math_op_patch.py 11.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
Y
Yang Yu 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
Y
Yang Yu 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
Y
Yang Yu 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18 19
import logging
import inspect

20
from .. import core
21
from ..framework import Variable, unique_name
22
from .layer_function_generator import OpProtoHolder
Y
Yang Yu 已提交
23

24 25 26 27 28 29 30 31
_supported_int_dtype_ = [
    core.VarDesc.VarType.UINT8,
    core.VarDesc.VarType.INT8,
    core.VarDesc.VarType.INT16,
    core.VarDesc.VarType.INT32,
    core.VarDesc.VarType.INT64,
]

32 33
compare_ops = ['__eq__', '__ne__', '__lt__', '__le__', '__gt__', '__ge__']

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
EXPRESSION_MAP = {
    "__add__": "A + B",
    "__radd__": "A += B",
    "__sub__": "A - B",
    "__rsub__": "A -= B",
    "__mul__": "A * B",
    "__rmul__": "A *= B",
    "__div__": "A / B",
    "__truediv__": "A / B",
    "__rdiv__": "A /= B",
    "__rtruediv__": "A /= B",
    "__pow__": "A ** B",
    "__rpow__": "A **= B",
    "__floordiv__": "A //B",
    "__mod__": "A % B",
    "__eq__": "A == B",
    "__ne__": "A != B",
    "__lt__": "A < B",
    "__le__": "A <= B",
    "__gt__": "A > B",
    "__ge__": "A >= B"
}

Y
Yang Yu 已提交
57 58

def monkey_patch_variable():
Y
Yang Yu 已提交
59
    def unique_tmp_name():
Y
Yu Yang 已提交
60
        return unique_name.generate("tmp")
Y
Yang Yu 已提交
61 62 63 64 65 66 67 68

    def safe_get_dtype(var):
        try:
            dtype = var.dtype
        except:
            raise ValueError("Cannot get data type from %s", var.name)
        return dtype

69
    def current_block(var):
70
        return var.block.program.current_block()
71 72 73 74 75

    def create_new_tmp_var(block, dtype):
        tmp_name = unique_tmp_name()
        return block.create_var(name=tmp_name, dtype=dtype)

Y
Yang Yu 已提交
76 77
    def create_tensor(block, value, dtype, shape):
        value = float(value)
78
        var = create_new_tmp_var(block, dtype)
Y
Yang Yu 已提交
79 80 81
        block.append_op(
            type="fill_constant",
            outputs={'Out': [var]},
82 83 84 85
            attrs={
                'dtype': var.dtype,
                'shape': shape,
                'value': value,
86
                'force_cpu': False
H
Hongyu Liu 已提交
87 88 89
            },
            stop_gradient=True)
        var.stop_gradient = True
Y
Yang Yu 已提交
90 91
        return var

Y
Yang Yu 已提交
92 93 94
    def create_scalar(block, value, dtype):
        return create_tensor(block, value, dtype, shape=[1])

Y
Yang Yu 已提交
95 96 97
    def create_tensor_with_batchsize(ref_var, value, dtype):
        assert isinstance(ref_var, Variable)
        value = float(value)
98 99
        block = current_block(ref_var)
        var = create_new_tmp_var(block, dtype)
100 101 102 103 104 105
        batch_dim = -1
        for i, d in enumerate(ref_var.shape):
            if d < 0:
                batch_dim = i
                break
        assert batch_dim != -1
106
        block.append_op(
Y
Yang Yu 已提交
107 108 109
            type='fill_constant_batch_size_like',
            outputs={'Out': [var]},
            inputs={'Input': [ref_var]},
110 111 112 113 114
            attrs={
                'shape': ref_var.shape,
                'value': value,
                'input_dim_idx': batch_dim,
                'output_dim_idx': batch_dim
H
Hongyu Liu 已提交
115 116 117 118
            },
            stop_gradient=True)

        var.stop_gradient = True
Y
Yang Yu 已提交
119 120 121 122
        return var

    def astype(self, dtype):
        """
J
Jiabin Yang 已提交
123 124 125
        **Notes**:
            **The variable must be a** :ref:`api_fluid_Tensor`

