math_op_patch.py 14.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
Y
Yang Yu 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
Y
Yang Yu 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
Y
Yang Yu 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import warnings
18 19
import inspect

20
from .. import core
21
from ..framework import Variable, unique_name
22
from .layer_function_generator import OpProtoHolder
Y
Yang Yu 已提交
23

24
_supported_int_dtype_ = [
25
    core.VarDesc.VarType.BOOL,
26 27 28 29 30 31 32
    core.VarDesc.VarType.UINT8,
    core.VarDesc.VarType.INT8,
    core.VarDesc.VarType.INT16,
    core.VarDesc.VarType.INT32,
    core.VarDesc.VarType.INT64,
]

33 34
compare_ops = ['__eq__', '__ne__', '__lt__', '__le__', '__gt__', '__ge__']

35 36 37 38 39 40 41 42 43 44 45 46 47
EXPRESSION_MAP = {
    "__add__": "A + B",
    "__radd__": "A += B",
    "__sub__": "A - B",
    "__rsub__": "A -= B",
    "__mul__": "A * B",
    "__rmul__": "A *= B",
    "__truediv__": "A / B",
    "__rtruediv__": "A /= B",
    "__pow__": "A ** B",
    "__rpow__": "A **= B",
    "__floordiv__": "A //B",
    "__mod__": "A % B",
48
    "__matmul__": "A @ B",
49 50 51 52 53 54 55 56
    "__eq__": "A == B",
    "__ne__": "A != B",
    "__lt__": "A < B",
    "__le__": "A <= B",
    "__gt__": "A > B",
    "__ge__": "A >= B"
}

57 58
_already_patch_variable = False

Y
Yang Yu 已提交
59 60

def monkey_patch_variable():
Y
Yang Yu 已提交
61
    def unique_tmp_name():
Y
Yu Yang 已提交
62
        return unique_name.generate("tmp")
Y
Yang Yu 已提交
63 64 65 66 67 68 69 70

    def safe_get_dtype(var):
        try:
            dtype = var.dtype
        except:
            raise ValueError("Cannot get data type from %s", var.name)
        return dtype

71
    def current_block(var):
72
        return var.block.program.current_block()
73 74 75 76 77

    def create_new_tmp_var(block, dtype):
        tmp_name = unique_tmp_name()
        return block.create_var(name=tmp_name, dtype=dtype)

Y
Yang Yu 已提交
78 79
    def create_tensor(block, value, dtype, shape):
        value = float(value)
80
        var = create_new_tmp_var(block, dtype)
Y
Yang Yu 已提交
81 82 83
        block.append_op(
            type="fill_constant",
            outputs={'Out': [var]},
84 85 86 87
            attrs={
                'dtype': var.dtype,
                'shape': shape,
                'value': value,
88
                'force_cpu': False
H
Hongyu Liu 已提交
89 90 91
            },
            stop_gradient=True)
        var.stop_gradient = True
Y
Yang Yu 已提交
92 93
        return var

Y
Yang Yu 已提交
94 95 96
    def create_scalar(block, value, dtype):
        return create_tensor(block, value, dtype, shape=[1])

Y
Yang Yu 已提交
97 98 99
    def create_tensor_with_batchsize(ref_var, value, dtype):
        assert isinstance(ref_var, Variable)
        value = float(value)
100 101
        block = current_block(ref_var)
        var = create_new_tmp_var(block, dtype)
102
        batch_dim = -1
103
        out_shape = []
104 105
        for i, d in enumerate(ref_var.shape):
            if d < 0:
106 107 108 109 110 111 112
                if batch_dim < 0:
                    batch_dim = i
                    out_shape.append(d)
                else:
                    out_shape.append(1)
            else:
                out_shape.append(d)
113
        assert batch_dim != -1
114
        block.append_op(
Y
Yang Yu 已提交
115 116 117
            type='fill_constant_batch_size_like',
            outputs={'Out': [var]},
            inputs={'Input': [ref_var]},
118
            attrs={
119
                'shape': out_shape,
120 121 122
                'value': value,
                'input_dim_idx': batch_dim,
                'output_dim_idx': batch_dim
H
Hongyu Liu 已提交
123 124 125 126
            },
            stop_gradient=True)

        var.stop_gradient = True
Y
Yang Yu 已提交
127 128 129 130
        return var

    def astype(self, dtype):
        """
J
Jiabin Yang 已提交
131 132 133
        **Notes**:
            **The variable must be a** :ref:`api_fluid_Tensor`

Y
Yang Yu 已提交
134
        Cast a variable to a specified data type.
J
Jiabin Yang 已提交
135

Y
Yang Yu 已提交
136
        Args:
J
Jiabin Yang 已提交
137

Y
Yang Yu 已提交
138
            self(Variable): The source variable
J
Jiabin Yang 已提交
139 140

            dtype: The target data type
Y
Yang Yu 已提交
141 142

        Returns:
J
Jiabin Yang 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
            Variable: Variable with new dtype

