detection.py 144.3 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18 19
from __future__ import print_function

20 21
from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
22
from ..layer_helper import LayerHelper
D
dengkaipeng 已提交
23
from ..framework import Variable
24 25
from . import tensor
from . import nn
26
from . import ops
M
minqiyang 已提交
27
from ... import compat as cpt
C
chengduoZH 已提交
28
import math
M
minqiyang 已提交
29
import six
30
import numpy
31
from functools import reduce
32

C
chengduoZH 已提交
33
__all__ = [
34 35 36 37 38 39 40 41
    'prior_box',
    'density_prior_box',
    'multi_box_head',
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
    'rpn_target_assign',
42
    'retinanet_target_assign',
43
    'sigmoid_focal_loss',
44 45 46 47
    'anchor_generator',
    'roi_perspective_transform',
    'generate_proposal_labels',
    'generate_proposals',
48
    'generate_mask_labels',
49 50 51 52
    'iou_similarity',
    'box_coder',
    'polygon_box_transform',
    'yolov3_loss',
D
dengkaipeng 已提交
53
    'yolo_box',
54
    'box_clip',
J
jerrywgz 已提交
55
    'multiclass_nms',
56
    'retinanet_detection_output',
57
    'distribute_fpn_proposals',
58
    'box_decoder_and_assign',
59
    'collect_fpn_proposals',
C
chengduoZH 已提交
60
]
61 62


63 64 65 66 67 68 69 70 71 72 73 74
def retinanet_target_assign(bbox_pred,
                            cls_logits,
                            anchor_box,
                            anchor_var,
                            gt_boxes,
                            gt_labels,
                            is_crowd,
                            im_info,
                            num_classes=1,
                            positive_overlap=0.5,
                            negative_overlap=0.4):
    """
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    **Target Assign Layer for the detector RetinaNet.**

    This OP finds out positive and negative samples from all anchors
    for training the detector `RetinaNet <https://arxiv.org/abs/1708.02002>`_ ,
    and assigns target labels for classification along with target locations for
    regression to each sample, then takes out the part belonging to positive and
    negative samples from category prediction( :attr:`cls_logits`) and location
    prediction( :attr:`bbox_pred`) which belong to all anchors.

    The searching principles for positive and negative samples are as followed:

    1. Anchors are assigned to ground-truth boxes when it has the highest IoU
    overlap with a ground-truth box.

    2. Anchors are assigned to ground-truth boxes when it has an IoU overlap
    higher than :attr:`positive_overlap` with any ground-truth box.

    3. Anchors are assigned to background when its IoU overlap is lower than
    :attr:`negative_overlap` for all ground-truth boxes.

    4. Anchors which do not meet the above conditions do not participate in
    the training process.

    Retinanet predicts a :math:`C`-vector for classification and a 4-vector for box
    regresion for each anchor, hence the target label for each positive(or negative)
    sample is a :math:`C`-vector and the target locations for each positive sample
    is a 4-vector. As for a positive sample, if the category of its assigned
    ground-truth box is class :math:`i`, the corresponding entry in its length
    :math:`C` label vector is set to 1 and all other entries is set to 0, its box
    regression targets are computed as the offset between itself and its assigned
    ground-truth box. As for a negative sample, all entries in its length :math:`C`
    label vector are set to 0 and box regression targets are omitted because
    negative samples do not participate in the training process of location
    regression.

    After the assignment, the part belonging to positive and negative samples is
    taken out from category prediction( :attr:`cls_logits` ), and the part
    belonging to positive samples is taken out from location
    prediction( :attr:`bbox_pred` ).
114 115

    Args:
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        bbox_pred(Variable): A 3-D Tensor with shape :math:`[N, M, 4]` represents
            the predicted locations of all anchors. :math:`N` is the batch size( the
            number of images in a mini-batch), :math:`M` is the number of all anchors
            of one image, and each anchor has 4 coordinate values. The data type of
            :attr:`bbox_pred` is float32 or float64.
        cls_logits(Variable): A 3-D Tensor with shape :math:`[N, M, C]` represents
            the predicted categories of all anchors. :math:`N` is the batch size,
            :math:`M` is the number of all anchors of one image, and :math:`C` is
            the number of categories (**Notice: excluding background**). The data type
            of :attr:`cls_logits` is float32 or float64.
        anchor_box(Variable): A 2-D Tensor with shape :math:`[M, 4]` represents
            the locations of all anchors. :math:`M` is the number of all anchors of
            one image, each anchor is represented as :math:`[xmin, ymin, xmax, ymax]`,
            :math:`[xmin, ymin]` is the left top coordinate of the anchor box,
            :math:`[xmax, ymax]` is the right bottom coordinate of the anchor box.
            The data type of :attr:`anchor_box` is float32 or float64. Please refer
            to the OP :ref:`api_fluid_layers_anchor_generator` 
            for the generation of :attr:`anchor_box`.
        anchor_var(Variable): A 2-D Tensor with shape :math:`[M,4]` represents the expanded 
            factors of anchor locations used in loss function. :math:`M` is number of
            all anchors of one image, each anchor possesses a 4-vector expanded factor.
            The data type of :attr:`anchor_var` is float32 or float64. Please refer
            to the OP :ref:`api_fluid_layers_anchor_generator`
            for the generation of :attr:`anchor_var`.
        gt_boxes(Variable): A 1-level 2-D LoDTensor with shape :math:`[G, 4]` represents
            locations of all ground-truth boxes. :math:`G` is the total number of
            all ground-truth boxes in a mini-batch, and each ground-truth box has 4
            coordinate values. The data type of :attr:`gt_boxes` is float32 or
            float64.
        gt_labels(variable): A 1-level 2-D LoDTensor with shape :math:`[G, 1]` represents
            categories of all ground-truth boxes, and the values are in the range of
            :math:`[1, C]`. :math:`G` is the total number of all ground-truth boxes
            in a mini-batch, and each ground-truth box has one category. The data type
            of :attr:`gt_labels` is int32.
        is_crowd(Variable): A 1-level 1-D LoDTensor with shape :math:`[G]` which
            indicates whether a ground-truth box is a crowd. If the value is 1, the
            corresponding box is a crowd, it is ignored during training. :math:`G` is
            the total number of all ground-truth boxes in a mini-batch. The data type
            of :attr:`is_crowd` is int32.
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents the size
            information of input images. :math:`N` is the batch size, the size
            informarion of each image is a 3-vector which are the height and width
            of the network input along with the factor scaling the origin image to
            the network input. The data type of :attr:`im_info` is float32.
        num_classes(int32): The number of categories for classification, the default
            value is 1.
        positive_overlap(float32): Minimum overlap required between an anchor
            and ground-truth box for the anchor to be a positive sample, the default
            value is 0.5.
        negative_overlap(float32): Maximum overlap allowed between an anchor
            and ground-truth box for the anchor to be a negative sample, the default
            value is 0.4. :attr:`negative_overlap` should be less than or equal to
            :attr:`positive_overlap`, if not, the actual value of
            :attr:`positive_overlap` is :attr:`negative_overlap`.
170 171

    Returns:
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
        A tuple with 6 Variables:
        
        **predict_scores** (Variable): A 2-D Tensor with shape :math:`[F+B, C]` represents
        category prediction belonging to positive and negative samples. :math:`F`
        is the number of positive samples in a mini-batch, :math:`B` is the number
        of negative samples, and :math:`C` is the number of categories
        (**Notice: excluding background**). The data type of :attr:`predict_scores`
        is float32 or float64.

        **predict_location** (Variable): A 2-D Tensor with shape :math:`[F, 4]` represents
        location prediction belonging to positive samples. :math:`F` is the number
        of positive samples. :math:`F` is the number of positive samples, and each
        sample has 4 coordinate values. The data type of :attr:`predict_location`
        is float32 or float64.

        **target_label** (Variable): A 2-D Tensor with shape :math:`[F+B, 1]` represents
        target labels for classification belonging to positive and negative
        samples. :math:`F` is the number of positive samples, :math:`B` is the
        number of negative, and each sample has one target category. The data type
        of :attr:`target_label` is int32.

        **target_bbox** (Variable): A 2-D Tensor with shape :math:`[F, 4]` represents
        target locations for box regression belonging to positive samples.
        :math:`F` is the number of positive samples, and each sample has 4
        coordinate values. The data type of :attr:`target_bbox` is float32 or
        float64.

        **bbox_inside_weight** (Variable): A 2-D Tensor with shape :math:`[F, 4]`
        represents whether a positive sample is fake positive, if a positive
        sample is false positive, the corresponding entries in
        :attr:`bbox_inside_weight` are set 0, otherwise 1. :math:`F` is the number
        of total positive samples in a mini-batch, and each sample has 4
        coordinate values. The data type of :attr:`bbox_inside_weight` is float32
        or float64.

        **fg_num** (Variable): A 2-D Tensor with shape :math:`[N, 1]` represents the number
        of positive samples. :math:`N` is the batch size. **Notice: The number
        of positive samples is used as the denominator of later loss function,
        to avoid the condition that the denominator is zero, this OP has added 1
        to the actual number of positive samples of each image.** The data type of
        :attr:`fg_num` is int32.
213 214 215 216 217

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
          bbox_pred = fluid.data(name='bbox_pred', shape=[1, 100, 4],
                            dtype='float32')
          cls_logits = fluid.data(name='cls_logits', shape=[1, 100, 10],
                            dtype='float32')
          anchor_box = fluid.data(name='anchor_box', shape=[100, 4],
                            dtype='float32')
          anchor_var = fluid.data(name='anchor_var', shape=[100, 4],
                            dtype='float32')
          gt_boxes = fluid.data(name='gt_boxes', shape=[10, 4],
                            dtype='float32')
          gt_labels = fluid.data(name='gt_labels', shape=[10, 1],
                            dtype='float32')
          is_crowd = fluid.data(name='is_crowd', shape=[1],
                            dtype='float32')
          im_info = fluid.data(name='im_infoss', shape=[1, 3],
                            dtype='float32')
          score_pred, loc_pred, score_target, loc_target, bbox_inside_weight, fg_num =
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
                fluid.layers.retinanet_target_assign(bbox_pred, cls_logits, anchor_box,
                anchor_var, gt_boxes, gt_labels, is_crowd, im_info, 10)

    """

    helper = LayerHelper('retinanet_target_assign', **locals())
    # Assign target label to anchors
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    fg_num = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="retinanet_target_assign",
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'GtLabels': gt_labels,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
            'TargetLabel': target_label,
            'TargetBBox': target_bbox,
            'BBoxInsideWeight': bbox_inside_weight,
            'ForegroundNumber': fg_num
        },
        attrs={
            'positive_overlap': positive_overlap,
            'negative_overlap': negative_overlap
        })

    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
    bbox_inside_weight.stop_gradient = True
    fg_num.stop_gradient = True

    cls_logits = nn.reshape(x=cls_logits, shape=(-1, num_classes))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)

    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight, fg_num


287 288
def rpn_target_assign(bbox_pred,
                      cls_logits,
Y
Yuan Gao 已提交
289
                      anchor_box,
290
                      anchor_var,
291 292 293
                      gt_boxes,
                      is_crowd,
                      im_info,
Y
Yuan Gao 已提交
294
                      rpn_batch_size_per_im=256,
295 296
                      rpn_straddle_thresh=0.0,
                      rpn_fg_fraction=0.5,
Y
Yuan Gao 已提交
297
                      rpn_positive_overlap=0.7,
298 299
                      rpn_negative_overlap=0.3,
                      use_random=True):
Y
Yuan Gao 已提交
300
    """
H
haowang101779990 已提交
301
    **Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection.**
Y
Yuan Gao 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318

    This layer can be, for given the  Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each each anchor, these target labels are used for
    train RPN. The classification targets is a binary class label (of being
    an object or not). Following the paper of Faster-RCNN, the positive labels
    are two kinds of anchors: (i) the anchor/anchors with the highest IoU
    overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
    higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
    that a single ground-truth box may assign positive labels to multiple
    anchors. A non-positive anchor is when its IoU ratio is lower than
    rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
    neither positive nor negative do not contribute to the training objective.
    The regression targets are the encoded ground-truth boxes associated with
    the positive anchors.

    Args:
319
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Y
Yuan Gao 已提交
320 321
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
322
            is [xmin, ymin, xmax, ymax]. The data type can be float32 or float64.
323 324 325
        cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the
            predicted confidence predictions. N is the batch size, 1 is the
            frontground and background sigmoid, M is number of bounding boxes.
326
            The data type can be float32 or float64.
Y
Yuan Gao 已提交
327 328 329 330 331
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
332
            coordinate of the anchor box. The data type can be float32 or float64.
333
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded 
334
            variances of anchors. The data type can be float32 or float64.
翟飞跃 已提交
335
        gt_boxes (Variable): The ground-truth bounding boxes (bboxes) are a 2D
Y
Yuan Gao 已提交
336
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
337
            bboxes of mini-batch input. The data type can be float32 or float64.
338
        is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd.
339
                             The data type must be int32.
340 341
        im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
        3 is the height, width and scale.
Y
Yuan Gao 已提交
342
        rpn_batch_size_per_im(int): Total number of RPN examples per image.
343
                                    The data type must be int32.
344
        rpn_straddle_thresh(float): Remove RPN anchors that go outside the image
345
            by straddle_thresh pixels. The data type must be float32.
346
        rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled
347
            foreground (i.e. class > 0), 0-th class is background. The data type must be float32.
Y
Yuan Gao 已提交
348 349
        rpn_positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
350
            example. The data type must be float32.
Y
Yuan Gao 已提交
351 352
        rpn_negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
353
            examples. The data type must be float32.
Y
Yuan Gao 已提交
354 355

    Returns:
M
minqiyang 已提交
356
        tuple:
357 358 359 360 361 362 363 364 365 366 367 368 369
        A tuple(predicted_scores, predicted_location, target_label,
        target_bbox, bbox_inside_weight) is returned. The predicted_scores 
        and predicted_location is the predicted result of the RPN.
        The target_label and target_bbox is the ground truth,
        respectively. The predicted_location is a 2D Tensor with shape
        [F, 4], and the shape of target_bbox is same as the shape of
        the predicted_location, F is the number of the foreground
        anchors. The predicted_scores is a 2D Tensor with shape
        [F + B, 1], and the shape of target_label is same as the shape
        of the predicted_scores, B is the number of the background
        anchors, the F and B is depends on the input of this operator.
        Bbox_inside_weight represents whether the predicted loc is fake_fg
        or not and the shape is [F, 4].
Y
Yuan Gao 已提交
370 371 372 373

    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
374
            import paddle.fluid as fluid
375 376 377 378 379 380 381
            bbox_pred = fluid.data(name='bbox_pred', shape=[None, 4], dtype='float32')
            cls_logits = fluid.data(name='cls_logits', shape=[None, 1], dtype='float32')
            anchor_box = fluid.data(name='anchor_box', shape=[None, 4], dtype='float32')
            anchor_var = fluid.data(name='anchor_var', shape=[None, 4], dtype='float32')
            gt_boxes = fluid.data(name='gt_boxes', shape=[None, 4], dtype='float32')
            is_crowd = fluid.data(name='is_crowd', shape=[None], dtype='float32')
            im_info = fluid.data(name='im_infoss', shape=[None, 3], dtype='float32')
382 383
            loc, score, loc_target, score_target, inside_weight = fluid.layers.rpn_target_assign(
                bbox_pred, cls_logits, anchor_box, anchor_var, gt_boxes, is_crowd, im_info)
H
haowang101779990 已提交
384

Y
Yuan Gao 已提交
385 386 387
    """

    helper = LayerHelper('rpn_target_assign', **locals())
388
    # Assign target label to anchors
J
jerrywgz 已提交
389 390 391 392 393 394 395
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
Y
Yuan Gao 已提交
396 397
    helper.append_op(
        type="rpn_target_assign",
398 399 400 401 402 403
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
Y
Yuan Gao 已提交
404 405 406
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
407
            'TargetLabel': target_label,
J
jerrywgz 已提交
408
            'TargetBBox': target_bbox,
J
jerrywgz 已提交
409
            'BBoxInsideWeight': bbox_inside_weight
Y
Yuan Gao 已提交
410 411 412
        },
        attrs={
            'rpn_batch_size_per_im': rpn_batch_size_per_im,
413
            'rpn_straddle_thresh': rpn_straddle_thresh,
Y
Yuan Gao 已提交
414 415
            'rpn_positive_overlap': rpn_positive_overlap,
            'rpn_negative_overlap': rpn_negative_overlap,
416 417
            'rpn_fg_fraction': rpn_fg_fraction,
            'use_random': use_random
Y
Yuan Gao 已提交
418 419
        })

420 421 422 423
    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
J
jerrywgz 已提交
424
    bbox_inside_weight.stop_gradient = True
Y
Yuan Gao 已提交
425

426 427 428 429
    cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)
430

J
jerrywgz 已提交
431
    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight
Y
Yuan Gao 已提交
432 433


434 435 436 437
def sigmoid_focal_loss(x, label, fg_num, gamma=2, alpha=0.25):
    """
    **Sigmoid Focal Loss Operator.**

438 439 440 441 442
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is used to address the foreground-background
    class imbalance existed on the training phase of many computer vision tasks. This OP computes
    the sigmoid value for each element in the input tensor :attr:`x`, after which focal loss is
    measured between the sigmoid value and target label. 