Y
Yang Yu 已提交
126
        Cast a variable to a specified data type.
J
Jiabin Yang 已提交
127

Y
Yang Yu 已提交
128
        Args:
J
Jiabin Yang 已提交
129

Y
Yang Yu 已提交
130
            self(Variable): The source variable
J
Jiabin Yang 已提交
131 132

            dtype: The target data type
Y
Yang Yu 已提交
133 134

        Returns:
J
Jiabin Yang 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
            Variable: Variable with new dtype

        Examples:
            In Static Graph Mode:

            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    original_variable = fluid.data(name = "new_variable", shape=[2,2], dtype='float32')
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}".format(new_variable.dtype))

            In Dygraph Mode:

            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    original_variable = fluid.dygraph.to_variable(x)
                    print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype))
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype))

Y
Yang Yu 已提交
165
        """
166 167 168
        block = current_block(self)
        out = create_new_tmp_var(block, dtype)
        block.append_op(
Y
Yang Yu 已提交
169 170 171 172 173 174 175
            type="cast",
            inputs={"X": [self]},
            outputs={"Out": [out]},
            attrs={"in_dtype": self.dtype,
                   "out_dtype": out.dtype})
        return out

176 177 178 179 180 181 182 183 184 185 186
    def _scalar_elementwise_op_(var, scale, bias):
        block = current_block(var)
        out = create_new_tmp_var(block, var.dtype)
        block.append_op(
            type="scale",
            inputs={"X": [var]},
            outputs={"Out": [out]},
            attrs={"scale": scale,
                   "bias": bias})
        return out

187 188 189
    def _neg_(var):
        return _scalar_elementwise_op_(var, -1.0, 0.0)

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    def _scalar_elementwise_add_(var, value):
        return _scalar_elementwise_op_(var, 1.0, value)

    def _scalar_elementwise_sub_(var, value):
        return _scalar_elementwise_op_(var, 1.0, -value)

    def _scalar_elementwise_rsub_(var, value):
        return _scalar_elementwise_op_(var, -1.0, value)

    def _scalar_elementwise_mul_(var, value):
        return _scalar_elementwise_op_(var, value, 0.0)

    def _scalar_elementwise_div_(var, value):
        return _scalar_elementwise_op_(var, 1.0 / value, 0.0)

    def _elemwise_method_creator_(method_name,
                                  op_type,
                                  reverse=False,
                                  scalar_method=None):
Y
Yang Yu 已提交
209
        def __impl__(self, other_var):
210 211 212 213 214
            # FIXME(zjl): elementwise_div between integers cannot be converted to scale,
            # which may lose accuracy. This is a hot fix for release 1.6.
            if scalar_method is not None and not (
                    op_type == 'elementwise_div' and
                    self.dtype in _supported_int_dtype_):
215 216 217 218 219 220 221 222
                if isinstance(other_var, float):
                    if self.dtype in _supported_int_dtype_:
                        assert other_var == int(other_var), \
                            "float value {} cannot convert to integer".format(other_var)
                    return scalar_method(self, other_var)
                elif isinstance(other_var, int):
                    return scalar_method(self, float(other_var))

Y
Yang Yu 已提交
223 224 225 226 227 228 229 230 231 232 233
            lhs_dtype = safe_get_dtype(self)

            if not isinstance(other_var, Variable):
                if reverse:
                    has_batch_size = False
                    for elem in self.shape:
                        if elem < 0:
                            has_batch_size = True
                            break
                    if not has_batch_size:
                        other_var = create_tensor(
234
                            current_block(self),
Y
Yang Yu 已提交
235 236 237 238 239 240 241
                            other_var,
                            dtype=lhs_dtype,
                            shape=self.shape)
                    else:
                        other_var = create_tensor_with_batchsize(
                            self, other_var, lhs_dtype)
                else:
242
                    # add fill_op to current_block
Y
Yang Yu 已提交
243
                    other_var = create_scalar(
244
                        current_block(self), value=other_var, dtype=lhs_dtype)
Y
Yang Yu 已提交
245 246 247 248 249 250 251 252 253

            rhs_dtype = safe_get_dtype(other_var)
            if lhs_dtype != rhs_dtype:
                other_var = astype(other_var, lhs_dtype)
            if reverse:
                tmp = self
                self = other_var
                other_var = tmp

