distribute_transpiler.py 82.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
34
import numpy as np
35
import collections
Q
Qiao Longfei 已提交
36
import logging
37

38
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
39
from .. import core, framework, unique_name
T
typhoonzero 已提交
40
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
41 42
    default_startup_program, Block, \
    Parameter, grad_var_name
43
from .details import *
Q
Qiao Longfei 已提交
44
from ..distribute_lookup_table import find_distributed_lookup_table
45
from functools import reduce
46 47 48

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
49
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
50 51
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
52
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
53
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
54 55 56 57 58 59 60 61 62
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
63 64


T
typhoonzero 已提交
65 66 67 68 69 70
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
71

T
typhoonzero 已提交
72 73
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
74 75


76 77 78 79
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
80
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
81
    """
82 83 84 85 86 87
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
88
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
89 90 91

    Args:
        var_list (list): List of variables.
92 93
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
94 95
        min_block_size (int): Minimum splitted block size.
    Returns:
96
        blocks (list[(varname, block_id, current_block_size)]): A list
97
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
98 99 100
    """
    blocks = []
    for var in var_list:
101
        split_count = slice_count
T
typhoonzero 已提交
102 103 104 105
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
106
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
107 108 109 110 111 112 113 114 115
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
116
        # update split_count after aligning
T
typhoonzero 已提交
117
        split_count = int(math.ceil(var_numel / float(block_size)))
118
        for block_id in range(split_count):
T
typhoonzero 已提交
119 120 121 122 123 124 125
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
126 127
class DistributeTranspilerConfig(object):
    """
T
Tink_Y 已提交
128 129 130 131 132 133 134 135
    Args:
        slice_var_up (bool): Do Tensor slice for pservers, default is True.
        split_method (PSDispatcher): RoundRobin or HashName can be used
          try to choose the best method to balance loads for pservers.
        min_block_size (int): Minimum splitted element number in block.
          According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
          We can use bandwidth effiently when data size is larger than 2MB.If you
          want to change it, please be sure you see the slice_variable function.
G
gongweibao 已提交
136 137 138 139 140
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
141
    enable_dc_asgd = False
W
Wu Yi 已提交
142 143
    # supported modes: pserver, nccl2
    mode = "pserver"
144
    print_log = False
W
Wu Yi 已提交
145
    wait_port = True
G
gongweibao 已提交
146 147


Y
gen rst  
yi.wu 已提交
148
class DistributeTranspiler(object):
Y
yi.wu 已提交
149 150 151 152
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
153
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
154

W
Wu Yi 已提交
155 156 157 158 159 160 161 162 163
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
164 165 166 167

    Examples:
        .. code-block:: python

T
Tink_Y 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
            role = os.getenv("PADDLE_TRAINING_ROLE")
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
181
                                                                pserver_program)
T
Tink_Y 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
            t = fluid.DistributeTranspiler(config=config)
            t.transpile(trainer_id, workers=workers, current_endpoint=curr_ep)
            exe = fluid.ParallelExecutor(
                use_cuda,
                loss_name=loss_var.name,
                num_trainers=len(trainers.split(",)),
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
196
    """
Y
Yancey1989 已提交
197

G
gongweibao 已提交
198 199 200 201 202 203 204 205 206
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

207 208 209
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
210 211 212
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
213 214 215 216
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
W
Wu Yi 已提交
217 218
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
219 220 221 222 223 224
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
W
Wu Yi 已提交
225 226
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": trainer_id
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

Q
Qiao Longfei 已提交
243
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
244 245 246 247
        sparse_update_ops = []
        sparse_update_op_types = ["lookup_table"]
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
Q
Qiao Longfei 已提交
248 249
                    'remote_prefetch') is True and not op.attr(
                        'is_distributed'):
Q
Qiao Longfei 已提交
250 251 252
                sparse_update_ops.append(op)
        return sparse_update_ops

