math_op_patch.py 11.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
Y
Yang Yu 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
Y
Yang Yu 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
Y
Yang Yu 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import warnings
18 19
import inspect

20
from .. import core
21
from ..framework import Variable, unique_name
22
from .layer_function_generator import OpProtoHolder
Y
Yang Yu 已提交
23

24 25 26 27 28 29 30 31
_supported_int_dtype_ = [
    core.VarDesc.VarType.UINT8,
    core.VarDesc.VarType.INT8,
    core.VarDesc.VarType.INT16,
    core.VarDesc.VarType.INT32,
    core.VarDesc.VarType.INT64,
]

32 33
compare_ops = ['__eq__', '__ne__', '__lt__', '__le__', '__gt__', '__ge__']

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
EXPRESSION_MAP = {
    "__add__": "A + B",
    "__radd__": "A += B",
    "__sub__": "A - B",
    "__rsub__": "A -= B",
    "__mul__": "A * B",
    "__rmul__": "A *= B",
    "__div__": "A / B",
    "__truediv__": "A / B",
    "__rdiv__": "A /= B",
    "__rtruediv__": "A /= B",
    "__pow__": "A ** B",
    "__rpow__": "A **= B",
    "__floordiv__": "A //B",
    "__mod__": "A % B",
    "__eq__": "A == B",
    "__ne__": "A != B",
    "__lt__": "A < B",
    "__le__": "A <= B",
    "__gt__": "A > B",
    "__ge__": "A >= B"
}

Y
Yang Yu 已提交
57 58

def monkey_patch_variable():
Y
Yang Yu 已提交
59
    def unique_tmp_name():
Y
Yu Yang 已提交
60
        return unique_name.generate("tmp")
Y
Yang Yu 已提交
61 62 63 64 65 66 67 68

    def safe_get_dtype(var):
        try:
            dtype = var.dtype
        except:
            raise ValueError("Cannot get data type from %s", var.name)
        return dtype

69
    def current_block(var):
70
        return var.block.program.current_block()
71 72 73 74 75

    def create_new_tmp_var(block, dtype):
        tmp_name = unique_tmp_name()
        return block.create_var(name=tmp_name, dtype=dtype)

Y
Yang Yu 已提交
76 77
    def create_tensor(block, value, dtype, shape):
        value = float(value)
78
        var = create_new_tmp_var(block, dtype)
Y
Yang Yu 已提交
79 80 81
        block.append_op(
            type="fill_constant",
            outputs={'Out': [var]},
82 83 84 85
            attrs={
                'dtype': var.dtype,
                'shape': shape,
                'value': value,
86
                'force_cpu': False
H
Hongyu Liu 已提交
87 88 89
            },
            stop_gradient=True)
        var.stop_gradient = True
Y
Yang Yu 已提交
90 91
        return var

Y
Yang Yu 已提交
92 93 94
    def create_scalar(block, value, dtype):
        return create_tensor(block, value, dtype, shape=[1])

Y
Yang Yu 已提交
95 96 97
    def create_tensor_with_batchsize(ref_var, value, dtype):
        assert isinstance(ref_var, Variable)
        value = float(value)
98 99
        block = current_block(ref_var)
        var = create_new_tmp_var(block, dtype)
100
        batch_dim = -1
101
        out_shape = []
102 103
        for i, d in enumerate(ref_var.shape):
            if d < 0:
104 105 106 107 108 109 110
                if batch_dim < 0:
                    batch_dim = i
                    out_shape.append(d)
                else:
                    out_shape.append(1)
            else:
                out_shape.append(d)
111
        assert batch_dim != -1
112
        block.append_op(
Y
Yang Yu 已提交
113 114 115
            type='fill_constant_batch_size_like',
            outputs={'Out': [var]},
            inputs={'Input': [ref_var]},
116
            attrs={
117
                'shape': out_shape,
118 119 120
                'value': value,
                'input_dim_idx': batch_dim,
                'output_dim_idx': batch_dim
H
Hongyu Liu 已提交
121 122 123 124
            },
            stop_gradient=True)

        var.stop_gradient = True
Y
Yang Yu 已提交
125 126 127 128
        return var

    def astype(self, dtype):
        """
J
Jiabin Yang 已提交
129 130 131
        **Notes**:
            **The variable must be a** :ref:`api_fluid_Tensor`

