detection.py 176.5 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18 19
import paddle

20 21
from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
22
from ..layer_helper import LayerHelper
Z
zhiboniu 已提交
23
from ..framework import Variable, _non_static_mode, static_only, in_dygraph_mode
24
from .. import core
25
from .loss import softmax_with_cross_entropy
26 27
from . import tensor
from . import nn
28
from . import ops
M
minqiyang 已提交
29
from ... import compat as cpt
30
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype
C
chengduoZH 已提交
31
import math
M
minqiyang 已提交
32
import six
33
import numpy as np
34
from functools import reduce
35
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
36
from paddle.utils import deprecated
37
from paddle import _C_ops, _legacy_C_ops
L
lyq 已提交
38
from ..framework import in_dygraph_mode
39

C
chengduoZH 已提交
40
__all__ = [
41 42 43 44 45 46 47 48
    'prior_box',
    'density_prior_box',
    'multi_box_head',
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
    'rpn_target_assign',
49
    'retinanet_target_assign',
50
    'sigmoid_focal_loss',
51 52 53 54
    'anchor_generator',
    'roi_perspective_transform',
    'generate_proposal_labels',
    'generate_proposals',
55
    'generate_mask_labels',
56 57 58 59
    'iou_similarity',
    'box_coder',
    'polygon_box_transform',
    'yolov3_loss',
D
dengkaipeng 已提交
60
    'yolo_box',
61
    'box_clip',
J
jerrywgz 已提交
62
    'multiclass_nms',
63
    'locality_aware_nms',
Y
Yang Zhang 已提交
64
    'matrix_nms',
65
    'retinanet_detection_output',
66
    'distribute_fpn_proposals',
67
    'box_decoder_and_assign',
68
    'collect_fpn_proposals',
C
chengduoZH 已提交
69
]
70 71


72 73 74 75 76 77 78 79 80 81 82
def retinanet_target_assign(bbox_pred,
                            cls_logits,
                            anchor_box,
                            anchor_var,
                            gt_boxes,
                            gt_labels,
                            is_crowd,
                            im_info,
                            num_classes=1,
                            positive_overlap=0.5,
                            negative_overlap=0.4):
83
    r"""
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    **Target Assign Layer for the detector RetinaNet.**

    This OP finds out positive and negative samples from all anchors
    for training the detector `RetinaNet <https://arxiv.org/abs/1708.02002>`_ ,
    and assigns target labels for classification along with target locations for
    regression to each sample, then takes out the part belonging to positive and
    negative samples from category prediction( :attr:`cls_logits`) and location
    prediction( :attr:`bbox_pred`) which belong to all anchors.

    The searching principles for positive and negative samples are as followed:

    1. Anchors are assigned to ground-truth boxes when it has the highest IoU
    overlap with a ground-truth box.

    2. Anchors are assigned to ground-truth boxes when it has an IoU overlap
    higher than :attr:`positive_overlap` with any ground-truth box.

    3. Anchors are assigned to background when its IoU overlap is lower than
    :attr:`negative_overlap` for all ground-truth boxes.

    4. Anchors which do not meet the above conditions do not participate in
    the training process.

    Retinanet predicts a :math:`C`-vector for classification and a 4-vector for box
T
tianshuo78520a 已提交
108
    regression for each anchor, hence the target label for each positive(or negative)
109 110 111 112 113 114 115 116 117 118 119 120 121 122
    sample is a :math:`C`-vector and the target locations for each positive sample
    is a 4-vector. As for a positive sample, if the category of its assigned
    ground-truth box is class :math:`i`, the corresponding entry in its length
    :math:`C` label vector is set to 1 and all other entries is set to 0, its box
    regression targets are computed as the offset between itself and its assigned
    ground-truth box. As for a negative sample, all entries in its length :math:`C`
    label vector are set to 0 and box regression targets are omitted because
    negative samples do not participate in the training process of location
    regression.

    After the assignment, the part belonging to positive and negative samples is
    taken out from category prediction( :attr:`cls_logits` ), and the part
    belonging to positive samples is taken out from location
    prediction( :attr:`bbox_pred` ).
123 124

    Args:
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        bbox_pred(Variable): A 3-D Tensor with shape :math:`[N, M, 4]` represents
            the predicted locations of all anchors. :math:`N` is the batch size( the
            number of images in a mini-batch), :math:`M` is the number of all anchors
            of one image, and each anchor has 4 coordinate values. The data type of
            :attr:`bbox_pred` is float32 or float64.
        cls_logits(Variable): A 3-D Tensor with shape :math:`[N, M, C]` represents
            the predicted categories of all anchors. :math:`N` is the batch size,
            :math:`M` is the number of all anchors of one image, and :math:`C` is
            the number of categories (**Notice: excluding background**). The data type
            of :attr:`cls_logits` is float32 or float64.
        anchor_box(Variable): A 2-D Tensor with shape :math:`[M, 4]` represents
            the locations of all anchors. :math:`M` is the number of all anchors of
            one image, each anchor is represented as :math:`[xmin, ymin, xmax, ymax]`,
            :math:`[xmin, ymin]` is the left top coordinate of the anchor box,
            :math:`[xmax, ymax]` is the right bottom coordinate of the anchor box.
            The data type of :attr:`anchor_box` is float32 or float64. Please refer
141
            to the OP :ref:`api_fluid_layers_anchor_generator`
142
            for the generation of :attr:`anchor_box`.
143
        anchor_var(Variable): A 2-D Tensor with shape :math:`[M,4]` represents the expanded
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
            factors of anchor locations used in loss function. :math:`M` is number of
            all anchors of one image, each anchor possesses a 4-vector expanded factor.
            The data type of :attr:`anchor_var` is float32 or float64. Please refer
            to the OP :ref:`api_fluid_layers_anchor_generator`
            for the generation of :attr:`anchor_var`.
        gt_boxes(Variable): A 1-level 2-D LoDTensor with shape :math:`[G, 4]` represents
            locations of all ground-truth boxes. :math:`G` is the total number of
            all ground-truth boxes in a mini-batch, and each ground-truth box has 4
            coordinate values. The data type of :attr:`gt_boxes` is float32 or
            float64.
        gt_labels(variable): A 1-level 2-D LoDTensor with shape :math:`[G, 1]` represents
            categories of all ground-truth boxes, and the values are in the range of
            :math:`[1, C]`. :math:`G` is the total number of all ground-truth boxes
            in a mini-batch, and each ground-truth box has one category. The data type
            of :attr:`gt_labels` is int32.
        is_crowd(Variable): A 1-level 1-D LoDTensor with shape :math:`[G]` which
            indicates whether a ground-truth box is a crowd. If the value is 1, the
            corresponding box is a crowd, it is ignored during training. :math:`G` is
            the total number of all ground-truth boxes in a mini-batch. The data type
            of :attr:`is_crowd` is int32.
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents the size
            information of input images. :math:`N` is the batch size, the size
T
tianshuo78520a 已提交
166
            information of each image is a 3-vector which are the height and width
167 168 169 170 171 172 173 174 175 176 177 178
            of the network input along with the factor scaling the origin image to
            the network input. The data type of :attr:`im_info` is float32.
        num_classes(int32): The number of categories for classification, the default
            value is 1.
        positive_overlap(float32): Minimum overlap required between an anchor
            and ground-truth box for the anchor to be a positive sample, the default
            value is 0.5.
        negative_overlap(float32): Maximum overlap allowed between an anchor
            and ground-truth box for the anchor to be a negative sample, the default
            value is 0.4. :attr:`negative_overlap` should be less than or equal to
            :attr:`positive_overlap`, if not, the actual value of
            :attr:`positive_overlap` is :attr:`negative_overlap`.
179 180

    Returns:
181
        A tuple with 6 Variables:
182

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
        **predict_scores** (Variable): A 2-D Tensor with shape :math:`[F+B, C]` represents
        category prediction belonging to positive and negative samples. :math:`F`
        is the number of positive samples in a mini-batch, :math:`B` is the number
        of negative samples, and :math:`C` is the number of categories
        (**Notice: excluding background**). The data type of :attr:`predict_scores`
        is float32 or float64.

        **predict_location** (Variable): A 2-D Tensor with shape :math:`[F, 4]` represents
        location prediction belonging to positive samples. :math:`F` is the number
        of positive samples. :math:`F` is the number of positive samples, and each
        sample has 4 coordinate values. The data type of :attr:`predict_location`
        is float32 or float64.

        **target_label** (Variable): A 2-D Tensor with shape :math:`[F+B, 1]` represents
        target labels for classification belonging to positive and negative
        samples. :math:`F` is the number of positive samples, :math:`B` is the
        number of negative, and each sample has one target category. The data type
        of :attr:`target_label` is int32.

        **target_bbox** (Variable): A 2-D Tensor with shape :math:`[F, 4]` represents
        target locations for box regression belonging to positive samples.
        :math:`F` is the number of positive samples, and each sample has 4
        coordinate values. The data type of :attr:`target_bbox` is float32 or
        float64.

        **bbox_inside_weight** (Variable): A 2-D Tensor with shape :math:`[F, 4]`
        represents whether a positive sample is fake positive, if a positive
        sample is false positive, the corresponding entries in
        :attr:`bbox_inside_weight` are set 0, otherwise 1. :math:`F` is the number
        of total positive samples in a mini-batch, and each sample has 4
        coordinate values. The data type of :attr:`bbox_inside_weight` is float32
        or float64.

        **fg_num** (Variable): A 2-D Tensor with shape :math:`[N, 1]` represents the number
        of positive samples. :math:`N` is the batch size. **Notice: The number
        of positive samples is used as the denominator of later loss function,
        to avoid the condition that the denominator is zero, this OP has added 1
        to the actual number of positive samples of each image.** The data type of
        :attr:`fg_num` is int32.
222 223 224 225 226

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
227 228 229 230 231 232 233 234 235 236 237
          bbox_pred = fluid.data(name='bbox_pred', shape=[1, 100, 4],
                            dtype='float32')
          cls_logits = fluid.data(name='cls_logits', shape=[1, 100, 10],
                            dtype='float32')
          anchor_box = fluid.data(name='anchor_box', shape=[100, 4],
                            dtype='float32')
          anchor_var = fluid.data(name='anchor_var', shape=[100, 4],
                            dtype='float32')
          gt_boxes = fluid.data(name='gt_boxes', shape=[10, 4],
                            dtype='float32')
          gt_labels = fluid.data(name='gt_labels', shape=[10, 1],
238
                            dtype='int32')
239
          is_crowd = fluid.data(name='is_crowd', shape=[1],
240
                            dtype='int32')
241
          im_info = fluid.data(name='im_info', shape=[1, 3],
242
                            dtype='float32')
243
          score_pred, loc_pred, score_target, loc_target, bbox_inside_weight, fg_num = \\
244 245 246 247 248
                fluid.layers.retinanet_target_assign(bbox_pred, cls_logits, anchor_box,
                anchor_var, gt_boxes, gt_labels, is_crowd, im_info, 10)

    """

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
    check_variable_and_dtype(bbox_pred, 'bbox_pred', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(cls_logits, 'cls_logits', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(anchor_box, 'anchor_box', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(anchor_var, 'anchor_var', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(gt_boxes, 'gt_boxes', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(gt_labels, 'gt_labels', ['int32'],
                             'retinanet_target_assign')
    check_variable_and_dtype(is_crowd, 'is_crowd', ['int32'],
                             'retinanet_target_assign')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'retinanet_target_assign')

266 267 268 269 270 271 272 273 274 275
    helper = LayerHelper('retinanet_target_assign', **locals())
    # Assign target label to anchors
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    fg_num = helper.create_variable_for_type_inference(dtype='int32')
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
    helper.append_op(type="retinanet_target_assign",
                     inputs={
                         'Anchor': anchor_box,
                         'GtBoxes': gt_boxes,
                         'GtLabels': gt_labels,
                         'IsCrowd': is_crowd,
                         'ImInfo': im_info
                     },
                     outputs={
                         'LocationIndex': loc_index,
                         'ScoreIndex': score_index,
                         'TargetLabel': target_label,
                         'TargetBBox': target_bbox,
                         'BBoxInsideWeight': bbox_inside_weight,
                         'ForegroundNumber': fg_num
                     },
                     attrs={
                         'positive_overlap': positive_overlap,
                         'negative_overlap': negative_overlap
                     })
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
    bbox_inside_weight.stop_gradient = True
    fg_num.stop_gradient = True

    cls_logits = nn.reshape(x=cls_logits, shape=(-1, num_classes))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)

    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight, fg_num


312 313
def rpn_target_assign(bbox_pred,
                      cls_logits,
Y
Yuan Gao 已提交
314
                      anchor_box,
315
                      anchor_var,
316 317 318
                      gt_boxes,
                      is_crowd,
                      im_info,
Y
Yuan Gao 已提交
319
                      rpn_batch_size_per_im=256,
320 321
                      rpn_straddle_thresh=0.0,
                      rpn_fg_fraction=0.5,
Y
Yuan Gao 已提交
322
                      rpn_positive_overlap=0.7,
323 324
                      rpn_negative_overlap=0.3,
                      use_random=True):
Y
Yuan Gao 已提交
325
    """
H
haowang101779990 已提交
326
    **Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection.**
Y
Yuan Gao 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343

    This layer can be, for given the  Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each each anchor, these target labels are used for
    train RPN. The classification targets is a binary class label (of being
    an object or not). Following the paper of Faster-RCNN, the positive labels
    are two kinds of anchors: (i) the anchor/anchors with the highest IoU
    overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
    higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
    that a single ground-truth box may assign positive labels to multiple
    anchors. A non-positive anchor is when its IoU ratio is lower than
    rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
    neither positive nor negative do not contribute to the training objective.
    The regression targets are the encoded ground-truth boxes associated with
    the positive anchors.

    Args:
344
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Y
Yuan Gao 已提交
345 346
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
347
            is [xmin, ymin, xmax, ymax]. The data type can be float32 or float64.
348 349 350
        cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the
            predicted confidence predictions. N is the batch size, 1 is the
            frontground and background sigmoid, M is number of bounding boxes.
351
            The data type can be float32 or float64.
Y
Yuan Gao 已提交
352 353 354 355 356
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
357
            coordinate of the anchor box. The data type can be float32 or float64.
358
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded
359
            variances of anchors. The data type can be float32 or float64.
翟飞跃 已提交
360
        gt_boxes (Variable): The ground-truth bounding boxes (bboxes) are a 2D
Y
Yuan Gao 已提交
361
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
362
            bboxes of mini-batch input. The data type can be float32 or float64.
363
        is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd.
364
                             The data type must be int32.
365 366
        im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
        3 is the height, width and scale.
Y
Yuan Gao 已提交
367
        rpn_batch_size_per_im(int): Total number of RPN examples per image.
368
                                    The data type must be int32.
369
        rpn_straddle_thresh(float): Remove RPN anchors that go outside the image
370
            by straddle_thresh pixels. The data type must be float32.
371
        rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled
372
            foreground (i.e. class > 0), 0-th class is background. The data type must be float32.
Y
Yuan Gao 已提交
373 374
        rpn_positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
375
            example. The data type must be float32.
Y
Yuan Gao 已提交
376 377
        rpn_negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
378
            examples. The data type must be float32.
Y
Yuan Gao 已提交
379 380

    Returns:
M
minqiyang 已提交
381
        tuple:
382
        A tuple(predicted_scores, predicted_location, target_label,
383
        target_bbox, bbox_inside_weight) is returned. The predicted_scores
384 385 386 387 388 389 390 391 392 393 394
        and predicted_location is the predicted result of the RPN.
        The target_label and target_bbox is the ground truth,
        respectively. The predicted_location is a 2D Tensor with shape
        [F, 4], and the shape of target_bbox is same as the shape of
        the predicted_location, F is the number of the foreground
        anchors. The predicted_scores is a 2D Tensor with shape
        [F + B, 1], and the shape of target_label is same as the shape
        of the predicted_scores, B is the number of the background
        anchors, the F and B is depends on the input of this operator.
        Bbox_inside_weight represents whether the predicted loc is fake_fg
        or not and the shape is [F, 4].
Y
Yuan Gao 已提交
395 396 397 398

    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
399
            import paddle.fluid as fluid
400 401 402 403 404 405 406
            bbox_pred = fluid.data(name='bbox_pred', shape=[None, 4], dtype='float32')
            cls_logits = fluid.data(name='cls_logits', shape=[None, 1], dtype='float32')
            anchor_box = fluid.data(name='anchor_box', shape=[None, 4], dtype='float32')
            anchor_var = fluid.data(name='anchor_var', shape=[None, 4], dtype='float32')
            gt_boxes = fluid.data(name='gt_boxes', shape=[None, 4], dtype='float32')
            is_crowd = fluid.data(name='is_crowd', shape=[None], dtype='float32')
            im_info = fluid.data(name='im_infoss', shape=[None, 3], dtype='float32')
407 408
            loc, score, loc_target, score_target, inside_weight = fluid.layers.rpn_target_assign(
                bbox_pred, cls_logits, anchor_box, anchor_var, gt_boxes, is_crowd, im_info)
H
haowang101779990 已提交
409

Y
Yuan Gao 已提交
410 411 412
    """

    helper = LayerHelper('rpn_target_assign', **locals())
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428

    check_variable_and_dtype(bbox_pred, 'bbox_pred', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(cls_logits, 'cls_logits', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(anchor_box, 'anchor_box', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(anchor_var, 'anchor_var', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(gt_boxes, 'gt_boxes', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(is_crowd, 'is_crowd', ['int32'],
                             'rpn_target_assign')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'rpn_target_assign')

429
    # Assign target label to anchors
J
jerrywgz 已提交
430 431 432 433 434 435 436
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
    helper.append_op(type="rpn_target_assign",
                     inputs={
                         'Anchor': anchor_box,
                         'GtBoxes': gt_boxes,
                         'IsCrowd': is_crowd,
                         'ImInfo': im_info
                     },
                     outputs={
                         'LocationIndex': loc_index,
                         'ScoreIndex': score_index,
                         'TargetLabel': target_label,
                         'TargetBBox': target_bbox,
                         'BBoxInsideWeight': bbox_inside_weight
                     },
                     attrs={
                         'rpn_batch_size_per_im': rpn_batch_size_per_im,
                         'rpn_straddle_thresh': rpn_straddle_thresh,
                         'rpn_positive_overlap': rpn_positive_overlap,
                         'rpn_negative_overlap': rpn_negative_overlap,
                         'rpn_fg_fraction': rpn_fg_fraction,
                         'use_random': use_random
                     })
Y
Yuan Gao 已提交
459

460 461 462 463
    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
J
jerrywgz 已提交
464
    bbox_inside_weight.stop_gradient = True
Y
Yuan Gao 已提交
465

466 467 468 469
    cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)
470

J
jerrywgz 已提交
471
    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight
Y
Yuan Gao 已提交
472 473


474
def sigmoid_focal_loss(x, label, fg_num, gamma=2.0, alpha=0.25):
475
    r"""
476 477 478
	:alias_main: paddle.nn.functional.sigmoid_focal_loss
	:alias: paddle.nn.functional.sigmoid_focal_loss,paddle.nn.functional.loss.sigmoid_focal_loss
	:old_api: paddle.fluid.layers.sigmoid_focal_loss
S
swtkiwi 已提交
479

480 481
    **Sigmoid Focal Loss Operator.**

482 483 484
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is used to address the foreground-background
    class imbalance existed on the training phase of many computer vision tasks. This OP computes
    the sigmoid value for each element in the input tensor :attr:`x`, after which focal loss is
485
    measured between the sigmoid value and target label.
486

487 488 489
    The focal loss is given as followed:

    .. math::
490

491 492 493 494 495 496
        \\mathop{loss_{i,\\,j}}\\limits_{i\\in\\mathbb{[0,\\,N-1]},\\,j\\in\\mathbb{[0,\\,C-1]}}=\\left\\{
        \\begin{array}{rcl}
        - \\frac{1}{fg\_num} * \\alpha * {(1 - \\sigma(x_{i,\\,j}))}^{\\gamma} * \\log(\\sigma(x_{i,\\,j})) & & {(j +1) = label_{i,\\,0}} \\\\
        - \\frac{1}{fg\_num} * (1 - \\alpha) * {\sigma(x_{i,\\,j})}^{ \\gamma} * \\log(1 - \\sigma(x_{i,\\,j})) & & {(j +1)!= label_{i,\\,0}}
        \\end{array} \\right.