Q
Qiao Longfei 已提交
253
    def _update_remote_sparse_update_op(self, param_varname, height_sections,
Q
Qiao Longfei 已提交
254
                                        endpint_map, table_names):
Q
Qiao Longfei 已提交
255 256 257
        for op in self.sparse_update_ops:
            if param_varname in op.input_arg_names:
                op._set_attr('epmap', endpint_map)
Q
Qiao Longfei 已提交
258
                op._set_attr('table_names', table_names)
Q
Qiao Longfei 已提交
259
                op._set_attr('height_sections', height_sections)
Q
Qiao Longfei 已提交
260 261 262 263 264 265 266
                op._set_attr('trainer_id', self.trainer_id)

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
267

268 269 270 271 272
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
273
                  sync_mode=True,
W
Wu Yi 已提交
274 275
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
276
        """
Y
yi.wu 已提交
277 278 279 280 281 282 283
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
284 285
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
286 287
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
288 289 290
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
291
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
292 293
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
294 295 296
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
297 298 299
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
300 301
        if startup_program is None:
            startup_program = default_startup_program()
302
        self.origin_program = program
W
Wu Yi 已提交
303 304
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
305

W
Wu Yi 已提交
306 307
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
308
            self.origin_program._trainers_endpoints = trainers.split(",")
W
Wu Yi 已提交
309 310 311 312
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
W
Wu Yi 已提交
313 314
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
315 316
            return

317 318 319 320 321 322 323
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
324
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
325 326
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
327
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
328
        self.grad_name_to_param_name = dict()
329 330
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
331
            self.grad_name_to_param_name[grad_var.name] = param_var.name
332

Q
Qiao Longfei 已提交
333
        # get all sparse update ops
Q
Qiao Longfei 已提交
334
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
335
            self.origin_program)
Q
Qiao Longfei 已提交
336
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
337 338
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
339 340 341 342 343 344
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

345
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
346
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
347
        self._init_splited_vars()
348

G
gongweibao 已提交
349
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
350
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
351
        send_vars = []
352 353 354 355 356 357

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
358
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
359

G
gongweibao 已提交
360
        if not self.config.slice_var_up:
361 362
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
363

364
        self.grad_name_to_send_dummy_out = dict()
365
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
366
            eplist = ps_dispatcher.dispatch(splited_vars)
367

G
gongweibao 已提交
368
            if not self.config.slice_var_up:
369 370
                assert (len(splited_vars) == 1)

371
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
372
            if len(splited_vars) == 1:
373
                splited_grad_varname = splited_vars[0].name
374 375
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
376 377
                if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                    sparse_param_name = self.grad_name_to_param_name[
Q
Qiao Longfei 已提交
378
                        grad_varname]
Q
Qiao Longfei 已提交
379 380 381 382
                    if self._is_input_of_remote_sparse_update_op(
                            sparse_param_name):
                        self.sparse_param_to_height_sections[
                            sparse_param_name] = [splited_vars[0].shape[0]]
Y
Yancey1989 已提交
383
            elif len(splited_vars) > 1:
384
                orig_var = program.global_block().vars[splited_grad_varname]
385 386
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
387
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
388
                index += 1
Y
Yancey1989 已提交
389 390
            else:
                AssertionError("Can not insert the send op by original "
391
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
392

W
Wu Yi 已提交
393 394
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
395
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
396

W
Wu Yi 已提交
397 398 399 400
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
401
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
402
                index=index + 1,
403
                type="send",
Y
update  
Yancey1989 已提交
404
                inputs={"X": splited_vars},
405
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
406 407
                attrs={
                    "epmap": eplist,
408
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
409 410 411 412
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
413
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
414
                })
Y
update  
Yancey1989 已提交
415 416
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
417 418

        if self.sync_mode:
W
Wu Yi 已提交
419 420
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
421 422 423 424
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
425
            input_deps = list(self.grad_name_to_send_dummy_out.values())
426