443 444 445
    The focal loss is given as followed:

    .. math::
446 447 448 449 450 451 452
  
        \\mathop{loss_{i,\\,j}}\\limits_{i\\in\\mathbb{[0,\\,N-1]},\\,j\\in\\mathbb{[0,\\,C-1]}}=\\left\\{
        \\begin{array}{rcl}
        - \\frac{1}{fg\_num} * \\alpha * {(1 - \\sigma(x_{i,\\,j}))}^{\\gamma} * \\log(\\sigma(x_{i,\\,j})) & & {(j +1) = label_{i,\\,0}} \\\\
        - \\frac{1}{fg\_num} * (1 - \\alpha) * {\sigma(x_{i,\\,j})}^{ \\gamma} * \\log(1 - \\sigma(x_{i,\\,j})) & & {(j +1)!= label_{i,\\,0}}
        \\end{array} \\right.

453 454 455 456 457 458 459

    We know that
    
    .. math::
        \\sigma(x_j) = \\frac{1}{1 + \\exp(-x_j)}


460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
    Args:
        x(Variable): A 2-D tensor with shape :math:`[N, C]` represents the predicted categories of
            all samples. :math:`N` is the number of all samples responsible for optimization in
            a mini-batch, for example, samples are anchor boxes for object detection and :math:`N`
            is the total number of positive and negative samples in a mini-batch; Samples are images
            for image classification and :math:`N` is the number of images in a mini-batch. :math:`C`
            is the number of classes (**Notice: excluding background**). The data type of :attr:`x` is
            float32 or float64.
        label(Variable): A 2-D tensor with shape :math:`[N, 1]` represents the target labels for
            classification. :math:`N` is the number of all samples responsible for optimization in a
            mini-batch, each sample has one target category. The values for positive samples are in the
            range of :math:`[1, C]`, and the values for negative samples are 0. The data type of :attr:`label`
            is int32.
        fg_num(Variable): A 1-D tensor with shape [1] represents the number of positive samples in a
            mini-batch, which should be obtained before this OP. The data type of :attr:`fg_num` is int32.
475 476 477 478 479 480
        gamma(float): Hyper-parameter to balance the easy and hard examples. Default value is
            set to 2.0.
        alpha(float): Hyper-parameter to balance the positive and negative example. Default value
            is set to 0.25.

    Returns:
481 482 483
        Variable(the data type is float32 or float64): 
            A 2-D tensor with shape :math:`[N, C]`, which is the focal loss of each element in the input
            tensor :attr:`x`.
484 485 486 487 488 489

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

490 491 492
            input = fluid.data(name='data', shape=[10,80], dtype='float32')
            label = fluid.data(name='label', shape=[10,1], dtype='int32')
            fg_num = fluid.data(name='fg_num', shape=[1], dtype='int32')
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
            loss = fluid.layers.sigmoid_focal_loss(x=input,
                                                   label=label,
                                                   fg_num=fg_num,
                                                   gamma=2.,
                                                   alpha=0.25)
    """

    helper = LayerHelper("sigmoid_focal_loss", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="sigmoid_focal_loss",
        inputs={"X": x,
                "Label": label,
                "FgNum": fg_num},
        attrs={"gamma": gamma,
               'alpha': alpha},
        outputs={"Out": out})
    return out


Y
Yuan Gao 已提交
515 516
def detection_output(loc,
                     scores,
517 518 519 520 521 522 523
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
524 525
                     nms_eta=1.0,
                     return_index=False):
526
    """
Q
qingqing01 已提交
527 528
    Given the regression locations, classification confidences and prior boxes,
    calculate the detection outputs by performing following steps:
529

Q
qingqing01 已提交
530 531
    1. Decode input bounding box predictions according to the prior boxes and
       regression locations.
532 533 534 535 536
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
537 538 539

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Q
qingqing01 已提交
540 541
            predicted locations of M bounding bboxes. Data type should be
            float32 or float64. N is the batch size,
542 543
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
544
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
Q
qingqing01 已提交
545 546 547
            predicted confidence predictions. Data type should be float32
            or float64. N is the batch size, C is the
            class number, M is number of bounding boxes.
548
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
Q
qingqing01 已提交
549 550
            each box is represented as [xmin, ymin, xmax, ymax]. Data type
            should be float32 or float64.
551
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
Q
qingqing01 已提交
552 553
            of variance. Data type should be float32 or float64.
        background_label(int): The index of background label,
554
            the background label will be ignored. If set to -1, then all
Q
qingqing01 已提交
555 556
            categories will be considered. Default: 0.
        nms_threshold(float): The threshold to be used in NMS. Default: 0.3.
557
        nms_top_k(int): Maximum number of detections to be kept according
Q
qingqing01 已提交
558 559
            to the confidences aftern filtering detections based on
            score_threshold and before NMS. Default: 400.
560
        keep_top_k(int): Number of total bboxes to be kept per image after
Q
qingqing01 已提交
561
            NMS step. -1 means keeping all bboxes after NMS step. Default: 200.
562 563
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
Q
qingqing01 已提交
564 565 566
            Default: 0.01.
        nms_eta(float): The parameter for adaptive NMS. It works only when the
            value is less than 1.0. Default: 1.0.
567
        return_index(bool): Whether return selected index. Default: False
568 569

    Returns:
M
minqiyang 已提交
570

571 572 573
        A tuple with two Variables: (Out, Index) if return_index is True,
        otherwise, a tuple with one Variable(Out) is returned. 

Q
qingqing01 已提交
574 575 576 577 578 579 580 581 582 583 584 585
        Out (Variable): The detection outputs is a LoDTensor with shape [No, 6].
        Data type is the same as input (loc). Each row has six values:
        [label, confidence, xmin, ymin, xmax, ymax]. `No` is
        the total number of detections in this mini-batch. For each instance,
        the offsets in first dimension are called LoD, the offset number is
        N + 1, N is the batch size. The i-th image has `LoD[i + 1] - LoD[i]`
        detected results, if it is 0, the i-th image has no detected results.

        Index (Variable): Only return when return_index is True. A 2-D LoDTensor
        with shape [No, 1] represents the selected index which type is Integer.
        The index is the absolute value cross batches. No is the same number
        as Out. If the index is used to gather other attribute such as age,
586 587 588
        one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
        N is the batch size and M is the number of boxes.

589 590 591 592

    Examples:
        .. code-block:: python

593 594
            import paddle.fluid as fluid

Q
qingqing01 已提交
595 596 597 598
            pb = fluid.data(name='prior_box', shape=[10, 4], dtype='float32')
            pbv = fluid.data(name='prior_box_var', shape=[10, 4], dtype='float32')
            loc = fluid.data(name='target_box', shape=[2, 21, 4], dtype='float32')
            scores = fluid.data(name='scores', shape=[2, 21, 10], dtype='float32')
599
            nmsed_outs, index = fluid.layers.detection_output(scores=scores,
600 601
                                       loc=loc,
                                       prior_box=pb,
602 603
                                       prior_box_var=pbv,
                                       return_index=True)
604 605
    """
    helper = LayerHelper("detection_output", **locals())
606 607 608 609 610
    decoded_box = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=loc,
        code_type='decode_center_size')
611
    scores = nn.softmax(input=scores)
Y
Yuan Gao 已提交
612
    scores = nn.transpose(scores, perm=[0, 2, 1])
613
    scores.stop_gradient = True
X
Xin Pan 已提交
614 615
    nmsed_outs = helper.create_variable_for_type_inference(
        dtype=decoded_box.dtype)
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
    if return_index:
        index = helper.create_variable_for_type_inference(dtype='int')
        helper.append_op(
            type="multiclass_nms2",
            inputs={'Scores': scores,
                    'BBoxes': decoded_box},
            outputs={'Out': nmsed_outs,
                     'Index': index},
            attrs={
                'background_label': 0,
                'nms_threshold': nms_threshold,
                'nms_top_k': nms_top_k,
                'keep_top_k': keep_top_k,
                'score_threshold': score_threshold,
                'nms_eta': 1.0,
            })
        index.stop_gradient = True
    else:
        helper.append_op(
            type="multiclass_nms",
            inputs={'Scores': scores,
                    'BBoxes': decoded_box},
            outputs={'Out': nmsed_outs},
            attrs={
                'background_label': 0,
                'nms_threshold': nms_threshold,
                'nms_top_k': nms_top_k,
                'keep_top_k': keep_top_k,
                'score_threshold': score_threshold,
                'nms_eta': 1.0,
            })
647
    nmsed_outs.stop_gradient = True
648 649
    if return_index:
        return nmsed_outs, index
650
    return nmsed_outs
C
chengduoZH 已提交
651 652


X
Xin Pan 已提交
653 654 655 656 657 658
@templatedoc()
def iou_similarity(x, y, name=None):
    """
    ${comment}

    Args:
L
LielinJiang 已提交
659 660
        x (Variable): ${x_comment}.The data type is float32 or float64.
        y (Variable): ${y_comment}.The data type is float32 or float64.
X
Xin Pan 已提交
661 662

    Returns:
L
LielinJiang 已提交
663
        Variable: ${out_comment}.The data type is same with x.
664 665 666 667

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
668
            import numpy as np
669 670
            import paddle.fluid as fluid

L
LielinJiang 已提交
671 672 673 674 675 676
            use_gpu = False
            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)

            x = fluid.data(name='x', shape=[None, 4], dtype='float32')
            y = fluid.data(name='y', shape=[None, 4], dtype='float32')
677
            iou = fluid.layers.iou_similarity(x=x, y=y)
L
LielinJiang 已提交
678 679 680 681 682 683 684 685 686 687 688

            exe.run(fluid.default_startup_program())
            test_program = fluid.default_main_program().clone(for_test=True)

            [out_iou] = exe.run(test_program,
                    fetch_list=iou,
                    feed={'x': np.array([[0.5, 0.5, 2.0, 2.0],
                                         [0., 0., 1.0, 1.0]]).astype('float32'),
                          'y': np.array([[1.0, 1.0, 2.5, 2.5]]).astype('float32')})
            # out_iou is [[0.2857143],
            #             [0.       ]] with shape: [2, 1]
X
Xin Pan 已提交
689 690 691
    """
    helper = LayerHelper("iou_similarity", **locals())
    if name is None:
X
Xin Pan 已提交
692
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="iou_similarity",
        inputs={"X": x,
                "Y": y},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def box_coder(prior_box,
              prior_box_var,
              target_box,
              code_type="encode_center_size",
              box_normalized=True,
712 713
              name=None,
              axis=0):
X
Xin Pan 已提交
714
    """
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
    **Box Coder Layer**

    Encode/Decode the target bounding box with the priorbox information.
    
    The Encoding schema described below:

    .. math::

        ox = (tx - px) / pw / pxv

        oy = (ty - py) / ph / pyv

        ow = \log(\abs(tw / pw)) / pwv 

        oh = \log(\abs(th / ph)) / phv 

    The Decoding schema described below:
    
    .. math::
  
        ox = (pw * pxv * tx * + px) - tw / 2

        oy = (ph * pyv * ty * + py) - th / 2

        ow = \exp(pwv * tw) * pw + tw / 2

        oh = \exp(phv * th) * ph + th / 2   

    where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates, 
    width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote 
    the priorbox's (anchor) center coordinates, width and height. `pxv`, 
    `pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`, 
    `ow`, `oh` denote the encoded/decoded coordinates, width and height. 

