math_op_patch.py 16.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
Y
Yang Yu 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
Y
Yang Yu 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
Y
Yang Yu 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import warnings
18 19
import inspect

20
from .. import core
21
from ..framework import Variable, unique_name, static_only
22
from .layer_function_generator import OpProtoHolder
23
from .control_flow import array_write, array_length
Y
Yang Yu 已提交
24

25
_supported_int_dtype_ = [
26
    core.VarDesc.VarType.BOOL,
27 28 29 30 31 32 33
    core.VarDesc.VarType.UINT8,
    core.VarDesc.VarType.INT8,
    core.VarDesc.VarType.INT16,
    core.VarDesc.VarType.INT32,
    core.VarDesc.VarType.INT64,
]

34 35
compare_ops = ['__eq__', '__ne__', '__lt__', '__le__', '__gt__', '__ge__']

36 37 38 39 40 41 42
EXPRESSION_MAP = {
    "__add__": "A + B",
    "__radd__": "A += B",
    "__sub__": "A - B",
    "__rsub__": "A -= B",
    "__mul__": "A * B",
    "__rmul__": "A *= B",
43
    "__div__": "A / B",
44
    "__truediv__": "A / B",
45
    "__rdiv__": "A /= B",
46 47 48 49 50
    "__rtruediv__": "A /= B",
    "__pow__": "A ** B",
    "__rpow__": "A **= B",
    "__floordiv__": "A //B",
    "__mod__": "A % B",
51
    "__matmul__": "A @ B",
52 53 54 55 56 57 58 59
    "__eq__": "A == B",
    "__ne__": "A != B",
    "__lt__": "A < B",
    "__le__": "A <= B",
    "__gt__": "A > B",
    "__ge__": "A >= B"
}

60 61
_already_patch_variable = False

Y
Yang Yu 已提交
62 63

def monkey_patch_variable():
64

Y
Yang Yu 已提交
65
    def unique_tmp_name():
Y
Yu Yang 已提交
66
        return unique_name.generate("tmp")
Y
Yang Yu 已提交
67 68 69 70 71 72 73 74

    def safe_get_dtype(var):
        try:
            dtype = var.dtype
        except:
            raise ValueError("Cannot get data type from %s", var.name)
        return dtype

75
    def current_block(var):
76
        return var.block.program.current_block()
77 78 79 80 81

    def create_new_tmp_var(block, dtype):
        tmp_name = unique_tmp_name()
        return block.create_var(name=tmp_name, dtype=dtype)

Y
Yang Yu 已提交
82 83
    def create_tensor(block, value, dtype, shape):
        value = float(value)
84
        var = create_new_tmp_var(block, dtype)
85 86 87 88 89 90 91 92 93
        block.append_op(type="fill_constant",
                        outputs={'Out': [var]},
                        attrs={
                            'dtype': var.dtype,
                            'shape': shape,
                            'value': value,
                            'force_cpu': False
                        },
                        stop_gradient=True)
H
Hongyu Liu 已提交
94
        var.stop_gradient = True
Y
Yang Yu 已提交
95 96
        return var

Y
Yang Yu 已提交
97 98 99
    def create_scalar(block, value, dtype):
        return create_tensor(block, value, dtype, shape=[1])

Y
Yang Yu 已提交
100 101 102
    def create_tensor_with_batchsize(ref_var, value, dtype):
        assert isinstance(ref_var, Variable)
        value = float(value)
103 104
        block = current_block(ref_var)
        var = create_new_tmp_var(block, dtype)
105
        batch_dim = -1
106
        out_shape = []
107 108
        for i, d in enumerate(ref_var.shape):
            if d < 0:
109 110 111 112 113 114 115
                if batch_dim < 0:
                    batch_dim = i
                    out_shape.append(d)
                else:
                    out_shape.append(1)
            else:
                out_shape.append(d)
116
        assert batch_dim != -1
117 118 119 120 121 122 123 124 125 126
        block.append_op(type='fill_constant_batch_size_like',
                        outputs={'Out': [var]},
                        inputs={'Input': [ref_var]},
                        attrs={
                            'shape': out_shape,
                            'value': value,
                            'input_dim_idx': batch_dim,
                            'output_dim_idx': batch_dim
                        },
                        stop_gradient=True)
H
Hongyu Liu 已提交
127 128