Y
Yang Yu 已提交
132
        Cast a variable to a specified data type.
J
Jiabin Yang 已提交
133

Y
Yang Yu 已提交
134
        Args:
J
Jiabin Yang 已提交
135

Y
Yang Yu 已提交
136
            self(Variable): The source variable
J
Jiabin Yang 已提交
137 138

            dtype: The target data type
Y
Yang Yu 已提交
139 140

        Returns:
J
Jiabin Yang 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
            Variable: Variable with new dtype

        Examples:
            In Static Graph Mode:

            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    original_variable = fluid.data(name = "new_variable", shape=[2,2], dtype='float32')
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}".format(new_variable.dtype))

            In Dygraph Mode:

            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    original_variable = fluid.dygraph.to_variable(x)
                    print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype))
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype))

Y
Yang Yu 已提交
171
        """
172 173 174
        block = current_block(self)
        out = create_new_tmp_var(block, dtype)
        block.append_op(
Y
Yang Yu 已提交
175 176 177 178 179 180 181
            type="cast",
            inputs={"X": [self]},
            outputs={"Out": [out]},
            attrs={"in_dtype": self.dtype,
                   "out_dtype": out.dtype})
        return out

182 183 184 185 186 187 188 189 190 191 192
    def _scalar_elementwise_op_(var, scale, bias):
        block = current_block(var)
        out = create_new_tmp_var(block, var.dtype)
        block.append_op(
            type="scale",
            inputs={"X": [var]},
            outputs={"Out": [out]},
            attrs={"scale": scale,
                   "bias": bias})
        return out

193 194 195
    def _neg_(var):
        return _scalar_elementwise_op_(var, -1.0, 0.0)

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    def _scalar_elementwise_add_(var, value):
        return _scalar_elementwise_op_(var, 1.0, value)

    def _scalar_elementwise_sub_(var, value):
        return _scalar_elementwise_op_(var, 1.0, -value)

    def _scalar_elementwise_rsub_(var, value):
        return _scalar_elementwise_op_(var, -1.0, value)

    def _scalar_elementwise_mul_(var, value):
        return _scalar_elementwise_op_(var, value, 0.0)

    def _scalar_elementwise_div_(var, value):
        return _scalar_elementwise_op_(var, 1.0 / value, 0.0)

    def _elemwise_method_creator_(method_name,
                                  op_type,
                                  reverse=False,
                                  scalar_method=None):
Y
Yang Yu 已提交
215
        def __impl__(self, other_var):
216 217 218 219 220
            # FIXME(zjl): elementwise_div between integers cannot be converted to scale,
            # which may lose accuracy. This is a hot fix for release 1.6.
            if scalar_method is not None and not (
                    op_type == 'elementwise_div' and
                    self.dtype in _supported_int_dtype_):
221 222 223 224 225 226 227 228
                if isinstance(other_var, float):
                    if self.dtype in _supported_int_dtype_:
                        assert other_var == int(other_var), \
                            "float value {} cannot convert to integer".format(other_var)
                    return scalar_method(self, other_var)
                elif isinstance(other_var, int):
                    return scalar_method(self, float(other_var))

Y
Yang Yu 已提交
229 230 231 232 233 234 235 236 237 238 239
            lhs_dtype = safe_get_dtype(self)

            if not isinstance(other_var, Variable):
                if reverse:
                    has_batch_size = False
                    for elem in self.shape:
                        if elem < 0:
                            has_batch_size = True
                            break
                    if not has_batch_size:
                        other_var = create_tensor(
240
                            current_block(self),
Y
Yang Yu 已提交
241 242 243 244 245 246 247
                            other_var,
                            dtype=lhs_dtype,
                            shape=self.shape)
                    else:
                        other_var = create_tensor_with_batchsize(
                            self, other_var, lhs_dtype)
                else:
248
                    # add fill_op to current_block
Y
Yang Yu 已提交
249
                    other_var = create_scalar(
250
                        current_block(self), value=other_var, dtype=lhs_dtype)
Y
Yang Yu 已提交
251 252 253 254 255 256 257 258 259

            rhs_dtype = safe_get_dtype(other_var)
            if lhs_dtype != rhs_dtype:
                other_var = astype(other_var, lhs_dtype)
            if reverse:
                tmp = self
                self = other_var
                other_var = tmp