497 498

    We know that
499

500 501 502 503
    .. math::
        \\sigma(x_j) = \\frac{1}{1 + \\exp(-x_j)}


504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
    Args:
        x(Variable): A 2-D tensor with shape :math:`[N, C]` represents the predicted categories of
            all samples. :math:`N` is the number of all samples responsible for optimization in
            a mini-batch, for example, samples are anchor boxes for object detection and :math:`N`
            is the total number of positive and negative samples in a mini-batch; Samples are images
            for image classification and :math:`N` is the number of images in a mini-batch. :math:`C`
            is the number of classes (**Notice: excluding background**). The data type of :attr:`x` is
            float32 or float64.
        label(Variable): A 2-D tensor with shape :math:`[N, 1]` represents the target labels for
            classification. :math:`N` is the number of all samples responsible for optimization in a
            mini-batch, each sample has one target category. The values for positive samples are in the
            range of :math:`[1, C]`, and the values for negative samples are 0. The data type of :attr:`label`
            is int32.
        fg_num(Variable): A 1-D tensor with shape [1] represents the number of positive samples in a
            mini-batch, which should be obtained before this OP. The data type of :attr:`fg_num` is int32.
519
        gamma(int|float): Hyper-parameter to balance the easy and hard examples. Default value is
520
            set to 2.0.
521
        alpha(int|float): Hyper-parameter to balance the positive and negative example. Default value
522 523 524
            is set to 0.25.

    Returns:
525
        Variable(the data type is float32 or float64):
526 527
            A 2-D tensor with shape :math:`[N, C]`, which is the focal loss of each element in the input
            tensor :attr:`x`.
528 529 530 531

    Examples:
        .. code-block:: python

532
            import numpy as np
533
            import paddle.fluid as fluid
534

535 536 537 538 539
            num_classes = 10  # exclude background
            image_width = 16
            image_height = 16
            batch_size = 32
            max_iter = 20
540 541


542 543 544 545 546 547
            def gen_train_data():
                x_data = np.random.uniform(0, 255, (batch_size, 3, image_height,
                                                    image_width)).astype('float64')
                label_data = np.random.randint(0, num_classes,
                                               (batch_size, 1)).astype('int32')
                return {"x": x_data, "label": label_data}
548 549


550 551 552 553 554 555 556 557
            def get_focal_loss(pred, label, fg_num, num_classes):
                pred = fluid.layers.reshape(pred, [-1, num_classes])
                label = fluid.layers.reshape(label, [-1, 1])
                label.stop_gradient = True
                loss = fluid.layers.sigmoid_focal_loss(
                    pred, label, fg_num, gamma=2.0, alpha=0.25)
                loss = fluid.layers.reduce_sum(loss)
                return loss
558 559


560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
            def build_model(mode='train'):
                x = fluid.data(name="x", shape=[-1, 3, -1, -1], dtype='float64')
                output = fluid.layers.pool2d(input=x, pool_type='avg', global_pooling=True)
                output = fluid.layers.fc(
                    input=output,
                    size=num_classes,
                    # Notice: size is set to be the number of target classes (excluding backgorund)
                    # because sigmoid activation will be done in the sigmoid_focal_loss op.
                    act=None)
                if mode == 'train':
                    label = fluid.data(name="label", shape=[-1, 1], dtype='int32')
                    # Obtain the fg_num needed by the sigmoid_focal_loss op:
                    # 0 in label represents background, >=1 in label represents foreground,
                    # find the elements in label which are greater or equal than 1, then
                    # computed the numbers of these elements.
                    data = fluid.layers.fill_constant(shape=[1], value=1, dtype='int32')
                    fg_label = fluid.layers.greater_equal(label, data)
                    fg_label = fluid.layers.cast(fg_label, dtype='int32')
                    fg_num = fluid.layers.reduce_sum(fg_label)
                    fg_num.stop_gradient = True
                    avg_loss = get_focal_loss(output, label, fg_num, num_classes)
                    return avg_loss
                else:
                    # During evaluating or testing phase,
                    # output of the final fc layer should be connected to a sigmoid layer.
                    pred = fluid.layers.sigmoid(output)
                    return pred
587 588


589 590 591 592 593 594 595 596 597 598
            loss = build_model('train')
            moment_optimizer = fluid.optimizer.MomentumOptimizer(
                learning_rate=0.001, momentum=0.9)
            moment_optimizer.minimize(loss)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            for i in range(max_iter):
                outs = exe.run(feed=gen_train_data(), fetch_list=[loss.name])
                print(outs)
599 600
    """

601 602 603 604 605
    check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                             'sigmoid_focal_loss')
    check_variable_and_dtype(label, 'label', ['int32'], 'sigmoid_focal_loss')
    check_variable_and_dtype(fg_num, 'fg_num', ['int32'], 'sigmoid_focal_loss')

606 607 608 609
    helper = LayerHelper("sigmoid_focal_loss", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

610 611 612 613 614 615 616 617 618 619 620
    helper.append_op(type="sigmoid_focal_loss",
                     inputs={
                         "X": x,
                         "Label": label,
                         "FgNum": fg_num
                     },
                     attrs={
                         "gamma": gamma,
                         'alpha': alpha
                     },
                     outputs={"Out": out})
621 622 623
    return out


Y
Yuan Gao 已提交
624 625
def detection_output(loc,
                     scores,
626 627 628 629 630 631 632
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
633 634
                     nms_eta=1.0,
                     return_index=False):
635
    """
S
swtkiwi 已提交
636

Q
qingqing01 已提交
637 638
    Given the regression locations, classification confidences and prior boxes,
    calculate the detection outputs by performing following steps:
639

Q
qingqing01 已提交
640 641
    1. Decode input bounding box predictions according to the prior boxes and
       regression locations.
642 643 644 645 646
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
647 648 649

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Q
qingqing01 已提交
650 651
            predicted locations of M bounding bboxes. Data type should be
            float32 or float64. N is the batch size,
652 653
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
654
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
Q
qingqing01 已提交
655 656 657
            predicted confidence predictions. Data type should be float32
            or float64. N is the batch size, C is the
            class number, M is number of bounding boxes.
658
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
Q
qingqing01 已提交
659 660
            each box is represented as [xmin, ymin, xmax, ymax]. Data type
            should be float32 or float64.
661
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
Q
qingqing01 已提交
662 663
            of variance. Data type should be float32 or float64.
        background_label(int): The index of background label,
664
            the background label will be ignored. If set to -1, then all
Q
qingqing01 已提交
665 666
            categories will be considered. Default: 0.
        nms_threshold(float): The threshold to be used in NMS. Default: 0.3.
667
        nms_top_k(int): Maximum number of detections to be kept according
T
tianshuo78520a 已提交
668
            to the confidences after filtering detections based on
Q
qingqing01 已提交
669
            score_threshold and before NMS. Default: 400.
670
        keep_top_k(int): Number of total bboxes to be kept per image after
Q
qingqing01 已提交
671
            NMS step. -1 means keeping all bboxes after NMS step. Default: 200.
672 673
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
Q
qingqing01 已提交
674 675 676
            Default: 0.01.
        nms_eta(float): The parameter for adaptive NMS. It works only when the
            value is less than 1.0. Default: 1.0.
677
        return_index(bool): Whether return selected index. Default: False
678 679

    Returns:
M
minqiyang 已提交
680

681
        A tuple with two Variables: (Out, Index) if return_index is True,
682
        otherwise, a tuple with one Variable(Out) is returned.
683

Q
qingqing01 已提交
684 685 686 687 688 689 690 691 692 693 694 695
        Out (Variable): The detection outputs is a LoDTensor with shape [No, 6].
        Data type is the same as input (loc). Each row has six values:
        [label, confidence, xmin, ymin, xmax, ymax]. `No` is
        the total number of detections in this mini-batch. For each instance,
        the offsets in first dimension are called LoD, the offset number is
        N + 1, N is the batch size. The i-th image has `LoD[i + 1] - LoD[i]`
        detected results, if it is 0, the i-th image has no detected results.

        Index (Variable): Only return when return_index is True. A 2-D LoDTensor
        with shape [No, 1] represents the selected index which type is Integer.
        The index is the absolute value cross batches. No is the same number
        as Out. If the index is used to gather other attribute such as age,
696 697 698
        one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
        N is the batch size and M is the number of boxes.

699 700 701 702

    Examples:
        .. code-block:: python

703
            import paddle.fluid as fluid
704 705 706
            import paddle

            paddle.enable_static()
707

Q
qingqing01 已提交
708 709 710 711
            pb = fluid.data(name='prior_box', shape=[10, 4], dtype='float32')
            pbv = fluid.data(name='prior_box_var', shape=[10, 4], dtype='float32')
            loc = fluid.data(name='target_box', shape=[2, 21, 4], dtype='float32')
            scores = fluid.data(name='scores', shape=[2, 21, 10], dtype='float32')
712
            nmsed_outs, index = fluid.layers.detection_output(scores=scores,
713 714
                                       loc=loc,
                                       prior_box=pb,
715 716
                                       prior_box_var=pbv,
                                       return_index=True)
717 718
    """
    helper = LayerHelper("detection_output", **locals())
719 720 721 722
    decoded_box = box_coder(prior_box=prior_box,
                            prior_box_var=prior_box_var,
                            target_box=loc,
                            code_type='decode_center_size')
723
    scores = nn.softmax(input=scores)
Y
Yuan Gao 已提交
724
    scores = nn.transpose(scores, perm=[0, 2, 1])
725
    scores.stop_gradient = True
X
Xin Pan 已提交
726 727
    nmsed_outs = helper.create_variable_for_type_inference(
        dtype=decoded_box.dtype)
728 729
    if return_index:
        index = helper.create_variable_for_type_inference(dtype='int')
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
        helper.append_op(type="multiclass_nms2",
                         inputs={
                             'Scores': scores,
                             'BBoxes': decoded_box
                         },
                         outputs={
                             'Out': nmsed_outs,
                             'Index': index
                         },
                         attrs={
                             'background_label': 0,
                             'nms_threshold': nms_threshold,
                             'nms_top_k': nms_top_k,
                             'keep_top_k': keep_top_k,
                             'score_threshold': score_threshold,
                             'nms_eta': 1.0,
                         })
747 748
        index.stop_gradient = True
    else:
749 750 751 752 753 754 755 756 757 758 759 760 761 762
        helper.append_op(type="multiclass_nms",
                         inputs={
                             'Scores': scores,
                             'BBoxes': decoded_box
                         },
                         outputs={'Out': nmsed_outs},
                         attrs={
                             'background_label': 0,
                             'nms_threshold': nms_threshold,
                             'nms_top_k': nms_top_k,
                             'keep_top_k': keep_top_k,
                             'score_threshold': score_threshold,
                             'nms_eta': 1.0,
                         })
763
    nmsed_outs.stop_gradient = True
764 765
    if return_index:
        return nmsed_outs, index
766
    return nmsed_outs
C
chengduoZH 已提交
767 768


X
Xin Pan 已提交
769
@templatedoc()
770
def iou_similarity(x, y, box_normalized=True, name=None):
X
Xin Pan 已提交
771
    """
772 773 774
	:alias_main: paddle.nn.functional.iou_similarity
	:alias: paddle.nn.functional.iou_similarity,paddle.nn.functional.loss.iou_similarity
	:old_api: paddle.fluid.layers.iou_similarity
S
swtkiwi 已提交
775

X
Xin Pan 已提交
776 777 778
    ${comment}

    Args:
L
LielinJiang 已提交
779 780
        x (Variable): ${x_comment}.The data type is float32 or float64.
        y (Variable): ${y_comment}.The data type is float32 or float64.
T
tianshuo78520a 已提交
781
        box_normalized(bool): Whether treat the priorbox as a normalized box.
782
            Set true by default.
X
Xin Pan 已提交
783
    Returns:
L
LielinJiang 已提交
784
        Variable: ${out_comment}.The data type is same with x.
785 786 787 788

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
789
            import numpy as np
790 791
            import paddle.fluid as fluid

L
LielinJiang 已提交
792 793 794 795 796 797
            use_gpu = False
            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)

            x = fluid.data(name='x', shape=[None, 4], dtype='float32')
            y = fluid.data(name='y', shape=[None, 4], dtype='float32')
798
            iou = fluid.layers.iou_similarity(x=x, y=y)
L
LielinJiang 已提交
799 800 801 802 803 804 805 806 807 808 809

            exe.run(fluid.default_startup_program())
            test_program = fluid.default_main_program().clone(for_test=True)

            [out_iou] = exe.run(test_program,
                    fetch_list=iou,
                    feed={'x': np.array([[0.5, 0.5, 2.0, 2.0],
                                         [0., 0., 1.0, 1.0]]).astype('float32'),
                          'y': np.array([[1.0, 1.0, 2.5, 2.5]]).astype('float32')})
            # out_iou is [[0.2857143],
            #             [0.       ]] with shape: [2, 1]
X
Xin Pan 已提交
810 811
    """
    helper = LayerHelper("iou_similarity", **locals())
812
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
813

814 815 816 817 818 819 820
    helper.append_op(type="iou_similarity",
                     inputs={
                         "X": x,
                         "Y": y
                     },
                     attrs={"box_normalized": box_normalized},
                     outputs={"Out": out})
X
Xin Pan 已提交
821 822 823 824 825 826 827 828 829
    return out


@templatedoc()
def box_coder(prior_box,
              prior_box_var,
              target_box,
              code_type="encode_center_size",
              box_normalized=True,
830 831
              name=None,
              axis=0):
832
    r"""
S
swtkiwi 已提交
833

834 835 836
    **Box Coder Layer**

    Encode/Decode the target bounding box with the priorbox information.
837

838 839 840 841 842 843 844 845
    The Encoding schema described below:

    .. math::

        ox = (tx - px) / pw / pxv

        oy = (ty - py) / ph / pyv

846
        ow = \log(\abs(tw / pw)) / pwv
847

848
        oh = \log(\abs(th / ph)) / phv
849 850

    The Decoding schema described below:
851

852
    .. math::
853

854 855 856 857 858 859
        ox = (pw * pxv * tx * + px) - tw / 2

        oy = (ph * pyv * ty * + py) - th / 2

        ow = \exp(pwv * tw) * pw + tw / 2

860
        oh = \exp(phv * th) * ph + th / 2
861

862 863 864 865 866
    where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates,
    width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote
    the priorbox's (anchor) center coordinates, width and height. `pxv`,
    `pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`,
    `ow`, `oh` denote the encoded/decoded coordinates, width and height.
867

868 869 870 871
    During Box Decoding, two modes for broadcast are supported. Say target
    box has shape [N, M, 4], and the shape of prior box can be [N, 4] or
    [M, 4]. Then prior box will broadcast to target box along the
    assigned axis.
X
Xin Pan 已提交
872 873

    Args:
874
        prior_box(Variable): Box list prior_box is a 2-D Tensor with shape
W
wangguanzhong 已提交
875
            [M, 4] holds M boxes and data type is float32 or float64. Each box
876
            is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the
W
wangguanzhong 已提交
877
            left top coordinate of the anchor box, if the input is image feature
878 879 880 881 882 883 884 885 886 887 888 889 890
            map, they are close to the origin of the coordinate system.
            [xmax, ymax] is the right bottom coordinate of the anchor box.
        prior_box_var(List|Variable|None): prior_box_var supports three types
            of input. One is variable with shape [M, 4] which holds M group and
            data type is float32 or float64. The second is list consist of
            4 elements shared by all boxes and data type is float32 or float64.
            Other is None and not involved in calculation.
        target_box(Variable): This input can be a 2-D LoDTensor with shape
            [N, 4] when code_type is 'encode_center_size'. This input also can
            be a 3-D Tensor with shape [N, M, 4] when code_type is
            'decode_center_size'. Each box is represented as
            [xmin, ymin, xmax, ymax]. The data type is float32 or float64.
            This tensor can contain LoD information to represent a batch of inputs.
W
wangguanzhong 已提交
891
        code_type(str): The code type used with the target box. It can be
892
            `encode_center_size` or `decode_center_size`. `encode_center_size`
W
wangguanzhong 已提交
893
            by default.
T
tianshuo78520a 已提交
894
        box_normalized(bool): Whether treat the priorbox as a normalized box.
W
wangguanzhong 已提交
895
            Set true by default.
896 897 898 899 900
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.
        axis(int): Which axis in PriorBox to broadcast for box decode,
            for example, if axis is 0 and TargetBox has shape [N, M, 4] and
W
wangguanzhong 已提交
901
            PriorBox has shape [M, 4], then PriorBox will broadcast to [N, M, 4]
902 903
            for decoding. It is only valid when code type is
            `decode_center_size`. Set 0 by default.
X
Xin Pan 已提交
904 905

    Returns:
W
wangguanzhong 已提交
906 907
        Variable:

908 909 910 911
        output_box(Variable): When code_type is 'encode_center_size', the
        output tensor of box_coder_op with shape [N, M, 4] representing the
        result of N target boxes encoded with M Prior boxes and variances.
        When code_type is 'decode_center_size', N represents the batch size
T
tianshuo78520a 已提交
912
        and M represents the number of decoded boxes.
913 914

