_var():
            new_node = graph.create_control_dep_var()
            self.create_var_map[key] = new_node
        else:
            new_node = graph.create_var_node_from_desc(in_node.node.var())
            self.create_var_map[key] = new_node
        return new_node

    def _copy_graph(self, graph, source_graph, op_node):
        """
        copy op_node in source_graph to graph. And will run recursively 
        for next ops that link to op_node's outputs.
        Args:
            graph(IrGraph): target graph to copy.
            source_graph(IrGraph): source graph to copy.
            op_node(IrOpNode): op node in source_graph.
        Returns:
            None

        """
        key = ''
        for inp in op_node.inputs:
            key = key + inp.name()
        key = key + op_node.name()
        for inp in op_node.outputs:
            key = key + inp.name()
        has_created = False
        if key in self.create_op_map.keys():
            new_op_node = self.create_op_map[key]
            has_created = True
        else:
            new_op_node = graph.create_op_node_from_desc(op_node.node.op())
            self.create_op_map[key] = new_op_node
        if has_created:
            return
        for in_node in op_node.inputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_node, new_op_node)
        for in_node in op_node.outputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_op_node, new_node)
        for var_node in op_node.outputs:
            for next_op_node in var_node.outputs:
                self._copy_graph(graph, source_graph, next_op_node)
        return

    def _insert_func(self, graph, func, var_node, op):
        """
        Insert a tmp program that returned by func between var_node and op.

        Args:
            graph(IrGraph): target graph to insert tmp program.
            func(Function): function to define a tmp program
            var_node(IrVarNode): node in target graph.
            op(IrOpNode): op in target graph.
        Returns:
            op's new input that replaces var_node
        """
        tmp_program = Program()
        startup_program = Program()
        with program_guard(tmp_program, startup_program):
            with unique_name.guard(var_node.name() + "_"):
                in_node = data(
                    var_node.name() + '_tmp_input',
                    shape=var_node.shape(),
                    dtype='float32')
                out_node = func(in_node)
934
                graph.out_node_mapping_table[out_node.name] = var_node.name()
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
                # loss shape must be 1 when minimize
                loss = mean(out_node)
                if not graph._for_test:
                    assert self._optimizer, "optimizer_func must be set when graph is test graph"
                    in_node.stop_gradient = False
                    optimizer = self._optimizer()
                    optimizer.minimize(loss)
        with scope_guard(self._scope):
            self._exe.run(startup_program)

        tmp_graph = IrGraph(
            core.Graph(tmp_program.desc), for_test=graph._for_test)
        in_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                               in_node.name)
        out_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                                out_node.name)

        in_node_params = []
        in_op_node = []
        # copy tmp graph to graph, after that, we can insert tmp graph's copy to graph.
        for node in tmp_graph.all_var_nodes():
            if node.inputs == [] and node.persistable():
                in_node_params.append(node)
        for node in tmp_graph.all_op_nodes():
            if node.inputs == []:
                in_op_node.append(node)
        for node in in_node.outputs:
            self._copy_graph(graph, tmp_graph, node)
        for node in in_node_params:
            for op_node in node.outputs:
                self._copy_graph(graph, tmp_graph, op_node)
        for node in in_op_node:
            self._copy_graph(graph, tmp_graph, node)

        target_in_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                  in_node.name())
        target_out_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                   out_node.name())
        loss_node = graph._find_node_by_name(graph.all_var_nodes(), loss.name)
        outputs = target_in_node.outputs
        for node in outputs:
            graph.update_input_link(target_in_node, var_node, node)
        graph.update_input_link(var_node, target_out_node, op)