        var.stop_gradient = True
Y
Yang Yu 已提交
129 130 131 132
        return var

    def astype(self, dtype):
        """
J
Jiabin Yang 已提交
133 134 135
        **Notes**:
            **The variable must be a** :ref:`api_fluid_Tensor`

Y
Yang Yu 已提交
136
        Cast a variable to a specified data type.
J
Jiabin Yang 已提交
137

Y
Yang Yu 已提交
138
        Args:
J
Jiabin Yang 已提交
139

Y
Yang Yu 已提交
140
            self(Variable): The source variable
J
Jiabin Yang 已提交
141 142

            dtype: The target data type
Y
Yang Yu 已提交
143 144

        Returns:
J
Jiabin Yang 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
            Variable: Variable with new dtype

        Examples:
            In Static Graph Mode:

            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    original_variable = fluid.data(name = "new_variable", shape=[2,2], dtype='float32')
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}".format(new_variable.dtype))

            In Dygraph Mode:

            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    original_variable = fluid.dygraph.to_variable(x)
                    print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype))
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype))

Y
Yang Yu 已提交
175
        """
176 177
        block = current_block(self)
        out = create_new_tmp_var(block, dtype)
178 179 180 181 182 183 184
        block.append_op(type="cast",
                        inputs={"X": [self]},
                        outputs={"Out": [out]},
                        attrs={
                            "in_dtype": self.dtype,
                            "out_dtype": out.dtype
                        })
185
        out.stop_gradient = self.stop_gradient
Y
Yang Yu 已提交
186 187
        return out

188 189 190 191 192 193 194 195 196 197 198 199 200
    @static_only
    def append(self, var):
        """
         **Notes**:
            **The type variable must be LoD Tensor Array.
        
        """
        if not isinstance(var, Variable):
            raise TypeError(
                "Required input var should be Variable, but received {}".format(
                    type(var)))
        if self.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            raise TypeError(
201 202
                "Only Variable with VarType.LOD_TENSOR_ARRAY support `append` method, but received type: {}"
                .format(self.type))
203 204 205

        array_write(x=var, i=array_length(self), array=self)

206
    def _scalar_op_(var, scale, bias):
207 208
        block = current_block(var)
        out = create_new_tmp_var(block, var.dtype)
209 210 211 212 213 214 215
        block.append_op(type="scale",
                        inputs={"X": [var]},
                        outputs={"Out": [out]},
                        attrs={
                            "scale": scale,
                            "bias": bias
                        })
216 217
        return out

218
    def _neg_(var):
219
        return _scalar_op_(var, -1.0, 0.0)
220

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
    @property
    def _ndim_(self):
        """
        Returns the dimension of current Variable

        Returns:
            the dimension

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # print the dimension of the Variable
                print(x.ndim)
        """
        return len(self.shape)

243 244
    def _scalar_add_(var, value):
        return _scalar_op_(var, 1.0, value)
245

246 247
    def _scalar_sub_(var, value):
        return _scalar_op_(var, 1.0, -value)
248

249 250
    def _scalar_rsub_(var, value):
        return _scalar_op_(var, -1.0, value)
251

252 253
    def _scalar_mul_(var, value):
        return _scalar_op_(var, value, 0.0)
254

255 256 257
    def _scalar_div_(var, value):
        return _scalar_op_(var, 1.0 / value, 0.0)

258 259 260 261
    def _binary_creator_(method_name,
                         op_type,
                         reverse=False,
                         scalar_method=None):
262