        Examples:
            In Static Graph Mode:

            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    original_variable = fluid.data(name = "new_variable", shape=[2,2], dtype='float32')
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}".format(new_variable.dtype))

            In Dygraph Mode:

            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    original_variable = fluid.dygraph.to_variable(x)
                    print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype))
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype))

Y
Yang Yu 已提交
173
        """
174 175 176
        block = current_block(self)
        out = create_new_tmp_var(block, dtype)
        block.append_op(
Y
Yang Yu 已提交
177 178 179 180 181
            type="cast",
            inputs={"X": [self]},
            outputs={"Out": [out]},
            attrs={"in_dtype": self.dtype,
                   "out_dtype": out.dtype})
182
        out.stop_gradient = self.stop_gradient
Y
Yang Yu 已提交
183 184
        return out

185
    def _scalar_op_(var, scale, bias):
186 187 188 189 190 191 192 193 194 195
        block = current_block(var)
        out = create_new_tmp_var(block, var.dtype)
        block.append_op(
            type="scale",
            inputs={"X": [var]},
            outputs={"Out": [out]},
            attrs={"scale": scale,
                   "bias": bias})
        return out

196
    def _neg_(var):
197
        return _scalar_op_(var, -1.0, 0.0)
198

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
    @property
    def _ndim_(self):
        """
        Returns the dimension of current Variable

        Returns:
            the dimension

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # print the dimension of the Variable
                print(x.ndim)
        """
        return len(self.shape)

221 222
    def _scalar_add_(var, value):
        return _scalar_op_(var, 1.0, value)
223

224 225
    def _scalar_sub_(var, value):
        return _scalar_op_(var, 1.0, -value)
226

227 228
    def _scalar_rsub_(var, value):
        return _scalar_op_(var, -1.0, value)
229

230 231
    def _scalar_mul_(var, value):
        return _scalar_op_(var, value, 0.0)
232

233 234 235 236
    def _binary_creator_(method_name,
                         op_type,
                         reverse=False,
                         scalar_method=None):
Y
Yang Yu 已提交
237
        def __impl__(self, other_var):
238 239 240 241 242 243 244 245 246
            # 1. scalar exists cases
            # we need combine the tensor.dtype and scalar.dtype, cast correct object
            if isinstance(other_var, float):
                # in all cases(+, -, *, /, **, //, %), we need cast tensor.dtype to float
                if self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
                # but only +, -, *, / can use this method
                if scalar_method is not None:
247
                    return scalar_method(self, other_var)
248 249 250 251 252 253
            elif isinstance(other_var, int):
                # in all cases(+, -, *, /, **, //, %), we can cast it to float
                # because the output tensor.dtype depend on the type of input tensor
                other_var = float(other_var)
                # division is a special case
                # NOTE(chenweihang): because we cast tensor to float32 instead float64,
254 255 256
                # the division result can only guarantee the numerical accuracy of 6 digits
                # after the decimal point. The result of numpy calculation is of float64 type,
                # so the calculation result here and the calculation result of numpy are
257 258 259 260 261
                # different after 6 decimal point. If necessary, we can also use float64 here.
                # torch's behavior here is consistent with ours
                if op_type == 'elementwise_div' and self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
262 263
                # but only +, -, * can use this method
                # NOTE(chentianyu03): / can not use `scale` method,because the result of
264
                # `scale` method (self*(1/other_var)) do not exactly equal with the result
265
                # of `elementwise_div` method.
266 267 268 269 270
                if scalar_method is not None:
                    return scalar_method(self, other_var)
            else:
                # do nothing
                pass
271

272
            # 2. create variable for scalar
Y
Yang Yu 已提交
273 274 275 276 277 278 279 280 281 282
            lhs_dtype = safe_get_dtype(self)
            if not isinstance(other_var, Variable):
                if reverse:
                    has_batch_size = False
                    for elem in self.shape:
                        if elem < 0:
                            has_batch_size = True
                            break
                    if not has_batch_size:
                        other_var = create_tensor(
283
                            current_block(self),
Y
Yang Yu 已提交
284 285 286 287 288 289 290
                            other_var,
                            dtype=lhs_dtype,
                            shape=self.shape)
                    else:
                        other_var = create_tensor_with_batchsize(
                            self, other_var, lhs_dtype)
                else:
291
                    # add fill_op to current_block
Y
Yang Yu 已提交
292
                    other_var = create_scalar(
293
                        current_block(self), value=other_var, dtype=lhs_dtype)
Y
Yang Yu 已提交
294

295
            # 3. unify right var type to left var
Y
Yang Yu 已提交
296 297 298 299 300 301 302 303
            rhs_dtype = safe_get_dtype(other_var)
            if lhs_dtype != rhs_dtype:
                other_var = astype(other_var, lhs_dtype)
            if reverse:
                tmp = self
                self = other_var
                other_var = tmp

