math_op_patch.py 15.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
Y
Yang Yu 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
Y
Yang Yu 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
Y
Yang Yu 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import warnings
18 19
import inspect

20
from .. import core
21
from ..framework import Variable, unique_name, static_only
22
from .layer_function_generator import OpProtoHolder
23
from .control_flow import array_write, array_length
Y
Yang Yu 已提交
24

25
_supported_int_dtype_ = [
26
    core.VarDesc.VarType.BOOL,
27 28 29 30 31 32 33
    core.VarDesc.VarType.UINT8,
    core.VarDesc.VarType.INT8,
    core.VarDesc.VarType.INT16,
    core.VarDesc.VarType.INT32,
    core.VarDesc.VarType.INT64,
]

34 35
compare_ops = ['__eq__', '__ne__', '__lt__', '__le__', '__gt__', '__ge__']

36 37 38 39 40 41 42
EXPRESSION_MAP = {
    "__add__": "A + B",
    "__radd__": "A += B",
    "__sub__": "A - B",
    "__rsub__": "A -= B",
    "__mul__": "A * B",
    "__rmul__": "A *= B",
43
    "__div__": "A / B",
44
    "__truediv__": "A / B",
45
    "__rdiv__": "A /= B",
46 47 48 49 50
    "__rtruediv__": "A /= B",
    "__pow__": "A ** B",
    "__rpow__": "A **= B",
    "__floordiv__": "A //B",
    "__mod__": "A % B",
51
    "__matmul__": "A @ B",
52 53 54 55 56 57 58 59
    "__eq__": "A == B",
    "__ne__": "A != B",
    "__lt__": "A < B",
    "__le__": "A <= B",
    "__gt__": "A > B",
    "__ge__": "A >= B"
}

60 61
_already_patch_variable = False

Y
Yang Yu 已提交
62 63

def monkey_patch_variable():
Y
Yang Yu 已提交
64
    def unique_tmp_name():
Y
Yu Yang 已提交
65
        return unique_name.generate("tmp")
Y
Yang Yu 已提交
66 67 68 69 70 71 72 73

    def safe_get_dtype(var):
        try:
            dtype = var.dtype
        except:
            raise ValueError("Cannot get data type from %s", var.name)
        return dtype

74
    def current_block(var):
75
        return var.block.program.current_block()
76 77 78 79 80

    def create_new_tmp_var(block, dtype):
        tmp_name = unique_tmp_name()
        return block.create_var(name=tmp_name, dtype=dtype)

Y
Yang Yu 已提交
81 82
    def create_tensor(block, value, dtype, shape):
        value = float(value)
83
        var = create_new_tmp_var(block, dtype)
Y
Yang Yu 已提交
84 85 86
        block.append_op(
            type="fill_constant",
            outputs={'Out': [var]},
87 88 89 90
            attrs={
                'dtype': var.dtype,
                'shape': shape,
                'value': value,
91
                'force_cpu': False
H
Hongyu Liu 已提交
92 93 94
            },
            stop_gradient=True)
        var.stop_gradient = True
Y
Yang Yu 已提交
95 96
        return var

Y
Yang Yu 已提交
97 98 99
    def create_scalar(block, value, dtype):
        return create_tensor(block, value, dtype, shape=[1])

Y
Yang Yu 已提交
100 101 102
    def create_tensor_with_batchsize(ref_var, value, dtype):
        assert isinstance(ref_var, Variable)
        value = float(value)
103 104
        block = current_block(ref_var)
        var = create_new_tmp_var(block, dtype)
105
        batch_dim = -1
106
        out_shape = []
107 108
        for i, d in enumerate(ref_var.shape):
            if d < 0:
109 110 111 112 113 114 115
                if batch_dim < 0:
                    batch_dim = i
                    out_shape.append(d)
                else:
                    out_shape.append(1)
            else:
                out_shape.append(d)
116
        assert batch_dim != -1
117
        block.append_op(
Y
Yang Yu 已提交
118 119 120
            type='fill_constant_batch_size_like',
            outputs={'Out': [var]},
            inputs={'Input': [ref_var]},
121
            attrs={
122
                'shape': out_shape,
123 124 125
                'value': value,
                'input_dim_idx': batch_dim,
                'output_dim_idx': batch_dim
H
Hongyu Liu 已提交
126 127 128 129
            },
            stop_gradient=True)