260 261 262 263 264 265
            # NOTE(zhiqiu): the output of compare operator should be bool.
            if method_name in compare_ops:
                out = create_new_tmp_var(current_block(self), dtype="bool")
            else:
                out = create_new_tmp_var(current_block(self), dtype=lhs_dtype)

266 267
            axis = -1
            if other_var.shape[0] == -1:
268 269 270
                stack = inspect.stack()[1]
                file_name = stack[1]
                line_num = stack[2]
271
                warnings.warn(
272 273 274 275 276
                    "%s:%s\nThe behavior of expression %s has been unified with %s(X, Y, axis=-1) from Paddle 2.0. "
                    "If your code works well in the older versions but crashes in this version, try to use "
                    "%s(X, Y, axis=0) instead of %s. This transitional warning will be dropped in the future."
                    % (file_name, line_num, EXPRESSION_MAP[method_name],
                       op_type, op_type, EXPRESSION_MAP[method_name]))
277
            current_block(self).append_op(
Y
Yang Yu 已提交
278 279 280
                type=op_type,
                inputs={'X': [self],
                        'Y': [other_var]},
281
                outputs={'Out': out},
282
                attrs={'axis': axis})
Y
Yang Yu 已提交
283 284 285 286 287 288 289 290
            return out

        comment = OpProtoHolder.instance().get_op_proto(op_type).comment

        __impl__.__doc__ = """
        {0}
        Args:
            self(Variable): left hand variable
291
            other_var(Variable|float|int): right hand variable
Y
Yang Yu 已提交
292 293 294 295 296 297 298 299

        Returns:
            Variable
        """.format(comment)
        __impl__.__name__ = method_name
        return __impl__

    # inject methods
300 301
    for method_name, op_type, reverse, scalar_method in (
        ("__add__", "elementwise_add", False, _scalar_elementwise_add_),
Y
Yang Yu 已提交
302
            # a+b == b+a. Do not need to reverse explicitly
303 304 305 306
        ("__radd__", "elementwise_add", False, _scalar_elementwise_add_),
        ("__sub__", "elementwise_sub", False, _scalar_elementwise_sub_),
        ("__rsub__", "elementwise_sub", True, _scalar_elementwise_rsub_),
        ("__mul__", "elementwise_mul", False, _scalar_elementwise_mul_),
Y
Yang Yu 已提交
307
            # a*b == b*a. Do not need to reverse explicitly
308 309 310 311 312 313 314 315 316
        ("__rmul__", "elementwise_mul", False, _scalar_elementwise_mul_),
        ("__div__", "elementwise_div", False, _scalar_elementwise_div_),
        ("__truediv__", "elementwise_div", False, _scalar_elementwise_div_),
        ("__rdiv__", "elementwise_div", True, None),
        ("__rtruediv__", "elementwise_div", True, None),
        ("__pow__", "elementwise_pow", False, None),
        ("__rpow__", "elementwise_pow", True, None),
        ("__floordiv__", "elementwise_floordiv", False, None),
        ("__mod__", "elementwise_mod", False, None),
317
            # for logical compare
318 319 320 321 322 323
        ("__eq__", "equal", False, None),
        ("__ne__", "not_equal", False, None),
        ("__lt__", "less_than", False, None),
        ("__le__", "less_equal", False, None),
        ("__gt__", "greater_than", False, None),
        ("__ge__", "greater_equal", False, None)):
Y
Yang Yu 已提交
324
        setattr(Variable, method_name,
325 326
                _elemwise_method_creator_(method_name, op_type, reverse,
                                          scalar_method))
327

328 329
    # b = -a
    Variable.__neg__ = _neg_
Y
Yang Yu 已提交
330
    Variable.astype = astype