254 255 256 257 258 259
            # NOTE(zhiqiu): the output of compare operator should be bool.
            if method_name in compare_ops:
                out = create_new_tmp_var(current_block(self), dtype="bool")
            else:
                out = create_new_tmp_var(current_block(self), dtype=lhs_dtype)

260 261
            axis = -1
            if other_var.shape[0] == -1:
262 263 264 265 266 267 268 269 270
                stack = inspect.stack()[1]
                file_name = stack[1]
                line_num = stack[2]
                logging.warning(
                    "%s:%s\nThe behavior of expression %s has been unified with %s(X, Y, axis=-1) from Paddle 2.0. "
                    "If your code works well in the older versions but crashes in this version, try to use "
                    "%s(X, Y, axis=0) instead of %s. This transitional warning will be dropped in the future."
                    % (file_name, line_num, EXPRESSION_MAP[method_name],
                       op_type, op_type, EXPRESSION_MAP[method_name]))
271
            current_block(self).append_op(
Y
Yang Yu 已提交
272 273 274
                type=op_type,
                inputs={'X': [self],
                        'Y': [other_var]},
275
                outputs={'Out': out},
276
                attrs={'axis': axis})
Y
Yang Yu 已提交
277 278 279 280 281 282 283 284
            return out

        comment = OpProtoHolder.instance().get_op_proto(op_type).comment

        __impl__.__doc__ = """
        {0}
        Args:
            self(Variable): left hand variable
285
            other_var(Variable|float|int): right hand variable
Y
Yang Yu 已提交
286 287 288 289 290 291 292 293

        Returns:
            Variable
        """.format(comment)
        __impl__.__name__ = method_name
        return __impl__

    # inject methods
294 295
    for method_name, op_type, reverse, scalar_method in (
        ("__add__", "elementwise_add", False, _scalar_elementwise_add_),
Y
Yang Yu 已提交
296
            # a+b == b+a. Do not need to reverse explicitly
297 298 299 300
        ("__radd__", "elementwise_add", False, _scalar_elementwise_add_),
        ("__sub__", "elementwise_sub", False, _scalar_elementwise_sub_),
        ("__rsub__", "elementwise_sub", True, _scalar_elementwise_rsub_),
        ("__mul__", "elementwise_mul", False, _scalar_elementwise_mul_),
Y
Yang Yu 已提交
301
            # a*b == b*a. Do not need to reverse explicitly
302 303 304 305 306 307 308 309 310
        ("__rmul__", "elementwise_mul", False, _scalar_elementwise_mul_),
        ("__div__", "elementwise_div", False, _scalar_elementwise_div_),
        ("__truediv__", "elementwise_div", False, _scalar_elementwise_div_),
        ("__rdiv__", "elementwise_div", True, None),
        ("__rtruediv__", "elementwise_div", True, None),
        ("__pow__", "elementwise_pow", False, None),
        ("__rpow__", "elementwise_pow", True, None),
        ("__floordiv__", "elementwise_floordiv", False, None),
        ("__mod__", "elementwise_mod", False, None),
311
            # for logical compare
312 313 314 315 316 317
        ("__eq__", "equal", False, None),
        ("__ne__", "not_equal", False, None),
        ("__lt__", "less_than", False, None),
        ("__le__", "less_equal", False, None),
        ("__gt__", "greater_than", False, None),
        ("__ge__", "greater_equal", False, None)):
Y
Yang Yu 已提交
318
        setattr(Variable, method_name,
319 320
                _elemwise_method_creator_(method_name, op_type, reverse,
                                          scalar_method))
321

322 323
    # b = -a
    Variable.__neg__ = _neg_
Y
Yang Yu 已提交
324
    Variable.astype = astype