math_op_patch.py 16.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
Y
Yang Yu 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
Y
Yang Yu 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
Y
Yang Yu 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import warnings
18 19
import inspect

20
from .. import core
21
from ..framework import Variable, unique_name, static_only
22
from .layer_function_generator import OpProtoHolder
23
from .control_flow import array_write, array_length
Y
Yang Yu 已提交
24

25
_supported_int_dtype_ = [
26
    core.VarDesc.VarType.BOOL,
27 28 29 30 31 32 33
    core.VarDesc.VarType.UINT8,
    core.VarDesc.VarType.INT8,
    core.VarDesc.VarType.INT16,
    core.VarDesc.VarType.INT32,
    core.VarDesc.VarType.INT64,
]

34 35
compare_ops = ['__eq__', '__ne__', '__lt__', '__le__', '__gt__', '__ge__']

36 37 38 39 40 41 42
EXPRESSION_MAP = {
    "__add__": "A + B",
    "__radd__": "A += B",
    "__sub__": "A - B",
    "__rsub__": "A -= B",
    "__mul__": "A * B",
    "__rmul__": "A *= B",
43
    "__div__": "A / B",
44
    "__truediv__": "A / B",
45
    "__rdiv__": "A /= B",
46 47 48 49 50
    "__rtruediv__": "A /= B",
    "__pow__": "A ** B",
    "__rpow__": "A **= B",
    "__floordiv__": "A //B",
    "__mod__": "A % B",
51
    "__matmul__": "A @ B",
52 53 54 55 56 57 58 59
    "__eq__": "A == B",
    "__ne__": "A != B",
    "__lt__": "A < B",
    "__le__": "A <= B",
    "__gt__": "A > B",
    "__ge__": "A >= B"
}

60 61
_already_patch_variable = False

Y
Yang Yu 已提交
62 63

def monkey_patch_variable():
64

Y
Yang Yu 已提交
65
    def unique_tmp_name():
Y
Yu Yang 已提交
66
        return unique_name.generate("tmp")
Y
Yang Yu 已提交
67 68 69 70 71 72 73 74

    def safe_get_dtype(var):
        try:
            dtype = var.dtype
        except:
            raise ValueError("Cannot get data type from %s", var.name)
        return dtype

75
    def current_block(var):
76
        return var.block.program.current_block()
77 78 79 80 81

    def create_new_tmp_var(block, dtype):
        tmp_name = unique_tmp_name()
        return block.create_var(name=tmp_name, dtype=dtype)

Y
Yang Yu 已提交
82 83
    def create_tensor(block, value, dtype, shape):
        value = float(value)
84
        var = create_new_tmp_var(block, dtype)
85 86 87 88 89 90 91 92 93
        block.append_op(type="fill_constant",
                        outputs={'Out': [var]},
                        attrs={
                            'dtype': var.dtype,
                            'shape': shape,
                            'value': value,
                            'force_cpu': False
                        },
                        stop_gradient=True)
H
Hongyu Liu 已提交
94
        var.stop_gradient = True
Y
Yang Yu 已提交
95 96
        return var

Y
Yang Yu 已提交
97 98 99
    def create_scalar(block, value, dtype):
        return create_tensor(block, value, dtype, shape=[1])

Y
Yang Yu 已提交
100 101 102
    def create_tensor_with_batchsize(ref_var, value, dtype):
        assert isinstance(ref_var, Variable)
        value = float(value)
103 104
        block = current_block(ref_var)
        var = create_new_tmp_var(block, dtype)
105
        batch_dim = -1
106
        out_shape = []
107 108
        for i, d in enumerate(ref_var.shape):
            if d < 0:
109 110 111 112 113 114 115
                if batch_dim < 0:
                    batch_dim = i
                    out_shape.append(d)
                else:
                    out_shape.append(1)
            else:
                out_shape.append(d)
116
        assert batch_dim != -1
117 118 119 120 121 122 123 124 125 126
        block.append_op(type='fill_constant_batch_size_like',
                        outputs={'Out': [var]},
                        inputs={'Input': [ref_var]},
                        attrs={
                            'shape': out_shape,
                            'value': value,
                            'input_dim_idx': batch_dim,
                            'output_dim_idx': batch_dim
                        },
                        stop_gradient=True)
H
Hongyu Liu 已提交
127 128

        var.stop_gradient = True
Y
Yang Yu 已提交
129 130
        return var

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    @static_only
    def cpu(self):
        """ 
            Variable should not have cpu() and cuda() interface.
            But this interface can greatly facilitate dy2static.
            We do nothing here.
        """
        return self