        var.stop_gradient = True
Y
Yang Yu 已提交
130 131 132 133
        return var

    def astype(self, dtype):
        """
J
Jiabin Yang 已提交
134 135 136
        **Notes**:
            **The variable must be a** :ref:`api_fluid_Tensor`

Y
Yang Yu 已提交
137
        Cast a variable to a specified data type.
J
Jiabin Yang 已提交
138

Y
Yang Yu 已提交
139
        Args:
J
Jiabin Yang 已提交
140

Y
Yang Yu 已提交
141
            self(Variable): The source variable
J
Jiabin Yang 已提交
142 143

            dtype: The target data type
Y
Yang Yu 已提交
144 145

        Returns:
J
Jiabin Yang 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
            Variable: Variable with new dtype

        Examples:
            In Static Graph Mode:

            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    original_variable = fluid.data(name = "new_variable", shape=[2,2], dtype='float32')
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}".format(new_variable.dtype))

            In Dygraph Mode:

            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    original_variable = fluid.dygraph.to_variable(x)
                    print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype))
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype))

Y
Yang Yu 已提交
176
        """
177 178 179
        block = current_block(self)
        out = create_new_tmp_var(block, dtype)
        block.append_op(
Y
Yang Yu 已提交
180 181 182 183 184
            type="cast",
            inputs={"X": [self]},
            outputs={"Out": [out]},
            attrs={"in_dtype": self.dtype,
                   "out_dtype": out.dtype})
185
        out.stop_gradient = self.stop_gradient
Y
Yang Yu 已提交
186 187
        return out

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    @static_only
    def append(self, var):
        """
         **Notes**:
            **The type variable must be LoD Tensor Array.
        
        """
        if not isinstance(var, Variable):
            raise TypeError(
                "Required input var should be Variable, but received {}".format(
                    type(var)))
        if self.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            raise TypeError(
                "Only Variable with VarType.LOD_TENSOR_ARRAY support `append` method, but received type: {}".
                format(self.type))

        array_write(x=var, i=array_length(self), array=self)

206
    def _scalar_op_(var, scale, bias):
207 208 209 210 211 212 213 214 215 216
        block = current_block(var)
        out = create_new_tmp_var(block, var.dtype)
        block.append_op(
            type="scale",
            inputs={"X": [var]},
            outputs={"Out": [out]},
            attrs={"scale": scale,
                   "bias": bias})
        return out

217
    def _neg_(var):
218
        return _scalar_op_(var, -1.0, 0.0)
219

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    @property
    def _ndim_(self):
        """
        Returns the dimension of current Variable

        Returns:
            the dimension

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # print the dimension of the Variable
                print(x.ndim)
        """
        return len(self.shape)

242 243
    def _scalar_add_(var, value):
        return _scalar_op_(var, 1.0, value)
244

245 246
    def _scalar_sub_(var, value):
        return _scalar_op_(var, 1.0, -value)
247

248 249
    def _scalar_rsub_(var, value):
        return _scalar_op_(var, -1.0, value)
250

251 252
    def _scalar_mul_(var, value):
        return _scalar_op_(var, value, 0.0)
253

254 255 256
    def _scalar_div_(var, value):
        return _scalar_op_(var, 1.0 / value, 0.0)