Y
Yancey1989 已提交
427 428
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
429
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
430
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
431 432
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
433 434
                    "sync_mode": self.sync_mode,
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
435
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
436
                })
Y
Yancey1989 已提交
437

G
gongweibao 已提交
438
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
439
        recv_vars = []
Y
update  
Yancey1989 已提交
440
        for _, var in enumerate(send_vars):
441
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
442
        ps_dispatcher.reset()
Y
Yancey1989 已提交
443 444
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
445
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
446 447
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
448

Y
Yancey1989 已提交
449
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
450
        all_recv_outputs = []
451
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
452
            eps = []
Q
Qiao Longfei 已提交
453
            table_names = []
Y
Yancey1989 已提交
454 455 456
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
457
                table_names.append(var.name)
W
Wu Yi 已提交
458 459 460 461
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
462
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
463
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
464

W
Wu Yi 已提交
465 466 467 468 469 470 471 472 473
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
474 475 476
            if param_varname in self.sparse_param_to_height_sections:
                height_sections = self.sparse_param_to_height_sections[
                    param_varname]
Q
Qiao Longfei 已提交
477 478
                self._update_remote_sparse_update_op(
                    param_varname, height_sections, eps, table_names)
Q
Qiao Longfei 已提交
479
            else:
Q
Qiao Longfei 已提交
480
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
481 482 483 484 485 486 487 488 489 490 491 492
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [param_varname, recv_op_role_var_name],
                        "sync_mode": not self.sync_mode
                    })
T
typhoonzero 已提交
493

Q
qiaolongfei 已提交
494
        if self.sync_mode:
W
Wu Yi 已提交
495
            # form a WAW dependency
Q
qiaolongfei 已提交
496 497 498
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
499
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
500 501
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
502
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
503 504
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
505

506
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
507 508
            if len(splited_var) <= 1:
                continue
509
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
510 511 512 513 514 515 516 517 518
            if param_varname not in self.sparse_param_to_height_sections:
                program.global_block().append_op(
                    type="concat",
                    inputs={"X": splited_var},
                    outputs={"Out": [orig_param]},
                    attrs={
                        "axis": 0,
                        RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                    })
T
typhoonzero 已提交
519

G
gongweibao 已提交
520 521
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

522
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
523 524
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
525
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
526

W
Wu Yi 已提交
527
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
528 529 530 531 532 533
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
534
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
535
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
T
typhoonzero 已提交
536
        lr_ops = self._get_lr_ops()
537
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
538 539
        delete_ops(self.origin_program.global_block(), lr_ops)

540 541
        # delete table init op
        if self.has_distributed_lookup_table:
542 543 544
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
545 546
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
547 548 549 550 551
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
552
            table_init_op = table_param_init_op[0]
553 554 555 556 557 558
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
559

560
        self.origin_program.__str__()
G
gongweibao 已提交
561

W
Wu Yi 已提交
562 563 564
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

565
        return self.origin_program
T
typhoonzero 已提交
566

W
Wu Yi 已提交
567
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
568 569 570 571
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
572
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
573
            eplist (list): A list of strings indicating
G
gongweibao 已提交
574 575 576 577

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
578
        startup_program = self.startup_program
G
gongweibao 已提交
579 580 581 582

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
583
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
604
                inputs={"X": []},
G
gongweibao 已提交
605 606 607 608 609 610
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
611 612
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
613 614 615
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
616
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
617 618 619 620 621
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
622
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
623
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
624 625
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
626
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
627
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
628 629 630 631 632 633 634 635 636 637
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
638 639 640 641 642 643 644 645
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
646 647
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
648
        Get parameter server side program.
649

Y
yi.wu 已提交
650 651
        Args:
            endpoint (str): current parameter server endpoint.
652