        # update grad
        if not graph._for_test:
            op_out = op.outputs[0]
            op_out_grad = graph._find_node_by_name(graph.all_var_nodes(),
                                                   op_out.name() + "@GRAD")
            # find op's gradient op, such as conv2d_grad
            op_grad = op_out_grad.outputs[0]
            target_out_grad_node = graph._find_node_by_name(
                graph.all_var_nodes(), target_out_node.name() + "@GRAD")
            in_node_grad = graph._find_node_by_name(
                graph.all_var_nodes(), target_in_node.name() + "@GRAD")
            in_node_grad_op = in_node_grad.inputs
            # update op_grad's input
            graph.update_input_link(var_node, target_out_node, op_grad)

            op_grad_out = None
            # find var_node's corresponding grad node
            for node in op_grad.outputs:
                if var_node.name() + "@GRAD" in node.name():
                    op_grad_out = node
            # update op_grad's output
            if op_grad_out is not None:
                graph.update_output_link(op_grad_out, target_out_grad_node,
                                         op_grad)
            else:
                graph.link_to(op_grad, target_out_grad_node)

            for node in in_node_grad_op:
                graph.update_input_link(target_in_node, var_node, node)
                if op_grad_out:
                    graph.update_output_link(in_node_grad, op_grad_out, node)
            # remove useless nodes
            mean_grad = target_out_grad_node.inputs[0]
            mean_out_grad = mean_grad.inputs[0]
            fill_constant_node = mean_out_grad.inputs[0]
            graph.safe_remove_nodes(mean_grad)
            graph.safe_remove_nodes(mean_out_grad)
            graph.safe_remove_nodes(fill_constant_node)
            graph.safe_remove_nodes(in_node_grad)

        graph.safe_remove_nodes(loss_node.inputs[0])
        graph.safe_remove_nodes(loss_node)
        graph.safe_remove_nodes(target_in_node)
        return target_out_node

W
WangZhen 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
1038
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
1039 1040
        """
        return "%s.scale" % (var_name)
W
WangZhen 已提交
1041

1042
    def _is_skip_quant(self, graph, op_node):
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
        """
        Analyse whether the op node skips quantization.
        """
        is_skip = False
        if op_node.op().has_attr("skip_quant") and \
            op_node.op().attr("skip_quant"):
            is_skip = True
        # if the inputs of mul and matmul are not all persistable, use
        # AddQuantDequantPass to quantize them.
        if op_node.name() in ["mul", "matmul"] and \
            _is_input_all_not_persistable(graph, op_node):
            is_skip = True
1055 1056 1057
        if op_node.op().has_attr("quantization_type") and \
            op_node.op().attr("quantization_type") == "qat_without_weight":
            is_skip = True
1058 1059
        return is_skip

W
WangZhen 已提交
1060 1061 1062 1063 1064 1065 1066

class QuantizationFreezePass(object):
    def __init__(self,
                 scope,
                 place,
                 weight_bits=8,
                 activation_bits=8,
1067
                 weight_quantize_type='abs_max',
1068
                 quantizable_op_type=None):
1069 1070
        """
        The freeze pass is used to adjust the quantize operator order, for example:
T
tianshuo78520a 已提交
1071
            1) `activation -> quant -> dequant -> conv2d` will be frozen into
1072
            `activation -> quant -> conv2d -> dequant`
T
tianshuo78520a 已提交
1073 1074
            2) `weight -> quant -> dequant -> conv2d` will be frozen into `weight -> conv2d`,
            and weight will be scaled offline.
1075 1076 1077

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
1078 1079
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the weight tensors.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
1080 1081 1082 1083 1084
            weight_bits(int): quantization bit number for weights.
            activation_bits(int): quantization bit number for activation.
            weight_quantize_type(str): quantization type for weights, support 'abs_max' and 
                'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight, 
                since weights are fixed once the model is well trained.
1085 1086
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1087
        """
W
WangZhen 已提交
1088 1089 1090 1091 1092
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
1093
        self._place = _get_paddle_place(place)
W
WangZhen 已提交
1094 1095 1096
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._weight_quantize_type = weight_quantize_type
1097 1098
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
W
WangZhen 已提交
1099 1100
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
1101
        self._quant_var_scale_map = collections.OrderedDict()
W
WangZhen 已提交
1102 1103