    During Box Decoding, two modes for broadcast are supported. Say target 
    box has shape [N, M, 4], and the shape of prior box can be [N, 4] or 
    [M, 4]. Then prior box will broadcast to target box along the 
    assigned axis. 
X
Xin Pan 已提交
753 754

    Args:
755
        prior_box(Variable): Box list prior_box is a 2-D Tensor with shape 
W
wangguanzhong 已提交
756 757 758 759 760 761 762 763 764 765
            [M, 4] holds M boxes and data type is float32 or float64. Each box
            is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the 
            left top coordinate of the anchor box, if the input is image feature
            map, they are close to the origin of the coordinate system. 
            [xmax, ymax] is the right bottom coordinate of the anchor box.       
        prior_box_var(List|Variable|None): prior_box_var supports three types 
            of input. One is variable with shape [M, 4] which holds M group and 
            data type is float32 or float64. The second is list consist of 
            4 elements shared by all boxes and data type is float32 or float64. 
            Other is None and not involved in calculation. 
766
        target_box(Variable): This input can be a 2-D LoDTensor with shape 
W
wangguanzhong 已提交
767 768 769 770 771 772 773 774 775 776 777 778 779
            [N, 4] when code_type is 'encode_center_size'. This input also can 
            be a 3-D Tensor with shape [N, M, 4] when code_type is 
            'decode_center_size'. Each box is represented as 
            [xmin, ymin, xmax, ymax]. The data type is float32 or float64. 
            This tensor can contain LoD information to represent a batch of inputs. 
        code_type(str): The code type used with the target box. It can be
            `encode_center_size` or `decode_center_size`. `encode_center_size` 
            by default.
        box_normalized(bool): Whether treat the priorbox as a noramlized box.
            Set true by default.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
780
        axis(int): Which axis in PriorBox to broadcast for box decode, 
W
wangguanzhong 已提交
781 782 783 784
            for example, if axis is 0 and TargetBox has shape [N, M, 4] and 
            PriorBox has shape [M, 4], then PriorBox will broadcast to [N, M, 4]
            for decoding. It is only valid when code type is 
            `decode_center_size`. Set 0 by default. 
X
Xin Pan 已提交
785 786

    Returns:
W
wangguanzhong 已提交
787 788
        Variable:

789
        output_box(Variable): When code_type is 'encode_center_size', the 
W
wangguanzhong 已提交
790 791 792 793
        output tensor of box_coder_op with shape [N, M, 4] representing the 
        result of N target boxes encoded with M Prior boxes and variances. 
        When code_type is 'decode_center_size', N represents the batch size 
        and M represents the number of deocded boxes.
794 795 796 797 798

    Examples:
 
        .. code-block:: python
 
799
            import paddle.fluid as fluid
W
wangguanzhong 已提交
800
            # For encode
801
            prior_box_encode = fluid.data(name='prior_box_encode',
W
wangguanzhong 已提交
802
                                  shape=[512, 4],
803 804 805 806
                                  dtype='float32')
            target_box_encode = fluid.data(name='target_box_encode',
                                   shape=[81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
807 808 809 810 811
            output_encode = fluid.layers.box_coder(prior_box=prior_box_encode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_encode,
                                    code_type="encode_center_size")
            # For decode
812
            prior_box_decode = fluid.data(name='prior_box_decode',
W
wangguanzhong 已提交
813
                                  shape=[512, 4],
814 815 816 817
                                  dtype='float32')
            target_box_decode = fluid.data(name='target_box_decode',
                                   shape=[512, 81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
818 819 820 821 822 823
            output_decode = fluid.layers.box_coder(prior_box=prior_box_decode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_decode,
                                    code_type="decode_center_size",
                                    box_normalized=False,
                                    axis=1)
X
Xin Pan 已提交
824 825 826 827
    """
    helper = LayerHelper("box_coder", **locals())

    if name is None:
X
Xin Pan 已提交
828 829
        output_box = helper.create_variable_for_type_inference(
            dtype=prior_box.dtype)
X
Xin Pan 已提交
830 831 832 833
    else:
        output_box = helper.create_variable(
            name=name, dtype=prior_box.dtype, persistable=False)

834 835 836 837 838 839 840 841 842 843 844 845
    inputs = {"PriorBox": prior_box, "TargetBox": target_box}
    attrs = {
        "code_type": code_type,
        "box_normalized": box_normalized,
        "axis": axis
    }
    if isinstance(prior_box_var, Variable):
        inputs['PriorBoxVar'] = prior_box_var
    elif isinstance(prior_box_var, list):
        attrs['variance'] = prior_box_var
    else:
        raise TypeError("Input variance of box_coder must be Variable or lisz")
X
Xin Pan 已提交
846 847
    helper.append_op(
        type="box_coder",
848 849
        inputs=inputs,
        attrs=attrs,
X
Xin Pan 已提交
850 851 852 853 854 855 856 857 858 859
        outputs={"OutputBox": output_box})
    return output_box


@templatedoc()
def polygon_box_transform(input, name=None):
    """
    ${comment}

    Args:
860 861 862 863
        input(Variable): The input with shape [batch_size, geometry_channels, height, width].
                         A Tensor with type float32, float64.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
X
Xin Pan 已提交
864 865

    Returns:
866
        Variable: The output with the same shape as input. A Tensor with type float32, float64.
B
Bai Yifan 已提交
867 868 869 870 871

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
B
Bai Yifan 已提交
872
            input = fluid.data(name='input', shape=[4, 10, 5, 5], dtype='float32')
B
Bai Yifan 已提交
873
            out = fluid.layers.polygon_box_transform(input)
X
Xin Pan 已提交
874 875 876
    """
    helper = LayerHelper("polygon_box_transform", **locals())
    if name is None:
X
Xin Pan 已提交
877
        output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
Xin Pan 已提交
878 879 880 881 882 883 884 885 886 887 888 889
    else:
        output = helper.create_variable(
            name=name, dtype=prior_box.input, persistable=False)

    helper.append_op(
        type="polygon_box_transform",
        inputs={"Input": input},
        attrs={},
        outputs={"Output": output})
    return output


D
dengkaipeng 已提交
890 891
@templatedoc(op_type="yolov3_loss")
def yolov3_loss(x,
892 893
                gt_box,
                gt_label,
D
dengkaipeng 已提交
894
                anchors,
895
                anchor_mask,
D
dengkaipeng 已提交
896 897
                class_num,
                ignore_thresh,
898
                downsample_ratio,
899
                gt_score=None,
D
dengkaipeng 已提交
900
                use_label_smooth=True,
D
dengkaipeng 已提交
901 902 903 904 905
                name=None):
    """
    ${comment}

    Args:
X
xiaoting 已提交
906
        x (Variable): ${x_comment}The data type is float32 or float64. 
907
        gt_box (Variable): groud truth boxes, should be in shape of [N, B, 4],
908 909 910 911
                          in the third dimenstion, x, y, w, h should be stored. 
                          x,y is the center cordinate of boxes, w, h are the
                          width and height, x, y, w, h should be divided by 
                          input image height to scale to [0, 1].
D
dengkaipeng 已提交
912
                          N is the batch number and B is the max box number in 
X
xiaoting 已提交
913
                          an image.The data type is float32 or float64. 
914
        gt_label (Variable): class id of ground truth boxes, shoud be in shape
X
xiaoting 已提交
915
                            of [N, B].The data type is int32. 
D
dengkaipeng 已提交
916
        anchors (list|tuple): ${anchors_comment}
917
        anchor_mask (list|tuple): ${anchor_mask_comment}
D
dengkaipeng 已提交
918 919
        class_num (int): ${class_num_comment}
        ignore_thresh (float): ${ignore_thresh_comment}
920
        downsample_ratio (int): ${downsample_ratio_comment}
X
xiaoting 已提交
921 922 923
        name (string): The default value is None.  Normally there is no need 
                       for user to set this property.  For more information, 
                       please refer to :ref:`api_guide_Name`
924
        gt_score (Variable): mixup score of ground truth boxes, shoud be in shape
925
                            of [N, B]. Default None.
926
        use_label_smooth (bool): ${use_label_smooth_comment}
D
dengkaipeng 已提交
927 928

    Returns:
929
        Variable: A 1-D tensor with shape [N], the value of yolov3 loss
D
dengkaipeng 已提交
930 931 932

    Raises:
        TypeError: Input x of yolov3_loss must be Variable
D
dengkaipeng 已提交
933 934
        TypeError: Input gtbox of yolov3_loss must be Variable
        TypeError: Input gtlabel of yolov3_loss must be Variable
D
dengkaipeng 已提交
935
        TypeError: Input gtscore of yolov3_loss must be None or Variable
D
dengkaipeng 已提交
936 937 938
        TypeError: Attr anchors of yolov3_loss must be list or tuple
        TypeError: Attr class_num of yolov3_loss must be an integer
        TypeError: Attr ignore_thresh of yolov3_loss must be a float number
939
        TypeError: Attr use_label_smooth of yolov3_loss must be a bool value
D
dengkaipeng 已提交
940 941

    Examples:
942 943
      .. code-block:: python

944
          import paddle.fluid as fluid
X
xiaoting 已提交
945 946 947 948
          x = fluid.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
          gt_box = fluid.data(name='gt_box', shape=[None, 6, 4], dtype='float32')
          gt_label = fluid.data(name='gt_label', shape=[None, 6], dtype='int32')
          gt_score = fluid.data(name='gt_score', shape=[None, 6], dtype='float32')
949 950
          anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
          anchor_mask = [0, 1, 2]
951 952
          loss = fluid.layers.yolov3_loss(x=x, gt_box=gt_box, gt_label=gt_label,
                                          gt_score=gt_score, anchors=anchors, 
953 954
                                          anchor_mask=anchor_mask, class_num=80,
                                          ignore_thresh=0.7, downsample_ratio=32)
D
dengkaipeng 已提交
955 956 957 958 959
    """
    helper = LayerHelper('yolov3_loss', **locals())

    if not isinstance(x, Variable):
        raise TypeError("Input x of yolov3_loss must be Variable")
960
    if not isinstance(gt_box, Variable):
D
dengkaipeng 已提交
961
        raise TypeError("Input gtbox of yolov3_loss must be Variable")
962
    if not isinstance(gt_label, Variable):
D
dengkaipeng 已提交
963
        raise TypeError("Input gtlabel of yolov3_loss must be Variable")
964
    if gt_score is not None and not isinstance(gt_score, Variable):
965
        raise TypeError("Input gtscore of yolov3_loss must be Variable")
D
dengkaipeng 已提交
966 967
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
        raise TypeError("Attr anchors of yolov3_loss must be list or tuple")
968 969
    if not isinstance(anchor_mask, list) and not isinstance(anchor_mask, tuple):
        raise TypeError("Attr anchor_mask of yolov3_loss must be list or tuple")
D
dengkaipeng 已提交
970 971 972 973 974
    if not isinstance(class_num, int):
        raise TypeError("Attr class_num of yolov3_loss must be an integer")
    if not isinstance(ignore_thresh, float):
        raise TypeError(
            "Attr ignore_thresh of yolov3_loss must be a float number")
975 976 977
    if not isinstance(use_label_smooth, bool):
        raise TypeError(
            "Attr use_label_smooth of yolov3_loss must be a bool value")
D
dengkaipeng 已提交
978 979 980 981 982 983 984

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

985 986 987
    objectness_mask = helper.create_variable_for_type_inference(dtype='int32')
    gt_match_mask = helper.create_variable_for_type_inference(dtype='int32')

988 989
    inputs = {
        "X": x,
990 991
        "GTBox": gt_box,
        "GTLabel": gt_label,
992
    }
993
    if gt_score:
994
        inputs["GTScore"] = gt_score
995

D
dengkaipeng 已提交
996 997
    attrs = {
        "anchors": anchors,
998
        "anchor_mask": anchor_mask,
D
dengkaipeng 已提交
999 1000
        "class_num": class_num,
        "ignore_thresh": ignore_thresh,
1001
        "downsample_ratio": downsample_ratio,
1002
        "use_label_smooth": use_label_smooth,
D
dengkaipeng 已提交
1003 1004 1005 1006
    }

    helper.append_op(
        type='yolov3_loss',
1007
        inputs=inputs,
1008 1009 1010 1011 1012
        outputs={
            'Loss': loss,
            'ObjectnessMask': objectness_mask,
            'GTMatchMask': gt_match_mask
        },
D
dengkaipeng 已提交
1013 1014 1015 1016
        attrs=attrs)
    return loss


D
dengkaipeng 已提交
1017
@templatedoc(op_type="yolo_box")
1018 1019 1020 1021 1022 1023 1024
def yolo_box(x,
             img_size,
             anchors,
             class_num,
             conf_thresh,
             downsample_ratio,
             name=None):
D
dengkaipeng 已提交
1025 1026 1027 1028
    """
    ${comment}

    Args:
X
xiaoting 已提交
1029 1030
        x (Variable): ${x_comment} The data type is float32 or float64. 
        img_size (Variable): ${img_size_comment} The data type is int32. 
D
dengkaipeng 已提交
1031 1032 1033 1034
        anchors (list|tuple): ${anchors_comment}
        class_num (int): ${class_num_comment}
        conf_thresh (float): ${conf_thresh_comment}
        downsample_ratio (int): ${downsample_ratio_comment}
X
xiaoting 已提交
1035 1036 1037
        name (string): The default value is None.  Normally there is no need 
                       for user to set this property.  For more information, 
                       please refer to :ref:`api_guide_Name`
D
dengkaipeng 已提交
1038 1039

    Returns:
D
dengkaipeng 已提交
1040
        Variable: A 3-D tensor with shape [N, M, 4], the coordinates of boxes,
D
dengkaipeng 已提交
1041 1042
        and a 3-D tensor with shape [N, M, :attr:`class_num`], the classification 
        scores of boxes.
D
dengkaipeng 已提交
1043 1044 1045 1046 1047 1048 1049 1050

    Raises:
        TypeError: Input x of yolov_box must be Variable
        TypeError: Attr anchors of yolo box must be list or tuple
        TypeError: Attr class_num of yolo box must be an integer
        TypeError: Attr conf_thresh of yolo box must be a float number

    Examples:
D
dengkaipeng 已提交
1051

D
dengkaipeng 已提交
1052 1053
    .. code-block:: python

X
xiaoting 已提交
1054
        import paddle.fluid as fluid
X
xiaoting 已提交
1055 1056
        x = fluid.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
        img_size = fluid.data(name='img_size',shape=[None, 2],dtype='int64')
D
dengkaipeng 已提交
1057
        anchors = [10, 13, 16, 30, 33, 23]
X
xiaoting 已提交
1058
        boxes,scores = fluid.layers.yolo_box(x=x, img_size=img_size, class_num=80, anchors=anchors, 
D
dengkaipeng 已提交
1059 1060 1061 1062 1063
                                        conf_thresh=0.01, downsample_ratio=32)
    """
    helper = LayerHelper('yolo_box', **locals())

    if not isinstance(x, Variable):
1064 1065 1066
        raise TypeError("Input x of yolo_box must be Variable")
    if not isinstance(img_size, Variable):
        raise TypeError("Input img_size of yolo_box must be Variable")
D
dengkaipeng 已提交
1067
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
1068
        raise TypeError("Attr anchors of yolo_box must be list or tuple")
D
dengkaipeng 已提交
1069
    if not isinstance(class_num, int):
1070
        raise TypeError("Attr class_num of yolo_box must be an integer")
D
dengkaipeng 已提交
1071
    if not isinstance(conf_thresh, float):
1072
        raise TypeError("Attr ignore_thresh of yolo_box must be a float number")
D
dengkaipeng 已提交
1073 1074 1075 1076 1077 1078 1079

    boxes = helper.create_variable_for_type_inference(dtype=x.dtype)
    scores = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = {
        "anchors": anchors,
        "class_num": class_num,
D
dengkaipeng 已提交
1080
        "conf_thresh": conf_thresh,
D
dengkaipeng 已提交
1081 1082 1083 1084 1085
        "downsample_ratio": downsample_ratio,
    }

    helper.append_op(
        type='yolo_box',
1086 1087 1088 1089
        inputs={
            "X": x,
            "ImgSize": img_size,
        },
D
dengkaipeng 已提交
1090 1091 1092 1093 1094 1095 1096 1097
        outputs={
            'Boxes': boxes,
            'Scores': scores,
        },
        attrs=attrs)
    return boxes, scores


X
Xin Pan 已提交
1098
@templatedoc()
1099 1100
def detection_map(detect_res,
                  label,
1101 1102
                  class_num,
                  background_label=0,
1103 1104
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
1105 1106 1107 1108
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
X
Xin Pan 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
1120 1121 1122 1123 1124 1125 1126 1127
        input_states: (tuple|None) If not None, It contains 3 elements:
            (1) pos_count ${pos_count_comment}.
            (2) true_pos ${true_pos_comment}.
            (3) false_pos ${false_pos_comment}.
        out_states: (tuple|None) If not None, it contains 3 elements.
            (1) accum_pos_count ${accum_pos_count_comment}.
            (2) accum_true_pos ${accum_true_pos_comment}.
            (3) accum_false_pos ${accum_false_pos_comment}.
X
Xin Pan 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

1137
            import paddle.fluid as fluid
1138
            from fluid.layers import detection
1139
            detect_res = fluid.data(
X
Xin Pan 已提交
1140 1141 1142
                name='detect_res',
                shape=[10, 6],
                dtype='float32')
1143
            label = fluid.data(
X
Xin Pan 已提交
1144 1145 1146 1147
                name='label',
                shape=[10, 6],
                dtype='float32')