Y
yi.wu 已提交
653 654
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
655
        """
Y
yi.wu 已提交
656 657 658 659
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
T
typhoonzero 已提交
660 661
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
662
        pserver_program.random_seed = self.origin_program.random_seed
663
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
664 665 666 667 668 669 670 671
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
672 673 674 675 676
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
677 678 679 680 681 682 683 684 685
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
686
            if self.sync_mode and self.trainer_num > 1:
687
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
688 689 690 691 692 693 694 695 696
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
697

698 699 700
        self._slice_params_and_optimizes = self._get_slice_vars_and_attrs(
            endpoint)

Q
qiaolongfei 已提交
701
        # step 3
702
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
703 704 705
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
706
        # step 3.2
T
typhoonzero 已提交
707 708 709 710
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
711 712
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
713
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
714
        # step 3.3
W
Wu Yi 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
733
        # Iterate through the ops, and if an op and the optimize ops
734
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
735
        # append it into the sub program.
T
typhoonzero 已提交
736 737 738

        global_ops = []

Y
wip  
yi.wu 已提交
739 740
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
741
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
742
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
743
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
744
            elif op not in lr_ops:
Q
Qiyang Min 已提交
745
                self._append_pserver_non_opt_ops(block, op)
746

Y
Yancey1989 已提交
747
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
748 749 750 751 752 753 754 755
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
756
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
757 758 759

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
760
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
761 762

            # clone ops
Y
Yancey1989 已提交
763 764
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
765
                # clone sub_block of op
Y
Yancey1989 已提交
766
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
767 768

            # reset the block of op
W
Wu Yi 已提交
769
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
770

771
        # append lr decay ops to the child block if exists
772
        lr_ops = self._get_lr_ops()
773 774
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
775
        if len(lr_ops) > 0:
W
Wu Yi 已提交
776
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
777
                pserver_program.num_blocks - 1)
778
            optimize_blocks.append(lr_decay_block)
779
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
780
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
781
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
782 783
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
784

T
typhoonzero 已提交
785
        # append op to the current block
Q
qiaolongfei 已提交
786
        grad_to_block_id = []
Q
qiaolongfei 已提交
787
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
788
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
789
            per_opt_block = pserver_program._create_block(pre_block_idx)
790
            optimize_blocks.append(per_opt_block)
791
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
792
            # append grad merging ops before clip and weight decay
793 794
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
795
            for _, op in enumerate(self.optimize_ops):
796
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
797
                # merged_var should be the input var name of L2Decay
798 799 800
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
801 802 803
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
804 805 806 807 808 809
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
810
                            op not in global_ops:
811 812 813 814 815
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
816

817
        # dedup grad to ids list
W
Wu Yi 已提交
818
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
819
        # append global ops
820
        if global_ops:
W
Wu Yi 已提交
821
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
822
                pserver_program.num_blocks - 1)
823
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
824
            for glb_op in global_ops:
X
Xi Chen 已提交
825
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
826
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
827

828
        # process distributed lookup_table
Q
qiaolongfei 已提交
829
        prefetch_var_name_to_block_id = []
830 831
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
832
            table_opt_block = self._create_table_optimize_block(
833
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
834
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
835
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
836
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
837 838
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
839

T
tangwei12 已提交
840
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
841 842
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
843

844
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
845 846
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
847 848 849 850 851 852
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
853
        attrs = {
854
            "optimize_blocks": optimize_blocks,
855 856 857
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
858
            "grad_to_block_id": grad_to_block_id,
859
        }
T
tangwei12 已提交
860 861

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
862
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
863 864
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
865

T
tangwei12 已提交
866 867 868 869
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
870 871 872 873 874
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
875
            attrs=attrs)
876

T
tangwei12 已提交
877
        # add distributed attrs
878 879
        pserver_program._slice_vars_and_attrs = list(
            self._slice_params_and_optimizes.values())
880

W
Wu Yi 已提交
881
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
882 883
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
884 885
        return pserver_program

W
Wu Yi 已提交
886 887 888 889 890 891
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
892