    def apply(self, graph):
1104 1105 1106 1107 1108
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
1109 1110
        Returns:
            None
1111
        """
1112
        # Get input scales in fake quant op and process weights
1113 1114
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1115 1116 1117
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
1118
                input_arg_name = op_node.input('X')[0]
1119 1120 1121 1122
                if hasattr(graph, 'out_node_mapping_table'):
                    if input_arg_name in graph.out_node_mapping_table.keys():
                        input_arg_name = graph.out_node_mapping_table[
                            input_arg_name]
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
                if input_arg_name not in persistable_vars:
                    scale_v = graph._find_node_by_name(
                        op_node.outputs, op_node.output('OutScale')[0])
                    self._quant_var_scale_map[input_arg_name] = scale_v
                else:
                    # Obtain scale from OutScale var node
                    scale_v = self._load_var(op_node.output('OutScale')[0])
                    assert scale_v.ndim in [
                        1, 2
                    ], "the dim of scale_v should be 1 or 2"
                    if scale_v.ndim == 2:
                        scale_v = scale_v[0]
                    if scale_v.size == 1:
                        scale_v = scale_v[0]
W
WangZhen 已提交
1137
                    else:
1138
                        scale_v = scale_v.tolist()
1139
                    self._quant_var_scale_map[input_arg_name] = scale_v
1140
                    # Quantize weight and restore
W
WangZhen 已提交
1141
                    param_v = self._load_var(input_arg_name)
1142 1143 1144 1145 1146 1147 1148 1149
                    if isinstance(scale_v, list) and \
                        any(_check_grandchild_op_node(op_node, op)
                        for op in _channelwise_quant_axis1_ops):
                        quant_axis = 1
                    else:
                        quant_axis = 0
                    quantized_param_v = self._quant(
                        param_v, scale_v, self._weight_bits, quant_axis)
W
WangZhen 已提交
1150
                    self._restore_var(input_arg_name, quantized_param_v)
1151
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
W
WangZhen 已提交
1152

1153
        # Remove all fake dequant op
1154
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1155 1156 1157 1158 1159
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

1160
        # Insert post dequant op
1161
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1162
        for op_node in ops:
1163 1164 1165
            op_node_desc = op_node.op()
            if op_node_desc.has_attr("quantization_type") and \
                op_node_desc.attr("quantization_type") == "qat_with_weight":
1166
                if self._weight_quantize_type == 'channel_wise_abs_max':
1167 1168 1169
                    self._insert_post_channel_dequant_op(graph, op_node)
                else:
                    self._insert_post_dequant_op(graph, op_node)
W
WangZhen 已提交
1170

1171
        # Rename inputs of the followed ops after inserting dequant_op after fc/conv
W
WangZhen 已提交
1172 1173
        for op_node in ops:
            for var_node in op_node.inputs:
1174 1175 1176
                if var_node.node in self._op_output_rename_map:
                    old_in = var_node
                    new_in = self._op_output_rename_map[var_node.node]
W
WangZhen 已提交
1177 1178 1179 1180
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1181
        graph.resolve_hazard()
1182
        return graph
W
WangZhen 已提交
1183 1184

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
1185 1186
        k = graph._find_node_by_name(op_node.outputs, op_node.output('Out')[0])
        v = graph._find_node_by_name(op_node.inputs, op_node.input('X')[0])
1187 1188
        if v.node not in self._op_input_rename_map:
            self._op_input_rename_map[k.node] = v
W
WangZhen 已提交
1189
        else:
1190 1191
            self._op_input_rename_map[k.node] = self._op_input_rename_map[
                v.node]
W
WangZhen 已提交
1192
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
1193

1194 1195 1196 1197
    def _insert_post_channel_dequant_op(self, graph, op_node):
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        for var_node in op_node.inputs:
            name = var_node.name()
1198 1199 1200 1201 1202
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
1203 1204 1205
                new_in.clear_outputs()
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1206
            scale_v = self._quant_var_scale_map[original_var_name]
1207 1208 1209 1210 1211 1212 1213 1214
            if original_var_name in persistable_vars:
                assert isinstance(
                    scale_v,
                    list), 'The scale of parameter %s is not a list.' % (
                        original_var_name)
                channel_scale = np.array(scale_v)
            else:
                assert isinstance(scale_v, IrNode)
1215
                scale_var_node = self._quant_var_scale_map[original_var_name]
1216