1148
            map_out = detection.detection_map(detect_res, label, 21)
X
Xin Pan 已提交
1149
    """
1150 1151
    helper = LayerHelper("detection_map", **locals())

1152
    def __create_var(type):
X
Xin Pan 已提交
1153
        return helper.create_variable_for_type_inference(dtype=type)
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165

    map_out = __create_var('float32')
    accum_pos_count_out = out_states[0] if out_states else __create_var('int32')
    accum_true_pos_out = out_states[1] if out_states else __create_var(
        'float32')
    accum_false_pos_out = out_states[2] if out_states else __create_var(
        'float32')

    pos_count = input_states[0] if input_states else None
    true_pos = input_states[1] if input_states else None
    false_pos = input_states[2] if input_states else None

1166 1167 1168 1169 1170
    helper.append_op(
        type="detection_map",
        inputs={
            'Label': label,
            'DetectRes': detect_res,
1171
            'HasState': has_state,
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
            'PosCount': pos_count,
            'TruePos': true_pos,
            'FalsePos': false_pos
        },
        outputs={
            'MAP': map_out,
            'AccumPosCount': accum_pos_count_out,
            'AccumTruePos': accum_true_pos_out,
            'AccumFalsePos': accum_false_pos_out
        },
        attrs={
            'overlap_threshold': overlap_threshold,
            'evaluate_difficult': evaluate_difficult,
1185 1186
            'ap_type': ap_version,
            'class_num': class_num,
1187
        })
1188
    return map_out
1189 1190


1191 1192 1193 1194
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
1195
    """
Y
yuyang18 已提交
1196 1197
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
1198
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
1199 1200 1201 1202
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
W
wangguanzhong 已提交
1203
    matrix. **The OP only supports CPU**.
Y
yuyang18 已提交
1204 1205 1206

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
1207 1208 1209
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
1210

Y
yuyang18 已提交
1211
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
1212 1213 1214
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
1215 1216 1217
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

1218 1219
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
W
wangguanzhong 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
            [K, M]. The data type is float32 or float64. It is pair-wise 
            distance matrix between the entities represented by each row and 
            each column. For example, assumed one entity is A with shape [K], 
            another entity is B with shape [M]. The dist_matrix[i][j] is the 
            distance between A[i] and B[j]. The bigger the distance is, the 
            better matching the pairs are. NOTE: This tensor can contain LoD 
            information to represent a batch of inputs. One instance of this 
            batch can contain different numbers of entities.
        match_type(str, optional): The type of matching method, should be
           'bipartite' or 'per_prediction'. None ('bipartite') by default.
        dist_threshold(float32, optional): If `match_type` is 'per_prediction',
1231
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
1232
            on the maximum distance, 0.5 by default.
W
wangguanzhong 已提交
1233 1234 1235 1236
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
 
1237
    Returns:
W
wangguanzhong 已提交
1238
        Tuple:
Y
yuyang18 已提交
1239

W
wangguanzhong 已提交
1240 1241
        matched_indices(Variable): A 2-D Tensor with shape [N, M]. The data
        type is int32. N is the batch size. If match_indices[i][j] is -1, it
Y
yuyang18 已提交
1242 1243 1244 1245 1246
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

W
wangguanzhong 已提交
1247 1248
        matched_distance(Variable): A 2-D Tensor with shape [N, M]. The data
        type is float32. N is batch size. If match_indices[i][j] is -1,
Y
yuyang18 已提交
1249 1250 1251 1252 1253 1254 1255
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

1256
        >>> import paddle.fluid as fluid
1257 1258
        >>> x = fluid.data(name='x', shape=[None, 4], dtype='float32')
        >>> y = fluid.data(name='y', shape=[None, 4], dtype='float32')
Y
yuyang18 已提交
1259 1260
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
1261 1262
    """
    helper = LayerHelper('bipartite_match', **locals())
X
Xin Pan 已提交
1263 1264 1265
    match_indices = helper.create_variable_for_type_inference(dtype='int32')
    match_distance = helper.create_variable_for_type_inference(
        dtype=dist_matrix.dtype)
1266 1267 1268
    helper.append_op(
        type='bipartite_match',
        inputs={'DistMat': dist_matrix},
1269 1270 1271 1272
        attrs={
            'match_type': match_type,
            'dist_threshold': dist_threshold,
        },
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
        outputs={
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_distance
        })
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
1290

1291 1292 1293 1294 1295
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
1296

1297
    1. Assigning all outputs based on `match_indices`:
C
chengduoZH 已提交
1298

1299 1300 1301
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
1302

1303 1304
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
1305

1306
        Otherwise,
C
chengduoZH 已提交
1307

1308 1309
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
1310

Q
qingqing01 已提交
1311
    2. Assigning outputs based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
1312

Q
qingqing01 已提交
1313 1314
    Assumed that i-th instance in `neg_indices` is called `neg_indice`,
    for i-th instance:
M
minqiyang 已提交
1315

1316
    .. code-block:: text
C
chengduoZH 已提交
1317

Q
qingqing01 已提交
1318 1319 1320
        for id in neg_indice:
            out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][id] = 1.0
1321 1322

    Args:
Q
qingqing01 已提交
1323 1324 1325
       input (Variable): This input is a 3D LoDTensor with shape [M, P, K].
           Data type should be int32 or float32.
       matched_indices (Variable): The input matched indices
1326 1327 1328
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
Q
qingqing01 已提交
1329 1330
       negative_indices (Variable, optional): The input negative example indices
           are an optional input with shape [Neg, 1] and int32 type, where Neg is
1331
           the total number of negative example indices.
Q
qingqing01 已提交
1332 1333 1334 1335 1336
       mismatch_value (float32, optional): Fill this value to the mismatched
           location.
       name (string): The default value is None.  Normally there is no need for
           user to set this property.  For more information, please refer
           to :ref:`api_guide_Name`.
1337 1338

    Returns:
Q
qingqing01 已提交
1339 1340 1341 1342 1343 1344 1345 1346
        tuple: A tuple(out, out_weight) is returned.

        out (Variable): a 3D Tensor with shape [N, P, K] and same data type
        with `input`, N and P is the same as they are in `matched_indices`,
        K is the same as it in input of X.

        out_weight (Variable): the weight for output with the shape of [N, P, 1].
        Data type is float32.
1347 1348 1349 1350 1351

    Examples:

        .. code-block:: python

1352
            import paddle.fluid as fluid
Q
qingqing01 已提交
1353
            x = fluid.data(
1354 1355 1356
                name='x',
                shape=[4, 20, 4],
                dtype='float',
Q
qingqing01 已提交
1357 1358
                lod_level=1)
            matched_id = fluid.data(
1359 1360
                name='indices',
                shape=[8, 20],
Q
qingqing01 已提交
1361
                dtype='int32')
1362 1363 1364 1365
            trg, trg_weight = fluid.layers.target_assign(
                x,
                matched_id,
                mismatch_value=0)
1366 1367
    """
    helper = LayerHelper('target_assign', **locals())
X
Xin Pan 已提交
1368 1369
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_weight = helper.create_variable_for_type_inference(dtype='float32')
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
    helper.append_op(
        type='target_assign',
        inputs={
            'X': input,
            'MatchIndices': matched_indices,
            'NegIndices': negative_indices
        },
        outputs={'Out': out,
                 'OutWeight': out_weight},
        attrs={'mismatch_value': mismatch_value})
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
1397
             normalize=True,
1398 1399
             sample_size=None):
    """
Y
yuyang18 已提交
1400
    **Multi-box loss layer for object detection algorithm of SSD**
1401

翟飞跃 已提交
1402 1403
    This layer is to compute detection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth bounding
1404 1405 1406 1407
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
1408
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1409

1410
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
1411

1412
      1.2 Compute matched boundding box by bipartite matching algorithm.
Y
yuyang18 已提交
1413

1414
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
1415

1416
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
1417

1418
      2.2. Compute confidence loss.
Y
yuyang18 已提交
1419

1420 1421
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
1422

1423
    4. Assign classification and regression targets
Y
yuyang18 已提交
1424

1425
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
1426

1427
      4.2. Assign regression targets.
Y
yuyang18 已提交
1428

1429
      4.3. Assign classification targets.
Y
yuyang18 已提交
1430

1431
    5. Compute the overall objective loss.
Y
yuyang18 已提交
1432

1433
      5.1 Compute confidence loss.
Y
yuyang18 已提交
1434

1435
      5.2 Compute localization loss.
Y
yuyang18 已提交
1436

1437 1438 1439 1440 1441 1442
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
1443 1444
            the layout is [xmin, ymin, xmax, ymax].The data type is float32 or
            float64.
1445 1446
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
1447 1448
            `location`, C is the class number.The data type is float32 or
            float64.
翟飞跃 已提交
1449
        gt_box (Variable): The ground-truth bounding boxes (bboxes) are a 2D
1450
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
1451
            bboxes of mini-batch input.The data type is float32 or float64.
1452
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
1453 1454 1455
            with shape [Ng, 1].Ng is the total number of ground-truth bboxes of
            mini-batch input, 1 is the number of class. The data type is float32
            or float64.
1456
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
1457 1458
            Np and 4 are the same as they are in `location`. The data type is
            float32 or float64.
1459
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
1460
            with shape [Np, 4]. Np and 4 are the same as they are in `prior_box`
1461 1462
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
1463 1464
            'overlap_threshold' to determine the extra matching bboxes when finding \
            matched boxes. 0.5 by default.
1465
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
翟飞跃 已提交
1466
            boxes, used only when mining_type is 'max_negative', 3.0 by default.
1467
        neg_overlap (float): The negative overlap upper bound for the unmatched
1468
            predictions. Use only when mining_type is 'max_negative',
1469 1470 1471 1472
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
翟飞跃 已提交
1473
            be 'bipartite' or 'per_prediction', 'per_prediction' by default.
1474 1475
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
1476
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
1477
            of output locations, True by default.
1478 1479
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
1480 1481

    Returns:
1482 1483 1484
        Variable(Tensor):  The weighted sum of the localization loss and confidence loss, \
        with shape [N * Np, 1], N and Np are the same as they are in
        `location`.The data type is float32 or float64.
1485 1486

    Raises:
Y
yuyang18 已提交
1487 1488
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
1489 1490

    Examples:
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509

        .. code-block:: python

            import paddle.fluid as fluid
            pb = fluid.data(
                           name='prior_box',
                           shape=[10, 4],
                           dtype='float32')
            pbv = fluid.data(
                           name='prior_box_var',
                           shape=[10, 4],
                           dtype='float32')
            loc = fluid.data(name='target_box', shape=[10, 4], dtype='float32')
            scores = fluid.data(name='scores', shape=[10, 21], dtype='float32')
            gt_box = fluid.data(
                 name='gt_box', shape=[4], lod_level=1, dtype='float32')
            gt_label = fluid.data(
                 name='gt_label', shape=[1], lod_level=1, dtype='float32')
            loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
1510 1511 1512 1513 1514 1515 1516
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape
G
merge  
gongweibao 已提交
1517
    conf_shape = nn.shape(confidence)
1518 1519

    def __reshape_to_2d(var):
1520
        return nn.flatten(x=var, axis=2)
1521 1522 1523 1524 1525

    # 1. Find matched boundding box by prior box.
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
    #   1.2 Compute matched boundding box by bipartite matching algorithm.
1526 1527
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
1528 1529 1530

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
1531 1532
    gt_label = nn.reshape(
        x=gt_label, shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1))
1533
    gt_label.stop_gradient = True
1534 1535 1536 1537 1538 1539 1540
    target_label, _ = target_assign(
        gt_label, matched_indices, mismatch_value=background_label)
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
1541
    target_label.stop_gradient = True
1542 1543
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    # 3. Mining hard examples
G
merge  
gongweibao 已提交
1544
    actual_shape = nn.slice(conf_shape, axes=[0], starts=[0], ends=[2])
1545
    actual_shape.stop_gradient = True
1546 1547
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
1548
    conf_loss = nn.reshape(
1549
        x=conf_loss, shape=(-1, 0), actual_shape=actual_shape)
1550
    conf_loss.stop_gradient = True
X
Xin Pan 已提交
1551
    neg_indices = helper.create_variable_for_type_inference(dtype='int32')
1552
    dtype = matched_indices.dtype
X
Xin Pan 已提交
1553 1554
    updated_matched_indices = helper.create_variable_for_type_inference(
        dtype=dtype)
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
    helper.append_op(
        type='mine_hard_examples',
        inputs={
            'ClsLoss': conf_loss,
            'LocLoss': None,
            'MatchIndices': matched_indices,
            'MatchDist': matched_dist,
        },
        outputs={
            'NegIndices': neg_indices,
            'UpdatedMatchIndices': updated_matched_indices
        },
        attrs={
            'neg_pos_ratio': neg_pos_ratio,
B
Bai Yifan 已提交
1569
            'neg_dist_threshold': neg_overlap,
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
            'mining_type': mining_type,
            'sample_size': sample_size,
        })

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
    encoded_bbox = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=gt_box,
        code_type='encode_center_size')
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
1595

1596 1597 1598 1599
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

1600 1601 1602 1603
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

1604 1605 1606 1607 1608 1609 1610 1611
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

1612 1613 1614 1615
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

1616 1617
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
1618
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
1619 1620 1621
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
    loss = nn.reshape(x=loss, shape=(-1, 0), actual_shape=actual_shape)
1622 1623 1624 1625 1626
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

1627
    return loss
C
chengduoZH 已提交
1628 1629


1630 1631 1632 1633
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
1634
              aspect_ratios=[1.],
1635 1636 1637 1638 1639
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
1640 1641
              name=None,
              min_max_aspect_ratios_order=False):
1642
    """
R
ruri 已提交
1643
    This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
1644 1645 1646 1647 1648
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

R
ruri 已提交
1649 1650 1651 1652 1653 1654
    Parameters:
       input(Variable): 4-D tenosr(NCHW), the data type should be float32 or float64.
       image(Variable): 4-D tensor(NCHW), the input image data of PriorBoxOp,
            the data type should be float32 or float64.
       min_sizes(list|tuple|float): the min sizes of generated prior boxes.
       max_sizes(list|tuple|None): the max sizes of generated prior boxes.
1655
            Default: None.
R
ruri 已提交
1656
       aspect_ratios(list|tuple|float): the aspect ratios of generated
1657
            prior boxes. Default: [1.].
1658 1659 1660 1661
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
翟飞跃 已提交
1662
       step(list|tuple): Prior boxes step across width and height, If
R
ruri 已提交
1663 1664
            step[0] equals to 0.0 or step[1] equals to 0.0, the prior boxes step across
            height or weight of the input will be automatically calculated.
1665
            Default: [0., 0.]
1666
       offset(float): Prior boxes center offset. Default: 0.5
1667
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1668
            in order of [min, max, aspect_ratios], which is consistent with
1669 1670 1671
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
R
ruri 已提交
1672
       name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1673 1674

    Returns:
R
ruri 已提交
1675
        Tuple: A tuple with two Variable (boxes, variances)
Q
update  
qiaolongfei 已提交
1676