    Examples:
915

916
        .. code-block:: python
917

918
            import paddle.fluid as fluid
919 920
            import paddle
            paddle.enable_static()
W
wangguanzhong 已提交
921
            # For encode
922
            prior_box_encode = fluid.data(name='prior_box_encode',
W
wangguanzhong 已提交
923
                                  shape=[512, 4],
924 925 926 927
                                  dtype='float32')
            target_box_encode = fluid.data(name='target_box_encode',
                                   shape=[81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
928 929 930 931 932
            output_encode = fluid.layers.box_coder(prior_box=prior_box_encode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_encode,
                                    code_type="encode_center_size")
            # For decode
933
            prior_box_decode = fluid.data(name='prior_box_decode',
W
wangguanzhong 已提交
934
                                  shape=[512, 4],
935 936 937 938
                                  dtype='float32')
            target_box_decode = fluid.data(name='target_box_decode',
                                   shape=[512, 81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
939 940 941 942 943 944
            output_decode = fluid.layers.box_coder(prior_box=prior_box_decode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_decode,
                                    code_type="decode_center_size",
                                    box_normalized=False,
                                    axis=1)
X
Xin Pan 已提交
945
    """
946 947 948 949
    check_variable_and_dtype(prior_box, 'prior_box', ['float32', 'float64'],
                             'box_coder')
    check_variable_and_dtype(target_box, 'target_box', ['float32', 'float64'],
                             'box_coder')
L
lyq 已提交
950 951
    if in_dygraph_mode():
        if isinstance(prior_box_var, Variable):
952 953 954
            box_coder_op = _C_ops.box_coder(prior_box, prior_box_var,
                                            target_box, code_type,
                                            box_normalized, axis, [])
L
lyq 已提交
955
        elif isinstance(prior_box_var, list):
956 957 958
            box_coder_op = _C_ops.box_coder(prior_box, None, target_box,
                                            code_type, box_normalized, axis,
                                            prior_box_var)
L
lyq 已提交
959 960 961 962
        else:
            raise TypeError(
                "Input variance of box_coder must be Variable or lisz")
        return box_coder_op
X
Xin Pan 已提交
963 964
    helper = LayerHelper("box_coder", **locals())

965 966
    output_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)
X
Xin Pan 已提交
967

968 969 970 971 972 973 974 975 976 977 978 979
    inputs = {"PriorBox": prior_box, "TargetBox": target_box}
    attrs = {
        "code_type": code_type,
        "box_normalized": box_normalized,
        "axis": axis
    }
    if isinstance(prior_box_var, Variable):
        inputs['PriorBoxVar'] = prior_box_var
    elif isinstance(prior_box_var, list):
        attrs['variance'] = prior_box_var
    else:
        raise TypeError("Input variance of box_coder must be Variable or lisz")
980 981 982 983
    helper.append_op(type="box_coder",
                     inputs=inputs,
                     attrs=attrs,
                     outputs={"OutputBox": output_box})
X
Xin Pan 已提交
984 985 986 987 988 989 990 991 992
    return output_box


@templatedoc()
def polygon_box_transform(input, name=None):
    """
    ${comment}

    Args:
993 994 995 996
        input(Variable): The input with shape [batch_size, geometry_channels, height, width].
                         A Tensor with type float32, float64.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
X
Xin Pan 已提交
997 998

    Returns:
999
        Variable: The output with the same shape as input. A Tensor with type float32, float64.
B
Bai Yifan 已提交
1000 1001 1002

    Examples:
        .. code-block:: python
1003

B
Bai Yifan 已提交
1004
            import paddle.fluid as fluid
B
Bai Yifan 已提交
1005
            input = fluid.data(name='input', shape=[4, 10, 5, 5], dtype='float32')
B
Bai Yifan 已提交
1006
            out = fluid.layers.polygon_box_transform(input)
X
Xin Pan 已提交
1007
    """
1008 1009
    check_variable_and_dtype(input, "input", ['float32', 'float64'],
                             'polygon_box_transform')
X
Xin Pan 已提交
1010
    helper = LayerHelper("polygon_box_transform", **locals())
1011
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
Xin Pan 已提交
1012

1013 1014 1015 1016
    helper.append_op(type="polygon_box_transform",
                     inputs={"Input": input},
                     attrs={},
                     outputs={"Output": output})
X
Xin Pan 已提交
1017 1018 1019
    return output


1020
@deprecated(since="2.0.0", update_to="paddle.vision.ops.yolo_loss")
D
dengkaipeng 已提交
1021 1022
@templatedoc(op_type="yolov3_loss")
def yolov3_loss(x,
1023 1024
                gt_box,
                gt_label,
D
dengkaipeng 已提交
1025
                anchors,
1026
                anchor_mask,
D
dengkaipeng 已提交
1027 1028
                class_num,
                ignore_thresh,
1029
                downsample_ratio,
1030
                gt_score=None,
D
dengkaipeng 已提交
1031
                use_label_smooth=True,
1032 1033
                name=None,
                scale_x_y=1.):
D
dengkaipeng 已提交
1034
    """
S
swtkiwi 已提交
1035

D
dengkaipeng 已提交
1036 1037 1038
    ${comment}

    Args:
1039
        x (Variable): ${x_comment}The data type is float32 or float64.
1040
        gt_box (Variable): groud truth boxes, should be in shape of [N, B, 4],
1041
                          in the third dimension, x, y, w, h should be stored.
T
tianshuo78520a 已提交
1042
                          x,y is the center coordinate of boxes, w, h are the
1043
                          width and height, x, y, w, h should be divided by
1044
                          input image height to scale to [0, 1].
1045 1046
                          N is the batch number and B is the max box number in
                          an image.The data type is float32 or float64.
T
tianshuo78520a 已提交
1047
        gt_label (Variable): class id of ground truth boxes, should be in shape
1048
                            of [N, B].The data type is int32.
D
dengkaipeng 已提交
1049
        anchors (list|tuple): ${anchors_comment}
1050
        anchor_mask (list|tuple): ${anchor_mask_comment}
D
dengkaipeng 已提交
1051 1052
        class_num (int): ${class_num_comment}
        ignore_thresh (float): ${ignore_thresh_comment}
1053
        downsample_ratio (int): ${downsample_ratio_comment}
1054 1055
        name (string): The default value is None.  Normally there is no need
                       for user to set this property.  For more information,
X
xiaoting 已提交
1056
                       please refer to :ref:`api_guide_Name`
T
tianshuo78520a 已提交
1057
        gt_score (Variable): mixup score of ground truth boxes, should be in shape
1058
                            of [N, B]. Default None.
1059
        use_label_smooth (bool): ${use_label_smooth_comment}
1060
        scale_x_y (float): ${scale_x_y_comment}
D
dengkaipeng 已提交
1061 1062

    Returns:
1063
        Variable: A 1-D tensor with shape [N], the value of yolov3 loss
D
dengkaipeng 已提交
1064 1065 1066

    Raises:
        TypeError: Input x of yolov3_loss must be Variable
D
dengkaipeng 已提交
1067 1068
        TypeError: Input gtbox of yolov3_loss must be Variable
        TypeError: Input gtlabel of yolov3_loss must be Variable
D
dengkaipeng 已提交
1069
        TypeError: Input gtscore of yolov3_loss must be None or Variable
D
dengkaipeng 已提交
1070 1071 1072
        TypeError: Attr anchors of yolov3_loss must be list or tuple
        TypeError: Attr class_num of yolov3_loss must be an integer
        TypeError: Attr ignore_thresh of yolov3_loss must be a float number
1073
        TypeError: Attr use_label_smooth of yolov3_loss must be a bool value
D
dengkaipeng 已提交
1074 1075

    Examples:
1076 1077
      .. code-block:: python

1078
          import paddle.fluid as fluid
1079 1080
          import paddle
          paddle.enable_static()
X
xiaoting 已提交
1081 1082 1083 1084
          x = fluid.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
          gt_box = fluid.data(name='gt_box', shape=[None, 6, 4], dtype='float32')
          gt_label = fluid.data(name='gt_label', shape=[None, 6], dtype='int32')
          gt_score = fluid.data(name='gt_score', shape=[None, 6], dtype='float32')
1085 1086
          anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
          anchor_mask = [0, 1, 2]
1087
          loss = fluid.layers.yolov3_loss(x=x, gt_box=gt_box, gt_label=gt_label,
1088
                                          gt_score=gt_score, anchors=anchors,
1089 1090
                                          anchor_mask=anchor_mask, class_num=80,
                                          ignore_thresh=0.7, downsample_ratio=32)
D
dengkaipeng 已提交
1091 1092 1093 1094
    """

    if not isinstance(x, Variable):
        raise TypeError("Input x of yolov3_loss must be Variable")
1095
    if not isinstance(gt_box, Variable):
D
dengkaipeng 已提交
1096
        raise TypeError("Input gtbox of yolov3_loss must be Variable")
1097
    if not isinstance(gt_label, Variable):
D
dengkaipeng 已提交
1098
        raise TypeError("Input gtlabel of yolov3_loss must be Variable")
1099
    if gt_score is not None and not isinstance(gt_score, Variable):
1100
        raise TypeError("Input gtscore of yolov3_loss must be Variable")
D
dengkaipeng 已提交
1101 1102
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
        raise TypeError("Attr anchors of yolov3_loss must be list or tuple")
1103 1104
    if not isinstance(anchor_mask, list) and not isinstance(anchor_mask, tuple):
        raise TypeError("Attr anchor_mask of yolov3_loss must be list or tuple")
D
dengkaipeng 已提交
1105 1106 1107 1108 1109
    if not isinstance(class_num, int):
        raise TypeError("Attr class_num of yolov3_loss must be an integer")
    if not isinstance(ignore_thresh, float):
        raise TypeError(
            "Attr ignore_thresh of yolov3_loss must be a float number")
1110 1111 1112
    if not isinstance(use_label_smooth, bool):
        raise TypeError(
            "Attr use_label_smooth of yolov3_loss must be a bool value")
D
dengkaipeng 已提交
1113

1114 1115 1116 1117 1118
    if _non_static_mode():
        attrs = ("anchors", anchors, "anchor_mask", anchor_mask, "class_num",
                 class_num, "ignore_thresh", ignore_thresh, "downsample_ratio",
                 downsample_ratio, "use_label_smooth", use_label_smooth,
                 "scale_x_y", scale_x_y)
1119 1120
        loss, _, _ = _legacy_C_ops.yolov3_loss(x, gt_box, gt_label, gt_score,
                                               *attrs)
1121
        return loss
D
dengkaipeng 已提交
1122

1123 1124
    helper = LayerHelper('yolov3_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
1125 1126 1127
    objectness_mask = helper.create_variable_for_type_inference(dtype='int32')
    gt_match_mask = helper.create_variable_for_type_inference(dtype='int32')

1128 1129
    inputs = {
        "X": x,
1130 1131
        "GTBox": gt_box,
        "GTLabel": gt_label,
1132
    }
1133
    if gt_score is not None:
1134
        inputs["GTScore"] = gt_score
1135

D
dengkaipeng 已提交
1136 1137
    attrs = {
        "anchors": anchors,
1138
        "anchor_mask": anchor_mask,
D
dengkaipeng 已提交
1139 1140
        "class_num": class_num,
        "ignore_thresh": ignore_thresh,
1141
        "downsample_ratio": downsample_ratio,
1142
        "use_label_smooth": use_label_smooth,
1143
        "scale_x_y": scale_x_y,
D
dengkaipeng 已提交
1144 1145
    }

1146 1147 1148 1149 1150 1151 1152 1153
    helper.append_op(type='yolov3_loss',
                     inputs=inputs,
                     outputs={
                         'Loss': loss,
                         'ObjectnessMask': objectness_mask,
                         'GTMatchMask': gt_match_mask
                     },
                     attrs=attrs)
D
dengkaipeng 已提交
1154 1155 1156
    return loss


1157
@deprecated(since="2.0.0", update_to="paddle.vision.ops.yolo_box")
D
dengkaipeng 已提交
1158
@templatedoc(op_type="yolo_box")
1159 1160 1161 1162 1163 1164
def yolo_box(x,
             img_size,
             anchors,
             class_num,
             conf_thresh,
             downsample_ratio,
1165
             clip_bbox=True,
1166
             name=None,
1167 1168 1169
             scale_x_y=1.,
             iou_aware=False,
             iou_aware_factor=0.5):
D
dengkaipeng 已提交
1170
    """
S
swtkiwi 已提交
1171

D
dengkaipeng 已提交
1172 1173 1174
    ${comment}

    Args:
1175 1176
        x (Variable): ${x_comment} The data type is float32 or float64.
        img_size (Variable): ${img_size_comment} The data type is int32.
D
dengkaipeng 已提交
1177 1178 1179 1180
        anchors (list|tuple): ${anchors_comment}
        class_num (int): ${class_num_comment}
        conf_thresh (float): ${conf_thresh_comment}
        downsample_ratio (int): ${downsample_ratio_comment}
1181
        clip_bbox (bool): ${clip_bbox_comment}
1182
        scale_x_y (float): ${scale_x_y_comment}
1183 1184
        name (string): The default value is None.  Normally there is no need
                       for user to set this property.  For more information,
X
xiaoting 已提交
1185
                       please refer to :ref:`api_guide_Name`
1186 1187
        iou_aware (bool): ${iou_aware_comment}
        iou_aware_factor (float): ${iou_aware_factor_comment}
D
dengkaipeng 已提交
1188 1189

    Returns:
D
dengkaipeng 已提交
1190
        Variable: A 3-D tensor with shape [N, M, 4], the coordinates of boxes,
1191
        and a 3-D tensor with shape [N, M, :attr:`class_num`], the classification
D
dengkaipeng 已提交
1192
        scores of boxes.
D
dengkaipeng 已提交
1193 1194 1195 1196 1197 1198 1199 1200

    Raises:
        TypeError: Input x of yolov_box must be Variable
        TypeError: Attr anchors of yolo box must be list or tuple
        TypeError: Attr class_num of yolo box must be an integer
        TypeError: Attr conf_thresh of yolo box must be a float number

    Examples:
D
dengkaipeng 已提交
1201

D
dengkaipeng 已提交
1202 1203
    .. code-block:: python

X
xiaoting 已提交
1204
        import paddle.fluid as fluid
1205 1206
        import paddle
        paddle.enable_static()
X
xiaoting 已提交
1207 1208
        x = fluid.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
        img_size = fluid.data(name='img_size',shape=[None, 2],dtype='int64')
D
dengkaipeng 已提交
1209
        anchors = [10, 13, 16, 30, 33, 23]
1210
        boxes,scores = fluid.layers.yolo_box(x=x, img_size=img_size, class_num=80, anchors=anchors,
D
dengkaipeng 已提交
1211 1212 1213 1214 1215
                                        conf_thresh=0.01, downsample_ratio=32)
    """
    helper = LayerHelper('yolo_box', **locals())

    if not isinstance(x, Variable):
1216 1217 1218
        raise TypeError("Input x of yolo_box must be Variable")
    if not isinstance(img_size, Variable):
        raise TypeError("Input img_size of yolo_box must be Variable")
D
dengkaipeng 已提交
1219
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
1220
        raise TypeError("Attr anchors of yolo_box must be list or tuple")
D
dengkaipeng 已提交
1221
    if not isinstance(class_num, int):
1222
        raise TypeError("Attr class_num of yolo_box must be an integer")
D
dengkaipeng 已提交
1223
    if not isinstance(conf_thresh, float):
1224
        raise TypeError("Attr ignore_thresh of yolo_box must be a float number")
D
dengkaipeng 已提交
1225 1226 1227 1228 1229 1230 1231

    boxes = helper.create_variable_for_type_inference(dtype=x.dtype)
    scores = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = {
        "anchors": anchors,
        "class_num": class_num,
D
dengkaipeng 已提交
1232
        "conf_thresh": conf_thresh,
D
dengkaipeng 已提交
1233
        "downsample_ratio": downsample_ratio,
1234
        "clip_bbox": clip_bbox,
1235
        "scale_x_y": scale_x_y,
1236 1237
        "iou_aware": iou_aware,
        "iou_aware_factor": iou_aware_factor
D
dengkaipeng 已提交
1238 1239
    }

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
    helper.append_op(type='yolo_box',
                     inputs={
                         "X": x,
                         "ImgSize": img_size,
                     },
                     outputs={
                         'Boxes': boxes,
                         'Scores': scores,
                     },
                     attrs=attrs)
D
dengkaipeng 已提交
1250 1251 1252
    return boxes, scores


X
Xin Pan 已提交
1253
@templatedoc()
1254 1255
def detection_map(detect_res,
                  label,
1256 1257
                  class_num,
                  background_label=0,
1258 1259
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
1260 1261 1262 1263
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
X
Xin Pan 已提交
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
1275 1276 1277 1278 1279 1280 1281 1282
        input_states: (tuple|None) If not None, It contains 3 elements:
            (1) pos_count ${pos_count_comment}.
            (2) true_pos ${true_pos_comment}.
            (3) false_pos ${false_pos_comment}.
        out_states: (tuple|None) If not None, it contains 3 elements.
            (1) accum_pos_count ${accum_pos_count_comment}.
            (2) accum_true_pos ${accum_true_pos_comment}.
            (3) accum_false_pos ${accum_false_pos_comment}.
X
Xin Pan 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

1292
            import paddle.fluid as fluid
1293
            from fluid.layers import detection
1294
            detect_res = fluid.data(
X
Xin Pan 已提交
1295 1296 1297
                name='detect_res',
                shape=[10, 6],
                dtype='float32')
1298
            label = fluid.data(
X
Xin Pan 已提交
1299 1300 1301 1302
                name='label',
                shape=[10, 6],
                dtype='float32')

1303
            map_out = detection.detection_map(detect_res, label, 21)
X
Xin Pan 已提交
1304
    """
1305 1306
    helper = LayerHelper("detection_map", **locals())

1307
    def __create_var(type):
X
Xin Pan 已提交
1308
        return helper.create_variable_for_type_inference(dtype=type)
1309 1310

    map_out = __create_var('float32')
Z
zhongpu 已提交
1311 1312 1313 1314 1315 1316
    accum_pos_count_out = out_states[
        0] if out_states is not None else __create_var('int32')
    accum_true_pos_out = out_states[
        1] if out_states is not None else __create_var('float32')
    accum_false_pos_out = out_states[
        2] if out_states is not None else __create_var('float32')
1317

Z
zhongpu 已提交
1318 1319 1320
    pos_count = input_states[0] if input_states is not None else None
    true_pos = input_states[1] if input_states is not None else None
    false_pos = input_states[2] if input_states is not None else None
1321

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
    helper.append_op(type="detection_map",
                     inputs={
                         'Label': label,
                         'DetectRes': detect_res,
                         'HasState': has_state,
                         'PosCount': pos_count,
                         'TruePos': true_pos,
                         'FalsePos': false_pos
                     },
                     outputs={
                         'MAP': map_out,
                         'AccumPosCount': accum_pos_count_out,
                         'AccumTruePos': accum_true_pos_out,
                         'AccumFalsePos': accum_false_pos_out
                     },
                     attrs={
                         'overlap_threshold': overlap_threshold,
                         'evaluate_difficult': evaluate_difficult,
                         'ap_type': ap_version,
                         'class_num': class_num,
                     })
1343
    return map_out
1344 1345


1346 1347 1348 1349
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
1350
    """
S
swtkiwi 已提交
1351

Y
yuyang18 已提交
1352 1353
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
1354
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
1355 1356 1357 1358
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
W
wangguanzhong 已提交
1359
    matrix. **The OP only supports CPU**.
Y
yuyang18 已提交
1360 1361 1362

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
1363 1364 1365
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
1366

Y
yuyang18 已提交
1367
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
1368 1369 1370
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
1371 1372 1373
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

1374 1375
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
1376 1377 1378 1379 1380 1381 1382
            [K, M]. The data type is float32 or float64. It is pair-wise
            distance matrix between the entities represented by each row and
            each column. For example, assumed one entity is A with shape [K],
            another entity is B with shape [M]. The dist_matrix[i][j] is the
            distance between A[i] and B[j]. The bigger the distance is, the
            better matching the pairs are. NOTE: This tensor can contain LoD
            information to represent a batch of inputs. One instance of this
W
wangguanzhong 已提交
1383 1384 1385 1386
            batch can contain different numbers of entities.
        match_type(str, optional): The type of matching method, should be
           'bipartite' or 'per_prediction'. None ('bipartite') by default.
        dist_threshold(float32, optional): If `match_type` is 'per_prediction',
1387
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
1388
            on the maximum distance, 0.5 by default.
1389 1390
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
W
wangguanzhong 已提交
1391
            None by default.
1392