1217
        if len(op_node.output_arg_names()) != 1:
1218 1219 1220
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1221 1222
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
1223 1224 1225 1226 1227
        weight_scale_node = graph.create_persistable_node(
            name=unique_name.generate('channel_scale'),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[channel_scale.shape[0]],
            var_dtype=output_var_node.dtype())
1228 1229
        data_type = 'float64' if output_var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
1230 1231 1232
        _init_var_node(weight_scale_node,
                       channel_scale.astype(data_type), self._scope,
                       self._place)
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': [self._weight_bits, self._activation_bits],
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={
                'X': output_var_node,
                'Scales': [weight_scale_node, scale_var_node]
            },
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(weight_scale_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1253
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
1254 1255
        return dequant_var_node

W
WangZhen 已提交
1256
    def _insert_post_dequant_op(self, graph, op_node):
1257
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
1258 1259 1260
        max_range = 1
        param_range = (1 << (self._weight_bits - 1)) - 1
        act_range = (1 << (self._activation_bits - 1)) - 1
W
WangZhen 已提交
1261
        for var_node in op_node.inputs:
W
WangZhen 已提交
1262
            name = var_node.name()
1263 1264 1265 1266 1267
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
W
WangZhen 已提交
1268
                new_in.clear_outputs()
W
WangZhen 已提交
1269 1270
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1271
            scale_v = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1272 1273 1274 1275
            if original_var_name in persistable_vars:
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
1276
                max_range *= param_range / scale_v
W
WangZhen 已提交
1277
            else:
1278
                max_range *= act_range
1279
                assert isinstance(scale_v, IrNode)
1280
                scale_var_node = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1281

1282
        if len(op_node.output_arg_names()) != 1:
W
WangZhen 已提交
1283 1284 1285
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1286 1287
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
W
WangZhen 已提交
1288 1289
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
1290 1291 1292
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
W
WangZhen 已提交
1293 1294
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
1295 1296 1297 1298
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
1299 1300 1301 1302 1303 1304
            inputs={'X': output_var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1305
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
W
WangZhen 已提交
1306 1307 1308 1309 1310
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

1311 1312 1313
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
1314 1315 1316

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1317
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1318 1319 1320 1321 1322 1323
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1324 1325 1326 1327 1328 1329
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
W
WangZhen 已提交
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
        if var_name.endswith('.scale'):
            return var_name[:-len('.scale')]
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
1353
    def _is_float(self, v):
W
WangZhen 已提交
1354 1355 1356
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

1357 1358
    def _quant(self, x, scale, num_bits, quant_axis):
        assert quant_axis in [0, 1], 'quant_axis should be 0 or 1 for now.'
1359 1360 1361 1362 1363 1364 1365
        bnt = (1 << (num_bits - 1)) - 1

        def _clip(x, scale):
            x[x > scale] = scale
            x[x < -scale] = -scale
            return x

1366 1367
        if isinstance(scale, list):
            for i, s in enumerate(scale):
1368
                if quant_axis == 0:
1369 1370
                    x[i] = _clip(x[i], s)
                    x[i] = np.round(x[i] / s * bnt)
1371
                else:
1372 1373
                    x[:, i] = _clip(x[:, i], s)
                    x[:, i] = np.round(x[:, i] / s * bnt)
1374
        else:
1375 1376 1377
            x = _clip(x, scale)
            x = np.round(x / scale * bnt)
        return x
1378 1379 1380


class ConvertToInt8Pass(object):
1381
    def __init__(self, scope, place, quantizable_op_type=None):
1382 1383 1384 1385 1386
        """
        Convert the weights into int8_t type.