    @static_only
    def cuda(self):
        """ 
            Variable should not have cpu() and cuda() interface.
            But this interface can greatly facilitate dy2static.
            We do nothing here.
        """
        return self

Y
Yang Yu 已提交
149 150
    def astype(self, dtype):
        """
J
Jiabin Yang 已提交
151 152 153
        **Notes**:
            **The variable must be a** :ref:`api_fluid_Tensor`

Y
Yang Yu 已提交
154
        Cast a variable to a specified data type.
J
Jiabin Yang 已提交
155

Y
Yang Yu 已提交
156
        Args:
J
Jiabin Yang 已提交
157

Y
Yang Yu 已提交
158
            self(Variable): The source variable
J
Jiabin Yang 已提交
159 160

            dtype: The target data type
Y
Yang Yu 已提交
161 162

        Returns:
J
Jiabin Yang 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
            Variable: Variable with new dtype

        Examples:
            In Static Graph Mode:

            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    original_variable = fluid.data(name = "new_variable", shape=[2,2], dtype='float32')
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}".format(new_variable.dtype))

            In Dygraph Mode:

            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    original_variable = fluid.dygraph.to_variable(x)
                    print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype))
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype))

Y
Yang Yu 已提交
193
        """
194 195
        block = current_block(self)
        out = create_new_tmp_var(block, dtype)
196 197 198 199 200 201 202
        block.append_op(type="cast",
                        inputs={"X": [self]},
                        outputs={"Out": [out]},
                        attrs={
                            "in_dtype": self.dtype,
                            "out_dtype": out.dtype
                        })
203
        out.stop_gradient = self.stop_gradient
Y
Yang Yu 已提交
204 205
        return out

206 207 208 209 210 211 212 213 214 215 216 217 218
    @static_only
    def append(self, var):
        """
         **Notes**:
            **The type variable must be LoD Tensor Array.
        
        """
        if not isinstance(var, Variable):
            raise TypeError(
                "Required input var should be Variable, but received {}".format(
                    type(var)))
        if self.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            raise TypeError(
219 220
                "Only Variable with VarType.LOD_TENSOR_ARRAY support `append` method, but received type: {}"
                .format(self.type))
221 222 223

        array_write(x=var, i=array_length(self), array=self)

224
    def _scalar_op_(var, scale, bias):
225 226
        block = current_block(var)
        out = create_new_tmp_var(block, var.dtype)
227 228 229 230 231 232 233
        block.append_op(type="scale",
                        inputs={"X": [var]},
                        outputs={"Out": [out]},
                        attrs={
                            "scale": scale,
                            "bias": bias
                        })
234 235
        return out

236
    def _neg_(var):
237
        return _scalar_op_(var, -1.0, 0.0)
238

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    @property
    def _ndim_(self):
        """
        Returns the dimension of current Variable

        Returns:
            the dimension

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # print the dimension of the Variable
                print(x.ndim)
        """
        return len(self.shape)

261 262
    def _scalar_add_(var, value):
        return _scalar_op_(var, 1.0, value)
263

264 265
    def _scalar_sub_(var, value):
        return _scalar_op_(var, 1.0, -value)
266

267 268
    def _scalar_rsub_(var, value):
        return _scalar_op_(var, -1.0, value)
269

270 271
    def _scalar_mul_(var, value):
        return _scalar_op_(var, value, 0.0)
272

273 274 275
    def _scalar_div_(var, value):
        return _scalar_op_(var, 1.0 / value, 0.0)