1393
    Returns:
W
wangguanzhong 已提交
1394
        Tuple:
Y
yuyang18 已提交
1395

W
wangguanzhong 已提交
1396 1397
        matched_indices(Variable): A 2-D Tensor with shape [N, M]. The data
        type is int32. N is the batch size. If match_indices[i][j] is -1, it
Y
yuyang18 已提交
1398 1399 1400 1401 1402
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

W
wangguanzhong 已提交
1403 1404
        matched_distance(Variable): A 2-D Tensor with shape [N, M]. The data
        type is float32. N is batch size. If match_indices[i][j] is -1,
Y
yuyang18 已提交
1405 1406 1407 1408 1409 1410 1411
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

1412
        >>> import paddle.fluid as fluid
1413 1414
        >>> x = fluid.data(name='x', shape=[None, 4], dtype='float32')
        >>> y = fluid.data(name='y', shape=[None, 4], dtype='float32')
Y
yuyang18 已提交
1415 1416
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
1417 1418
    """
    helper = LayerHelper('bipartite_match', **locals())
X
Xin Pan 已提交
1419 1420 1421
    match_indices = helper.create_variable_for_type_inference(dtype='int32')
    match_distance = helper.create_variable_for_type_inference(
        dtype=dist_matrix.dtype)
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
    helper.append_op(type='bipartite_match',
                     inputs={'DistMat': dist_matrix},
                     attrs={
                         'match_type': match_type,
                         'dist_threshold': dist_threshold,
                     },
                     outputs={
                         'ColToRowMatchIndices': match_indices,
                         'ColToRowMatchDist': match_distance
                     })
1432 1433 1434 1435 1436 1437 1438 1439 1440
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
S
swtkiwi 已提交
1441

1442 1443 1444 1445
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
1446

1447 1448 1449 1450 1451
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
1452

1453
    1. Assigning all outputs based on `match_indices`:
C
chengduoZH 已提交
1454

1455 1456 1457
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
1458

1459 1460
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
1461

1462
        Otherwise,
C
chengduoZH 已提交
1463

1464 1465
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
1466

Q
qingqing01 已提交
1467
    2. Assigning outputs based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
1468

Q
qingqing01 已提交
1469 1470
    Assumed that i-th instance in `neg_indices` is called `neg_indice`,
    for i-th instance:
M
minqiyang 已提交
1471

1472
    .. code-block:: text
C
chengduoZH 已提交
1473

Q
qingqing01 已提交
1474 1475 1476
        for id in neg_indice:
            out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][id] = 1.0
1477 1478

    Args:
Q
qingqing01 已提交
1479 1480 1481
       input (Variable): This input is a 3D LoDTensor with shape [M, P, K].
           Data type should be int32 or float32.
       matched_indices (Variable): The input matched indices
1482 1483 1484
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
Q
qingqing01 已提交
1485 1486
       negative_indices (Variable, optional): The input negative example indices
           are an optional input with shape [Neg, 1] and int32 type, where Neg is
1487
           the total number of negative example indices.
Q
qingqing01 已提交
1488 1489 1490 1491 1492
       mismatch_value (float32, optional): Fill this value to the mismatched
           location.
       name (string): The default value is None.  Normally there is no need for
           user to set this property.  For more information, please refer
           to :ref:`api_guide_Name`.
1493 1494

    Returns:
Q
qingqing01 已提交
1495 1496 1497 1498 1499 1500 1501 1502
        tuple: A tuple(out, out_weight) is returned.

        out (Variable): a 3D Tensor with shape [N, P, K] and same data type
        with `input`, N and P is the same as they are in `matched_indices`,
        K is the same as it in input of X.

        out_weight (Variable): the weight for output with the shape of [N, P, 1].
        Data type is float32.
1503 1504 1505 1506 1507

    Examples:

        .. code-block:: python

1508
            import paddle.fluid as fluid
1509 1510
            import paddle
            paddle.enable_static()
Q
qingqing01 已提交
1511
            x = fluid.data(
1512 1513 1514
                name='x',
                shape=[4, 20, 4],
                dtype='float',
Q
qingqing01 已提交
1515 1516
                lod_level=1)
            matched_id = fluid.data(
1517 1518
                name='indices',
                shape=[8, 20],
Q
qingqing01 已提交
1519
                dtype='int32')
1520 1521 1522 1523
            trg, trg_weight = fluid.layers.target_assign(
                x,
                matched_id,
                mismatch_value=0)
1524 1525
    """
    helper = LayerHelper('target_assign', **locals())
X
Xin Pan 已提交
1526 1527
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_weight = helper.create_variable_for_type_inference(dtype='float32')
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
    helper.append_op(type='target_assign',
                     inputs={
                         'X': input,
                         'MatchIndices': matched_indices,
                         'NegIndices': negative_indices
                     },
                     outputs={
                         'Out': out,
                         'OutWeight': out_weight
                     },
                     attrs={'mismatch_value': mismatch_value})
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
1556
             normalize=True,
1557
             sample_size=None):
1558
    r"""
1559 1560 1561
	:alias_main: paddle.nn.functional.ssd_loss
	:alias: paddle.nn.functional.ssd_loss,paddle.nn.functional.loss.ssd_loss
	:old_api: paddle.fluid.layers.ssd_loss
S
swtkiwi 已提交
1562

Y
yuyang18 已提交
1563
    **Multi-box loss layer for object detection algorithm of SSD**
1564

翟飞跃 已提交
1565 1566
    This layer is to compute detection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth bounding
1567 1568 1569 1570
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
1571
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1572

1573
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
1574

T
tianshuo78520a 已提交
1575
      1.2 Compute matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1576

1577
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
1578

1579
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
1580

1581
      2.2. Compute confidence loss.
Y
yuyang18 已提交
1582

1583 1584
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
1585

1586
    4. Assign classification and regression targets
Y
yuyang18 已提交
1587

1588
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
1589

1590
      4.2. Assign regression targets.
Y
yuyang18 已提交
1591

1592
      4.3. Assign classification targets.
Y
yuyang18 已提交
1593

1594
    5. Compute the overall objective loss.
Y
yuyang18 已提交
1595

1596
      5.1 Compute confidence loss.
Y
yuyang18 已提交
1597

1598
      5.2 Compute localization loss.
Y
yuyang18 已提交
1599

1600 1601 1602 1603 1604 1605
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
1606 1607
            the layout is [xmin, ymin, xmax, ymax].The data type is float32 or
            float64.
1608 1609
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
1610 1611
            `location`, C is the class number.The data type is float32 or
            float64.
翟飞跃 已提交
1612
        gt_box (Variable): The ground-truth bounding boxes (bboxes) are a 2D
1613
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
1614
            bboxes of mini-batch input.The data type is float32 or float64.
1615
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
1616 1617 1618
            with shape [Ng, 1].Ng is the total number of ground-truth bboxes of
            mini-batch input, 1 is the number of class. The data type is float32
            or float64.
1619
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
1620 1621
            Np and 4 are the same as they are in `location`. The data type is
            float32 or float64.
1622
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
1623
            with shape [Np, 4]. Np and 4 are the same as they are in `prior_box`
1624 1625
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
1626 1627
            'overlap_threshold' to determine the extra matching bboxes when finding \
            matched boxes. 0.5 by default.
1628
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
翟飞跃 已提交
1629
            boxes, used only when mining_type is 'max_negative', 3.0 by default.
1630
        neg_overlap (float): The negative overlap upper bound for the unmatched
1631
            predictions. Use only when mining_type is 'max_negative',
1632 1633 1634 1635
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
翟飞跃 已提交
1636
            be 'bipartite' or 'per_prediction', 'per_prediction' by default.
1637 1638
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
1639
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
1640
            of output locations, True by default.
1641 1642
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
1643 1644

    Returns:
1645 1646 1647
        Variable(Tensor):  The weighted sum of the localization loss and confidence loss, \
        with shape [N * Np, 1], N and Np are the same as they are in
        `location`.The data type is float32 or float64.
1648 1649

    Raises:
Y
yuyang18 已提交
1650 1651
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
1652 1653

    Examples:
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672

        .. code-block:: python

            import paddle.fluid as fluid
            pb = fluid.data(
                           name='prior_box',
                           shape=[10, 4],
                           dtype='float32')
            pbv = fluid.data(
                           name='prior_box_var',
                           shape=[10, 4],
                           dtype='float32')
            loc = fluid.data(name='target_box', shape=[10, 4], dtype='float32')
            scores = fluid.data(name='scores', shape=[10, 21], dtype='float32')
            gt_box = fluid.data(
                 name='gt_box', shape=[4], lod_level=1, dtype='float32')
            gt_label = fluid.data(
                 name='gt_label', shape=[1], lod_level=1, dtype='float32')
            loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
1673 1674 1675 1676 1677 1678 1679
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape
G
merge  
gongweibao 已提交
1680
    conf_shape = nn.shape(confidence)
1681 1682

    def __reshape_to_2d(var):
1683
        return nn.flatten(x=var, axis=2)
1684

T
tianshuo78520a 已提交
1685
    # 1. Find matched bounding box by prior box.
1686 1687
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
T
tianshuo78520a 已提交
1688
    #   1.2 Compute matched bounding box by bipartite matching algorithm.
1689 1690
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
1691 1692 1693

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
1694 1695
    gt_label = nn.reshape(x=gt_label,
                          shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1))
1696
    gt_label.stop_gradient = True
1697 1698 1699
    target_label, _ = target_assign(gt_label,
                                    matched_indices,
                                    mismatch_value=background_label)
1700 1701 1702 1703 1704
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
1705
    target_label.stop_gradient = True
1706
    conf_loss = softmax_with_cross_entropy(confidence, target_label)
1707
    # 3. Mining hard examples
G
merge  
gongweibao 已提交
1708
    actual_shape = nn.slice(conf_shape, axes=[0], starts=[0], ends=[2])
1709
    actual_shape.stop_gradient = True
1710 1711
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
1712 1713 1714
    conf_loss = nn.reshape(x=conf_loss,
                           shape=(-1, 0),
                           actual_shape=actual_shape)
1715
    conf_loss.stop_gradient = True
X
Xin Pan 已提交
1716
    neg_indices = helper.create_variable_for_type_inference(dtype='int32')
1717
    dtype = matched_indices.dtype
X
Xin Pan 已提交
1718 1719
    updated_matched_indices = helper.create_variable_for_type_inference(
        dtype=dtype)
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
    helper.append_op(type='mine_hard_examples',
                     inputs={
                         'ClsLoss': conf_loss,
                         'LocLoss': None,
                         'MatchIndices': matched_indices,
                         'MatchDist': matched_dist,
                     },
                     outputs={
                         'NegIndices': neg_indices,
                         'UpdatedMatchIndices': updated_matched_indices
                     },
                     attrs={
                         'neg_pos_ratio': neg_pos_ratio,
                         'neg_dist_threshold': neg_overlap,
                         'mining_type': mining_type,
                         'sample_size': sample_size,
                     })
1737 1738 1739

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
1740 1741 1742 1743
    encoded_bbox = box_coder(prior_box=prior_box,
                             prior_box_var=prior_box_var,
                             target_box=gt_box,
                             code_type='encode_center_size')
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
1758

1759
    conf_loss = softmax_with_cross_entropy(confidence, target_label)
1760 1761 1762
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

1763 1764 1765 1766
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

1767 1768 1769 1770 1771 1772 1773 1774
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

1775 1776 1777 1778
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

1779 1780
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
1781
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
1782 1783 1784
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
    loss = nn.reshape(x=loss, shape=(-1, 0), actual_shape=actual_shape)
1785 1786 1787 1788 1789
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

1790
    return loss
C
chengduoZH 已提交
1791 1792


Z
zhiboniu 已提交
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
def prior_box(
    input,
    image,
    min_sizes,
    max_sizes=None,
    aspect_ratios=[1.],
    variance=[0.1, 0.1, 0.2, 0.2],
    flip=False,
    clip=False,
    steps=[0.0, 0.0],
    offset=0.5,
    name=None,
    min_max_aspect_ratios_order=False,
):
1807
    """
S
swtkiwi 已提交
1808

R
ruri 已提交
1809
    This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
1810 1811 1812 1813 1814
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

R
ruri 已提交
1815
    Parameters:
T
tianshuo78520a 已提交
1816
       input(Variable): 4-D tensor(NCHW), the data type should be float32 or float64.
R
ruri 已提交
1817 1818 1819 1820
       image(Variable): 4-D tensor(NCHW), the input image data of PriorBoxOp,
            the data type should be float32 or float64.
       min_sizes(list|tuple|float): the min sizes of generated prior boxes.
       max_sizes(list|tuple|None): the max sizes of generated prior boxes.
1821
            Default: None.
R
ruri 已提交
1822
       aspect_ratios(list|tuple|float): the aspect ratios of generated
1823
            prior boxes. Default: [1.].
1824 1825 1826 1827
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
翟飞跃 已提交
1828
       step(list|tuple): Prior boxes step across width and height, If
R
ruri 已提交
1829 1830
            step[0] equals to 0.0 or step[1] equals to 0.0, the prior boxes step across
            height or weight of the input will be automatically calculated.
1831
            Default: [0., 0.]
1832
       offset(float): Prior boxes center offset. Default: 0.5
1833
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1834
            in order of [min, max, aspect_ratios], which is consistent with
1835 1836 1837
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
R
ruri 已提交
1838
       name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1839 1840

    Returns:
R
ruri 已提交
1841
        Tuple: A tuple with two Variable (boxes, variances)
Q
update  
qiaolongfei 已提交
1842

R
ruri 已提交
1843 1844
        boxes(Variable): the output prior boxes of PriorBox.
	4-D tensor, the layout is [H, W, num_priors, 4].
Q
update  
qiaolongfei 已提交
1845
        H is the height of input, W is the width of input,
R
ruri 已提交
1846
        num_priors is the total box count of each position of input.
Q
update  
qiaolongfei 已提交
1847

R
ruri 已提交
1848 1849
        variances(Variable): the expanded variances of PriorBox.
    	4-D tensor, the layput is [H, W, num_priors, 4].
Q
update  
qiaolongfei 已提交
1850
        H is the height of input, W is the width of input
R
ruri 已提交
1851
        num_priors is the total box count of each position of input
1852 1853 1854

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1855

R
ruri 已提交
1856 1857 1858
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
1859 1860
        import paddle
        paddle.enable_static()
R
ruri 已提交
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
	    input = fluid.data(name="input", shape=[None,3,6,9])
	    image = fluid.data(name="image", shape=[None,3,9,12])
	    box, var = fluid.layers.prior_box(
                 input=input,
                 image=image,
		 min_sizes=[100.],
                 clip=True,
                 flip=True)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
1873

R
ruri 已提交
1874 1875 1876
	    # prepare a batch of data
	    input_data = np.random.rand(1,3,6,9).astype("float32")
	    image_data = np.random.rand(1,3,9,12).astype("float32")
1877

R
ruri 已提交
1878 1879 1880 1881
	    box_out, var_out = exe.run(fluid.default_main_program(),
                feed={"input":input_data,"image":image_data},
                fetch_list=[box,var],
                return_numpy=True)
1882

R
ruri 已提交
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
	    # print(box_out.shape)
	    # (6, 9, 1, 4)
	    # print(var_out.shape)
	    # (6, 9, 1, 4)

	    # imperative mode
	    import paddle.fluid.dygraph as dg

	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		image = dg.to_variable(image_data)
    		box, var = fluid.layers.prior_box(
		    input=input,
		    image=image,
		    min_sizes=[100.],
		    clip=True,
		    flip=True)
		# print(box.shape)
		# [6L, 9L, 1L, 4L]
                # print(var.shape)
		# [6L, 9L, 1L, 4L]

1905
    """
Z
zhiboniu 已提交
1906 1907 1908 1909 1910

    if in_dygraph_mode():
        step_w, step_h = steps
        if max_sizes == None:
            max_sizes = []
1911 1912 1913
        return _C_ops.prior_box(input, image, min_sizes, aspect_ratios,
                                variance, max_sizes, flip, clip, step_w, step_h,
                                offset, min_max_aspect_ratios_order)
1914 1915
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()
1916 1917 1918
    check_variable_and_dtype(input, 'input',
                             ['uint8', 'int8', 'float32', 'float64'],
                             'prior_box')
1919

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

1935 1936 1937 1938 1939 1940 1941 1942
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
1943 1944
        'offset': offset,
        'min_max_aspect_ratios_order': min_max_aspect_ratios_order
1945 1946
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
1947 1948
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
1949 1950
        attrs['max_sizes'] = max_sizes

X
Xin Pan 已提交
1951 1952
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1953 1954
    helper.append_op(
        type="prior_box",
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
        inputs={
            "Input": input,
            "Image": image
        },
        outputs={
            "Boxes": box,
            "Variances": var
        },
        attrs=attrs,
    )
1965 1966 1967 1968 1969
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


R
ruri 已提交
1970 1971 1972 1973 1974 1975 1976 1977 1978
def density_prior_box(input,
                      image,
                      densities=None,
                      fixed_sizes=None,
                      fixed_ratios=None,
                      variance=[0.1, 0.1, 0.2, 0.2],
                      clip=False,
                      steps=[0.0, 0.0],
                      offset=0.5,
1979
                      flatten_to_2d=False,
R
ruri 已提交
1980
                      name=None):
1981
    r"""
R
ruri 已提交
1982

1983 1984 1985 1986 1987 1988
    This op generates density prior boxes for SSD(Single Shot MultiBox Detector)
    algorithm. Each position of the input produce N prior boxes, N is
    determined by the count of densities, fixed_sizes and fixed_ratios.
    Boxes center at grid points around each input position is generated by
    this operator, and the grid points is determined by densities and
    the count of density prior box is determined by fixed_sizes and fixed_ratios.
R
ruri 已提交
1989
    Obviously, the number of fixed_sizes is equal to the number of densities.
1990

R
ruri 已提交
1991
    For densities_i in densities:
1992

R
ruri 已提交
1993
    .. math::
R
ruri 已提交
1994

R
ruri 已提交
1995 1996 1997 1998 1999 2000 2001
        N\_density_prior\_box = SUM(N\_fixed\_ratios * densities\_i^2)

    N_density_prior_box is the number of density_prior_box and N_fixed_ratios is the number of fixed_ratios.