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
1387 1388 1389
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the
                8bits weight tensors. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs.
1390 1391
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1392
        """
1393 1394 1395 1396 1397
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
1398
        self._place = _get_paddle_place(place)
1399 1400

    def apply(self, graph):
1401
        """
T
tianshuo78520a 已提交
1402 1403
        Convert weights' type of the graph. After that, the data type of the
        graph weights is int8_t.
1404 1405 1406

        Args:
            graph(IrGraph): the applied graph.
1407 1408
        Returns:
            None
1409
        """
1410 1411
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
1412 1413
        input_map = {}
        for op_node in ops:
1414 1415
            if op_node.op().has_attr("quantization_type") and \
                op_node.op().attr("quantization_type") == "qat_with_weight":
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
                            int8_var_node = self._convert_to_int8(graph,
                                                                  var_node)
                            input_map[name] = int8_var_node
                        graph.update_input_link(var_node, input_map[name],
                                                op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1428
        graph.resolve_hazard()
1429 1430 1431 1432
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
1433
        int8_var_node = graph.create_persistable_node(
1434
            name=cpt.to_text(int8_var_node_name),
1435 1436
            var_type=var_node.type(),
            shape=var_node.shape(),
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
            var_dtype=core.VarDesc.VarType.INT8)
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1452
        ops = graph.all_op_nodes()
1453 1454 1455 1456 1457 1458
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1459 1460 1461 1462 1463 1464
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
1465 1466 1467 1468 1469
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
    def __init__(self):
1470
        """
T
tianshuo78520a 已提交
1471
        This pass is used to convert the frozen graph for paddle-mobile execution.
1472
        """
1473 1474
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
1475 1476

    def apply(self, graph):
1477 1478 1479 1480 1481 1482 1483
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
1484 1485
        Returns:
            None
1486
        """
1487
        ops = graph.all_op_nodes()
1488 1489 1490
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
1491
                op_node.set_type('quantize')
1492 1493 1494 1495 1496 1497 1498
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
1499
                op_node.set_type('dequantize')
1500 1501 1502 1503 1504 1505
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)
Z
Zhen Wang 已提交
1506
        graph.resolve_hazard()
1507
        return graph
1508 1509


1510
class OutScaleForTrainingPass(object):
1511 1512 1513 1514 1515 1516 1517
    def __init__(self, scope=None, place=None, moving_rate=0.9):
        """
        This pass is used for calculating output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1518 1519 1520
            place(fluid.CPUPlace|fluid.CUDAPlace|str): The place is used to initialize new parameters.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the
                index of the GPUs.
1521 1522 1523
            moving_rate(float): The decay coefficient of moving average. The default value is 0.9.
        """
        self._scope = scope
1524
        self._place = _get_paddle_place(place)
1525 1526
        self._moving_rate = moving_rate
        self._is_test = None
1527
        self._teller_set = _out_scale_op_list
1528 1529 1530 1531 1532 1533 1534 1535 1536

    def apply(self, graph):
        """
        Insert the `moving_average_abs_max_scale` op in order to calculate output scales
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1537 1538
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1539
        self._is_test = graph.is_test()
1540 1541 1542 1543 1544 1545 1546
        target_ops = []
        for op in graph.all_op_nodes():
            if op.name() in self._teller_set:
                target_ops.append(op)
        for op in target_ops:
            for output_var_name in _get_op_output_var_names(op):
                in_node = graph._find_node_by_name(op.outputs, output_var_name)
1547 1548 1549 1550
                if in_node.dtype() not in \
                    [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                    continue

1551 1552 1553 1554 1555
                scale_node = graph.create_persistable_node(
                    name=self._scale_name(in_node.name()),
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=in_node.dtype())
1556 1557 1558 1559 1560 1561 1562 1563
                data_type = 'float64' if in_node.dtype() \
                    == core.VarDesc.VarType.FP64 else 'float32'
                _init_var_node(
                    scale_node,
                    np.ones(
                        [1], dtype=data_type),
                    self._scope,
                    self._place)
1564
                ins = {'X': in_node}
1565
                outs = {'OutScale': scale_node}
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
                if not self._is_test:
                    state_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_state@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    _init_var_node(
                        state_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    accum_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_accum@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    _init_var_node(
                        accum_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    state_out_node = graph.create_var_node_from_desc(
                        state_in_node.var())
                    accum_out_node = graph.create_var_node_from_desc(
                        accum_in_node.var())

                    ins['InState'] = state_in_node
                    ins['InAccum'] = accum_in_node
                    outs['OutState'] = state_out_node
                    outs['OutAccum'] = accum_out_node