276 277 278 279
    def _binary_creator_(method_name,
                         op_type,
                         reverse=False,
                         scalar_method=None):
280

Y
Yang Yu 已提交
281
        def __impl__(self, other_var):
282 283 284 285 286 287 288 289 290
            # 1. scalar exists cases
            # we need combine the tensor.dtype and scalar.dtype, cast correct object
            if isinstance(other_var, float):
                # in all cases(+, -, *, /, **, //, %), we need cast tensor.dtype to float
                if self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
                # but only +, -, *, / can use this method
                if scalar_method is not None:
291
                    return scalar_method(self, other_var)
292 293 294 295 296 297
            elif isinstance(other_var, int):
                # in all cases(+, -, *, /, **, //, %), we can cast it to float
                # because the output tensor.dtype depend on the type of input tensor
                other_var = float(other_var)
                # division is a special case
                # NOTE(chenweihang): because we cast tensor to float32 instead float64,
298 299 300
                # the division result can only guarantee the numerical accuracy of 6 digits
                # after the decimal point. The result of numpy calculation is of float64 type,
                # so the calculation result here and the calculation result of numpy are
301 302 303 304 305
                # different after 6 decimal point. If necessary, we can also use float64 here.
                # torch's behavior here is consistent with ours
                if op_type == 'elementwise_div' and self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
306
                # but only +, -, *, / can use this method
307 308 309 310 311
                if scalar_method is not None:
                    return scalar_method(self, other_var)
            else:
                # do nothing
                pass
312

313
            # 2. create variable for scalar
Y
Yang Yu 已提交
314 315 316 317 318 319 320 321 322
            lhs_dtype = safe_get_dtype(self)
            if not isinstance(other_var, Variable):
                if reverse:
                    has_batch_size = False
                    for elem in self.shape:
                        if elem < 0:
                            has_batch_size = True
                            break
                    if not has_batch_size:
323 324 325 326
                        other_var = create_tensor(current_block(self),
                                                  other_var,
                                                  dtype=lhs_dtype,
                                                  shape=self.shape)
Y
Yang Yu 已提交
327 328 329 330
                    else:
                        other_var = create_tensor_with_batchsize(
                            self, other_var, lhs_dtype)
                else:
331
                    # add fill_op to current_block
332 333 334
                    other_var = create_scalar(current_block(self),
                                              value=other_var,
                                              dtype=lhs_dtype)
Y
Yang Yu 已提交
335

336
            # 3. unify right var type to left var
Y
Yang Yu 已提交
337 338 339 340 341 342 343 344
            rhs_dtype = safe_get_dtype(other_var)
            if lhs_dtype != rhs_dtype:
                other_var = astype(other_var, lhs_dtype)
            if reverse:
                tmp = self
                self = other_var
                other_var = tmp

345 346 347 348 349 350
            # NOTE(zhiqiu): the output of compare operator should be bool.
            if method_name in compare_ops:
                out = create_new_tmp_var(current_block(self), dtype="bool")
            else:
                out = create_new_tmp_var(current_block(self), dtype=lhs_dtype)

351 352
            axis = -1
            if other_var.shape[0] == -1:
353 354 355
                stack = inspect.stack()[1]
                file_name = stack[1]
                line_num = stack[2]
356
                warnings.warn(
357 358 359 360 361
                    "%s:%s\nThe behavior of expression %s has been unified with %s(X, Y, axis=-1) from Paddle 2.0. "
                    "If your code works well in the older versions but crashes in this version, try to use "
                    "%s(X, Y, axis=0) instead of %s. This transitional warning will be dropped in the future."
                    % (file_name, line_num, EXPRESSION_MAP[method_name],
                       op_type, op_type, EXPRESSION_MAP[method_name]))
362 363 364 365 366 367 368
            current_block(self).append_op(type=op_type,
                                          inputs={
                                              'X': [self],
                                              'Y': [other_var]
                                          },
                                          outputs={'Out': out},
                                          attrs={'axis': axis})
Y
Yang Yu 已提交
369 370 371 372 373 374 375 376
            return out

        comment = OpProtoHolder.instance().get_op_proto(op_type).comment

        __impl__.__doc__ = """
        {0}
        Args:
            self(Variable): left hand variable
377
            other_var(Variable|float|int): right hand variable
Y
Yang Yu 已提交
378 379 380 381 382 383 384