R
ruri 已提交
1677 1678
        boxes(Variable): the output prior boxes of PriorBox.
	4-D tensor, the layout is [H, W, num_priors, 4].
Q
update  
qiaolongfei 已提交
1679
        H is the height of input, W is the width of input,
R
ruri 已提交
1680
        num_priors is the total box count of each position of input.
Q
update  
qiaolongfei 已提交
1681

R
ruri 已提交
1682 1683
        variances(Variable): the expanded variances of PriorBox.
    	4-D tensor, the layput is [H, W, num_priors, 4].
Q
update  
qiaolongfei 已提交
1684
        H is the height of input, W is the width of input
R
ruri 已提交
1685
        num_priors is the total box count of each position of input
1686 1687 1688

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1689

R
ruri 已提交
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,9])
	    image = fluid.data(name="image", shape=[None,3,9,12])
	    box, var = fluid.layers.prior_box(
                 input=input,
                 image=image,
		 min_sizes=[100.],
                 clip=True,
                 flip=True)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    # prepare a batch of data
	    input_data = np.random.rand(1,3,6,9).astype("float32")
	    image_data = np.random.rand(1,3,9,12).astype("float32")
 
	    box_out, var_out = exe.run(fluid.default_main_program(),
                feed={"input":input_data,"image":image_data},
                fetch_list=[box,var],
                return_numpy=True)
 
	    # print(box_out.shape)
	    # (6, 9, 1, 4)
	    # print(var_out.shape)
	    # (6, 9, 1, 4)

	    # imperative mode
	    import paddle.fluid.dygraph as dg

	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		image = dg.to_variable(image_data)
    		box, var = fluid.layers.prior_box(
		    input=input,
		    image=image,
		    min_sizes=[100.],
		    clip=True,
		    flip=True)
		# print(box.shape)
		# [6L, 9L, 1L, 4L]
                # print(var.shape)
		# [6L, 9L, 1L, 4L]

1737 1738 1739 1740
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

1756 1757 1758 1759 1760 1761 1762 1763
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
1764 1765
        'offset': offset,
        'min_max_aspect_ratios_order': min_max_aspect_ratios_order
1766 1767
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
1768 1769
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
1770 1771
        attrs['max_sizes'] = max_sizes

X
Xin Pan 已提交
1772 1773
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
    helper.append_op(
        type="prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


R
ruri 已提交
1786 1787 1788 1789 1790 1791 1792 1793 1794
def density_prior_box(input,
                      image,
                      densities=None,
                      fixed_sizes=None,
                      fixed_ratios=None,
                      variance=[0.1, 0.1, 0.2, 0.2],
                      clip=False,
                      steps=[0.0, 0.0],
                      offset=0.5,
1795
                      flatten_to_2d=False,
R
ruri 已提交
1796 1797 1798
                      name=None):
    """

R
ruri 已提交
1799
    This op generates density prior boxes for SSD(Single Shot MultiBox Detector) 
R
ruri 已提交
1800 1801 1802 1803 1804 1805
    algorithm. Each position of the input produce N prior boxes, N is 
    determined by the count of densities, fixed_sizes and fixed_ratios. 
    Boxes center at grid points around each input position is generated by 
    this operator, and the grid points is determined by densities and 
    the count of density prior box is determined by fixed_sizes and fixed_ratios. 
    Obviously, the number of fixed_sizes is equal to the number of densities.
R
ruri 已提交
1806
    
R
ruri 已提交
1807
    For densities_i in densities:
R
ruri 已提交
1808 1809
    
    .. math::
R
ruri 已提交
1810

R
ruri 已提交
1811 1812 1813 1814 1815 1816 1817
        N\_density_prior\_box = SUM(N\_fixed\_ratios * densities\_i^2)

    N_density_prior_box is the number of density_prior_box and N_fixed_ratios is the number of fixed_ratios.

    Parameters:
       input(Variable): 4-D tensor(NCHW), the data type should be float32 of float64.
       image(Variable): 4-D tensor(NCHW), the input image data of PriorBoxOp, the data type should be float32 or float64.
R
ruri 已提交
1818
            the layout is NCHW.
R
ruri 已提交
1819
       densities(list|tuple|None): The densities of generated density prior 
R
ruri 已提交
1820 1821
            boxes, this attribute should be a list or tuple of integers. 
            Default: None.
R
ruri 已提交
1822
       fixed_sizes(list|tuple|None): The fixed sizes of generated density
R
ruri 已提交
1823 1824
            prior boxes, this attribute should a list or tuple of same 
            length with :attr:`densities`. Default: None.
R
ruri 已提交
1825
       fixed_ratios(list|tuple|None): The fixed ratios of generated density
R
ruri 已提交
1826 1827 1828
            prior boxes, if this attribute is not set and :attr:`densities`
            and :attr:`fix_sizes` is set, :attr:`aspect_ratios` will be used
            to generate density prior boxes.
R
ruri 已提交
1829
       variance(list|tuple): The variances to be encoded in density prior boxes.
R
ruri 已提交
1830
            Default:[0.1, 0.1, 0.2, 0.2].
R
ruri 已提交
1831
       clip(bool): Whether to clip out of boundary boxes. Default: False.
翟飞跃 已提交
1832
       step(list|tuple): Prior boxes step across width and height, If
R
ruri 已提交
1833 1834
            step[0] equals 0.0 or step[1] equals 0.0, the density prior boxes step across
            height or weight of the input will be automatically calculated.
R
ruri 已提交
1835 1836
            Default: [0., 0.]
       offset(float): Prior boxes center offset. Default: 0.5
1837 1838
       flatten_to_2d(bool): Whether to flatten output prior boxes and variance
           to 2D shape, the second dim is 4. Default: False.
R
ruri 已提交
1839 1840
       name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
R
ruri 已提交
1841
    Returns:
R
ruri 已提交
1842
        Tuple: A tuple with two Variable (boxes, variances)
R
ruri 已提交
1843 1844

        boxes: the output density prior boxes of PriorBox.
R
ruri 已提交
1845 1846 1847
        4-D tensor, the layout is [H, W, num_priors, 4] when flatten_to_2d is False.
        2-D tensor, the layout is [H * W * num_priors, 4] when flatten_to_2d is True.
        H is the height of input, W is the width of input, and num_priors is the total box count of each position of input.
R
ruri 已提交
1848 1849

        variances: the expanded variances of PriorBox.
R
ruri 已提交
1850 1851 1852
        4-D tensor, the layout is [H, W, num_priors, 4] when flatten_to_2d is False.
        2-D tensor, the layout is [H * W * num_priors, 4] when flatten_to_2d is True.
        H is the height of input, W is the width of input, and num_priors is the total box count of each position of input.
R
ruri 已提交
1853 1854 1855


    Examples:
R
ruri 已提交
1856

R
ruri 已提交
1857 1858
        .. code-block:: python

R
ruri 已提交
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
            #declarative mode

	    import paddle.fluid as fluid
	    import numpy as np

	    input = fluid.data(name="input", shape=[None,3,6,9])
	    image = fluid.data(name="image", shape=[None,3,9,12])
	    box, var = fluid.layers.density_prior_box(
                 input=input,
                 image=image,
                 densities=[4, 2, 1],
                 fixed_sizes=[32.0, 64.0, 128.0],
                 fixed_ratios=[1.],
                 clip=True,
                 flatten_to_2d=True)

            place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    # prepare a batch of data
	    input_data = np.random.rand(1,3,6,9).astype("float32")
	    image_data = np.random.rand(1,3,9,12).astype("float32")
 
	    box_out, var_out = exe.run(
	        fluid.default_main_program(),
                feed={"input":input_data,
	              "image":image_data},
                fetch_list=[box,var],
                return_numpy=True)
 
	    print(mask_out.shape)
	    # (1134, 4)
            print(z_out.shape)
	    # (1134, 4)


	    #imperative mode
	    import paddle.fluid.dygraph as dg

	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		image = dg.to_variable(image_data)
    		box, var = fluid.layers.density_prior_box(
		    input=input,
		    image=image,
		    densities=[4, 2, 1],
		    fixed_sizes=[32.0, 64.0, 128.0],
		    fixed_ratios=[1.],
		    clip=True)

    		print(box.shape)
		# [6L, 9L, 21L, 4L]
		print(var.shape)
		# [6L, 9L, 21L, 4L]

R
ruri 已提交
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
    """
    helper = LayerHelper("density_prior_box", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(densities):
        raise TypeError('densities should be a list or a tuple or None.')
    if not _is_list_or_tuple_(fixed_sizes):
        raise TypeError('fixed_sizes should be a list or a tuple or None.')
    if not _is_list_or_tuple_(fixed_ratios):
        raise TypeError('fixed_ratios should be a list or a tuple or None.')
    if len(densities) != len(fixed_sizes):
        raise ValueError('densities and fixed_sizes length should be euqal.')
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    densities = list(map(int, densities))
    fixed_sizes = list(map(float, fixed_sizes))
    fixed_ratios = list(map(float, fixed_ratios))
    steps = list(map(float, steps))

    attrs = {
        'variances': variance,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
        'offset': offset,
1945 1946 1947 1948
        'densities': densities,
        'fixed_sizes': fixed_sizes,
        'fixed_ratios': fixed_ratios,
        'flatten_to_2d': flatten_to_2d,
R
ruri 已提交
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
    }
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="density_prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


C
chengduoZH 已提交
1964
def multi_box_head(inputs,
C
chengduoZH 已提交
1965 1966
                   image,
                   base_size,
C
chengduoZH 已提交
1967
                   num_classes,
C
chengduoZH 已提交
1968
                   aspect_ratios,
1969 1970
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
1971 1972
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
1973 1974 1975 1976
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
1977 1978
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
1979
                   clip=False,
C
chengduoZH 已提交
1980
                   kernel_size=1,
C
chengduoZH 已提交
1981
                   pad=0,
C
chengduoZH 已提交
1982
                   stride=1,
1983 1984
                   name=None,
                   min_max_aspect_ratios_order=False):
C
chengduoZH 已提交
1985
    """
Q
qingqing01 已提交
1986 1987 1988 1989
    Base on SSD ((Single Shot MultiBox Detector) algorithm, generate prior boxes,
    regression location and classification confidence on multiple input feature
    maps, then output the concatenate results. The details of this algorithm,
    please refer the section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
1990
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
1991 1992

    Args:
Q
qingqing01 已提交
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
       inputs (list(Variable)|tuple(Variable)): The list of input variables,
           the format of all Variables are 4-D Tensor, layout is NCHW.
           Data type should be float32 or float64.
       image (Variable): The input image, layout is NCHW. Data type should be
           the same as inputs.
       base_size(int): the base_size is input image size. When len(inputs) > 2
           and `min_size` and `max_size` are None, the `min_size` and `max_size`
           are calculated by `baze_size`, 'min_ratio' and `max_ratio`. The
           formula is as follows:

              ..  code-block:: text

                  min_sizes = []
                  max_sizes = []
                  step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
                  for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
                      min_sizes.append(base_size * ratio / 100.)
                      max_sizes.append(base_size * (ratio + step) / 100.)
                      min_sizes = [base_size * .10] + min_sizes
                      max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
2014
       num_classes(int): The number of classes.
Q
qingqing01 已提交
2015 2016
       aspect_ratios(list(float) | tuple(float)): the aspect ratios of generated
           prior boxes. The length of input and aspect_ratios must be equal.
C
chengduoZH 已提交
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
2036
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
2037 2038 2039 2040 2041
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
Q
qingqing01 已提交
2042 2043 2044
       name(str): The default value is None.  Normally there is no need
           for user to set this property.  For more information, please
           refer to :ref:`api_guide_Name`.
2045
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
2046
            in order of [min, max, aspect_ratios], which is consistent with
2047 2048 2049
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the fininal
            detection results. Default: False.
C
chengduoZH 已提交
2050 2051

    Returns:
Q
update  
qiaolongfei 已提交
2052 2053
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

Q
qingqing01 已提交
2054 2055 2056
        mbox_loc (Variable): The predicted boxes' location of the inputs. The
        layout is [N, num_priors, 4], where N is batch size, ``num_priors``
        is the number of prior boxes. Data type is the same as input.
Q
update  
qiaolongfei 已提交
2057

Q
qingqing01 已提交
2058 2059 2060 2061
        mbox_conf (Variable): The predicted boxes' confidence of the inputs.
        The layout is [N, num_priors, C], where ``N`` and ``num_priors`` 
        has the same meaning as above. C is the number of Classes.
        Data type is the same as input.
Q
update  
qiaolongfei 已提交
2062

Q
qingqing01 已提交
2063 2064 2065
        boxes (Variable): the output prior boxes. The layout is [num_priors, 4].
        The meaning of num_priors is the same as above.
        Data type is the same as input.
C
chengduoZH 已提交
2066

Q
qingqing01 已提交
2067 2068
        variances (Variable): the expanded variances for prior boxes.
        The layout is [num_priors, 4]. Data type is the same as input.
C
chengduoZH 已提交
2069

Q
qingqing01 已提交
2070
    Examples 1: set min_ratio and max_ratio:
C
chengduoZH 已提交
2071
        .. code-block:: python
Q
update  
qiaolongfei 已提交
2072

2073 2074
          import paddle.fluid as fluid

Q
qingqing01 已提交
2075 2076 2077 2078 2079 2080 2081
          images = fluid.data(name='data', shape=[None, 3, 300, 300], dtype='float32')
          conv1 = fluid.data(name='conv1', shape=[None, 512, 19, 19], dtype='float32')
          conv2 = fluid.data(name='conv2', shape=[None, 1024, 10, 10], dtype='float32')
          conv3 = fluid.data(name='conv3', shape=[None, 512, 5, 5], dtype='float32')
          conv4 = fluid.data(name='conv4', shape=[None, 256, 3, 3], dtype='float32')
          conv5 = fluid.data(name='conv5', shape=[None, 256, 2, 2], dtype='float32')
          conv6 = fluid.data(name='conv6', shape=[None, 128, 1, 1], dtype='float32')
2082

Q
update  
qiaolongfei 已提交
2083
          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
2084
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
C
chengduoZH 已提交
2085 2086 2087 2088 2089 2090 2091 2092 2093
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
Q
qingqing01 已提交
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119

    Examples 2: set min_sizes and max_sizes:
        .. code-block:: python

          import paddle.fluid as fluid

          images = fluid.data(name='data', shape=[None, 3, 300, 300], dtype='float32')
          conv1 = fluid.data(name='conv1', shape=[None, 512, 19, 19], dtype='float32')
          conv2 = fluid.data(name='conv2', shape=[None, 1024, 10, 10], dtype='float32')
          conv3 = fluid.data(name='conv3', shape=[None, 512, 5, 5], dtype='float32')
          conv4 = fluid.data(name='conv4', shape=[None, 256, 3, 3], dtype='float32')
          conv5 = fluid.data(name='conv5', shape=[None, 256, 2, 2], dtype='float32')
          conv6 = fluid.data(name='conv6', shape=[None, 128, 1, 1], dtype='float32')

          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
            image=images,
            num_classes=21,
            min_sizes=[60.0, 105.0, 150.0, 195.0, 240.0, 285.0],
            max_sizes=[[], 150.0, 195.0, 240.0, 285.0, 300.0],
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)

C
chengduoZH 已提交
2120 2121
    """

C
chengduoZH 已提交
2122
    def _reshape_with_axis_(input, axis=1):
2123
        out = nn.flatten(x=input, axis=axis)
C
chengduoZH 已提交
2124
        return out
2125