Y
Yang Yu 已提交
263
        def __impl__(self, other_var):
264 265 266 267 268 269 270 271 272
            # 1. scalar exists cases
            # we need combine the tensor.dtype and scalar.dtype, cast correct object
            if isinstance(other_var, float):
                # in all cases(+, -, *, /, **, //, %), we need cast tensor.dtype to float
                if self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
                # but only +, -, *, / can use this method
                if scalar_method is not None:
273
                    return scalar_method(self, other_var)
274 275 276 277 278 279
            elif isinstance(other_var, int):
                # in all cases(+, -, *, /, **, //, %), we can cast it to float
                # because the output tensor.dtype depend on the type of input tensor
                other_var = float(other_var)
                # division is a special case
                # NOTE(chenweihang): because we cast tensor to float32 instead float64,
280 281 282
                # the division result can only guarantee the numerical accuracy of 6 digits
                # after the decimal point. The result of numpy calculation is of float64 type,
                # so the calculation result here and the calculation result of numpy are
283 284 285 286 287
                # different after 6 decimal point. If necessary, we can also use float64 here.
                # torch's behavior here is consistent with ours
                if op_type == 'elementwise_div' and self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
288
                # but only +, -, *, / can use this method
289 290 291 292 293
                if scalar_method is not None:
                    return scalar_method(self, other_var)
            else:
                # do nothing
                pass
294

295
            # 2. create variable for scalar
Y
Yang Yu 已提交
296 297 298 299 300 301 302 303 304
            lhs_dtype = safe_get_dtype(self)
            if not isinstance(other_var, Variable):
                if reverse:
                    has_batch_size = False
                    for elem in self.shape:
                        if elem < 0:
                            has_batch_size = True
                            break
                    if not has_batch_size:
305 306 307 308
                        other_var = create_tensor(current_block(self),
                                                  other_var,
                                                  dtype=lhs_dtype,
                                                  shape=self.shape)
Y
Yang Yu 已提交
309 310 311 312
                    else:
                        other_var = create_tensor_with_batchsize(
                            self, other_var, lhs_dtype)
                else:
313
                    # add fill_op to current_block
314 315 316
                    other_var = create_scalar(current_block(self),
                                              value=other_var,
                                              dtype=lhs_dtype)
Y
Yang Yu 已提交
317

318
            # 3. unify right var type to left var
Y
Yang Yu 已提交
319 320 321 322 323 324 325 326
            rhs_dtype = safe_get_dtype(other_var)
            if lhs_dtype != rhs_dtype:
                other_var = astype(other_var, lhs_dtype)
            if reverse:
                tmp = self
                self = other_var
                other_var = tmp

327 328 329 330 331 332
            # NOTE(zhiqiu): the output of compare operator should be bool.
            if method_name in compare_ops:
                out = create_new_tmp_var(current_block(self), dtype="bool")
            else:
                out = create_new_tmp_var(current_block(self), dtype=lhs_dtype)

333 334
            axis = -1
            if other_var.shape[0] == -1:
335 336 337
                stack = inspect.stack()[1]
                file_name = stack[1]
                line_num = stack[2]
338
                warnings.warn(
339 340 341 342 343
                    "%s:%s\nThe behavior of expression %s has been unified with %s(X, Y, axis=-1) from Paddle 2.0. "
                    "If your code works well in the older versions but crashes in this version, try to use "
                    "%s(X, Y, axis=0) instead of %s. This transitional warning will be dropped in the future."
                    % (file_name, line_num, EXPRESSION_MAP[method_name],
                       op_type, op_type, EXPRESSION_MAP[method_name]))
344 345 346 347 348 349 350
            current_block(self).append_op(type=op_type,
                                          inputs={
                                              'X': [self],
                                              'Y': [other_var]
                                          },
                                          outputs={'Out': out},
                                          attrs={'axis': axis})
Y
Yang Yu 已提交
351 352 353 354 355 356 357 358
            return out

        comment = OpProtoHolder.instance().get_op_proto(op_type).comment

        __impl__.__doc__ = """
        {0}
        Args:
            self(Variable): left hand variable
359
            other_var(Variable|float|int): right hand variable
Y
Yang Yu 已提交
360 361 362 363 364 365 366