W
Wu Yi 已提交
893 894 895 896
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
897 898
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
899 900
        return pserver_prog, pserver_startup

901 902
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
903
                            pserver_program=None,
904
                            startup_program=None):
T
typhoonzero 已提交
905
        """
W
Wu Yi 已提交
906 907
        **Deprecated**

T
typhoonzero 已提交
908 909 910
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
911 912 913

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
914 915
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
916
                when initalizing
917

Y
yi.wu 已提交
918 919
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
920 921
        """
        s_prog = Program()
W
Wu Yi 已提交
922
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
923
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
924 925 926 927 928 929 930 931 932 933 934
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
935
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
936
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
937
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
938 939 940 941
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
942
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
943 944
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
945 946 947 948 949 950 951 952 953 954
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
955 956

            if op_on_pserver:
957 958 959
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
960 961 962
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
W
Wu Yi 已提交
963
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
964 965 966 967
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
968
                    attrs=op.all_attrs())
W
Wu Yi 已提交
969 970 971 972 973 974 975 976 977
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
978 979

        # add slice vars
980
        s_prog._slice_vars_and_attrs = pserver_program._slice_vars_and_attrs
981

T
typhoonzero 已提交
982 983
        return s_prog

T
tangwei12 已提交
984
    def _get_slice_vars_and_attrs(self, endpoint):
985
        slice_vars_and_attrs = {}
T
tangwei12 已提交
986
        block_suffix = "block"
987
        for param in self.param_grad_ep_mapping[endpoint]["params"]:
T
tangwei12 已提交
988
            orig_var_name, block_name, _ = self._get_varname_parts(param.name)
T
tangwei12 已提交
989
            if not block_name:
990 991
                continue

T
tangwei12 已提交
992
            block_idx = int(block_name.split(block_suffix)[1])
993 994
            orig_var = self.origin_program.global_block().vars[orig_var_name]

T
tangwei12 已提交
995
            skip_dim0 = 0
996 997
            slice_vars = self.param_var_mapping[orig_var_name]
            for slice_var in slice_vars[:block_idx]:
T
tangwei12 已提交
998
                skip_dim0 += slice_var.shape[0]
999
            slice_vars_and_attrs[param.name] = [orig_var, skip_dim0, param]
T
tangwei12 已提交
1000
        return slice_vars_and_attrs
1001

1002 1003
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1043
    def _init_splited_vars(self):
Y
yi.wu 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1067
        if self.config.slice_var_up:
Y
yi.wu 已提交
1068 1069
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1070 1071 1072
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1073
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1074 1075
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1076 1077 1078
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1079 1080 1081 1082
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1083 1084
        assert (len(grad_blocks) == len(param_blocks))

1085
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1086 1087
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1088
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1089 1090 1091 1092
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1093
        # dict(grad_splited_var -> param_splited_var)
1094
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1095 1096 1097
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1098
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1099
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1100 1101

        # create mapping of endpoint -> split var to create pserver side program
1102
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1103 1104 1105 1106 1107 1108 1109 1110 1111
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1112
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1113 1114
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1115
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1116
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1117 1118
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1119 1120
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1121 1122 1123 1124 1125 1126

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1127 1128
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1129
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1130 1131 1132
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1133 1134
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1135 1136
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1137 1138 1139
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1140
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1141
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1142 1143

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1144
                    self.all_out_emb_vars.append(out_var)
1145 1146

                    # delete lookup_table_op
1147
                    delete_ops(program.global_block(), [op])
1148 1149 1150
                    # break for loop
                    break

S
seiriosPlus 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1197
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1198
        # 2. add split_ids_op and send_op to send gradient to pservers
1199