    Parameters:
       input(Variable): 4-D tensor(NCHW), the data type should be float32 of float64.
       image(Variable): 4-D tensor(NCHW), the input image data of PriorBoxOp, the data type should be float32 or float64.
R
ruri 已提交
2002
            the layout is NCHW.
2003 2004
       densities(list|tuple|None): The densities of generated density prior
            boxes, this attribute should be a list or tuple of integers.
R
ruri 已提交
2005
            Default: None.
R
ruri 已提交
2006
       fixed_sizes(list|tuple|None): The fixed sizes of generated density
2007
            prior boxes, this attribute should a list or tuple of same
R
ruri 已提交
2008
            length with :attr:`densities`. Default: None.
R
ruri 已提交
2009
       fixed_ratios(list|tuple|None): The fixed ratios of generated density
R
ruri 已提交
2010 2011 2012
            prior boxes, if this attribute is not set and :attr:`densities`
            and :attr:`fix_sizes` is set, :attr:`aspect_ratios` will be used
            to generate density prior boxes.
R
ruri 已提交
2013
       variance(list|tuple): The variances to be encoded in density prior boxes.
R
ruri 已提交
2014
            Default:[0.1, 0.1, 0.2, 0.2].
R
ruri 已提交
2015
       clip(bool): Whether to clip out of boundary boxes. Default: False.
翟飞跃 已提交
2016
       step(list|tuple): Prior boxes step across width and height, If
R
ruri 已提交
2017 2018
            step[0] equals 0.0 or step[1] equals 0.0, the density prior boxes step across
            height or weight of the input will be automatically calculated.
R
ruri 已提交
2019 2020
            Default: [0., 0.]
       offset(float): Prior boxes center offset. Default: 0.5
2021 2022
       flatten_to_2d(bool): Whether to flatten output prior boxes and variance
           to 2D shape, the second dim is 4. Default: False.
R
ruri 已提交
2023
       name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
2024

R
ruri 已提交
2025
    Returns:
R
ruri 已提交
2026
        Tuple: A tuple with two Variable (boxes, variances)
R
ruri 已提交
2027 2028

        boxes: the output density prior boxes of PriorBox.
R
ruri 已提交
2029 2030 2031
        4-D tensor, the layout is [H, W, num_priors, 4] when flatten_to_2d is False.
        2-D tensor, the layout is [H * W * num_priors, 4] when flatten_to_2d is True.
        H is the height of input, W is the width of input, and num_priors is the total box count of each position of input.
R
ruri 已提交
2032 2033

        variances: the expanded variances of PriorBox.
R
ruri 已提交
2034 2035 2036
        4-D tensor, the layout is [H, W, num_priors, 4] when flatten_to_2d is False.
        2-D tensor, the layout is [H * W * num_priors, 4] when flatten_to_2d is True.
        H is the height of input, W is the width of input, and num_priors is the total box count of each position of input.
R
ruri 已提交
2037 2038 2039


    Examples:
R
ruri 已提交
2040

R
ruri 已提交
2041 2042
        .. code-block:: python

R
ruri 已提交
2043
            #declarative mode
R
ruri 已提交
2044

R
ruri 已提交
2045 2046
            import paddle.fluid as fluid
            import numpy as np
2047 2048
            import paddle
            paddle.enable_static()
R
ruri 已提交
2049

R
ruri 已提交
2050 2051 2052
            input = fluid.data(name="input", shape=[None,3,6,9])
            image = fluid.data(name="image", shape=[None,3,9,12])
            box, var = fluid.layers.density_prior_box(
R
ruri 已提交
2053 2054 2055 2056 2057 2058 2059 2060
                 input=input,
                 image=image,
                 densities=[4, 2, 1],
                 fixed_sizes=[32.0, 64.0, 128.0],
                 fixed_ratios=[1.],
                 clip=True,
                 flatten_to_2d=True)

R
ruri 已提交
2061 2062 2063
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
2064

R
ruri 已提交
2065 2066 2067 2068 2069 2070
            # prepare a batch of data
            input_data = np.random.rand(1,3,6,9).astype("float32")
            image_data = np.random.rand(1,3,9,12).astype("float32")

            box_out, var_out = exe.run(
                fluid.default_main_program(),
R
ruri 已提交
2071
                feed={"input":input_data,
R
ruri 已提交
2072
                      "image":image_data},
R
ruri 已提交
2073 2074 2075
                fetch_list=[box,var],
                return_numpy=True)

R
ruri 已提交
2076 2077 2078 2079
            # print(box_out.shape)
            # (1134, 4)
            # print(var_out.shape)
            # (1134, 4)
R
ruri 已提交
2080 2081


R
ruri 已提交
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
            #imperative mode
            import paddle.fluid.dygraph as dg

            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                image = dg.to_variable(image_data)
                box, var = fluid.layers.density_prior_box(
                    input=input,
                    image=image,
                    densities=[4, 2, 1],
                    fixed_sizes=[32.0, 64.0, 128.0],
                    fixed_ratios=[1.],
                    clip=True)

                # print(box.shape)
                # [6L, 9L, 21L, 4L]
                # print(var.shape)
                # [6L, 9L, 21L, 4L]
R
ruri 已提交
2100

R
ruri 已提交
2101 2102 2103
    """
    helper = LayerHelper("density_prior_box", **locals())
    dtype = helper.input_dtype()
2104 2105
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'density_prior_box')
R
ruri 已提交
2106 2107 2108 2109

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

2110 2111 2112
    check_type(densities, 'densities', (list, tuple), 'density_prior_box')
    check_type(fixed_sizes, 'fixed_sizes', (list, tuple), 'density_prior_box')
    check_type(fixed_ratios, 'fixed_ratios', (list, tuple), 'density_prior_box')
R
ruri 已提交
2113 2114
    if len(densities) != len(fixed_sizes):
        raise ValueError('densities and fixed_sizes length should be euqal.')
2115

R
ruri 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    densities = list(map(int, densities))
    fixed_sizes = list(map(float, fixed_sizes))
    fixed_ratios = list(map(float, fixed_ratios))
    steps = list(map(float, steps))

    attrs = {
        'variances': variance,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
        'offset': offset,
2131 2132 2133 2134
        'densities': densities,
        'fixed_sizes': fixed_sizes,
        'fixed_ratios': fixed_ratios,
        'flatten_to_2d': flatten_to_2d,
R
ruri 已提交
2135 2136 2137 2138 2139
    }
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="density_prior_box",
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
        inputs={
            "Input": input,
            "Image": image
        },
        outputs={
            "Boxes": box,
            "Variances": var
        },
        attrs=attrs,
    )
R
ruri 已提交
2150 2151 2152 2153 2154
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


2155
@static_only
C
chengduoZH 已提交
2156
def multi_box_head(inputs,
C
chengduoZH 已提交
2157 2158
                   image,
                   base_size,
C
chengduoZH 已提交
2159
                   num_classes,
C
chengduoZH 已提交
2160
                   aspect_ratios,
2161 2162
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
2163 2164
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
2165 2166 2167 2168
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
2169 2170
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
2171
                   clip=False,
C
chengduoZH 已提交
2172
                   kernel_size=1,
C
chengduoZH 已提交
2173
                   pad=0,
C
chengduoZH 已提交
2174
                   stride=1,
2175 2176
                   name=None,
                   min_max_aspect_ratios_order=False):
C
chengduoZH 已提交
2177
    """
2178
	:api_attr: Static Graph
S
swtkiwi 已提交
2179

Q
qingqing01 已提交
2180 2181 2182 2183
    Base on SSD ((Single Shot MultiBox Detector) algorithm, generate prior boxes,
    regression location and classification confidence on multiple input feature
    maps, then output the concatenate results. The details of this algorithm,
    please refer the section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
2184
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
2185 2186

    Args:
Q
qingqing01 已提交
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
       inputs (list(Variable)|tuple(Variable)): The list of input variables,
           the format of all Variables are 4-D Tensor, layout is NCHW.
           Data type should be float32 or float64.
       image (Variable): The input image, layout is NCHW. Data type should be
           the same as inputs.
       base_size(int): the base_size is input image size. When len(inputs) > 2
           and `min_size` and `max_size` are None, the `min_size` and `max_size`
           are calculated by `baze_size`, 'min_ratio' and `max_ratio`. The
           formula is as follows:

              ..  code-block:: text

                  min_sizes = []
                  max_sizes = []
                  step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
                  for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
                      min_sizes.append(base_size * ratio / 100.)
                      max_sizes.append(base_size * (ratio + step) / 100.)
                      min_sizes = [base_size * .10] + min_sizes
                      max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
2208
       num_classes(int): The number of classes.
Q
qingqing01 已提交
2209 2210
       aspect_ratios(list(float) | tuple(float)): the aspect ratios of generated
           prior boxes. The length of input and aspect_ratios must be equal.
C
chengduoZH 已提交
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
2230
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
2231 2232 2233 2234 2235
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
Q
qingqing01 已提交
2236 2237 2238
       name(str): The default value is None.  Normally there is no need
           for user to set this property.  For more information, please
           refer to :ref:`api_guide_Name`.
2239
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
2240
            in order of [min, max, aspect_ratios], which is consistent with
2241
            Caffe. Please note, this order affects the weights order of
T
tianshuo78520a 已提交
2242
            convolution layer followed by and does not affect the final
2243
            detection results. Default: False.
C
chengduoZH 已提交
2244 2245

    Returns:
Q
update  
qiaolongfei 已提交
2246 2247
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

Q
qingqing01 已提交
2248 2249 2250
        mbox_loc (Variable): The predicted boxes' location of the inputs. The
        layout is [N, num_priors, 4], where N is batch size, ``num_priors``
        is the number of prior boxes. Data type is the same as input.
Q
update  
qiaolongfei 已提交
2251

Q
qingqing01 已提交
2252
        mbox_conf (Variable): The predicted boxes' confidence of the inputs.
2253
        The layout is [N, num_priors, C], where ``N`` and ``num_priors``
Q
qingqing01 已提交
2254 2255
        has the same meaning as above. C is the number of Classes.
        Data type is the same as input.
Q
update  
qiaolongfei 已提交
2256

Q
qingqing01 已提交
2257 2258 2259
        boxes (Variable): the output prior boxes. The layout is [num_priors, 4].
        The meaning of num_priors is the same as above.
        Data type is the same as input.
C
chengduoZH 已提交
2260

Q
qingqing01 已提交
2261 2262
        variances (Variable): the expanded variances for prior boxes.
        The layout is [num_priors, 4]. Data type is the same as input.
C
chengduoZH 已提交
2263

Q
qingqing01 已提交
2264
    Examples 1: set min_ratio and max_ratio:
C
chengduoZH 已提交
2265
        .. code-block:: python
Q
update  
qiaolongfei 已提交
2266

2267 2268
          import paddle
          paddle.enable_static()
2269

2270 2271 2272 2273 2274 2275 2276
          images = paddle.static.data(name='data', shape=[None, 3, 300, 300], dtype='float32')
          conv1 = paddle.static.data(name='conv1', shape=[None, 512, 19, 19], dtype='float32')
          conv2 = paddle.static.data(name='conv2', shape=[None, 1024, 10, 10], dtype='float32')
          conv3 = paddle.static.data(name='conv3', shape=[None, 512, 5, 5], dtype='float32')
          conv4 = paddle.static.data(name='conv4', shape=[None, 256, 3, 3], dtype='float32')
          conv5 = paddle.static.data(name='conv5', shape=[None, 256, 2, 2], dtype='float32')
          conv6 = paddle.static.data(name='conv6', shape=[None, 128, 1, 1], dtype='float32')
2277

2278
          mbox_locs, mbox_confs, box, var = paddle.static.nn.multi_box_head(
2279
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
C
chengduoZH 已提交
2280 2281 2282 2283 2284 2285 2286 2287 2288
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
Q
qingqing01 已提交
2289 2290 2291 2292

    Examples 2: set min_sizes and max_sizes:
        .. code-block:: python

2293 2294
          import paddle
          paddle.enable_static()
Q
qingqing01 已提交
2295

2296 2297 2298 2299 2300 2301 2302
          images = paddle.static.data(name='data', shape=[None, 3, 300, 300], dtype='float32')
          conv1 = paddle.static.data(name='conv1', shape=[None, 512, 19, 19], dtype='float32')
          conv2 = paddle.static.data(name='conv2', shape=[None, 1024, 10, 10], dtype='float32')
          conv3 = paddle.static.data(name='conv3', shape=[None, 512, 5, 5], dtype='float32')
          conv4 = paddle.static.data(name='conv4', shape=[None, 256, 3, 3], dtype='float32')
          conv5 = paddle.static.data(name='conv5', shape=[None, 256, 2, 2], dtype='float32')
          conv6 = paddle.static.data(name='conv6', shape=[None, 128, 1, 1], dtype='float32')
Q
qingqing01 已提交
2303

2304
          mbox_locs, mbox_confs, box, var = paddle.static.nn.multi_box_head(
Q
qingqing01 已提交
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
            image=images,
            num_classes=21,
            min_sizes=[60.0, 105.0, 150.0, 195.0, 240.0, 285.0],
            max_sizes=[[], 150.0, 195.0, 240.0, 285.0, 300.0],
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)

C
chengduoZH 已提交
2316 2317
    """

C
chengduoZH 已提交
2318
    def _reshape_with_axis_(input, axis=1):
2319
        out = nn.flatten(x=input, axis=axis)
C
chengduoZH 已提交
2320
        return out
2321

2322 2323
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
2324

C
chengduoZH 已提交
2325 2326 2327 2328
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

2329 2330
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
2331

C
chengduoZH 已提交
2332 2333 2334 2335 2336
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
2337
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
2338 2339 2340
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
M
minqiyang 已提交
2341
        for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
C
chengduoZH 已提交
2342 2343 2344 2345 2346
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
2347 2348 2349 2350 2351
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
Z
zhongpu 已提交
2352
    if step_h is not None:
C
chengduoZH 已提交
2353 2354 2355 2356
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
Z
zhongpu 已提交
2357
    if step_w is not None:
C
chengduoZH 已提交
2358 2359 2360 2361
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
Z
zhongpu 已提交
2362
    if steps is not None:
C
chengduoZH 已提交
2363 2364 2365 2366 2367 2368 2369
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
2370 2371
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
2372 2373
    box_results = []
    var_results = []
C
chengduoZH 已提交
2374 2375
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
2376 2377
        max_size = max_sizes[i]

2378
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
2379
            min_size = [min_size]
C
chengduoZH 已提交
2380 2381
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
2382 2383 2384 2385

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
2386
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
2387
                aspect_ratio = [aspect_ratio]
2388
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
2389

2390
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
2391 2392
                             variance, flip, clip, step, offset, None,
                             min_max_aspect_ratios_order)
C
chengduoZH 已提交
2393 2394 2395 2396 2397

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
2398

2399
        # get loc
Y
Yuan Gao 已提交
2400
        num_loc_output = num_boxes * 4
2401 2402 2403 2404 2405
        mbox_loc = nn.conv2d(input=input,
                             num_filters=num_loc_output,
                             filter_size=kernel_size,
                             padding=pad,
                             stride=stride)
2406

2407
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
2408
        mbox_loc_flatten = nn.flatten(mbox_loc, axis=1)
Y
Yuan Gao 已提交
2409
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
2410

2411
        # get conf
C
chengduoZH 已提交
2412
        num_conf_output = num_boxes * num_classes
2413 2414 2415 2416 2417
        conf_loc = nn.conv2d(input=input,
                             num_filters=num_conf_output,
                             filter_size=kernel_size,
                             padding=pad,
                             stride=stride)
2418
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
2419
        conf_loc_flatten = nn.flatten(conf_loc, axis=1)
Y
Yuan Gao 已提交
2420
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
2421

C
chengduoZH 已提交
2422 2423 2424
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
2425 2426
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
2427 2428 2429 2430 2431 2432 2433 2434 2435
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
2436
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
2437
        mbox_locs_concat = nn.reshape(mbox_locs_concat, shape=[0, -1, 4])
Y
Yuan Gao 已提交
2438
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
2439 2440
        mbox_confs_concat = nn.reshape(mbox_confs_concat,
                                       shape=[0, -1, num_classes])
C
chengduoZH 已提交
2441

2442 2443
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
2444
    return mbox_locs_concat, mbox_confs_concat, box, var
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """
S
swtkiwi 已提交
2455

2456 2457 2458 2459 2460 2461 2462 2463
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
W
wangguanzhong 已提交
2464 2465 2466
       input(Variable): 4-D Tensor with shape [N,C,H,W]. The input feature map.
       anchor_sizes(float32|list|tuple, optional): The anchor sizes of generated
          anchors, given in absolute pixels e.g. [64., 128., 256., 512.].
2467
          For instance, the anchor size of 64 means the area of this anchor
W
wangguanzhong 已提交
2468
          equals to 64**2. None by default.
2469
       aspect_ratios(float32|list|tuple, optional): The height / width ratios
W
wangguanzhong 已提交
2470
           of generated anchors, e.g. [0.5, 1.0, 2.0]. None by default.
2471 2472
       variance(list|tuple, optional): The variances to be used in box
           regression deltas. The data type is float32, [0.1, 0.1, 0.2, 0.2] by
W
wangguanzhong 已提交
2473 2474 2475 2476
           default.
       stride(list|tuple, optional): The anchors stride across width and height.
           The data type is float32. e.g. [16.0, 16.0]. None by default.
       offset(float32, optional): Prior boxes center offset. 0.5 by default.
2477 2478 2479
       name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and None
           by default.
2480 2481

    Returns:
W
wangguanzhong 已提交
2482 2483 2484 2485
        Tuple:

        Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4].
        H is the height of input, W is the width of input,
2486
        num_anchors is the box count of each position.
W
wangguanzhong 已提交
2487
        Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
2488

W
wangguanzhong 已提交
2489 2490 2491 2492 2493
        Variances(Variable): The expanded variances of anchors
        with a layout of [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_anchors is the box count of each position.
        Each variance is in (xcenter, ycenter, w, h) format.
2494 2495 2496 2497 2498 2499


    Examples:

        .. code-block:: python

2500
            import paddle.fluid as fluid
2501 2502 2503
            import paddle

            paddle.enable_static()
2504
            conv1 = fluid.data(name='conv1', shape=[None, 48, 16, 16], dtype='float32')
J
jerrywgz 已提交
2505
            anchor, var = fluid.layers.anchor_generator(
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

X
Xin Pan 已提交
2539 2540
    anchor = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
2541 2542 2543
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
2544 2545 2546 2547 2548 2549
        outputs={
            "Anchors": anchor,
            "Variances": var
        },
        attrs=attrs,
    )
2550 2551 2552
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var
2553 2554


W
whs 已提交
2555 2556 2557 2558
def roi_perspective_transform(input,
                              rois,
                              transformed_height,
                              transformed_width,
S
SunGaofeng 已提交
2559 2560
                              spatial_scale=1.0,
                              name=None):
W
whs 已提交
2561
    """
S
SunGaofeng 已提交
2562
    **The** `rois` **of this op should be a LoDTensor.**
W
whs 已提交
2563

2564
    ROI perspective transform op applies perspective transform to map each roi into an
S
SunGaofeng 已提交
2565 2566 2567
    rectangular region. Perspective transform is a type of transformation in linear algebra.