        Returns:
            Variable
        """.format(comment)
        __impl__.__name__ = method_name
        return __impl__

385 386 387 388
    variable_methods = [
        #   b=-a
        ('__neg__', _neg_),
        ('astype', astype),
389 390
        ('cpu', cpu),
        ('cuda', cuda),
391
        ('append', append),
392 393 394
        ('dim', lambda x: len(x.shape)),
        ('ndimension', lambda x: len(x.shape)),
        ('ndim', _ndim_),
395 396
        ('__add__',
         _binary_creator_('__add__', 'elementwise_add', False, _scalar_add_)),
397 398 399
        #  a+b == b+a. Do not need to reverse explicitly
        ('__radd__',
         _binary_creator_('__radd__', 'elementwise_add', False, _scalar_add_)),
400 401 402 403 404 405
        ('__sub__',
         _binary_creator_('__sub__', 'elementwise_sub', False, _scalar_sub_)),
        ('__rsub__',
         _binary_creator_('__rsub__', 'elementwise_sub', True, _scalar_rsub_)),
        ('__mul__',
         _binary_creator_('__mul__', 'elementwise_mul', False, _scalar_mul_)),
406 407 408
        #  a*b == b*a. Do not need to reverse explicitly
        ('__rmul__',
         _binary_creator_('__rmul__', 'elementwise_mul', False, _scalar_mul_)),
409 410 411 412 413
        ('__div__',
         _binary_creator_('__div__', 'elementwise_div', False, _scalar_div_)),
        ('__truediv__',
         _binary_creator_('__truediv__', 'elementwise_div', False,
                          _scalar_div_)),
414 415
        ('__rdiv__', _binary_creator_('__rdiv__', 'elementwise_div', True,
                                      None)),
416 417
        ('__rtruediv__',
         _binary_creator_('__rtruediv__', 'elementwise_div', True, None)),
418 419 420 421
        ('__pow__', _binary_creator_('__pow__', 'elementwise_pow', False,
                                     None)),
        ('__rpow__', _binary_creator_('__rpow__', 'elementwise_pow', True,
                                      None)),
422 423
        ('__floordiv__',
         _binary_creator_('__floordiv__', 'elementwise_floordiv', False, None)),
S
ShenLiang 已提交
424 425
        ('__mod__', _binary_creator_('__mod__', 'elementwise_mod', False,
                                     None)),
426 427
        ('__matmul__', _binary_creator_('__matmul__', "matmul_v2", False,
                                        None)),
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
        #  for logical compare
        ('__eq__', _binary_creator_('__eq__', 'equal', False, None)),
        ('__ne__', _binary_creator_('__ne__', 'not_equal', False, None)),
        ('__lt__', _binary_creator_('__lt__', 'less_than', False, None)),
        ('__le__', _binary_creator_('__le__', 'less_equal', False, None)),
        ('__gt__', _binary_creator_('__gt__', 'greater_than', False, None)),
        ('__ge__', _binary_creator_('__ge__', 'greater_equal', False, None))
    ]

    global _already_patch_variable
    if not _already_patch_variable:
        for method in variable_methods:
            method_name = method[0]
            method_impl = method[1]
            setattr(Variable, method_name, method_impl)
    else:
        import paddle.tensor
445
        for method_name in paddle.tensor.tensor_method_func:
446 447 448 449
            if hasattr(Variable, method_name): continue
            method_impl = getattr(paddle.tensor, method_name, None)
            if method_impl: setattr(Variable, method_name, method_impl)

450 451 452 453
        for magic_method, origin_method in paddle.tensor.magic_method_func:
            impl = getattr(paddle.tensor, origin_method, None)
            if impl: setattr(Variable, magic_method, impl)

454
    _already_patch_variable = True