        Returns:
            Variable
        """.format(comment)
        __impl__.__name__ = method_name
        return __impl__

367 368 369 370
    variable_methods = [
        #   b=-a
        ('__neg__', _neg_),
        ('astype', astype),
371
        ('append', append),
372 373 374
        ('dim', lambda x: len(x.shape)),
        ('ndimension', lambda x: len(x.shape)),
        ('ndim', _ndim_),
375 376
        ('__add__',
         _binary_creator_('__add__', 'elementwise_add', False, _scalar_add_)),
377 378 379
        #  a+b == b+a. Do not need to reverse explicitly
        ('__radd__',
         _binary_creator_('__radd__', 'elementwise_add', False, _scalar_add_)),
380 381 382 383 384 385
        ('__sub__',
         _binary_creator_('__sub__', 'elementwise_sub', False, _scalar_sub_)),
        ('__rsub__',
         _binary_creator_('__rsub__', 'elementwise_sub', True, _scalar_rsub_)),
        ('__mul__',
         _binary_creator_('__mul__', 'elementwise_mul', False, _scalar_mul_)),
386 387 388
        #  a*b == b*a. Do not need to reverse explicitly
        ('__rmul__',
         _binary_creator_('__rmul__', 'elementwise_mul', False, _scalar_mul_)),
389 390 391 392 393
        ('__div__',
         _binary_creator_('__div__', 'elementwise_div', False, _scalar_div_)),
        ('__truediv__',
         _binary_creator_('__truediv__', 'elementwise_div', False,
                          _scalar_div_)),
394 395
        ('__rdiv__', _binary_creator_('__rdiv__', 'elementwise_div', True,
                                      None)),
396 397
        ('__rtruediv__',
         _binary_creator_('__rtruediv__', 'elementwise_div', True, None)),
398 399 400 401
        ('__pow__', _binary_creator_('__pow__', 'elementwise_pow', False,
                                     None)),
        ('__rpow__', _binary_creator_('__rpow__', 'elementwise_pow', True,
                                      None)),
402 403
        ('__floordiv__',
         _binary_creator_('__floordiv__', 'elementwise_floordiv', False, None)),
S
ShenLiang 已提交
404 405
        ('__mod__', _binary_creator_('__mod__', 'elementwise_mod', False,
                                     None)),
406 407
        ('__matmul__', _binary_creator_('__matmul__', "matmul_v2", False,
                                        None)),
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
        #  for logical compare
        ('__eq__', _binary_creator_('__eq__', 'equal', False, None)),
        ('__ne__', _binary_creator_('__ne__', 'not_equal', False, None)),
        ('__lt__', _binary_creator_('__lt__', 'less_than', False, None)),
        ('__le__', _binary_creator_('__le__', 'less_equal', False, None)),
        ('__gt__', _binary_creator_('__gt__', 'greater_than', False, None)),
        ('__ge__', _binary_creator_('__ge__', 'greater_equal', False, None))
    ]

    global _already_patch_variable
    if not _already_patch_variable:
        for method in variable_methods:
            method_name = method[0]
            method_impl = method[1]
            setattr(Variable, method_name, method_impl)
    else:
        import paddle.tensor
425
        for method_name in paddle.tensor.tensor_method_func:
426 427 428 429
            if hasattr(Variable, method_name): continue
            method_impl = getattr(paddle.tensor, method_name, None)
            if method_impl: setattr(Variable, method_name, method_impl)

430 431 432 433
        for magic_method, origin_method in paddle.tensor.magic_method_func:
            impl = getattr(paddle.tensor, origin_method, None)
            if impl: setattr(Variable, magic_method, impl)

434
    _already_patch_variable = True