    Parameters:
2568
        input (Variable): 4-D Tensor, input of ROIPerspectiveTransformOp. The format of
W
whs 已提交
2569 2570
                          input tensor is NCHW. Where N is batch size, C is the
                          number of input channels, H is the height of the feature,
S
SunGaofeng 已提交
2571
                          and W is the width of the feature. The data type is float32.
2572 2573 2574 2575 2576
        rois (Variable):  2-D LoDTensor, ROIs (Regions of Interest) to be transformed.
                          It should be a 2-D LoDTensor of shape (num_rois, 8). Given as
                          [[x1, y1, x2, y2, x3, y3, x4, y4], ...], (x1, y1) is the
                          top left coordinates, and (x2, y2) is the top right
                          coordinates, and (x3, y3) is the bottom right coordinates,
S
SunGaofeng 已提交
2577
                          and (x4, y4) is the bottom left coordinates. The data type is the
2578
                          same as `input`
S
SunGaofeng 已提交
2579 2580
        transformed_height (int): The height of transformed output.
        transformed_width (int): The width of transformed output.
W
whs 已提交
2581
        spatial_scale (float): Spatial scale factor to scale ROI coords. Default: 1.0
2582 2583
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
S
SunGaofeng 已提交
2584
                             For more information, please refer to :ref:`api_guide_Name`
W
whs 已提交
2585 2586

    Returns:
S
SunGaofeng 已提交
2587
            A tuple with three Variables. (out, mask, transform_matrix)
2588 2589

            out: The output of ROIPerspectiveTransformOp which is a 4-D tensor with shape
S
SunGaofeng 已提交
2590
            (num_rois, channels, transformed_h, transformed_w). The data type is the same as `input`
2591 2592

            mask: The mask of ROIPerspectiveTransformOp which is a 4-D tensor with shape
S
SunGaofeng 已提交
2593
            (num_rois, 1, transformed_h, transformed_w). The data type is int32
2594 2595

            transform_matrix: The transform matrix of ROIPerspectiveTransformOp which is
S
SunGaofeng 已提交
2596 2597 2598 2599
            a 2-D tensor with shape (num_rois, 9). The data type is the same as `input`

    Return Type:
        tuple
W
whs 已提交
2600 2601 2602 2603

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
2604
            import paddle.fluid as fluid
2605

S
SunGaofeng 已提交
2606 2607
            x = fluid.data(name='x', shape=[100, 256, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 8], lod_level=1, dtype='float32')
2608
            out, mask, transform_matrix = fluid.layers.roi_perspective_transform(x, rois, 7, 7, 1.0)
W
whs 已提交
2609
    """
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
    check_variable_and_dtype(input, 'input', ['float32'],
                             'roi_perspective_transform')
    check_variable_and_dtype(rois, 'rois', ['float32'],
                             'roi_perspective_transform')
    check_type(transformed_height, 'transformed_height', int,
               'roi_perspective_transform')
    check_type(transformed_width, 'transformed_width', int,
               'roi_perspective_transform')
    check_type(spatial_scale, 'spatial_scale', float,
               'roi_perspective_transform')

W
whs 已提交
2621 2622
    helper = LayerHelper('roi_perspective_transform', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2623
    out = helper.create_variable_for_type_inference(dtype)
2624 2625
    mask = helper.create_variable_for_type_inference(dtype="int32")
    transform_matrix = helper.create_variable_for_type_inference(dtype)
2626 2627
    out2in_idx = helper.create_variable_for_type_inference(dtype="int32")
    out2in_w = helper.create_variable_for_type_inference(dtype)
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
    helper.append_op(type="roi_perspective_transform",
                     inputs={
                         "X": input,
                         "ROIs": rois
                     },
                     outputs={
                         "Out": out,
                         "Out2InIdx": out2in_idx,
                         "Out2InWeights": out2in_w,
                         "Mask": mask,
                         "TransformMatrix": transform_matrix
                     },
                     attrs={
                         "transformed_height": transformed_height,
                         "transformed_width": transformed_width,
                         "spatial_scale": spatial_scale
                     })
2645
    return out, mask, transform_matrix
W
whs 已提交
2646 2647


2648 2649
def generate_proposal_labels(rpn_rois,
                             gt_classes,
2650
                             is_crowd,
2651
                             gt_boxes,
2652
                             im_info,
2653 2654 2655 2656 2657 2658
                             batch_size_per_im=256,
                             fg_fraction=0.25,
                             fg_thresh=0.25,
                             bg_thresh_hi=0.5,
                             bg_thresh_lo=0.0,
                             bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
2659
                             class_nums=None,
2660 2661
                             use_random=True,
                             is_cls_agnostic=False,
2662 2663 2664
                             is_cascade_rcnn=False,
                             max_overlap=None,
                             return_max_overlap=False):
2665
    """
S
swtkiwi 已提交
2666

2667
    **Generate Proposal Labels of Faster-RCNN**
2668

B
buxingyuan 已提交
2669
    This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
B
buxingyuan 已提交
2670
    to sample foreground boxes and background boxes, and compute loss target.
B
buxingyuan 已提交
2671 2672 2673

    RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes
    were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction,
B
buxingyuan 已提交
2674
    If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample.
B
buxingyuan 已提交
2675 2676
    If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi,
    then it was considered as a background sample.
B
buxingyuan 已提交
2677
    After all foreground and background boxes are chosen (so called Rois),
B
buxingyuan 已提交
2678
    then we apply random sampling to make sure
B
buxingyuan 已提交
2679
    the number of foreground boxes is no more than batch_size_per_im * fg_fraction.
B
buxingyuan 已提交
2680 2681 2682 2683 2684

    For each box in Rois, we assign the classification (class label) and regression targets (box label) to it.
    Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss.

    Args:
2685 2686 2687
        rpn_rois(Variable): A 2-D LoDTensor with shape [N, 4]. N is the number of the GenerateProposalOp's output, each element is a bounding box with [xmin, ymin, xmax, ymax] format. The data type can be float32 or float64.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a class label of groundtruth. The data type must be int32.
        is_crowd(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a flag indicates whether a groundtruth is crowd. The data type must be int32.
B
buxingyuan 已提交
2688 2689 2690
        gt_boxes(Variable): A 2-D LoDTensor with shape [M, 4]. M is the number of groundtruth, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        im_info(Variable): A 2-D LoDTensor with shape [B, 3]. B is the number of input images, each element consists of im_height, im_width, im_scale.

2691 2692 2693 2694 2695 2696 2697
        batch_size_per_im(int): Batch size of rois per images. The data type must be int32.
        fg_fraction(float): Foreground fraction in total batch_size_per_im. The data type must be float32.
        fg_thresh(float): Overlap threshold which is used to chose foreground sample. The data type must be float32.
        bg_thresh_hi(float): Overlap threshold upper bound which is used to chose background sample. The data type must be float32.
        bg_thresh_lo(float): Overlap threshold lower bound which is used to chose background sample. The data type must be float32.
        bbox_reg_weights(list|tuple): Box regression weights. The data type must be float32.
        class_nums(int): Class number. The data type must be int32.
B
buxingyuan 已提交
2698
        use_random(bool): Use random sampling to choose foreground and background boxes.
2699 2700
        is_cls_agnostic(bool): bbox regression use class agnostic simply which only represent fg and bg boxes.
        is_cascade_rcnn(bool): it will filter some bbox crossing the image's boundary when setting True.
2701 2702
        max_overlap(Variable): Maximum overlap between each proposal box and ground-truth.
        return_max_overlap(bool): Whether return the maximum overlap between each sampled RoI and ground-truth.
B
Bai Yifan 已提交
2703

2704 2705
    Returns:
        tuple:
2706
        A tuple with format``(rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights, max_overlap)``.
2707 2708 2709 2710 2711 2712

        - **rois**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4]``. The data type is the same as ``rpn_rois``.
        - **labels_int32**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 1]``. The data type must be int32.
        - **bbox_targets**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The regression targets of all RoIs. The data type is the same as ``rpn_rois``.
        - **bbox_inside_weights**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The weights of foreground boxes' regression loss. The data type is the same as ``rpn_rois``.
        - **bbox_outside_weights**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The weights of regression loss. The data type is the same as ``rpn_rois``.
2713
        - **max_overlap**: 1-D LoDTensor with shape ``[P]``. P is the number of output ``rois``. The maximum overlap between each sampled RoI and ground-truth.
2714

B
Bai Yifan 已提交
2715 2716 2717
    Examples:
        .. code-block:: python

2718
            import paddle
B
Bai Yifan 已提交
2719
            import paddle.fluid as fluid
2720
            paddle.enable_static()
2721
            rpn_rois = fluid.data(name='rpn_rois', shape=[None, 4], dtype='float32')
2722 2723
            gt_classes = fluid.data(name='gt_classes', shape=[None, 1], dtype='int32')
            is_crowd = fluid.data(name='is_crowd', shape=[None, 1], dtype='int32')
2724 2725
            gt_boxes = fluid.data(name='gt_boxes', shape=[None, 4], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[None, 3], dtype='float32')
2726
            rois, labels, bbox, inside_weights, outside_weights = fluid.layers.generate_proposal_labels(
B
Bai Yifan 已提交
2727 2728 2729
                           rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
                           class_nums=10)

2730 2731 2732 2733
    """

    helper = LayerHelper('generate_proposal_labels', **locals())

2734 2735 2736 2737 2738 2739
    check_variable_and_dtype(rpn_rois, 'rpn_rois', ['float32', 'float64'],
                             'generate_proposal_labels')
    check_variable_and_dtype(gt_classes, 'gt_classes', ['int32'],
                             'generate_proposal_labels')
    check_variable_and_dtype(is_crowd, 'is_crowd', ['int32'],
                             'generate_proposal_labels')
2740 2741
    if is_cascade_rcnn:
        assert max_overlap is not None, "Input max_overlap of generate_proposal_labels should not be None if is_cascade_rcnn is True"
2742

X
Xin Pan 已提交
2743 2744 2745 2746 2747 2748 2749 2750 2751
    rois = helper.create_variable_for_type_inference(dtype=rpn_rois.dtype)
    labels_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    bbox_targets = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_inside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_outside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
2752 2753
    max_overlap_with_gt = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
2754

2755 2756 2757 2758 2759 2760 2761 2762 2763
    inputs = {
        'RpnRois': rpn_rois,
        'GtClasses': gt_classes,
        'IsCrowd': is_crowd,
        'GtBoxes': gt_boxes,
        'ImInfo': im_info,
    }
    if max_overlap is not None:
        inputs['MaxOverlap'] = max_overlap
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
    helper.append_op(type="generate_proposal_labels",
                     inputs=inputs,
                     outputs={
                         'Rois': rois,
                         'LabelsInt32': labels_int32,
                         'BboxTargets': bbox_targets,
                         'BboxInsideWeights': bbox_inside_weights,
                         'BboxOutsideWeights': bbox_outside_weights,
                         'MaxOverlapWithGT': max_overlap_with_gt
                     },
                     attrs={
                         'batch_size_per_im': batch_size_per_im,
                         'fg_fraction': fg_fraction,
                         'fg_thresh': fg_thresh,
                         'bg_thresh_hi': bg_thresh_hi,
                         'bg_thresh_lo': bg_thresh_lo,
                         'bbox_reg_weights': bbox_reg_weights,
                         'class_nums': class_nums,
                         'use_random': use_random,
                         'is_cls_agnostic': is_cls_agnostic,
                         'is_cascade_rcnn': is_cascade_rcnn
                     })
2786 2787 2788 2789 2790 2791

    rois.stop_gradient = True
    labels_int32.stop_gradient = True
    bbox_targets.stop_gradient = True
    bbox_inside_weights.stop_gradient = True
    bbox_outside_weights.stop_gradient = True
2792
    max_overlap_with_gt.stop_gradient = True
2793

2794 2795
    if return_max_overlap:
        return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights, max_overlap_with_gt
2796 2797 2798
    return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights


2799 2800
def generate_mask_labels(im_info, gt_classes, is_crowd, gt_segms, rois,
                         labels_int32, num_classes, resolution):
2801
    r"""
S
swtkiwi 已提交
2802

Q
qingqing01 已提交
2803
    **Generate Mask Labels for Mask-RCNN**
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831

    This operator can be, for given the RoIs and corresponding labels,
    to sample foreground RoIs. This mask branch also has
    a :math: `K \\times M^{2}` dimensional output targets for each foreground
    RoI, which encodes K binary masks of resolution M x M, one for each of the
    K classes. This mask targets are used to compute loss of mask branch.

    Please note, the data format of groud-truth segmentation, assumed the
    segmentations are as follows. The first instance has two gt objects.
    The second instance has one gt object, this object has two gt segmentations.

        .. code-block:: python

            #[
            #  [[[229.14, 370.9, 229.14, 370.9, ...]],
            #   [[343.7, 139.85, 349.01, 138.46, ...]]], # 0-th instance
            #  [[[500.0, 390.62, ...],[115.48, 187.86, ...]]] # 1-th instance
            #]

            batch_masks = []
            for semgs in batch_semgs:
                gt_masks = []
                for semg in semgs:
                    gt_segm = []
                    for polys in semg:
                        gt_segm.append(np.array(polys).reshape(-1, 2))
                    gt_masks.append(gt_segm)
                batch_masks.append(gt_masks)
2832 2833


2834 2835 2836 2837 2838
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(place=place, feed_list=feeds)
            feeder.feed(batch_masks)

    Args:
Q
qingqing01 已提交
2839 2840 2841 2842 2843 2844
        im_info (Variable): A 2-D Tensor with shape [N, 3] and float32
            data type. N is the batch size, each element is
            [height, width, scale] of image. Image scale is
            target_size / original_size, target_size is the size after resize,
            original_size is the original image size.
        gt_classes (Variable): A 2-D LoDTensor with shape [M, 1]. Data type
T
tianshuo78520a 已提交
2845
            should be int. M is the total number of ground-truth, each
Q
qingqing01 已提交
2846 2847 2848 2849 2850 2851 2852
            element is a class label.
        is_crowd (Variable): A 2-D LoDTensor with same shape and same data type
            as gt_classes, each element is a flag indicating whether a
            groundtruth is crowd.
        gt_segms (Variable): This input is a 2D LoDTensor with shape [S, 2] and
            float32 data type, it's LoD level is 3.
            Usually users do not needs to understand LoD,
2853
            The users should return correct data format in reader.
Q
qingqing01 已提交
2854
            The LoD[0] represents the ground-truth objects number of
2855 2856 2857 2858
            each instance. LoD[1] represents the segmentation counts of each
            objects. LoD[2] represents the polygons number of each segmentation.
            S the total number of polygons coordinate points. Each element is
            (x, y) coordinate points.
Q
qingqing01 已提交
2859 2860 2861 2862
        rois (Variable): A 2-D LoDTensor with shape [R, 4] and float32 data type
            float32. R is the total number of RoIs, each element is a bounding
            box with (xmin, ymin, xmax, ymax) format in the range of original image.
        labels_int32 (Variable): A 2-D LoDTensor in shape of [R, 1] with type
T
tianshuo78520a 已提交
2863
            of int32. R is the same as it in `rois`. Each element represents
2864
            a class label of a RoI.
Q
qingqing01 已提交
2865 2866
        num_classes (int): Class number.
        resolution (int): Resolution of mask predictions.
2867 2868

    Returns:
Q
qingqing01 已提交
2869 2870 2871
        mask_rois (Variable):  A 2D LoDTensor with shape [P, 4] and same data
        type as `rois`. P is the total number of sampled RoIs. Each element
        is a bounding box with [xmin, ymin, xmax, ymax] format in range of
T
tianshuo78520a 已提交
2872
        original image size.
Q
qingqing01 已提交
2873 2874

        mask_rois_has_mask_int32 (Variable): A 2D LoDTensor with shape [P, 1]
T
tianshuo78520a 已提交
2875
        and int data type, each element represents the output mask RoI
Q
qingqing01 已提交
2876 2877 2878 2879
        index with regard to input RoIs.

        mask_int32 (Variable): A 2D LoDTensor with shape [P, K * M * M] and int
        data type, K is the classes number and M is the resolution of mask
T
tianshuo78520a 已提交
2880
        predictions. Each element represents the binary mask targets.
2881 2882 2883 2884

    Examples:
        .. code-block:: python

2885 2886
          import paddle.fluid as fluid

Q
qingqing01 已提交
2887
          im_info = fluid.data(name="im_info", shape=[None, 3],
2888
              dtype="float32")
Q
qingqing01 已提交
2889
          gt_classes = fluid.data(name="gt_classes", shape=[None, 1],
2890
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2891
          is_crowd = fluid.data(name="is_crowd", shape=[None, 1],
2892
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2893
          gt_masks = fluid.data(name="gt_masks", shape=[None, 2],
2894
              dtype="float32", lod_level=3)
2895
          # rois, roi_labels can be the output of
2896
          # fluid.layers.generate_proposal_labels.
Q
qingqing01 已提交
2897
          rois = fluid.data(name="rois", shape=[None, 4],
2898
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2899
          roi_labels = fluid.data(name="roi_labels", shape=[None, 1],
2900
              dtype="int32", lod_level=1)
2901 2902 2903 2904 2905 2906
          mask_rois, mask_index, mask_int32 = fluid.layers.generate_mask_labels(
              im_info=im_info,
              gt_classes=gt_classes,
              is_crowd=is_crowd,
              gt_segms=gt_masks,
              rois=rois,
2907
              labels_int32=roi_labels,
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
              num_classes=81,
              resolution=14)
    """

    helper = LayerHelper('generate_mask_labels', **locals())

    mask_rois = helper.create_variable_for_type_inference(dtype=rois.dtype)
    roi_has_mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)

2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
    helper.append_op(type="generate_mask_labels",
                     inputs={
                         'ImInfo': im_info,
                         'GtClasses': gt_classes,
                         'IsCrowd': is_crowd,
                         'GtSegms': gt_segms,
                         'Rois': rois,
                         'LabelsInt32': labels_int32
                     },
                     outputs={
                         'MaskRois': mask_rois,
                         'RoiHasMaskInt32': roi_has_mask_int32,
                         'MaskInt32': mask_int32
                     },
                     attrs={
                         'num_classes': num_classes,
                         'resolution': resolution
                     })
2938 2939 2940 2941 2942 2943 2944 2945

    mask_rois.stop_gradient = True
    roi_has_mask_int32.stop_gradient = True
    mask_int32.stop_gradient = True

    return mask_rois, roi_has_mask_int32, mask_int32


2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
def generate_proposals(scores,
                       bbox_deltas,
                       im_info,
                       anchors,
                       variances,
                       pre_nms_top_n=6000,
                       post_nms_top_n=1000,
                       nms_thresh=0.5,
                       min_size=0.1,
                       eta=1.0,
2956 2957
                       return_rois_num=False,
                       name=None):
2958
    """
S
swtkiwi 已提交
2959

H
haowang101779990 已提交
2960 2961
    **Generate proposal Faster-RCNN**

2962
    This operation proposes RoIs according to each box with their
2963
    probability to be a foreground object and
2964 2965
    the box can be calculated by anchors. Bbox_deltais and scores
    to be an object are the output of RPN. Final proposals
H
haowang101779990 已提交
2966 2967 2968 2969
    could be used to train detection net.

    For generating proposals, this operation performs following steps:

2970 2971
    1. Transposes and resizes scores and bbox_deltas in size of
       (H*W*A, 1) and (H*W*A, 4)
2972
    2. Calculate box locations as proposals candidates.
H
haowang101779990 已提交
2973
    3. Clip boxes to image
2974
    4. Remove predicted boxes with small area.
H
haowang101779990 已提交
2975 2976 2977
    5. Apply NMS to get final proposals as output.