257 258 259 260
    def _binary_creator_(method_name,
                         op_type,
                         reverse=False,
                         scalar_method=None):
Y
Yang Yu 已提交
261
        def __impl__(self, other_var):
262 263 264 265 266 267 268 269 270
            # 1. scalar exists cases
            # we need combine the tensor.dtype and scalar.dtype, cast correct object
            if isinstance(other_var, float):
                # in all cases(+, -, *, /, **, //, %), we need cast tensor.dtype to float
                if self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
                # but only +, -, *, / can use this method
                if scalar_method is not None:
271
                    return scalar_method(self, other_var)
272 273 274 275 276 277
            elif isinstance(other_var, int):
                # in all cases(+, -, *, /, **, //, %), we can cast it to float
                # because the output tensor.dtype depend on the type of input tensor
                other_var = float(other_var)
                # division is a special case
                # NOTE(chenweihang): because we cast tensor to float32 instead float64,
278 279 280
                # the division result can only guarantee the numerical accuracy of 6 digits
                # after the decimal point. The result of numpy calculation is of float64 type,
                # so the calculation result here and the calculation result of numpy are
281 282 283 284 285
                # different after 6 decimal point. If necessary, we can also use float64 here.
                # torch's behavior here is consistent with ours
                if op_type == 'elementwise_div' and self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
286
                # but only +, -, *, / can use this method
287 288 289 290 291
                if scalar_method is not None:
                    return scalar_method(self, other_var)
            else:
                # do nothing
                pass
292

293
            # 2. create variable for scalar
Y
Yang Yu 已提交
294 295 296 297 298 299 300 301 302 303
            lhs_dtype = safe_get_dtype(self)
            if not isinstance(other_var, Variable):
                if reverse:
                    has_batch_size = False
                    for elem in self.shape:
                        if elem < 0:
                            has_batch_size = True
                            break
                    if not has_batch_size:
                        other_var = create_tensor(
304
                            current_block(self),
Y
Yang Yu 已提交
305 306 307 308 309 310 311
                            other_var,
                            dtype=lhs_dtype,
                            shape=self.shape)
                    else:
                        other_var = create_tensor_with_batchsize(
                            self, other_var, lhs_dtype)
                else:
312
                    # add fill_op to current_block
Y
Yang Yu 已提交
313
                    other_var = create_scalar(
314
                        current_block(self), value=other_var, dtype=lhs_dtype)
Y
Yang Yu 已提交
315

316
            # 3. unify right var type to left var
Y
Yang Yu 已提交
317 318 319 320 321 322 323 324
            rhs_dtype = safe_get_dtype(other_var)
            if lhs_dtype != rhs_dtype:
                other_var = astype(other_var, lhs_dtype)
            if reverse:
                tmp = self
                self = other_var
                other_var = tmp

325 326 327 328 329 330
            # NOTE(zhiqiu): the output of compare operator should be bool.
            if method_name in compare_ops:
                out = create_new_tmp_var(current_block(self), dtype="bool")
            else:
                out = create_new_tmp_var(current_block(self), dtype=lhs_dtype)

331 332
            axis = -1
            if other_var.shape[0] == -1:
333 334 335
                stack = inspect.stack()[1]
                file_name = stack[1]
                line_num = stack[2]
336
                warnings.warn(
337 338 339 340 341
                    "%s:%s\nThe behavior of expression %s has been unified with %s(X, Y, axis=-1) from Paddle 2.0. "
                    "If your code works well in the older versions but crashes in this version, try to use "
                    "%s(X, Y, axis=0) instead of %s. This transitional warning will be dropped in the future."
                    % (file_name, line_num, EXPRESSION_MAP[method_name],
                       op_type, op_type, EXPRESSION_MAP[method_name]))
342
            current_block(self).append_op(
Y
Yang Yu 已提交
343 344 345
                type=op_type,
                inputs={'X': [self],
                        'Y': [other_var]},
346
                outputs={'Out': out},
347
                attrs={'axis': axis})
Y
Yang Yu 已提交
348 349 350 351 352 353 354 355
            return out

        comment = OpProtoHolder.instance().get_op_proto(op_type).comment

        __impl__.__doc__ = """
        {0}
        Args:
            self(Variable): left hand variable
356
            other_var(Variable|float|int): right hand variable
Y
Yang Yu 已提交
357 358 359 360 361 362 363