1200 1201
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1202
        table_grad_name = grad_var_name(self.table_name)
1203 1204 1205 1206
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1207
                program.global_block()._insert_op(
1208 1209 1210 1211 1212
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1213 1214
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1215
                program.global_block()._insert_op(
1216
                    index=op_index + 2,
1217
                    type="send",
1218
                    inputs={'X': self.trainer_side_table_grad_list},
1219 1220 1221 1222 1223
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1224
                    attrs={
1225
                        "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
1226
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1227
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1228 1229 1230 1231 1232
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1233
                    })
1234 1235 1236 1237 1238 1239
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1240
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1266
        return prefetch_var_name_to_block_id
1267 1268

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1269
                                     pre_block_idx, grad_to_block_id):
1270
        # STEP: create table optimize block
1271
        table_opt_block = pserver_program._create_block(pre_block_idx)
1272
        # create table param and grad var in pserver program
1273 1274
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1275 1276
            op for op in self.optimize_ops if 'Param' in op.input_names and
            op.input("Param")[0] == self.table_name
1277 1278
        ][0]

Y
Yancey1989 已提交
1279 1280
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1281

T
tangwei12 已提交
1282
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1283 1284
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1285 1286 1287
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1288 1289
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1290
            shape=table_shape,
Y
Yancey1989 已提交
1291 1292 1293
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1294

1295 1296
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1297
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1298
            self.origin_program.global_block().vars[grad_var_name(
1299
                self.table_name)])
1300

1301 1302 1303
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1304

1305 1306 1307
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1308
            pserver_side_table_grad_list = [
1309 1310 1311 1312 1313 1314 1315 1316 1317
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1318
            # append sum op for pserver_side_table_grad_list
1319 1320
            table_opt_block.append_op(
                type="sum",
1321
                inputs={"X": pserver_side_table_grad_list},
1322 1323
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1324 1325
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1326
            origin_grad_name = grad_var.name
1327 1328
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1329 1330
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1331
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1332
            grad_var = pserver_program.global_block()._rename_var(
1333
                origin_grad_name, splited_grad_name)
1334 1335 1336 1337 1338 1339 1340

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1341
        # only support sgd now
1342 1343 1344
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1345
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1346

1347 1348 1349
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1350 1351
        return table_opt_block

T
tangwei12 已提交
1352 1353 1354 1355 1356
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1357
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1358
            name="kLookupTablePath",
T
tangwei12 已提交
1359 1360
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1361

W
Wu Yi 已提交
1362
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1363
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1364 1365 1366 1367
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1368
            attrs={'file_path': "none"})
T
tangwei12 已提交
1369 1370 1371

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1372 1373 1374 1375 1376
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1377
        Create vars for each split.
T
typhoonzero 已提交
1378 1379
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1380 1381 1382 1383
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1384
        Returns:
1385
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1386
                from original var name to each var split.
T
typhoonzero 已提交
1387
        """
1388 1389

        # varname->[(block_id, current_block_size)]
1390
        block_map = collections.OrderedDict()
1391

1392
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1393 1394
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1395
            if varname not in block_map:
T
typhoonzero 已提交
1396
                block_map[varname] = []
1397
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1398

M
minqiyang 已提交
1399
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1400
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1401
            if len(splited) == 1:
1402
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1403
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1404
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1405
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1406 1407 1408 1409 1410
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1411
                continue
T
typhoonzero 已提交
1412
            var_mapping[varname] = []
T
typhoonzero 已提交
1413 1414 1415 1416
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1417

T
typhoonzero 已提交
1418
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1419
                size = block[1]
M
minqiyang 已提交
1420
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1421 1422 1423
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1424
                new_var_name = ""
1425
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1426
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1427
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1428 1429
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1430
                                   (varname, i)
T
typhoonzero 已提交
1431
                var = program.global_block().create_var(
T
typhoonzero 已提交
1432 1433
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1434
                    dtype=orig_var.dtype,
1435
                    type=orig_var.type,
T
typhoonzero 已提交
1436
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1437
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1438
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1439
        return var_mapping
T
done  
typhoonzero 已提交
1440