    Args:
2978 2979 2980
        scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents
            the probability for each box to be an object.
            N is batch size, A is number of anchors, H and W are height and
2981
            width of the feature map. The data type must be float32.
2982
        bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W]
T
tianshuo78520a 已提交
2983
            represents the difference between predicted box location and
2984
            anchor location. The data type must be float32.
2985
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin
2986 2987
            image information for N batch. Height and width are the input sizes
            and scale is the ratio of network input size and original size.
2988
            The data type can be float32 or float64.
2989 2990 2991
        anchors(Variable):   A 4-D Tensor represents the anchors with a layout
            of [H, W, A, 4]. H and W are height and width of the feature map,
            num_anchors is the box count of each position. Each anchor is
2992 2993
            in (xmin, ymin, xmax, ymax) format an unnormalized. The data type must be float32.
        variances(Variable): A 4-D Tensor. The expanded variances of anchors with a layout of
2994
            [H, W, num_priors, 4]. Each variance is in
2995
            (xcenter, ycenter, w, h) format. The data type must be float32.
2996
        pre_nms_top_n(float): Number of total bboxes to be kept per
2997
            image before NMS. The data type must be float32. `6000` by default.
2998
        post_nms_top_n(float): Number of total bboxes to be kept per
2999 3000
            image after NMS. The data type must be float32. `1000` by default.
        nms_thresh(float): Threshold in NMS. The data type must be float32. `0.5` by default.
3001
        min_size(float): Remove predicted boxes with either height or
3002 3003 3004
            width < min_size. The data type must be float32. `0.1` by default.
        eta(float): Apply in adaptive NMS, if adaptive `threshold > 0.5`,
            `adaptive_threshold = adaptive_threshold * eta` in each iteration.
3005
        return_rois_num(bool): When setting True, it will return a 1D Tensor with shape [N, ] that includes Rois's
F
FDInSky 已提交
3006
            num of each image in one batch. The N is the image's num. For example, the tensor has values [4,5] that represents
3007 3008 3009 3010 3011
            the first image has 4 Rois, the second image has 5 Rois. It only used in rcnn model.
            'False' by default.
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.
3012

3013 3014 3015 3016 3017 3018
    Returns:
        tuple:
        A tuple with format ``(rpn_rois, rpn_roi_probs)``.

        - **rpn_rois**: The generated RoIs. 2-D Tensor with shape ``[N, 4]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
        - **rpn_roi_probs**: The scores of generated RoIs. 2-D Tensor with shape ``[N, 1]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
B
Bai Yifan 已提交
3019 3020 3021

    Examples:
        .. code-block:: python
3022

B
Bai Yifan 已提交
3023
            import paddle.fluid as fluid
3024 3025
            import paddle
            paddle.enable_static()
3026 3027 3028 3029 3030
            scores = fluid.data(name='scores', shape=[None, 4, 5, 5], dtype='float32')
            bbox_deltas = fluid.data(name='bbox_deltas', shape=[None, 16, 5, 5], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[None, 3], dtype='float32')
            anchors = fluid.data(name='anchors', shape=[None, 5, 4, 4], dtype='float32')
            variances = fluid.data(name='variances', shape=[None, 5, 10, 4], dtype='float32')
B
Bai Yifan 已提交
3031 3032 3033
            rois, roi_probs = fluid.layers.generate_proposals(scores, bbox_deltas,
                         im_info, anchors, variances)

3034
    """
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
    return paddle.vision.ops.generate_proposals(scores=scores,
                                                bbox_deltas=bbox_deltas,
                                                img_size=im_info[:2],
                                                anchors=anchors,
                                                variances=variances,
                                                pre_nms_top_n=pre_nms_top_n,
                                                post_nms_top_n=post_nms_top_n,
                                                nms_thresh=nms_thresh,
                                                min_size=min_size,
                                                eta=eta,
                                                return_rois_num=return_rois_num,
                                                name=name)
J
jerrywgz 已提交
3047 3048


J
jerrywgz 已提交
3049
def box_clip(input, im_info, name=None):
J
jerrywgz 已提交
3050
    """
3051

J
jerrywgz 已提交
3052
    Clip the box into the size given by im_info
J
jerrywgz 已提交
3053
    For each input box, The formula is given as follows:
3054

3055 3056
    .. code-block:: text

J
jerrywgz 已提交
3057
        xmin = max(min(xmin, im_w - 1), 0)
3058
        ymin = max(min(ymin, im_h - 1), 0)
J
jerrywgz 已提交
3059 3060
        xmax = max(min(xmax, im_w - 1), 0)
        ymax = max(min(ymax, im_h - 1), 0)
3061

J
jerrywgz 已提交
3062
    where im_w and im_h are computed from im_info:
3063

J
jerrywgz 已提交
3064 3065 3066 3067
    .. code-block:: text

        im_h = round(height / scale)
        im_w = round(weight / scale)
J
jerrywgz 已提交
3068 3069

    Args:
W
wangguanzhong 已提交
3070 3071
        input(Variable): The input Tensor with shape :math:`[N_1, N_2, ..., N_k, 4]`,
            the last dimension is 4 and data type is float32 or float64.
3072 3073
        im_info(Variable): The 2-D Tensor with shape [N, 3] with layout
            (height, width, scale) representing the information of image.
3074
            Height and width are the input sizes and scale is the ratio of network input
W
wangguanzhong 已提交
3075
            size and original size. The data type is float32 or float64.
3076 3077 3078 3079
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.

J
jerrywgz 已提交
3080
    Returns:
W
wangguanzhong 已提交
3081 3082
        Variable:

3083
        output(Variable): The clipped tensor with data type float32 or float64.
W
wangguanzhong 已提交
3084 3085
        The shape is same as input.

3086

J
jerrywgz 已提交
3087 3088
    Examples:
        .. code-block:: python
3089

3090
            import paddle.fluid as fluid
3091 3092
            import paddle
            paddle.enable_static()
3093 3094 3095
            boxes = fluid.data(
                name='boxes', shape=[None, 8, 4], dtype='float32', lod_level=1)
            im_info = fluid.data(name='im_info', shape=[-1 ,3])
J
jerrywgz 已提交
3096
            out = fluid.layers.box_clip(
J
jerrywgz 已提交
3097
                input=boxes, im_info=im_info)
J
jerrywgz 已提交
3098 3099
    """

3100 3101 3102 3103
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'box_clip')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'box_clip')

J
jerrywgz 已提交
3104
    helper = LayerHelper("box_clip", **locals())
J
jerrywgz 已提交
3105
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
3106
    inputs = {"Input": input, "ImInfo": im_info}
J
jerrywgz 已提交
3107
    helper.append_op(type="box_clip", inputs=inputs, outputs={"Output": output})
J
jerrywgz 已提交
3108

3109 3110
    return output

J
jerrywgz 已提交
3111

3112 3113 3114 3115 3116 3117 3118 3119
def retinanet_detection_output(bboxes,
                               scores,
                               anchors,
                               im_info,
                               score_threshold=0.05,
                               nms_top_k=1000,
                               keep_top_k=100,
                               nms_threshold=0.3,
3120
                               nms_eta=1.0):
3121
    """
3122
    **Detection Output Layer for the detector RetinaNet.**
3123

3124
    In the detector `RetinaNet <https://arxiv.org/abs/1708.02002>`_ , many
3125 3126 3127
    `FPN <https://arxiv.org/abs/1612.03144>`_ levels output the category
    and location predictions, this OP is to get the detection results by
    performing following steps:
3128

3129 3130 3131
    1. For each FPN level, decode box predictions according to the anchor
       boxes from at most :attr:`nms_top_k` top-scoring predictions after
       thresholding detector confidence at :attr:`score_threshold`.
3132
    2. Merge top predictions from all levels and apply multi-class non
3133 3134 3135
       maximum suppression (NMS) on them to get the final detections.

    Args:
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
        bboxes(List): A list of Tensors from multiple FPN levels represents
            the location prediction for all anchor boxes. Each element is
            a 3-D Tensor with shape :math:`[N, Mi, 4]`, :math:`N` is the
            batch size, :math:`Mi` is the number of bounding boxes from
            :math:`i`-th FPN level and each bounding box has four coordinate
            values and the layout is [xmin, ymin, xmax, ymax]. The data type
            of each element is float32 or float64.
        scores(List): A list of Tensors from multiple FPN levels represents
            the category prediction for all anchor boxes. Each element is a
            3-D Tensor with shape :math:`[N, Mi, C]`,  :math:`N` is the batch
            size, :math:`C` is the class number (**excluding background**),
            :math:`Mi` is the number of bounding boxes from :math:`i`-th FPN
            level. The data type of each element is float32 or float64.
        anchors(List): A list of Tensors from multiple FPN levels represents
            the locations of all anchor boxes. Each element is a 2-D Tensor
            with shape :math:`[Mi, 4]`, :math:`Mi` is the number of bounding
            boxes from :math:`i`-th FPN level, and each bounding box has four
3153
            coordinate values and the layout is [xmin, ymin, xmax, ymax].
3154 3155 3156
            The data type of each element is float32 or float64.
        im_info(Variable): A 2-D Tensor with shape :math:`[N, 3]` represents the size
            information of input images. :math:`N` is the batch size, the size
T
tianshuo78520a 已提交
3157
            information of each image is a 3-vector which are the height and width
3158 3159
            of the network input along with the factor scaling the origin image to
            the network input. The data type of :attr:`im_info` is float32.
3160
        score_threshold(float): Threshold to filter out bounding boxes
3161
            with a confidence score before NMS, default value is set to 0.05.
3162
        nms_top_k(int): Maximum number of detections per FPN layer to be
3163 3164
            kept according to the confidences before NMS, default value is set to
            1000.
3165
        keep_top_k(int): Number of total bounding boxes to be kept per image after
3166 3167
            NMS step. Default value is set to 100, -1 means keeping all bounding
            boxes after NMS step.
3168
        nms_threshold(float): The Intersection-over-Union(IoU) threshold used to
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
            filter out boxes in NMS.
        nms_eta(float): The parameter for adjusting :attr:`nms_threshold` in NMS.
            Default value is set to 1., which represents the value of
            :attr:`nms_threshold` keep the same in NMS. If :attr:`nms_eta` is set
            to be lower than 1. and the value of :attr:`nms_threshold` is set to
            be higher than 0.5, everytime a bounding box is filtered out,
            the adjustment for :attr:`nms_threshold` like :attr:`nms_threshold`
            = :attr:`nms_threshold` * :attr:`nms_eta`  will not be stopped until
            the actual value of :attr:`nms_threshold` is lower than or equal to
            0.5.

    **Notice**: In some cases where the image sizes are very small, it's possible
    that there is no detection if :attr:`score_threshold` are used at all
    levels. Hence, this OP do not filter out anchors from the highest FPN level
    before NMS. And the last element in :attr:`bboxes`:, :attr:`scores` and
T
tianshuo78520a 已提交
3184
    :attr:`anchors` is required to be from the highest FPN level.
3185 3186

    Returns:
3187 3188
        Variable(The data type is float32 or float64):
            The detection output is a 1-level LoDTensor with shape :math:`[No, 6]`.
3189
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
3190 3191 3192
            :math:`No` is the total number of detections in this mini-batch.
            The :math:`i`-th image has `LoD[i + 1] - LoD[i]` detected
            results, if `LoD[i + 1] - LoD[i]` is 0, the :math:`i`-th image
3193 3194 3195 3196 3197 3198
            has no detected results. If all images have no detected results,
            LoD will be set to 0, and the output tensor is empty (None).

    Examples:
        .. code-block:: python

3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
           import paddle.fluid as fluid

           bboxes_low = fluid.data(
               name='bboxes_low', shape=[1, 44, 4], dtype='float32')
           bboxes_high = fluid.data(
               name='bboxes_high', shape=[1, 11, 4], dtype='float32')
           scores_low = fluid.data(
               name='scores_low', shape=[1, 44, 10], dtype='float32')
           scores_high = fluid.data(
               name='scores_high', shape=[1, 11, 10], dtype='float32')
           anchors_low = fluid.data(
               name='anchors_low', shape=[44, 4], dtype='float32')
           anchors_high = fluid.data(
               name='anchors_high', shape=[11, 4], dtype='float32')
           im_info = fluid.data(
               name="im_info", shape=[1, 3], dtype='float32')
           nmsed_outs = fluid.layers.retinanet_detection_output(
3216 3217 3218 3219 3220 3221 3222 3223 3224
               bboxes=[bboxes_low, bboxes_high],
               scores=[scores_low, scores_high],
               anchors=[anchors_low, anchors_high],
               im_info=im_info,
               score_threshold=0.05,
               nms_top_k=1000,
               keep_top_k=100,
               nms_threshold=0.45,
               nms_eta=1.0)
3225 3226
    """

3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
    check_type(bboxes, 'bboxes', (list), 'retinanet_detection_output')
    for i, bbox in enumerate(bboxes):
        check_variable_and_dtype(bbox, 'bbox{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_type(scores, 'scores', (list), 'retinanet_detection_output')
    for i, score in enumerate(scores):
        check_variable_and_dtype(score, 'score{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_type(anchors, 'anchors', (list), 'retinanet_detection_output')
    for i, anchor in enumerate(anchors):
        check_variable_and_dtype(anchor, 'anchor{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'retinanet_detection_output')

3245 3246 3247
    helper = LayerHelper('retinanet_detection_output', **locals())
    output = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('scores'))
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
    helper.append_op(type="retinanet_detection_output",
                     inputs={
                         'BBoxes': bboxes,
                         'Scores': scores,
                         'Anchors': anchors,
                         'ImInfo': im_info
                     },
                     attrs={
                         'score_threshold': score_threshold,
                         'nms_top_k': nms_top_k,
                         'nms_threshold': nms_threshold,
                         'keep_top_k': keep_top_k,
                         'nms_eta': 1.,
                     },
                     outputs={'Out': output})
3263 3264 3265 3266
    output.stop_gradient = True
    return output


J
jerrywgz 已提交
3267 3268 3269 3270 3271
def multiclass_nms(bboxes,
                   scores,
                   score_threshold,
                   nms_top_k,
                   keep_top_k,
J
jerrywgz 已提交
3272
                   nms_threshold=0.3,
J
jerrywgz 已提交
3273 3274
                   normalized=True,
                   nms_eta=1.,
3275 3276
                   background_label=0,
                   name=None):
J
jerrywgz 已提交
3277
    """
S
swtkiwi 已提交
3278

3279
    **Multiclass NMS**
3280

3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.

    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
    See below for an example:

    .. code-block:: text

        if:
            box1.data = (2.0, 3.0, 7.0, 5.0) format is (xmin, ymin, xmax, ymax)
            box1.scores = (0.7, 0.2, 0.4)  which is (label0.score=0.7, label1.score=0.2, label2.cores=0.4)

            box2.data = (3.0, 4.0, 8.0, 5.0)
            box2.score = (0.3, 0.3, 0.1)

            nms_threshold = 0.3
            background_label = 0
            score_threshold = 0
3307

3308 3309 3310

        Then:
            iou = 4/11 > 0.3
3311
            out.data = [[1, 0.3, 3.0, 4.0, 8.0, 5.0],
3312
                         [2, 0.4, 2.0, 3.0, 7.0, 5.0]]
3313

3314
            Out format is (label, confidence, xmin, ymin, xmax, ymax)
3315 3316 3317 3318 3319 3320
    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
3321
                           coordinate values and the layout is
3322
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
X
xiaoting 已提交
3323
                           The data type is float32 or float64.
3324
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
3325 3326
                           M is the number of bounding boxes, C is the
                           class number. The data type is float32 or float64.
3327 3328 3329
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
3330 3331
                           N is the batch size, C is the class number, M is
                           number of bounding boxes. For each category there
3332 3333
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
3334
                           of BBoxes.The data type is float32 or float64.
3335 3336 3337
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
3338 3339
                           case with shape [M, C, 4].The data type is float32 or float64.
        background_label (int): The index of background label, the background
3340 3341 3342
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
3343
                                 low confidence score. If not provided,
3344 3345
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
T
tianshuo78520a 已提交
3346
                         the confidences after the filtering detections based
3347 3348 3349 3350 3351 3352 3353 3354 3355
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
X
xiaoting 已提交
3356
        Variable: A 2-D LoDTensor with shape [No, 6] represents the detections.
3357 3358
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
3359 3360
             Each row has 10 values:
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the
3361
             total number of detections. If there is no detected boxes for all
J
jerrywgz 已提交
3362 3363
             images, lod will be set to {1} and Out only contains one value
             which is -1.
3364 3365
             (After version 1.3, when no boxes detected, the lod is changed
             from {0} to {1})
3366

3367

3368 3369 3370
    Examples:
        .. code-block:: python

3371

3372
            import paddle.fluid as fluid
3373 3374
            import paddle
            paddle.enable_static()
X
xiaoting 已提交
3375
            boxes = fluid.data(name='bboxes', shape=[None,81, 4],
3376
                                      dtype='float32', lod_level=1)
X
xiaoting 已提交
3377
            scores = fluid.data(name='scores', shape=[None,81],
3378 3379 3380 3381 3382 3383 3384 3385 3386
                                      dtype='float32', lod_level=1)
            out = fluid.layers.multiclass_nms(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
J
jerrywgz 已提交
3387
    """
X
xiaoting 已提交
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
    check_variable_and_dtype(bboxes, 'BBoxes', ['float32', 'float64'],
                             'multiclass_nms')
    check_variable_and_dtype(scores, 'Scores', ['float32', 'float64'],
                             'multiclass_nms')
    check_type(score_threshold, 'score_threshold', float, 'multicalss_nms')
    check_type(nms_top_k, 'nums_top_k', int, 'multiclass_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'mutliclass_nms')
    check_type(nms_threshold, 'nms_threshold', float, 'multiclass_nms')
    check_type(normalized, 'normalized', bool, 'multiclass_nms')
    check_type(nms_eta, 'nms_eta', float, 'multiclass_nms')
    check_type(background_label, 'background_label', int, 'multiclass_nms')

J
jerrywgz 已提交
3400 3401
    helper = LayerHelper('multiclass_nms', **locals())
    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
    helper.append_op(type="multiclass_nms",
                     inputs={
                         'BBoxes': bboxes,
                         'Scores': scores
                     },
                     attrs={
                         'background_label': background_label,
                         'score_threshold': score_threshold,
                         'nms_top_k': nms_top_k,
                         'nms_threshold': nms_threshold,
                         'nms_eta': nms_eta,
                         'keep_top_k': keep_top_k,
                         'normalized': normalized
                     },
                     outputs={'Out': output})
J
jerrywgz 已提交
3417
    output.stop_gradient = True
J
jerrywgz 已提交
3418 3419

    return output
3420 3421


3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
def locality_aware_nms(bboxes,
                       scores,
                       score_threshold,
                       nms_top_k,
                       keep_top_k,
                       nms_threshold=0.3,
                       normalized=True,
                       nms_eta=1.,
                       background_label=-1,
                       name=None):
    """
    **Local Aware NMS**
3434

3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
    `Local Aware NMS <https://arxiv.org/abs/1704.03155>`_ is to do locality-aware non maximum
    suppression (LANMS) on boxes and scores.

    Firstly, this operator merge box and score according their IOU
    (intersection over union). In the NMS step, this operator greedily selects a
    subset of detection bounding boxes that have high scores larger than score_threshold,
    if providing this threshold, then selects the largest nms_top_k confidences scores
    if nms_top_k is larger than -1. Then this operator pruns away boxes that have high
    IOU overlap with already selected boxes by adaptive threshold NMS based on parameters
    of nms_threshold and nms_eta.