        Returns:
            Variable
        """.format(comment)
        __impl__.__name__ = method_name
        return __impl__

364 365 366 367
    variable_methods = [
        #   b=-a
        ('__neg__', _neg_),
        ('astype', astype),
368
        ('append', append),
369 370 371
        ('dim', lambda x: len(x.shape)),
        ('ndimension', lambda x: len(x.shape)),
        ('ndim', _ndim_),
372 373 374 375 376 377 378 379 380 381 382 383 384 385
        ('__add__', _binary_creator_('__add__', 'elementwise_add', False,
                                     _scalar_add_)),
        #  a+b == b+a. Do not need to reverse explicitly
        ('__radd__',
         _binary_creator_('__radd__', 'elementwise_add', False, _scalar_add_)),
        ('__sub__', _binary_creator_('__sub__', 'elementwise_sub', False,
                                     _scalar_sub_)),
        ('__rsub__', _binary_creator_('__rsub__', 'elementwise_sub', True,
                                      _scalar_rsub_)),
        ('__mul__', _binary_creator_('__mul__', 'elementwise_mul', False,
                                     _scalar_mul_)),
        #  a*b == b*a. Do not need to reverse explicitly
        ('__rmul__',
         _binary_creator_('__rmul__', 'elementwise_mul', False, _scalar_mul_)),
386 387
        ('__div__', _binary_creator_('__div__', 'elementwise_div', False,
                                     _scalar_div_)),
S
ShenLiang 已提交
388
        ('__truediv__', _binary_creator_('__truediv__', 'elementwise_div',
389 390 391
                                         False, _scalar_div_)),
        ('__rdiv__', _binary_creator_('__rdiv__', 'elementwise_div', True,
                                      None)),
S
ShenLiang 已提交
392 393
        ('__rtruediv__', _binary_creator_('__rtruediv__', 'elementwise_div',
                                          True, None)),
394 395 396 397
        ('__pow__', _binary_creator_('__pow__', 'elementwise_pow', False,
                                     None)),
        ('__rpow__', _binary_creator_('__rpow__', 'elementwise_pow', True,
                                      None)),
S
ShenLiang 已提交
398 399 400 401
        ('__floordiv__', _binary_creator_('__floordiv__',
                                          'elementwise_floordiv', False, None)),
        ('__mod__', _binary_creator_('__mod__', 'elementwise_mod', False,
                                     None)),
402 403
        ('__matmul__', _binary_creator_('__matmul__', "matmul_v2", False,
                                        None)),
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
        #  for logical compare
        ('__eq__', _binary_creator_('__eq__', 'equal', False, None)),
        ('__ne__', _binary_creator_('__ne__', 'not_equal', False, None)),
        ('__lt__', _binary_creator_('__lt__', 'less_than', False, None)),
        ('__le__', _binary_creator_('__le__', 'less_equal', False, None)),
        ('__gt__', _binary_creator_('__gt__', 'greater_than', False, None)),
        ('__ge__', _binary_creator_('__ge__', 'greater_equal', False, None))
    ]

    global _already_patch_variable
    if not _already_patch_variable:
        for method in variable_methods:
            method_name = method[0]
            method_impl = method[1]
            setattr(Variable, method_name, method_impl)
    else:
        import paddle.tensor
421
        for method_name in paddle.tensor.tensor_method_func:
422 423 424 425
            if hasattr(Variable, method_name): continue
            method_impl = getattr(paddle.tensor, method_name, None)
            if method_impl: setattr(Variable, method_name, method_impl)

426 427 428 429
        for magic_method, origin_method in paddle.tensor.magic_method_func:
            impl = getattr(paddle.tensor, origin_method, None)
            if impl: setattr(Variable, magic_method, impl)

430
    _already_patch_variable = True