                attrs = {
                    'moving_rate': self._moving_rate,
                    'is_test': self._is_test,
                    'op_role': core.op_proto_and_checker_maker.OpRole.Forward
                }
                scale_op_node = graph.create_op_node(
                    op_type='moving_average_abs_max_scale',
                    attrs=attrs,
                    inputs=ins,
                    outputs=outs)
                graph.link_to(in_node, scale_op_node)
                graph.link_to(scale_op_node, scale_node)
                if not self._is_test:
                    graph.link_to(state_in_node, scale_op_node)
                    graph.link_to(accum_in_node, scale_op_node)
                    graph.link_to(scale_op_node, state_out_node)
                    graph.link_to(scale_op_node, accum_out_node)
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)


1626
class OutScaleForInferencePass(object):
1627 1628 1629 1630 1631 1632 1633 1634 1635
    def __init__(self, scope=None):
        """
        This pass is used for setting output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
        """
        self._scope = scope
1636
        self._teller_set = _out_scale_op_list
1637 1638 1639 1640 1641 1642 1643 1644 1645

    def apply(self, graph):
        """
        Get output scales from the scope and set these scales in op_descs
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1646 1647
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1648 1649 1650
        op_nodes = graph.all_op_nodes()
        for op_node in op_nodes:
            if op_node.name() in self._teller_set:
1651 1652
                var_names = _get_op_output_var_names(op_node)
                for var_name in var_names:
1653 1654 1655 1656 1657 1658
                    in_node = graph._find_node_by_name(op_node.outputs,
                                                       var_name)
                    if in_node.dtype() not in \
                        [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                        continue

1659
                    scale_name = self._scale_name(var_name)
1660 1661 1662 1663 1664 1665 1666
                    scale_var = self._scope.find_var(scale_name)
                    assert scale_var is not None, \
                        "Can not find {} variable in the scope".format(scale_name)
                    scale_value = np.array(scale_var.get_tensor())[0]

                    # For compatibility, we save output threshold by two methods.
                    op_node.op()._set_attr("out_threshold", float(scale_value))
1667 1668 1669 1670 1671

                    argname_index = _get_output_name_index(op_node, var_name)
                    assert argname_index is not None, \
                        var_name + " is not the output of the op"
                    op_node.op()._set_attr(argname_index[0] + str(argname_index[1]) \
1672
                        + "_threshold", float(scale_value))
1673 1674 1675 1676 1677 1678 1679 1680
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)
1681 1682 1683


class AddQuantDequantPass(object):
1684 1685 1686 1687
    """
    Quantize the ops that do not have weights, and add quant_dequant op for the 
    quantized ops's inputs.
    """
1688 1689 1690 1691 1692
    _supported_quantizable_op_type = [
        "pool2d", "elementwise_add", "concat", "softmax", "argmax", "transpose",
        "equal", "gather", "greater_equal", "greater_than", "less_equal",
        "less_than", "mean", "not_equal", "reshape", "reshape2",
        "bilinear_interp", "nearest_interp", "trilinear_interp", "slice",
1693 1694
        "squeeze", "elementwise_sub", "mul", "matmul", "relu", "relu6",
        "leaky_relu", "tanh", "swish"
1695 1696
    ]

1697 1698 1699
    # To be compatible with PaddleSlim, not remove _activation_type for now
    _activation_type = ["relu", "relu6", "leaky_relu", "tanh", "swish"]

1700 1701 1702 1703 1704
    def __init__(self,
                 scope=None,
                 place=None,
                 moving_rate=0.9,
                 quant_bits=8,
1705
                 skip_pattern=["skip_quant"],
1706
                 quantizable_op_type=["elementwise_add", "pool2d"],
1707
                 is_full_quantized=False):
1708
        """
1709
        Constructor.
1710 1711 1712