    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): A 3-D Tensor with shape [N, M, 4 or 8 16 24 32]
                           represents the predicted locations of M bounding
                           bboxes, N is the batch size. Each bounding box
                           has four coordinate values and the layout is
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           The data type is float32 or float64.
        scores (Variable): A 3-D Tensor with shape [N, C, M] represents the
                           predicted confidence predictions. N is the batch
                           size, C is the class number, M is number of bounding
                           boxes. Now only support 1 class. For each category
                           there are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension of
                           BBoxes. The data type is float32 or float64.
        background_label (int): The index of background label, the background
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: -1
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided,
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
T
tianshuo78520a 已提交
3470
                         the confidences after the filtering detections based
3471 3472 3473
                         on score_threshold.
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
3474 3475
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the locality aware nms op, please refer to :ref:`api_guide_Name` .
                          Default: None.

    Returns:
        Variable: A 2-D LoDTensor with shape [No, 6] represents the detections.
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values:
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the
             total number of detections. If there is no detected boxes for all
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed
             from {0} to {1}). The data type is float32 or float64.


    Examples:
        .. code-block:: python


            import paddle.fluid as fluid
            boxes = fluid.data(name='bboxes', shape=[None, 81, 8],
                                      dtype='float32')
            scores = fluid.data(name='scores', shape=[None, 1, 81],
                                      dtype='float32')
            out = fluid.layers.locality_aware_nms(bboxes=boxes,
                                              scores=scores,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
    """
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
    check_variable_and_dtype(bboxes, 'bboxes', ['float32', 'float64'],
                             'locality_aware_nms')
    check_variable_and_dtype(scores, 'scores', ['float32', 'float64'],
                             'locality_aware_nms')
    check_type(background_label, 'background_label', int, 'locality_aware_nms')
    check_type(score_threshold, 'score_threshold', float, 'locality_aware_nms')
    check_type(nms_top_k, 'nms_top_k', int, 'locality_aware_nms')
    check_type(nms_eta, 'nms_eta', float, 'locality_aware_nms')
    check_type(nms_threshold, 'nms_threshold', float, 'locality_aware_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'locality_aware_nms')
    check_type(normalized, 'normalized', bool, 'locality_aware_nms')

3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
    shape = scores.shape
    assert len(shape) == 3, "dim size of scores must be 3"
    assert shape[
        1] == 1, "locality_aware_nms only support one class, Tensor score shape must be [N, 1, M]"

    helper = LayerHelper('locality_aware_nms', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    out = {'Out': output}

3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
    helper.append_op(type="locality_aware_nms",
                     inputs={
                         'BBoxes': bboxes,
                         'Scores': scores
                     },
                     attrs={
                         'background_label': background_label,
                         'score_threshold': score_threshold,
                         'nms_top_k': nms_top_k,
                         'nms_threshold': nms_threshold,
                         'nms_eta': nms_eta,
                         'keep_top_k': keep_top_k,
                         'nms_eta': nms_eta,
                         'normalized': normalized
                     },
                     outputs={'Out': output})
3548 3549 3550 3551 3552
    output.stop_gradient = True

    return output


Y
Yang Zhang 已提交
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
def matrix_nms(bboxes,
               scores,
               score_threshold,
               post_threshold,
               nms_top_k,
               keep_top_k,
               use_gaussian=False,
               gaussian_sigma=2.,
               background_label=0,
               normalized=True,
               return_index=False,
               name=None):
    """
    **Matrix NMS**

    This operator does matrix non maximum suppression (NMS).

    First selects a subset of candidate bounding boxes that have higher scores
    than score_threshold (if provided), then the top k candidate is selected if
    nms_top_k is larger than -1. Score of the remaining candidate are then
    decayed according to the Matrix NMS scheme.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): A 3-D Tensor with shape [N, M, 4] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           The data type is float32 or float64.
        scores (Variable): A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is
                           number of bounding boxes. For each category there
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes. The data type is float32 or float64.
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score.
        post_threshold (float): Threshold to filter out bounding boxes with
                                low confidence score AFTER decaying.
        nms_top_k (int): Maximum number of detections to be kept according to
                         the confidences after the filtering detections based
                         on score_threshold.
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        use_gaussian (bool): Use Gaussian as the decay function. Default: False
        gaussian_sigma (float): Sigma for Gaussian decay function. Default: 2.0
        background_label (int): The index of background label, the background
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        normalized (bool): Whether detections are normalized. Default: True
        return_index(bool): Whether return selected index. Default: False
        name(str): Name of the matrix nms op. Default: None.

    Returns:
        A tuple with two Variables: (Out, Index) if return_index is True,
        otherwise, one Variable(Out) is returned.

        Out (Variable): A 2-D LoDTensor with shape [No, 6] containing the
             detection results.
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             (After version 1.3, when no boxes detected, the lod is changed
             from {0} to {1})

        Index (Variable): A 2-D LoDTensor with shape [No, 1] containing the
            selected indices, which are absolute values cross batches.

    Examples:
        .. code-block:: python


            import paddle.fluid as fluid
            boxes = fluid.data(name='bboxes', shape=[None,81, 4],
                                      dtype='float32', lod_level=1)
            scores = fluid.data(name='scores', shape=[None,81],
                                      dtype='float32', lod_level=1)
            out = fluid.layers.matrix_nms(bboxes=boxes,
                                          scores=scores,
                                          background_label=0,
                                          score_threshold=0.5,
                                          post_threshold=0.1,
                                          nms_top_k=400,
                                          keep_top_k=200,
                                          normalized=False)
    """
Z
zhiboniu 已提交
3640 3641 3642 3643
    if in_dygraph_mode():
        attrs = (score_threshold, nms_top_k, keep_top_k, post_threshold,
                 use_gaussian, gaussian_sigma, background_label, normalized)

3644
        out, index = _C_ops.matrix_nms(bboxes, scores, *attrs)
Z
zhiboniu 已提交
3645 3646 3647 3648 3649
        if return_index:
            return out, index
        else:
            return out

Y
Yang Zhang 已提交
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
    check_variable_and_dtype(bboxes, 'BBoxes', ['float32', 'float64'],
                             'matrix_nms')
    check_variable_and_dtype(scores, 'Scores', ['float32', 'float64'],
                             'matrix_nms')
    check_type(score_threshold, 'score_threshold', float, 'matrix_nms')
    check_type(post_threshold, 'post_threshold', float, 'matrix_nms')
    check_type(nms_top_k, 'nums_top_k', int, 'matrix_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'matrix_nms')
    check_type(normalized, 'normalized', bool, 'matrix_nms')
    check_type(use_gaussian, 'use_gaussian', bool, 'matrix_nms')
    check_type(gaussian_sigma, 'gaussian_sigma', float, 'matrix_nms')
    check_type(background_label, 'background_label', int, 'matrix_nms')

    helper = LayerHelper('matrix_nms', **locals())
    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    index = helper.create_variable_for_type_inference(dtype='int')
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
    helper.append_op(type="matrix_nms",
                     inputs={
                         'BBoxes': bboxes,
                         'Scores': scores
                     },
                     attrs={
                         'score_threshold': score_threshold,
                         'post_threshold': post_threshold,
                         'nms_top_k': nms_top_k,
                         'keep_top_k': keep_top_k,
Z
zhiboniu 已提交
3676 3677 3678
                         'use_gaussian': use_gaussian,
                         'gaussian_sigma': gaussian_sigma,
                         'background_label': background_label,
3679 3680 3681 3682 3683 3684
                         'normalized': normalized
                     },
                     outputs={
                         'Out': output,
                         'Index': index
                     })
Y
Yang Zhang 已提交
3685 3686 3687 3688 3689 3690 3691 3692
    output.stop_gradient = True

    if return_index:
        return output, index
    else:
        return output


3693 3694 3695 3696 3697
def distribute_fpn_proposals(fpn_rois,
                             min_level,
                             max_level,
                             refer_level,
                             refer_scale,
3698
                             rois_num=None,
3699
                             name=None):
3700
    r"""
3701 3702 3703 3704 3705 3706

    **This op only takes LoDTensor as input.** In Feature Pyramid Networks
    (FPN) models, it is needed to distribute all proposals into different FPN
    level, with respect to scale of the proposals, the referring scale and the
    referring level. Besides, to restore the order of proposals, we return an
    array which indicates the original index of rois in current proposals.
W
wangguanzhong 已提交
3707
    To compute FPN level for each roi, the formula is given as follows:
3708

J
jerrywgz 已提交
3709
    .. math::
3710

J
jerrywgz 已提交
3711
        roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
3712

J
jerrywgz 已提交
3713 3714 3715
        level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)

    where BBoxArea is a function to compute the area of each roi.
3716 3717

    Args:
W
wangguanzhong 已提交
3718

3719
        fpn_rois(Variable): 2-D Tensor with shape [N, 4] and data type is
W
wangguanzhong 已提交
3720
            float32 or float64. The input fpn_rois.
3721
        min_level(int32): The lowest level of FPN layer where the proposals come
W
wangguanzhong 已提交
3722 3723 3724 3725 3726
            from.
        max_level(int32): The highest level of FPN layer where the proposals
            come from.
        refer_level(int32): The referring level of FPN layer with specified scale.
        refer_scale(int32): The referring scale of FPN layer with specified level.
3727
        rois_num(Tensor): 1-D Tensor contains the number of RoIs in each image.
3728
            The shape is [B] and data type is int32. B is the number of images.
3729
            If it is not None then return a list of 1-D Tensor. Each element
3730 3731
            is the output RoIs' number of each image on the corresponding level
            and the shape is [B]. None by default.
3732 3733 3734
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.
J
jerrywgz 已提交
3735

3736
    Returns:
W
wangguanzhong 已提交
3737 3738
        Tuple:

3739 3740
        multi_rois(List) : A list of 2-D LoDTensor with shape [M, 4]
        and data type of float32 and float64. The length is
W
wangguanzhong 已提交
3741 3742
        max_level-min_level+1. The proposals in each FPN level.

3743
        restore_ind(Variable): A 2-D Tensor with shape [N, 1], N is
W
wangguanzhong 已提交
3744 3745 3746
        the number of total rois. The data type is int32. It is
        used to restore the order of fpn_rois.

3747 3748
        rois_num_per_level(List): A list of 1-D Tensor and each Tensor is
        the RoIs' number in each image on the corresponding level. The shape
3749 3750
        is [B] and data type of int32. B is the number of images

3751 3752 3753 3754

    Examples:
        .. code-block:: python

3755
            import paddle.fluid as fluid
3756 3757
            import paddle
            paddle.enable_static()
3758 3759
            fpn_rois = fluid.data(
                name='data', shape=[None, 4], dtype='float32', lod_level=1)
3760
            multi_rois, restore_ind = fluid.layers.distribute_fpn_proposals(
3761 3762 3763
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
3764 3765 3766
                refer_level=4,
                refer_scale=224)
    """
3767 3768 3769 3770 3771 3772 3773
    return paddle.vision.ops.distribute_fpn_proposals(fpn_rois=fpn_rois,
                                                      min_level=min_level,
                                                      max_level=max_level,
                                                      refer_level=refer_level,
                                                      refer_scale=refer_scale,
                                                      rois_num=rois_num,
                                                      name=name)
3774 3775


3776
@templatedoc()
J
jerrywgz 已提交
3777 3778 3779 3780 3781 3782
def box_decoder_and_assign(prior_box,
                           prior_box_var,
                           target_box,
                           box_score,
                           box_clip,
                           name=None):
3783
    """
3784

3785 3786 3787 3788 3789 3790
    ${comment}
    Args:
        prior_box(${prior_box_type}): ${prior_box_comment}
        prior_box_var(${prior_box_var_type}): ${prior_box_var_comment}
        target_box(${target_box_type}): ${target_box_comment}
        box_score(${box_score_type}): ${box_score_comment}
J
jerrywgz 已提交
3791
        box_clip(${box_clip_type}): ${box_clip_comment}
3792 3793 3794
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.
W
wangguanzhong 已提交
3795

3796
    Returns:
W
wangguanzhong 已提交
3797
        Tuple:
J
jerrywgz 已提交
3798

W
wangguanzhong 已提交
3799 3800 3801
        decode_box(${decode_box_type}): ${decode_box_comment}

        output_assign_box(${output_assign_box_type}): ${output_assign_box_comment}
J
jerrywgz 已提交
3802 3803


3804 3805 3806
    Examples:
        .. code-block:: python

3807
            import paddle.fluid as fluid
3808 3809
            import paddle
            paddle.enable_static()
3810 3811 3812 3813 3814 3815 3816 3817
            pb = fluid.data(
                name='prior_box', shape=[None, 4], dtype='float32')
            pbv = fluid.data(
                name='prior_box_var', shape=[4], dtype='float32')
            loc = fluid.data(
                name='target_box', shape=[None, 4*81], dtype='float32')
            scores = fluid.data(
                name='scores', shape=[None, 81], dtype='float32')
J
jerrywgz 已提交
3818
            decoded_box, output_assign_box = fluid.layers.box_decoder_and_assign(
J
jerrywgz 已提交
3819
                pb, pbv, loc, scores, 4.135)
3820 3821

    """
3822 3823 3824 3825 3826 3827
    check_variable_and_dtype(prior_box, 'prior_box', ['float32', 'float64'],
                             'box_decoder_and_assign')
    check_variable_and_dtype(target_box, 'target_box', ['float32', 'float64'],
                             'box_decoder_and_assign')
    check_variable_and_dtype(box_score, 'box_score', ['float32', 'float64'],
                             'box_decoder_and_assign')
3828 3829
    helper = LayerHelper("box_decoder_and_assign", **locals())

J
jerrywgz 已提交
3830
    decoded_box = helper.create_variable_for_type_inference(
3831 3832 3833 3834
        dtype=prior_box.dtype)
    output_assign_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)

3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
    helper.append_op(type="box_decoder_and_assign",
                     inputs={
                         "PriorBox": prior_box,
                         "PriorBoxVar": prior_box_var,
                         "TargetBox": target_box,
                         "BoxScore": box_score
                     },
                     attrs={"box_clip": box_clip},
                     outputs={
                         "DecodeBox": decoded_box,
                         "OutputAssignBox": output_assign_box
                     })
J
jerrywgz 已提交
3847
    return decoded_box, output_assign_box
3848 3849 3850 3851 3852 3853 3854


def collect_fpn_proposals(multi_rois,
                          multi_scores,
                          min_level,
                          max_level,
                          post_nms_top_n,
3855
                          rois_num_per_level=None,
3856 3857
                          name=None):
    """
3858 3859 3860

    **This OP only supports LoDTensor as input**. Concat multi-level RoIs
    (Region of Interest) and select N RoIs with respect to multi_scores.
W
wangguanzhong 已提交
3861
    This operation performs the following steps:
3862 3863 3864 3865 3866 3867 3868 3869

    1. Choose num_level RoIs and scores as input: num_level = max_level - min_level
    2. Concat multi-level RoIs and scores
    3. Sort scores and select post_nms_top_n scores
    4. Gather RoIs by selected indices from scores
    5. Re-sort RoIs by corresponding batch_id

    Args:
3870 3871
        multi_rois(list): List of RoIs to collect. Element in list is 2-D
            LoDTensor with shape [N, 4] and data type is float32 or float64,
W
wangguanzhong 已提交
3872
            N is the number of RoIs.
3873
        multi_scores(list): List of scores of RoIs to collect. Element in list
W
wangguanzhong 已提交
3874 3875
            is 2-D LoDTensor with shape [N, 1] and data type is float32 or
            float64, N is the number of RoIs.
3876 3877 3878
        min_level(int): The lowest level of FPN layer to collect
        max_level(int): The highest level of FPN layer to collect
        post_nms_top_n(int): The number of selected RoIs
3879 3880 3881 3882 3883
        rois_num_per_level(list, optional): The List of RoIs' numbers.
            Each element is 1-D Tensor which contains the RoIs' number of each
            image on each level and the shape is [B] and data type is
            int32, B is the number of images. If it is not None then return
            a 1-D Tensor contains the output RoIs' number of each image and
3884
            the shape is [B]. Default: None
3885 3886 3887
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.
W
wangguanzhong 已提交
3888

3889
    Returns:
W
wangguanzhong 已提交
3890 3891
        Variable:

3892 3893
        fpn_rois(Variable): 2-D LoDTensor with shape [N, 4] and data type is
        float32 or float64. Selected RoIs.
W
wangguanzhong 已提交
3894

3895 3896 3897
        rois_num(Tensor): 1-D Tensor contains the RoIs's number of each
        image. The shape is [B] and data type is int32. B is the number of
        images.
3898 3899 3900

    Examples:
        .. code-block:: python
3901

3902
            import paddle.fluid as fluid
3903 3904
            import paddle
            paddle.enable_static()
3905 3906 3907
            multi_rois = []
            multi_scores = []
            for i in range(4):
3908 3909
                multi_rois.append(fluid.data(
                    name='roi_'+str(i), shape=[None, 4], dtype='float32', lod_level=1))
3910
            for i in range(4):
3911 3912
                multi_scores.append(fluid.data(
                    name='score_'+str(i), shape=[None, 1], dtype='float32', lod_level=1))
3913 3914

            fpn_rois = fluid.layers.collect_fpn_proposals(
3915
                multi_rois=multi_rois,
3916
                multi_scores=multi_scores,
3917 3918
                min_level=2,
                max_level=5,
3919 3920
                post_nms_top_n=2000)
    """
3921 3922 3923 3924
    num_lvl = max_level - min_level + 1
    input_rois = multi_rois[:num_lvl]
    input_scores = multi_scores[:num_lvl]

J
Jiabin Yang 已提交
3925
    if _non_static_mode():
3926 3927
        assert rois_num_per_level is not None, "rois_num_per_level should not be None in dygraph mode."
        attrs = ('post_nms_topN', post_nms_top_n)
3928
        output_rois, rois_num = _legacy_C_ops.collect_fpn_proposals(
3929 3930
            input_rois, input_scores, rois_num_per_level, *attrs)

3931 3932
    check_type(multi_rois, 'multi_rois', list, 'collect_fpn_proposals')
    check_type(multi_scores, 'multi_scores', list, 'collect_fpn_proposals')
3933 3934
    helper = LayerHelper('collect_fpn_proposals', **locals())
    dtype = helper.input_dtype('multi_rois')
3935 3936
    check_dtype(dtype, 'multi_rois', ['float32', 'float64'],
                'collect_fpn_proposals')
3937 3938
    output_rois = helper.create_variable_for_type_inference(dtype)
    output_rois.stop_gradient = True
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949

    inputs = {
        'MultiLevelRois': input_rois,
        'MultiLevelScores': input_scores,
    }
    outputs = {'FpnRois': output_rois}
    if rois_num_per_level is not None:
        inputs['MultiLevelRoIsNum'] = rois_num_per_level
        rois_num = helper.create_variable_for_type_inference(dtype='int32')
        rois_num.stop_gradient = True
        outputs['RoisNum'] = rois_num
3950 3951 3952 3953
    helper.append_op(type='collect_fpn_proposals',
                     inputs=inputs,
                     outputs=outputs,
                     attrs={'post_nms_topN': post_nms_top_n})
3954 3955
    if rois_num_per_level is not None:
        return output_rois, rois_num
3956
    return output_rois