2126 2127
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
2128

C
chengduoZH 已提交
2129 2130 2131 2132
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

2133 2134
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
2135

C
chengduoZH 已提交
2136 2137 2138 2139 2140
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
2141
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
2142 2143 2144
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
M
minqiyang 已提交
2145
        for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
C
chengduoZH 已提交
2146 2147 2148 2149 2150
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
    if step_h:
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
    if step_w:
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
    if steps:
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
2174 2175
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
2176 2177
    box_results = []
    var_results = []
C
chengduoZH 已提交
2178 2179
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
2180 2181
        max_size = max_sizes[i]

2182
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
2183
            min_size = [min_size]
C
chengduoZH 已提交
2184 2185
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
2186 2187 2188 2189

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
2190
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
2191
                aspect_ratio = [aspect_ratio]
2192
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
2193

2194
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
2195 2196
                             variance, flip, clip, step, offset, None,
                             min_max_aspect_ratios_order)
C
chengduoZH 已提交
2197 2198 2199 2200 2201

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
2202

2203
        # get loc
Y
Yuan Gao 已提交
2204
        num_loc_output = num_boxes * 4
2205
        mbox_loc = nn.conv2d(
C
chengduoZH 已提交
2206
            input=input,
2207 2208 2209 2210 2211
            num_filters=num_loc_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)

2212
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
2213
        mbox_loc_flatten = nn.flatten(mbox_loc, axis=1)
Y
Yuan Gao 已提交
2214
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
2215

2216
        # get conf
C
chengduoZH 已提交
2217
        num_conf_output = num_boxes * num_classes
2218
        conf_loc = nn.conv2d(
C
chengduoZH 已提交
2219
            input=input,
2220 2221 2222 2223
            num_filters=num_conf_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)
2224
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
2225
        conf_loc_flatten = nn.flatten(conf_loc, axis=1)
Y
Yuan Gao 已提交
2226
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
2227

C
chengduoZH 已提交
2228 2229 2230
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
2231 2232
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
2233 2234 2235 2236 2237 2238 2239 2240 2241
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
2242
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
2243
        mbox_locs_concat = nn.reshape(mbox_locs_concat, shape=[0, -1, 4])
Y
Yuan Gao 已提交
2244
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
2245 2246
        mbox_confs_concat = nn.reshape(
            mbox_confs_concat, shape=[0, -1, num_classes])
C
chengduoZH 已提交
2247

2248 2249
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
2250
    return mbox_locs_concat, mbox_confs_concat, box, var
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
W
wangguanzhong 已提交
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
       input(Variable): 4-D Tensor with shape [N,C,H,W]. The input feature map.
       anchor_sizes(float32|list|tuple, optional): The anchor sizes of generated
          anchors, given in absolute pixels e.g. [64., 128., 256., 512.].
          For instance, the anchor size of 64 means the area of this anchor 
          equals to 64**2. None by default.
       aspect_ratios(float32|list|tuple, optional): The height / width ratios 
           of generated anchors, e.g. [0.5, 1.0, 2.0]. None by default.
       variance(list|tuple, optional): The variances to be used in box 
           regression deltas. The data type is float32, [0.1, 0.1, 0.2, 0.2] by 
           default.
       stride(list|tuple, optional): The anchors stride across width and height.
           The data type is float32. e.g. [16.0, 16.0]. None by default.
       offset(float32, optional): Prior boxes center offset. 0.5 by default.
       name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and None 
           by default. 
2285 2286

    Returns:
W
wangguanzhong 已提交
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
        Tuple:

        Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4].
        H is the height of input, W is the width of input,
        num_anchors is the box count of each position. 
        Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
 
        Variances(Variable): The expanded variances of anchors
        with a layout of [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_anchors is the box count of each position.
        Each variance is in (xcenter, ycenter, w, h) format.
2299 2300 2301 2302 2303 2304


    Examples:

        .. code-block:: python

2305
            import paddle.fluid as fluid
2306
            conv1 = fluid.data(name='conv1', shape=[None, 48, 16, 16], dtype='float32')
J
jerrywgz 已提交
2307
            anchor, var = fluid.layers.anchor_generator(
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

X
Xin Pan 已提交
2341 2342
    anchor = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
2343 2344 2345 2346 2347 2348 2349 2350 2351
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
        outputs={"Anchors": anchor,
                 "Variances": var},
        attrs=attrs, )
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var
2352 2353


W
whs 已提交
2354 2355 2356 2357
def roi_perspective_transform(input,
                              rois,
                              transformed_height,
                              transformed_width,
S
SunGaofeng 已提交
2358 2359
                              spatial_scale=1.0,
                              name=None):
W
whs 已提交
2360
    """
S
SunGaofeng 已提交
2361
    **The** `rois` **of this op should be a LoDTensor.**
W
whs 已提交
2362

S
SunGaofeng 已提交
2363 2364 2365 2366 2367
    ROI perspective transform op applies perspective transform to map each roi into an 
    rectangular region. Perspective transform is a type of transformation in linear algebra.

    Parameters:
        input (Variable): 4-D Tensor, input of ROIPerspectiveTransformOp. The format of 
W
whs 已提交
2368 2369
                          input tensor is NCHW. Where N is batch size, C is the
                          number of input channels, H is the height of the feature,
S
SunGaofeng 已提交
2370 2371 2372
                          and W is the width of the feature. The data type is float32.
        rois (Variable):  2-D LoDTensor, ROIs (Regions of Interest) to be transformed. 
                          It should be a 2-D LoDTensor of shape (num_rois, 8). Given as 
W
whs 已提交
2373 2374 2375
                          [[x1, y1, x2, y2, x3, y3, x4, y4], ...], (x1, y1) is the 
                          top left coordinates, and (x2, y2) is the top right 
                          coordinates, and (x3, y3) is the bottom right coordinates, 
S
SunGaofeng 已提交
2376 2377 2378 2379
                          and (x4, y4) is the bottom left coordinates. The data type is the
                          same as `input` 
        transformed_height (int): The height of transformed output.
        transformed_width (int): The width of transformed output.
W
whs 已提交
2380
        spatial_scale (float): Spatial scale factor to scale ROI coords. Default: 1.0
S
SunGaofeng 已提交
2381 2382 2383
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
W
whs 已提交
2384 2385

    Returns:
S
SunGaofeng 已提交
2386
            A tuple with three Variables. (out, mask, transform_matrix)
2387 2388

            out: The output of ROIPerspectiveTransformOp which is a 4-D tensor with shape
S
SunGaofeng 已提交
2389
            (num_rois, channels, transformed_h, transformed_w). The data type is the same as `input`
2390 2391

            mask: The mask of ROIPerspectiveTransformOp which is a 4-D tensor with shape
S
SunGaofeng 已提交
2392
            (num_rois, 1, transformed_h, transformed_w). The data type is int32
2393 2394

            transform_matrix: The transform matrix of ROIPerspectiveTransformOp which is
S
SunGaofeng 已提交
2395 2396 2397 2398
            a 2-D tensor with shape (num_rois, 9). The data type is the same as `input`

    Return Type:
        tuple
W
whs 已提交
2399 2400 2401 2402

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
2403
            import paddle.fluid as fluid
2404

S
SunGaofeng 已提交
2405 2406
            x = fluid.data(name='x', shape=[100, 256, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 8], lod_level=1, dtype='float32')
2407
            out, mask, transform_matrix = fluid.layers.roi_perspective_transform(x, rois, 7, 7, 1.0)
W
whs 已提交
2408 2409 2410
    """
    helper = LayerHelper('roi_perspective_transform', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2411
    out = helper.create_variable_for_type_inference(dtype)
2412 2413
    mask = helper.create_variable_for_type_inference(dtype="int32")
    transform_matrix = helper.create_variable_for_type_inference(dtype)
2414 2415
    out2in_idx = helper.create_variable_for_type_inference(dtype="int32")
    out2in_w = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
2416 2417 2418 2419
    helper.append_op(
        type="roi_perspective_transform",
        inputs={"X": input,
                "ROIs": rois},
2420 2421 2422
        outputs={
            "Out": out,
            "Out2InIdx": out2in_idx,
2423 2424 2425
            "Out2InWeights": out2in_w,
            "Mask": mask,
            "TransformMatrix": transform_matrix
2426
        },
W
whs 已提交
2427 2428 2429 2430 2431
        attrs={
            "transformed_height": transformed_height,
            "transformed_width": transformed_width,
            "spatial_scale": spatial_scale
        })
2432
    return out, mask, transform_matrix
W
whs 已提交
2433 2434


2435 2436
def generate_proposal_labels(rpn_rois,
                             gt_classes,
2437
                             is_crowd,
2438
                             gt_boxes,
2439
                             im_info,
2440 2441 2442 2443 2444 2445
                             batch_size_per_im=256,
                             fg_fraction=0.25,
                             fg_thresh=0.25,
                             bg_thresh_hi=0.5,
                             bg_thresh_lo=0.0,
                             bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
2446
                             class_nums=None,
2447 2448 2449
                             use_random=True,
                             is_cls_agnostic=False,
                             is_cascade_rcnn=False):
2450
    """
2451
    **Generate Proposal Labels of Faster-RCNN**
2452

B
buxingyuan 已提交
2453
    This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
B
buxingyuan 已提交
2454
    to sample foreground boxes and background boxes, and compute loss target.
B
buxingyuan 已提交
2455 2456 2457

    RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes
    were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction,
B
buxingyuan 已提交
2458
    If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample.
B
buxingyuan 已提交
2459 2460
    If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi,
    then it was considered as a background sample.
B
buxingyuan 已提交
2461
    After all foreground and background boxes are chosen (so called Rois),
B
buxingyuan 已提交
2462
    then we apply random sampling to make sure
B
buxingyuan 已提交
2463
    the number of foreground boxes is no more than batch_size_per_im * fg_fraction.
B
buxingyuan 已提交
2464 2465 2466 2467 2468

    For each box in Rois, we assign the classification (class label) and regression targets (box label) to it.
    Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss.

    Args:
2469 2470 2471
        rpn_rois(Variable): A 2-D LoDTensor with shape [N, 4]. N is the number of the GenerateProposalOp's output, each element is a bounding box with [xmin, ymin, xmax, ymax] format. The data type can be float32 or float64.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a class label of groundtruth. The data type must be int32.
        is_crowd(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a flag indicates whether a groundtruth is crowd. The data type must be int32.
B
buxingyuan 已提交
2472 2473 2474
        gt_boxes(Variable): A 2-D LoDTensor with shape [M, 4]. M is the number of groundtruth, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        im_info(Variable): A 2-D LoDTensor with shape [B, 3]. B is the number of input images, each element consists of im_height, im_width, im_scale.

2475 2476 2477 2478 2479 2480 2481
        batch_size_per_im(int): Batch size of rois per images. The data type must be int32.
        fg_fraction(float): Foreground fraction in total batch_size_per_im. The data type must be float32.
        fg_thresh(float): Overlap threshold which is used to chose foreground sample. The data type must be float32.
        bg_thresh_hi(float): Overlap threshold upper bound which is used to chose background sample. The data type must be float32.
        bg_thresh_lo(float): Overlap threshold lower bound which is used to chose background sample. The data type must be float32.
        bbox_reg_weights(list|tuple): Box regression weights. The data type must be float32.
        class_nums(int): Class number. The data type must be int32.
B
buxingyuan 已提交
2482
        use_random(bool): Use random sampling to choose foreground and background boxes.
2483 2484
        is_cls_agnostic(bool): bbox regression use class agnostic simply which only represent fg and bg boxes.
        is_cascade_rcnn(bool): it will filter some bbox crossing the image's boundary when setting True.
B
Bai Yifan 已提交
2485

2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
    Returns:
        tuple:
        A tuple with format``(rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights)``.

        - **rois**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4]``. The data type is the same as ``rpn_rois``.
        - **labels_int32**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 1]``. The data type must be int32.
        - **bbox_targets**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The regression targets of all RoIs. The data type is the same as ``rpn_rois``.
        - **bbox_inside_weights**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The weights of foreground boxes' regression loss. The data type is the same as ``rpn_rois``.
        - **bbox_outside_weights**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The weights of regression loss. The data type is the same as ``rpn_rois``.


B
Bai Yifan 已提交
2497 2498 2499 2500
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
2501 2502 2503 2504 2505
            rpn_rois = fluid.data(name='rpn_rois', shape=[None, 4], dtype='float32')
            gt_classes = fluid.data(name='gt_classes', shape=[None, 1], dtype='float32')
            is_crowd = fluid.data(name='is_crowd', shape=[None, 1], dtype='float32')
            gt_boxes = fluid.data(name='gt_boxes', shape=[None, 4], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[None, 3], dtype='float32')
2506
            rois, labels, bbox, inside_weights, outside_weights = fluid.layers.generate_proposal_labels(
B
Bai Yifan 已提交
2507 2508 2509
                           rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
                           class_nums=10)

2510 2511 2512 2513
    """

    helper = LayerHelper('generate_proposal_labels', **locals())

X
Xin Pan 已提交
2514 2515 2516 2517 2518 2519 2520 2521 2522
    rois = helper.create_variable_for_type_inference(dtype=rpn_rois.dtype)
    labels_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    bbox_targets = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_inside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_outside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
2523 2524 2525 2526 2527 2528

    helper.append_op(
        type="generate_proposal_labels",
        inputs={
            'RpnRois': rpn_rois,
            'GtClasses': gt_classes,
2529
            'IsCrowd': is_crowd,
2530
            'GtBoxes': gt_boxes,
2531
            'ImInfo': im_info
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
        },
        outputs={
            'Rois': rois,
            'LabelsInt32': labels_int32,
            'BboxTargets': bbox_targets,
            'BboxInsideWeights': bbox_inside_weights,
            'BboxOutsideWeights': bbox_outside_weights
        },
        attrs={
            'batch_size_per_im': batch_size_per_im,
            'fg_fraction': fg_fraction,
            'fg_thresh': fg_thresh,
            'bg_thresh_hi': bg_thresh_hi,
            'bg_thresh_lo': bg_thresh_lo,
            'bbox_reg_weights': bbox_reg_weights,
2547
            'class_nums': class_nums,
2548 2549 2550
            'use_random': use_random,
            'is_cls_agnostic': is_cls_agnostic,
            'is_cascade_rcnn': is_cascade_rcnn
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
        })

    rois.stop_gradient = True
    labels_int32.stop_gradient = True
    bbox_targets.stop_gradient = True
    bbox_inside_weights.stop_gradient = True
    bbox_outside_weights.stop_gradient = True

    return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights


2562 2563 2564
def generate_mask_labels(im_info, gt_classes, is_crowd, gt_segms, rois,
                         labels_int32, num_classes, resolution):
    """
Q
qingqing01 已提交
2565
    **Generate Mask Labels for Mask-RCNN**
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600

    This operator can be, for given the RoIs and corresponding labels,
    to sample foreground RoIs. This mask branch also has
    a :math: `K \\times M^{2}` dimensional output targets for each foreground
    RoI, which encodes K binary masks of resolution M x M, one for each of the
    K classes. This mask targets are used to compute loss of mask branch.

    Please note, the data format of groud-truth segmentation, assumed the
    segmentations are as follows. The first instance has two gt objects.
    The second instance has one gt object, this object has two gt segmentations.