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1713 1714 1715
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
1716 1717 1718 1719 1720 1721 1722 1723
            moving_rate(float, optional): the param for 'quant_dequant_moving_average_abs_max' 
                quantization. Default is 0.9.
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
            skip_pattern(str, optional): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
                Default is 'skip_quant'.
            quantizable_op_type(list[str], optional): List the type of ops that will be 
1724
                quantized. Default is ["elementwise_add", "pool2d"]. 
1725 1726 1727 1728
            is_full_quantized(bool, optional): If set is_full_quantized as True, apply 
                quantization to all supported quantizable op type. If set is_full_quantized
                as False, only apply quantization to the op type according to the input 
                quantizable_op_type.
1729 1730
        """
        self._scope = scope
1731
        self._place = _get_paddle_place(place)
1732 1733 1734
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
        self._is_test = None
1735
        self._skip_pattern = skip_pattern
1736 1737 1738 1739 1740 1741 1742

        if is_full_quantized:
            self._quantizable_op_type = \
                AddQuantDequantPass._supported_quantizable_op_type
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in quantizable_op_type:
1743
                assert op_type in AddQuantDequantPass._supported_quantizable_op_type, \
1744
                    op_type + " is not supported for quantization."
1745 1746 1747 1748
        self._quantizable_grad_op_type = [
            '%s_grad' % (op) for op in self._quantizable_op_type
        ]

1749 1750
        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."
1751 1752 1753

    def apply(self, graph):
        """
1754 1755
        Add quant_dequant before some ops, such as the 'elementwise_add' and
        'pool2d' op.
1756

1757 1758
        Args:
            graph(IrGraph): the target graph.
1759 1760
        Returns:
            None
1761 1762 1763 1764
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
1765 1766
        dequantized_vars_map = collections.OrderedDict()

1767 1768 1769
        # Forward stage, insert quant_dequant op
        all_op_nodes = graph.all_op_nodes()
        for op_node in all_op_nodes:
1770
            if op_node.name() in self._quantizable_op_type:
1771
                is_skip = False
1772
                if isinstance(self._skip_pattern, list):
1773
                    is_skip = op_node.op().has_attr("op_namescope") and \
1774 1775
                                   any(pattern in op_node.op().attr("op_namescope") for pattern in self._skip_pattern)
                elif isinstance(self._skip_pattern, str):
1776
                    is_skip = op_node.op().has_attr("op_namescope") and \
1777
                                   op_node.op().attr("op_namescope").find(self._skip_pattern) != -1
1778 1779 1780
                is_quantized = op_node.op().has_attr("quantization_type") and \
                    op_node.op().attr("quantization_type") == "qat_with_weight"
                if is_skip or is_quantized or \
1781
                    (not _is_input_all_not_persistable(graph, op_node)):
1782
                    continue
1783

1784 1785 1786
                op_node.op()._set_attr("quantization_type",
                                       "qat_without_weight")
                op_node.op()._set_attr("activation_bits", self._quant_bits)
1787
                arg_names = _get_op_input_var_names(op_node)
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
                for arg_name in arg_names:
                    in_node = graph._find_node_by_name(op_node.inputs, arg_name)
                    if arg_name in dequantized_vars_map:
                        quant_var_node = dequantized_vars_map[arg_name]
                    else:
                        quant_var_node, _ = \
                            self._inser_quant_dequant_moving_average_abs_max_op(
                            graph, in_node, self._quant_bits)
                        dequantized_vars_map[arg_name] = quant_var_node
                    graph.update_input_link(in_node, quant_var_node, op_node)
1798

1799 1800
        # Backward stage, update input link
        for op_node in all_op_nodes:
1801
            if op_node.name() in self._quantizable_grad_op_type:
1802 1803 1804 1805 1806 1807 1808 1809
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
                        in_node = graph._find_node_by_name(op_node.inputs,
                                                           input_name)
                        dequant_var_node = dequantized_vars_map[input_name]
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
        graph.resolve_hazard()
        return graph

    def _inser_quant_dequant_moving_average_abs_max_op(self, graph, var_node,
                                                       quant_bits):
        """Insert fake_quantize_dequantize_moving_average_abs_max op.
        """
        quant_var_node = graph.create_var_node(
            name="{}.quant_dequant".format(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
            name="{}.quant_dequant.scale".format(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
            _init_var_node(
                state_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_dequantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node