304 305 306 307 308 309
            # NOTE(zhiqiu): the output of compare operator should be bool.
            if method_name in compare_ops:
                out = create_new_tmp_var(current_block(self), dtype="bool")
            else:
                out = create_new_tmp_var(current_block(self), dtype=lhs_dtype)

310 311
            axis = -1
            if other_var.shape[0] == -1:
312 313 314
                stack = inspect.stack()[1]
                file_name = stack[1]
                line_num = stack[2]
315
                warnings.warn(
316 317 318 319 320
                    "%s:%s\nThe behavior of expression %s has been unified with %s(X, Y, axis=-1) from Paddle 2.0. "
                    "If your code works well in the older versions but crashes in this version, try to use "
                    "%s(X, Y, axis=0) instead of %s. This transitional warning will be dropped in the future."
                    % (file_name, line_num, EXPRESSION_MAP[method_name],
                       op_type, op_type, EXPRESSION_MAP[method_name]))
321
            current_block(self).append_op(
Y
Yang Yu 已提交
322 323 324
                type=op_type,
                inputs={'X': [self],
                        'Y': [other_var]},
325
                outputs={'Out': out},
326
                attrs={'axis': axis})
Y
Yang Yu 已提交
327 328 329 330 331 332 333 334
            return out

        comment = OpProtoHolder.instance().get_op_proto(op_type).comment

        __impl__.__doc__ = """
        {0}
        Args:
            self(Variable): left hand variable
335
            other_var(Variable|float|int): right hand variable
Y
Yang Yu 已提交
336 337 338 339 340 341 342

        Returns:
            Variable
        """.format(comment)
        __impl__.__name__ = method_name
        return __impl__

343 344 345 346
    variable_methods = [
        #   b=-a
        ('__neg__', _neg_),
        ('astype', astype),
347 348 349
        ('dim', lambda x: len(x.shape)),
        ('ndimension', lambda x: len(x.shape)),
        ('ndim', _ndim_),
350 351 352 353 354 355 356 357 358 359 360 361 362 363
        ('__add__', _binary_creator_('__add__', 'elementwise_add', False,
                                     _scalar_add_)),
        #  a+b == b+a. Do not need to reverse explicitly
        ('__radd__',
         _binary_creator_('__radd__', 'elementwise_add', False, _scalar_add_)),
        ('__sub__', _binary_creator_('__sub__', 'elementwise_sub', False,
                                     _scalar_sub_)),
        ('__rsub__', _binary_creator_('__rsub__', 'elementwise_sub', True,
                                      _scalar_rsub_)),
        ('__mul__', _binary_creator_('__mul__', 'elementwise_mul', False,
                                     _scalar_mul_)),
        #  a*b == b*a. Do not need to reverse explicitly
        ('__rmul__',
         _binary_creator_('__rmul__', 'elementwise_mul', False, _scalar_mul_)),
S
ShenLiang 已提交
364
        ('__truediv__', _binary_creator_('__truediv__', 'elementwise_div',
365
                                         False, None)),
S
ShenLiang 已提交
366 367
        ('__rtruediv__', _binary_creator_('__rtruediv__', 'elementwise_div',
                                          True, None)),
368 369 370 371
        ('__pow__', _binary_creator_('__pow__', 'elementwise_pow', False,
                                     None)),
        ('__rpow__', _binary_creator_('__rpow__', 'elementwise_pow', True,
                                      None)),
S
ShenLiang 已提交
372 373 374 375
        ('__floordiv__', _binary_creator_('__floordiv__',
                                          'elementwise_floordiv', False, None)),
        ('__mod__', _binary_creator_('__mod__', 'elementwise_mod', False,
                                     None)),
376 377
        ('__matmul__', _binary_creator_('__matmul__', "matmul_v2", False,
                                        None)),
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
        #  for logical compare
        ('__eq__', _binary_creator_('__eq__', 'equal', False, None)),
        ('__ne__', _binary_creator_('__ne__', 'not_equal', False, None)),
        ('__lt__', _binary_creator_('__lt__', 'less_than', False, None)),
        ('__le__', _binary_creator_('__le__', 'less_equal', False, None)),
        ('__gt__', _binary_creator_('__gt__', 'greater_than', False, None)),
        ('__ge__', _binary_creator_('__ge__', 'greater_equal', False, None))
    ]

    global _already_patch_variable
    if not _already_patch_variable:
        for method in variable_methods:
            method_name = method[0]
            method_impl = method[1]
            setattr(Variable, method_name, method_impl)
    else:
        import paddle.tensor
395
        for method_name in paddle.tensor.tensor_method_func:
396 397 398 399
            if hasattr(Variable, method_name): continue
            method_impl = getattr(paddle.tensor, method_name, None)
            if method_impl: setattr(Variable, method_name, method_impl)

400 401 402 403
        for magic_method, origin_method in paddle.tensor.magic_method_func:
            impl = getattr(paddle.tensor, origin_method, None)
            if impl: setattr(Variable, magic_method, impl)

404
    _already_patch_variable = True