1441
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1442 1443 1444 1445 1446 1447
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1448
            persistable=persistable)
T
done  
typhoonzero 已提交
1449

Y
Yancey1989 已提交
1450
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1451 1452 1453 1454
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
Q
Qiao Longfei 已提交
1455
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1456
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1457 1458
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1459
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1460 1461 1462 1463
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1464 1465 1466 1467
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1468 1469 1470 1471
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1472
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1473 1474 1475 1476
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1477 1478 1479 1480
                attrs={
                    "sections": sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1481 1482 1483
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1484

T
typhoonzero 已提交
1485 1486 1487 1488
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1489
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1502
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1503 1504
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1505 1506
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1507
                return param_shape
1508 1509 1510
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1511 1512 1513
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1514 1515
        elif op_type == "sgd":
            pass
1516 1517 1518 1519
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1520 1521
        return orig_shape

1522 1523
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1524
        orig_var_name = ""
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1535
        else:
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1558
            return None
1559 1560 1561 1562
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1563
        else:
1564
            merged_var_name = orig_varname
1565 1566

        merged_var = pserver_block.vars[merged_var_name]
1567 1568 1569
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1570
            for i in range(self.trainer_num):
1571
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1572
                                   (merged_var_name, i)
1573 1574 1575 1576
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1577 1578
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1579 1580 1581 1582 1583
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1584
        return merged_var
T
typhoonzero 已提交
1585

W
Wu Yi 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

1648
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1649
                            grad_to_block_id, origin_program, merged_var):
1650
        program = optimize_block.program
T
typhoonzero 已提交
1651
        pserver_block = program.global_block()
1652
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
1663 1664 1665 1666
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
1667
        for key in opt_op.input_names:
T
typhoonzero 已提交
1668
            if key == "Grad":
W
Wu Yi 已提交
1669 1670 1671
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
1682
            elif key == "Param":
W
Wu Yi 已提交
1683
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1684 1685
                if not param_block:
                    return
T
typhoonzero 已提交
1686
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1687
                    name=param_block.name,
T
typhoonzero 已提交
1688
                    persistable=True,
T
typhoonzero 已提交
1689 1690 1691
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1692
            elif key == "LearningRate":
1693
                # learning rate variable has already be created by non-optimize op,
1694
                # don't create it once again.
1695
                lr_varname = opt_op.input(key)[0]
1696
                if lr_varname in pserver_block.vars:
1697 1698 1699 1700 1701 1702 1703 1704 1705
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1706

T
typhoonzero 已提交
1707
        for key in opt_op.input_names:
1708
            new_shape = None
W
Wu Yi 已提交
1709
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1710
                continue
1711
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
1712
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
1713
            # update accumulator variable shape
1714 1715
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
1716
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1717 1718 1719 1720 1721
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1722

1723 1724 1725 1726 1727 1728 1729
            # var shape been changed
            if new_shape != var.shape:
                slice_var_args = self._slice_params_and_optimizes[
                    param_var.name]
                self._slice_params_and_optimizes[
                    var.name] = [var, slice_var_args[1], tmpvar]

1730
        # change output's ParamOut variable
1731 1732
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1733
        outputs["ParamOut"] = new_inputs["Param"]
1734
        optimize_block.append_op(
T
typhoonzero 已提交
1735 1736
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1737
            outputs=outputs,
G
gongweibao 已提交
1738
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1739

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
1751
        grad_block = None
M
minqiyang 已提交
1752
        for _, g in six.iteritems(var_dict):
1753
            if self._orig_varname(g.name) == self._orig_varname(var.name):
1754
                # skip per trainer vars
1755
                if g.name.find(".trainer_") == -1:
1756 1757 1758 1759 1760
                    # only param or grads have splited blocks
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or\
                        self._orig_varname(g.name) in self.param_name_to_grad_name:
                        grad_block = g
                        break
1761 1762
        return grad_block