        .. code-block:: python

            #[
            #  [[[229.14, 370.9, 229.14, 370.9, ...]],
            #   [[343.7, 139.85, 349.01, 138.46, ...]]], # 0-th instance
            #  [[[500.0, 390.62, ...],[115.48, 187.86, ...]]] # 1-th instance
            #]

            batch_masks = []
            for semgs in batch_semgs:
                gt_masks = []
                for semg in semgs:
                    gt_segm = []
                    for polys in semg:
                        gt_segm.append(np.array(polys).reshape(-1, 2))
                    gt_masks.append(gt_segm)
                batch_masks.append(gt_masks)
            
            
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(place=place, feed_list=feeds)
            feeder.feed(batch_masks)

    Args:
Q
qingqing01 已提交
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
        im_info (Variable): A 2-D Tensor with shape [N, 3] and float32
            data type. N is the batch size, each element is
            [height, width, scale] of image. Image scale is
            target_size / original_size, target_size is the size after resize,
            original_size is the original image size.
        gt_classes (Variable): A 2-D LoDTensor with shape [M, 1]. Data type
            shoule be int. M is the total number of ground-truth, each
            element is a class label.
        is_crowd (Variable): A 2-D LoDTensor with same shape and same data type
            as gt_classes, each element is a flag indicating whether a
            groundtruth is crowd.
        gt_segms (Variable): This input is a 2D LoDTensor with shape [S, 2] and
            float32 data type, it's LoD level is 3.
            Usually users do not needs to understand LoD,
2615
            The users should return correct data format in reader.
Q
qingqing01 已提交
2616
            The LoD[0] represents the ground-truth objects number of
2617 2618 2619 2620
            each instance. LoD[1] represents the segmentation counts of each
            objects. LoD[2] represents the polygons number of each segmentation.
            S the total number of polygons coordinate points. Each element is
            (x, y) coordinate points.
Q
qingqing01 已提交
2621 2622 2623 2624
        rois (Variable): A 2-D LoDTensor with shape [R, 4] and float32 data type
            float32. R is the total number of RoIs, each element is a bounding
            box with (xmin, ymin, xmax, ymax) format in the range of original image.
        labels_int32 (Variable): A 2-D LoDTensor in shape of [R, 1] with type
2625 2626
            of int32. R is the same as it in `rois`. Each element repersents
            a class label of a RoI.
Q
qingqing01 已提交
2627 2628
        num_classes (int): Class number.
        resolution (int): Resolution of mask predictions.
2629 2630

    Returns:
Q
qingqing01 已提交
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
        mask_rois (Variable):  A 2D LoDTensor with shape [P, 4] and same data
        type as `rois`. P is the total number of sampled RoIs. Each element
        is a bounding box with [xmin, ymin, xmax, ymax] format in range of
        orignal image size.

        mask_rois_has_mask_int32 (Variable): A 2D LoDTensor with shape [P, 1]
        and int data type, each element repersents the output mask RoI
        index with regard to input RoIs.

        mask_int32 (Variable): A 2D LoDTensor with shape [P, K * M * M] and int
        data type, K is the classes number and M is the resolution of mask
        predictions. Each element repersents the binary mask targets.
2643 2644 2645 2646

    Examples:
        .. code-block:: python

2647 2648
          import paddle.fluid as fluid

Q
qingqing01 已提交
2649
          im_info = fluid.data(name="im_info", shape=[None, 3],
2650
              dtype="float32")
Q
qingqing01 已提交
2651
          gt_classes = fluid.data(name="gt_classes", shape=[None, 1],
2652
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2653
          is_crowd = fluid.data(name="is_crowd", shape=[None, 1],
2654
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2655
          gt_masks = fluid.data(name="gt_masks", shape=[None, 2],
2656
              dtype="float32", lod_level=3)
2657
          # rois, roi_labels can be the output of
2658
          # fluid.layers.generate_proposal_labels.
Q
qingqing01 已提交
2659
          rois = fluid.data(name="rois", shape=[None, 4],
2660
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2661
          roi_labels = fluid.data(name="roi_labels", shape=[None, 1],
2662
              dtype="int32", lod_level=1)
2663 2664 2665 2666 2667 2668
          mask_rois, mask_index, mask_int32 = fluid.layers.generate_mask_labels(
              im_info=im_info,
              gt_classes=gt_classes,
              is_crowd=is_crowd,
              gt_segms=gt_masks,
              rois=rois,
2669
              labels_int32=roi_labels,
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
              num_classes=81,
              resolution=14)
    """

    helper = LayerHelper('generate_mask_labels', **locals())

    mask_rois = helper.create_variable_for_type_inference(dtype=rois.dtype)
    roi_has_mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)

    helper.append_op(
        type="generate_mask_labels",
        inputs={
            'ImInfo': im_info,
            'GtClasses': gt_classes,
            'IsCrowd': is_crowd,
            'GtSegms': gt_segms,
            'Rois': rois,
            'LabelsInt32': labels_int32
        },
        outputs={
            'MaskRois': mask_rois,
            'RoiHasMaskInt32': roi_has_mask_int32,
            'MaskInt32': mask_int32
        },
        attrs={'num_classes': num_classes,
               'resolution': resolution})

    mask_rois.stop_gradient = True
    roi_has_mask_int32.stop_gradient = True
    mask_int32.stop_gradient = True

    return mask_rois, roi_has_mask_int32, mask_int32


2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
def generate_proposals(scores,
                       bbox_deltas,
                       im_info,
                       anchors,
                       variances,
                       pre_nms_top_n=6000,
                       post_nms_top_n=1000,
                       nms_thresh=0.5,
                       min_size=0.1,
                       eta=1.0,
                       name=None):
    """
H
haowang101779990 已提交
2719 2720
    **Generate proposal Faster-RCNN**

2721 2722 2723 2724
    This operation proposes RoIs according to each box with their
    probability to be a foreground object and 
    the box can be calculated by anchors. Bbox_deltais and scores
    to be an object are the output of RPN. Final proposals
H
haowang101779990 已提交
2725 2726 2727 2728
    could be used to train detection net.

    For generating proposals, this operation performs following steps:

2729 2730
    1. Transposes and resizes scores and bbox_deltas in size of
       (H*W*A, 1) and (H*W*A, 4)
H
haowang101779990 已提交
2731 2732 2733 2734 2735 2736
    2. Calculate box locations as proposals candidates. 
    3. Clip boxes to image
    4. Remove predicted boxes with small area. 
    5. Apply NMS to get final proposals as output.

    Args:
2737 2738 2739
        scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents
            the probability for each box to be an object.
            N is batch size, A is number of anchors, H and W are height and
2740
            width of the feature map. The data type must be float32.
2741 2742
        bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W]
            represents the differece between predicted box locatoin and
2743
            anchor location. The data type must be float32.
2744 2745
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin
            image information for N batch. Info contains height, width and scale
H
haowang101779990 已提交
2746
            between origin image size and the size of feature map.
2747
            The data type must be int32.
2748 2749 2750
        anchors(Variable):   A 4-D Tensor represents the anchors with a layout
            of [H, W, A, 4]. H and W are height and width of the feature map,
            num_anchors is the box count of each position. Each anchor is
2751 2752
            in (xmin, ymin, xmax, ymax) format an unnormalized. The data type must be float32.
        variances(Variable): A 4-D Tensor. The expanded variances of anchors with a layout of
2753
            [H, W, num_priors, 4]. Each variance is in
2754
            (xcenter, ycenter, w, h) format. The data type must be float32.
2755
        pre_nms_top_n(float): Number of total bboxes to be kept per
2756
            image before NMS. The data type must be float32. `6000` by default.
2757
        post_nms_top_n(float): Number of total bboxes to be kept per
2758 2759
            image after NMS. The data type must be float32. `1000` by default.
        nms_thresh(float): Threshold in NMS. The data type must be float32. `0.5` by default.
2760
        min_size(float): Remove predicted boxes with either height or
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
            width < min_size. The data type must be float32. `0.1` by default.
        eta(float): Apply in adaptive NMS, if adaptive `threshold > 0.5`,
            `adaptive_threshold = adaptive_threshold * eta` in each iteration.

    Returns:
        tuple:
        A tuple with format ``(rpn_rois, rpn_roi_probs)``.

        - **rpn_rois**: The generated RoIs. 2-D Tensor with shape ``[N, 4]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
        - **rpn_roi_probs**: The scores of generated RoIs. 2-D Tensor with shape ``[N, 1]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
B
Bai Yifan 已提交
2771 2772 2773 2774 2775

    Examples:
        .. code-block:: python
        
            import paddle.fluid as fluid
2776 2777 2778 2779 2780
            scores = fluid.data(name='scores', shape=[None, 4, 5, 5], dtype='float32')
            bbox_deltas = fluid.data(name='bbox_deltas', shape=[None, 16, 5, 5], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[None, 3], dtype='float32')
            anchors = fluid.data(name='anchors', shape=[None, 5, 4, 4], dtype='float32')
            variances = fluid.data(name='variances', shape=[None, 5, 10, 4], dtype='float32')
B
Bai Yifan 已提交
2781 2782 2783
            rois, roi_probs = fluid.layers.generate_proposals(scores, bbox_deltas,
                         im_info, anchors, variances)

2784 2785 2786
    """
    helper = LayerHelper('generate_proposals', **locals())

X
Xin Pan 已提交
2787 2788 2789 2790
    rpn_rois = helper.create_variable_for_type_inference(
        dtype=bbox_deltas.dtype)
    rpn_roi_probs = helper.create_variable_for_type_inference(
        dtype=scores.dtype)
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
    helper.append_op(
        type="generate_proposals",
        inputs={
            'Scores': scores,
            'BboxDeltas': bbox_deltas,
            'ImInfo': im_info,
            'Anchors': anchors,
            'Variances': variances
        },
        attrs={
            'pre_nms_topN': pre_nms_top_n,
            'post_nms_topN': post_nms_top_n,
            'nms_thresh': nms_thresh,
            'min_size': min_size,
            'eta': eta
        },
        outputs={'RpnRois': rpn_rois,
                 'RpnRoiProbs': rpn_roi_probs})
    rpn_rois.stop_gradient = True
    rpn_roi_probs.stop_gradient = True

    return rpn_rois, rpn_roi_probs
J
jerrywgz 已提交
2813 2814


J
jerrywgz 已提交
2815
def box_clip(input, im_info, name=None):
J
jerrywgz 已提交
2816 2817
    """
    Clip the box into the size given by im_info
J
jerrywgz 已提交
2818
    For each input box, The formula is given as follows:
2819 2820 2821
        
    .. code-block:: text

J
jerrywgz 已提交
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
        xmin = max(min(xmin, im_w - 1), 0)
        ymin = max(min(ymin, im_h - 1), 0) 
        xmax = max(min(xmax, im_w - 1), 0)
        ymax = max(min(ymax, im_h - 1), 0)
    
    where im_w and im_h are computed from im_info:
 
    .. code-block:: text

        im_h = round(height / scale)
        im_w = round(weight / scale)
J
jerrywgz 已提交
2833 2834

    Args:
W
wangguanzhong 已提交
2835 2836 2837 2838 2839 2840 2841 2842 2843
        input(Variable): The input Tensor with shape :math:`[N_1, N_2, ..., N_k, 4]`,
            the last dimension is 4 and data type is float32 or float64.
        im_info(Variable): The 2-D Tensor with shape [N, 3] with layout 
            (height, width, scale) represeting the information of image. 
            height and width is the input size and scale is the ratio of input
            size and original size. The data type is float32 or float64.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
2844 2845
    
    Returns:
W
wangguanzhong 已提交
2846 2847 2848 2849 2850
        Variable:

        output(Variable): The cliped tensor with data type float32 or float64. 
        The shape is same as input.

2851
        
J
jerrywgz 已提交
2852 2853
    Examples:
        .. code-block:: python
2854
        
2855
            import paddle.fluid as fluid
2856 2857 2858
            boxes = fluid.data(
                name='boxes', shape=[None, 8, 4], dtype='float32', lod_level=1)
            im_info = fluid.data(name='im_info', shape=[-1 ,3])
J
jerrywgz 已提交
2859
            out = fluid.layers.box_clip(
J
jerrywgz 已提交
2860
                input=boxes, im_info=im_info)
J
jerrywgz 已提交
2861 2862 2863
    """

    helper = LayerHelper("box_clip", **locals())
J
jerrywgz 已提交
2864
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
2865
    inputs = {"Input": input, "ImInfo": im_info}
J
jerrywgz 已提交
2866
    helper.append_op(type="box_clip", inputs=inputs, outputs={"Output": output})
J
jerrywgz 已提交
2867

2868 2869
    return output

J
jerrywgz 已提交
2870

2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
def retinanet_detection_output(bboxes,
                               scores,
                               anchors,
                               im_info,
                               score_threshold=0.05,
                               nms_top_k=1000,
                               keep_top_k=100,
                               nms_threshold=0.3,
                               nms_eta=1.):
    """
2881
    **Detection Output Layer for the detector RetinaNet.**
2882

2883 2884 2885 2886
    In the detector `RetinaNet <https://arxiv.org/abs/1708.02002>`_ , many 
    `FPN <https://arxiv.org/abs/1612.03144>`_ levels output the category
    and location predictions, this OP is to get the detection results by
    performing following steps:
2887

2888 2889 2890
    1. For each FPN level, decode box predictions according to the anchor
       boxes from at most :attr:`nms_top_k` top-scoring predictions after
       thresholding detector confidence at :attr:`score_threshold`.
2891 2892 2893 2894
    2. Merge top predictions from all levels and apply multi-class non 
       maximum suppression (NMS) on them to get the final detections.

    Args:
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
        bboxes(List): A list of Tensors from multiple FPN levels represents
            the location prediction for all anchor boxes. Each element is
            a 3-D Tensor with shape :math:`[N, Mi, 4]`, :math:`N` is the
            batch size, :math:`Mi` is the number of bounding boxes from
            :math:`i`-th FPN level and each bounding box has four coordinate
            values and the layout is [xmin, ymin, xmax, ymax]. The data type
            of each element is float32 or float64.
        scores(List): A list of Tensors from multiple FPN levels represents
            the category prediction for all anchor boxes. Each element is a
            3-D Tensor with shape :math:`[N, Mi, C]`,  :math:`N` is the batch
            size, :math:`C` is the class number (**excluding background**),
            :math:`Mi` is the number of bounding boxes from :math:`i`-th FPN
            level. The data type of each element is float32 or float64.
        anchors(List): A list of Tensors from multiple FPN levels represents
            the locations of all anchor boxes. Each element is a 2-D Tensor
            with shape :math:`[Mi, 4]`, :math:`Mi` is the number of bounding
            boxes from :math:`i`-th FPN level, and each bounding box has four
2912
            coordinate values and the layout is [xmin, ymin, xmax, ymax].
2913 2914 2915 2916 2917 2918
            The data type of each element is float32 or float64.
        im_info(Variable): A 2-D Tensor with shape :math:`[N, 3]` represents the size
            information of input images. :math:`N` is the batch size, the size
            informarion of each image is a 3-vector which are the height and width
            of the network input along with the factor scaling the origin image to
            the network input. The data type of :attr:`im_info` is float32.
2919
        score_threshold(float): Threshold to filter out bounding boxes
2920
            with a confidence score before NMS, default value is set to 0.05.
2921
        nms_top_k(int): Maximum number of detections per FPN layer to be
2922 2923
            kept according to the confidences before NMS, default value is set to
            1000.
2924
        keep_top_k(int): Number of total bounding boxes to be kept per image after
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
            NMS step. Default value is set to 100, -1 means keeping all bounding
            boxes after NMS step.
        nms_threshold(float): The Intersection-over-Union(IoU) threshold used to 
            filter out boxes in NMS.
        nms_eta(float): The parameter for adjusting :attr:`nms_threshold` in NMS.
            Default value is set to 1., which represents the value of
            :attr:`nms_threshold` keep the same in NMS. If :attr:`nms_eta` is set
            to be lower than 1. and the value of :attr:`nms_threshold` is set to
            be higher than 0.5, everytime a bounding box is filtered out,
            the adjustment for :attr:`nms_threshold` like :attr:`nms_threshold`
            = :attr:`nms_threshold` * :attr:`nms_eta`  will not be stopped until
            the actual value of :attr:`nms_threshold` is lower than or equal to
            0.5.