Q
Qiyang Min 已提交
1763 1764 1765
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1766
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1767 1768 1769 1770
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1771
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1772 1773 1774

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1775
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1776 1777 1778 1779
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1780
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1781

Y
Yancey1989 已提交
1782
        return block.append_op(
G
gongweibao 已提交
1783
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1784 1785

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1786
        program = optimize_block.program
1787
        # Append the ops for parameters that do not need to be optimized/updated
1788 1789
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1790
        for key, varlist in six.iteritems(inputs):
1791 1792
            if not isinstance(varlist, list):
                varlist = [varlist]
1793 1794 1795
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
1796
                # for inputs/outputs
1797
                grad_block = self._get_pserver_grad_param_var(
1798 1799
                    var, program.global_block().vars)
                if grad_block:
1800
                    varlist[i] = grad_block
1801
                elif var.name not in program.global_block().vars:
1802 1803 1804 1805 1806
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
1807

1808 1809
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1810
        for key, varlist in six.iteritems(outputs):
1811 1812
            if not isinstance(varlist, list):
                varlist = [varlist]
1813 1814 1815
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
1816 1817
                    var, program.global_block().vars)
                if grad_block:
1818
                    varlist[i] = grad_block
1819
                elif var.name not in program.global_block().vars:
1820 1821 1822 1823 1824
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
1825

Y
Yancey1989 已提交
1826
        return optimize_block.append_op(
T
typhoonzero 已提交
1827
            type=opt_op.type,
T
typhoonzero 已提交
1828 1829
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1830
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1831

1832 1833 1834 1835
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1836
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
1837
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1838 1839 1840 1841 1842 1843
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1844 1845
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1846 1847 1848 1849 1850 1851
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1852
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1853
        if "Param" in op.input_names and \
T
tangwei12 已提交
1854
                "LearningRate" in op.input_names:
1855 1856 1857 1858 1859 1860 1861
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1862
        if op.input("Param")[0] in param_names:
1863 1864 1865
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1866
                param = op.input("Param")[0]
T
typhoonzero 已提交
1867
                if same_or_split_var(n, param) and n != param:
1868 1869 1870
                    return True
            return False

T
typhoonzero 已提交
1871
    def _get_input_map_from_op(self, varmap, op):
1872
        """Returns a dict from op input name to the vars in varmap."""
1873
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1885
        """Returns a dict from op output name to the vars in varmap."""
1886
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1887 1888 1889 1890 1891 1892 1893 1894 1895
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1896 1897

    def _get_lr_ops(self):
1898 1899 1900
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
1901 1902 1903 1904
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
1905 1906 1907 1908 1909
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
1910 1911 1912 1913
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1914
            if self._is_optimizer_op(op):
1915 1916 1917 1918
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1919
        block = self.origin_program.global_block()
1920 1921 1922 1923 1924
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1925

1926 1927 1928 1929 1930
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
1931
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1932 1933 1934 1935 1936 1937
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1938 1939
                    # we only need to append op for once
                    break
1940
        return lr_ops
Y
Yancey1989 已提交
1941

W
Wu Yi 已提交
1942 1943 1944 1945 1946
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1947 1948
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1949 1950 1951
            return True
        return False

Y
Yancey1989 已提交
1952
    def _get_optimize_pass(self):
1953
        """
1954
        Get optimizer operators, parameters and gradients from origin_program
1955 1956 1957 1958
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1959 1960 1961
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1962 1963
        # tmp set to dedup
        optimize_params = set()
1964
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1965
        for op in block.ops:
W
Wu Yi 已提交
1966
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1967
                opt_ops.append(op)
1968 1969 1970 1971 1972 1973
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
1974 1975
                        params_grads.append([
                            origin_var_dict[param_name],
1976
                            origin_var_dict[grad_name]
1977
                        ])
Y
Yancey1989 已提交
1978 1979 1980
            else:
                pass
        return opt_ops, params_grads