    **Notice**: In some cases where the image sizes are very small, it's possible
    that there is no detection if :attr:`score_threshold` are used at all
    levels. Hence, this OP do not filter out anchors from the highest FPN level
    before NMS. And the last element in :attr:`bboxes`:, :attr:`scores` and
    :attr:`anchors` is required to be from the hightest FPN level.
2944 2945

    Returns:
2946 2947
        Variable(The data type is float32 or float64):
            The detection output is a 1-level LoDTensor with shape :math:`[No, 6]`.
2948
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
2949 2950 2951
            :math:`No` is the total number of detections in this mini-batch.
            The :math:`i`-th image has `LoD[i + 1] - LoD[i]` detected
            results, if `LoD[i + 1] - LoD[i]` is 0, the :math:`i`-th image
2952 2953 2954 2955 2956 2957
            has no detected results. If all images have no detected results,
            LoD will be set to 0, and the output tensor is empty (None).

    Examples:
        .. code-block:: python

2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
           import paddle.fluid as fluid

           bboxes_low = fluid.data(
               name='bboxes_low', shape=[1, 44, 4], dtype='float32')
           bboxes_high = fluid.data(
               name='bboxes_high', shape=[1, 11, 4], dtype='float32')
           scores_low = fluid.data(
               name='scores_low', shape=[1, 44, 10], dtype='float32')
           scores_high = fluid.data(
               name='scores_high', shape=[1, 11, 10], dtype='float32')
           anchors_low = fluid.data(
               name='anchors_low', shape=[44, 4], dtype='float32')
           anchors_high = fluid.data(
               name='anchors_high', shape=[11, 4], dtype='float32')
           im_info = fluid.data(
               name="im_info", shape=[1, 3], dtype='float32')
           nmsed_outs = fluid.layers.retinanet_detection_output(
                                          bboxes=[bboxes_low, bboxes_high],
                                          scores=[scores_low, scores_high],
                                          anchors=[anchors_low, anchors_high],
                                          im_info=im_info,
                                          score_threshold=0.05,
                                          nms_top_k=1000,
                                          keep_top_k=100,
                                          nms_threshold=0.45,
                                          nms_eta=1.)
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
    """

    helper = LayerHelper('retinanet_detection_output', **locals())
    output = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('scores'))
    helper.append_op(
        type="retinanet_detection_output",
        inputs={
            'BBoxes': bboxes,
            'Scores': scores,
            'Anchors': anchors,
            'ImInfo': im_info
        },
        attrs={
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'keep_top_k': keep_top_k,
            'nms_eta': 1.,
        },
        outputs={'Out': output})
    output.stop_gradient = True
    return output


J
jerrywgz 已提交
3009 3010 3011 3012 3013
def multiclass_nms(bboxes,
                   scores,
                   score_threshold,
                   nms_top_k,
                   keep_top_k,
J
jerrywgz 已提交
3014
                   nms_threshold=0.3,
J
jerrywgz 已提交
3015 3016
                   normalized=True,
                   nms_eta=1.,
3017 3018
                   background_label=0,
                   name=None):
J
jerrywgz 已提交
3019
    """
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
    **Multiclass NMS**
    
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.

    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
    See below for an example:

    .. code-block:: text

        if:
            box1.data = (2.0, 3.0, 7.0, 5.0) format is (xmin, ymin, xmax, ymax)
            box1.scores = (0.7, 0.2, 0.4)  which is (label0.score=0.7, label1.score=0.2, label2.cores=0.4)

            box2.data = (3.0, 4.0, 8.0, 5.0)
            box2.score = (0.3, 0.3, 0.1)

            nms_threshold = 0.3
            background_label = 0
            score_threshold = 0
3048

3049 3050 3051 3052 3053 3054 3055

        Then:
            iou = 4/11 > 0.3
            out.data = [[1, 0.3, 3.0, 4.0, 8.0, 5.0],    
                         [2, 0.4, 2.0, 3.0, 7.0, 5.0]]
                         
            Out format is (label, confidence, xmin, ymin, xmax, ymax)
3056 3057 3058 3059 3060 3061 3062 3063
    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is 
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
X
xiaoting 已提交
3064
                           The data type is float32 or float64.
3065 3066
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
                           M is the number of bounding boxes, C is the 
X
xiaoting 已提交
3067
                           class number. The data type is float32 or float64.   
3068 3069 3070 3071 3072 3073 3074
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is 
                           number of bounding boxes. For each category there 
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
X
xiaoting 已提交
3075
                           of BBoxes.The data type is float32 or float64. 
3076 3077 3078
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
X
xiaoting 已提交
3079
                           case with shape [M, C, 4].The data type is float32 or float64. 
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
        background_label (int): The index of background label, the background 
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided, 
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
                         the confidences aftern the filtering detections based
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
X
xiaoting 已提交
3097
        Variable: A 2-D LoDTensor with shape [No, 6] represents the detections.
3098 3099 3100 3101 3102
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values: 
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the 
             total number of detections. If there is no detected boxes for all
J
jerrywgz 已提交
3103 3104 3105 3106
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed 
             from {0} to {1}) 
3107

3108

3109 3110 3111
    Examples:
        .. code-block:: python

3112

3113
            import paddle.fluid as fluid
X
xiaoting 已提交
3114
            boxes = fluid.data(name='bboxes', shape=[None,81, 4],
3115
                                      dtype='float32', lod_level=1)
X
xiaoting 已提交
3116
            scores = fluid.data(name='scores', shape=[None,81],
3117 3118 3119 3120 3121 3122 3123 3124 3125
                                      dtype='float32', lod_level=1)
            out = fluid.layers.multiclass_nms(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
J
jerrywgz 已提交
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
    """
    helper = LayerHelper('multiclass_nms', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    helper.append_op(
        type="multiclass_nms",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'nms_eta': nms_eta,
            'normalized': normalized
        },
        outputs={'Out': output})
    output.stop_gradient = True
J
jerrywgz 已提交
3146 3147

    return output
3148 3149 3150 3151 3152 3153 3154 3155 3156


def distribute_fpn_proposals(fpn_rois,
                             min_level,
                             max_level,
                             refer_level,
                             refer_scale,
                             name=None):
    """
W
wangguanzhong 已提交
3157 3158 3159 3160 3161 3162
    **This op only takes LoDTensor as input.** In Feature Pyramid Networks 
    (FPN) models, it is needed to distribute all proposals into different FPN 
    level, with respect to scale of the proposals, the referring scale and the 
    referring level. Besides, to restore the order of proposals, we return an 
    array which indicates the original index of rois in current proposals. 
    To compute FPN level for each roi, the formula is given as follows:
3163
    
J
jerrywgz 已提交
3164
    .. math::
3165

J
jerrywgz 已提交
3166
        roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
3167

J
jerrywgz 已提交
3168 3169 3170
        level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)

    where BBoxArea is a function to compute the area of each roi.
3171 3172

    Args:
W
wangguanzhong 已提交
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184

        fpn_rois(Variable): 2-D Tensor with shape [N, 4] and data type is 
            float32 or float64. The input fpn_rois.
        min_level(int32): The lowest level of FPN layer where the proposals come 
            from.
        max_level(int32): The highest level of FPN layer where the proposals
            come from.
        refer_level(int32): The referring level of FPN layer with specified scale.
        refer_scale(int32): The referring scale of FPN layer with specified level.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
3185

3186
    Returns:
W
wangguanzhong 已提交
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
        Tuple:

        multi_rois(List) : A list of 2-D LoDTensor with shape [M, 4] 
        and data type of float32 and float64. The length is 
        max_level-min_level+1. The proposals in each FPN level.

        restore_ind(Variable): A 2-D Tensor with shape [N, 1], N is 
        the number of total rois. The data type is int32. It is
        used to restore the order of fpn_rois.

3197 3198 3199 3200

    Examples:
        .. code-block:: python

3201
            import paddle.fluid as fluid
3202 3203
            fpn_rois = fluid.data(
                name='data', shape=[None, 4], dtype='float32', lod_level=1)
3204
            multi_rois, restore_ind = fluid.layers.distribute_fpn_proposals(
3205 3206 3207
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
3208 3209 3210 3211 3212
                refer_level=4,
                refer_scale=224)
    """

    helper = LayerHelper('distribute_fpn_proposals', **locals())
3213
    dtype = helper.input_dtype('fpn_rois')
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
    num_lvl = max_level - min_level + 1
    multi_rois = [
        helper.create_variable_for_type_inference(dtype) for i in range(num_lvl)
    ]
    restore_ind = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type='distribute_fpn_proposals',
        inputs={'FpnRois': fpn_rois},
        outputs={'MultiFpnRois': multi_rois,
                 'RestoreIndex': restore_ind},
        attrs={
            'min_level': min_level,
            'max_level': max_level,
            'refer_level': refer_level,
            'refer_scale': refer_scale
        })
    return multi_rois, restore_ind
3231 3232


3233
@templatedoc()
J
jerrywgz 已提交
3234 3235 3236 3237 3238 3239
def box_decoder_and_assign(prior_box,
                           prior_box_var,
                           target_box,
                           box_score,
                           box_clip,
                           name=None):
3240 3241 3242 3243 3244 3245 3246
    """
    ${comment}
    Args:
        prior_box(${prior_box_type}): ${prior_box_comment}
        prior_box_var(${prior_box_var_type}): ${prior_box_var_comment}
        target_box(${target_box_type}): ${target_box_comment}
        box_score(${box_score_type}): ${box_score_comment}
J
jerrywgz 已提交
3247
        box_clip(${box_clip_type}): ${box_clip_comment}
W
wangguanzhong 已提交
3248 3249 3250 3251
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 

3252
    Returns:
W
wangguanzhong 已提交
3253
        Tuple:
J
jerrywgz 已提交
3254

W
wangguanzhong 已提交
3255 3256 3257
        decode_box(${decode_box_type}): ${decode_box_comment}

        output_assign_box(${output_assign_box_type}): ${output_assign_box_comment}
J
jerrywgz 已提交
3258 3259


3260 3261 3262
    Examples:
        .. code-block:: python

3263
            import paddle.fluid as fluid
3264 3265 3266 3267 3268 3269 3270 3271
            pb = fluid.data(
                name='prior_box', shape=[None, 4], dtype='float32')
            pbv = fluid.data(
                name='prior_box_var', shape=[4], dtype='float32')
            loc = fluid.data(
                name='target_box', shape=[None, 4*81], dtype='float32')
            scores = fluid.data(
                name='scores', shape=[None, 81], dtype='float32')
J
jerrywgz 已提交
3272
            decoded_box, output_assign_box = fluid.layers.box_decoder_and_assign(
J
jerrywgz 已提交
3273
                pb, pbv, loc, scores, 4.135)
3274 3275 3276 3277

    """
    helper = LayerHelper("box_decoder_and_assign", **locals())

J
jerrywgz 已提交
3278
    decoded_box = helper.create_variable_for_type_inference(
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
        dtype=prior_box.dtype)
    output_assign_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)

    helper.append_op(
        type="box_decoder_and_assign",
        inputs={
            "PriorBox": prior_box,
            "PriorBoxVar": prior_box_var,
            "TargetBox": target_box,
            "BoxScore": box_score
        },
        attrs={"box_clip": box_clip},
        outputs={
J
jerrywgz 已提交
3293
            "DecodeBox": decoded_box,
3294 3295
            "OutputAssignBox": output_assign_box
        })
J
jerrywgz 已提交
3296
    return decoded_box, output_assign_box
3297 3298 3299 3300 3301 3302 3303 3304 3305


def collect_fpn_proposals(multi_rois,
                          multi_scores,
                          min_level,
                          max_level,
                          post_nms_top_n,
                          name=None):
    """
W
wangguanzhong 已提交
3306 3307 3308
    **This OP only supports LoDTensor as input**. Concat multi-level RoIs 
    (Region of Interest) and select N RoIs with respect to multi_scores. 
    This operation performs the following steps:
3309 3310 3311 3312 3313 3314 3315 3316

    1. Choose num_level RoIs and scores as input: num_level = max_level - min_level
    2. Concat multi-level RoIs and scores
    3. Sort scores and select post_nms_top_n scores
    4. Gather RoIs by selected indices from scores
    5. Re-sort RoIs by corresponding batch_id

    Args:
W
wangguanzhong 已提交
3317 3318 3319 3320 3321 3322
        multi_rois(list): List of RoIs to collect. Element in list is 2-D 
            LoDTensor with shape [N, 4] and data type is float32 or float64, 
            N is the number of RoIs.
        multi_scores(list): List of scores of RoIs to collect. Element in list 
            is 2-D LoDTensor with shape [N, 1] and data type is float32 or
            float64, N is the number of RoIs.
3323 3324 3325
        min_level(int): The lowest level of FPN layer to collect
        max_level(int): The highest level of FPN layer to collect
        post_nms_top_n(int): The number of selected RoIs
W
wangguanzhong 已提交
3326 3327 3328 3329
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.        

3330
    Returns:
W
wangguanzhong 已提交
3331 3332 3333 3334 3335
        Variable:

        fpn_rois(Variable): 2-D LoDTensor with shape [N, 4] and data type is 
        float32 or float64. Selected RoIs. 

3336 3337 3338 3339

    Examples:
        .. code-block:: python
           
3340
            import paddle.fluid as fluid
3341 3342 3343
            multi_rois = []
            multi_scores = []
            for i in range(4):
3344 3345
                multi_rois.append(fluid.data(
                    name='roi_'+str(i), shape=[None, 4], dtype='float32', lod_level=1))
3346
            for i in range(4):
3347 3348
                multi_scores.append(fluid.data(
                    name='score_'+str(i), shape=[None, 1], dtype='float32', lod_level=1))
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373

            fpn_rois = fluid.layers.collect_fpn_proposals(
                multi_rois=multi_rois, 
                multi_scores=multi_scores,
                min_level=2, 
                max_level=5, 
                post_nms_top_n=2000)
    """

    helper = LayerHelper('collect_fpn_proposals', **locals())
    dtype = helper.input_dtype('multi_rois')
    num_lvl = max_level - min_level + 1
    input_rois = multi_rois[:num_lvl]
    input_scores = multi_scores[:num_lvl]
    output_rois = helper.create_variable_for_type_inference(dtype)
    output_rois.stop_gradient = True
    helper.append_op(
        type='collect_fpn_proposals',
        inputs={
            'MultiLevelRois': input_rois,
            'MultiLevelScores': input_scores
        },
        outputs={'FpnRois': output_rois},
        attrs={'post_nms_topN': post_nms_top_n})
    return output_rois