detection.py 163.1 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18 19
from __future__ import print_function

20 21
from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
22
from ..layer_helper import LayerHelper
D
dengkaipeng 已提交
23
from ..framework import Variable
24
from .loss import softmax_with_cross_entropy
25 26
from . import tensor
from . import nn
27
from . import ops
M
minqiyang 已提交
28
from ... import compat as cpt
29
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype
C
chengduoZH 已提交
30
import math
M
minqiyang 已提交
31
import six
32
import numpy as np
33
from functools import reduce
34
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
35

C
chengduoZH 已提交
36
__all__ = [
37 38 39 40 41 42 43 44
    'prior_box',
    'density_prior_box',
    'multi_box_head',
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
    'rpn_target_assign',
45
    'retinanet_target_assign',
46
    'sigmoid_focal_loss',
47 48 49 50
    'anchor_generator',
    'roi_perspective_transform',
    'generate_proposal_labels',
    'generate_proposals',
51
    'generate_mask_labels',
52 53 54 55
    'iou_similarity',
    'box_coder',
    'polygon_box_transform',
    'yolov3_loss',
D
dengkaipeng 已提交
56
    'yolo_box',
57
    'box_clip',
J
jerrywgz 已提交
58
    'multiclass_nms',
59
    'locality_aware_nms',
60
    'retinanet_detection_output',
61
    'distribute_fpn_proposals',
62
    'box_decoder_and_assign',
63
    'collect_fpn_proposals',
C
chengduoZH 已提交
64
]
65 66


67 68 69 70 71 72 73 74 75 76 77 78
def retinanet_target_assign(bbox_pred,
                            cls_logits,
                            anchor_box,
                            anchor_var,
                            gt_boxes,
                            gt_labels,
                            is_crowd,
                            im_info,
                            num_classes=1,
                            positive_overlap=0.5,
                            negative_overlap=0.4):
    """
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    **Target Assign Layer for the detector RetinaNet.**

    This OP finds out positive and negative samples from all anchors
    for training the detector `RetinaNet <https://arxiv.org/abs/1708.02002>`_ ,
    and assigns target labels for classification along with target locations for
    regression to each sample, then takes out the part belonging to positive and
    negative samples from category prediction( :attr:`cls_logits`) and location
    prediction( :attr:`bbox_pred`) which belong to all anchors.

    The searching principles for positive and negative samples are as followed:

    1. Anchors are assigned to ground-truth boxes when it has the highest IoU
    overlap with a ground-truth box.

    2. Anchors are assigned to ground-truth boxes when it has an IoU overlap
    higher than :attr:`positive_overlap` with any ground-truth box.

    3. Anchors are assigned to background when its IoU overlap is lower than
    :attr:`negative_overlap` for all ground-truth boxes.

    4. Anchors which do not meet the above conditions do not participate in
    the training process.

    Retinanet predicts a :math:`C`-vector for classification and a 4-vector for box
T
tianshuo78520a 已提交
103
    regression for each anchor, hence the target label for each positive(or negative)
104 105 106 107 108 109 110 111 112 113 114 115 116 117
    sample is a :math:`C`-vector and the target locations for each positive sample
    is a 4-vector. As for a positive sample, if the category of its assigned
    ground-truth box is class :math:`i`, the corresponding entry in its length
    :math:`C` label vector is set to 1 and all other entries is set to 0, its box
    regression targets are computed as the offset between itself and its assigned
    ground-truth box. As for a negative sample, all entries in its length :math:`C`
    label vector are set to 0 and box regression targets are omitted because
    negative samples do not participate in the training process of location
    regression.

    After the assignment, the part belonging to positive and negative samples is
    taken out from category prediction( :attr:`cls_logits` ), and the part
    belonging to positive samples is taken out from location
    prediction( :attr:`bbox_pred` ).
118 119

    Args:
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        bbox_pred(Variable): A 3-D Tensor with shape :math:`[N, M, 4]` represents
            the predicted locations of all anchors. :math:`N` is the batch size( the
            number of images in a mini-batch), :math:`M` is the number of all anchors
            of one image, and each anchor has 4 coordinate values. The data type of
            :attr:`bbox_pred` is float32 or float64.
        cls_logits(Variable): A 3-D Tensor with shape :math:`[N, M, C]` represents
            the predicted categories of all anchors. :math:`N` is the batch size,
            :math:`M` is the number of all anchors of one image, and :math:`C` is
            the number of categories (**Notice: excluding background**). The data type
            of :attr:`cls_logits` is float32 or float64.
        anchor_box(Variable): A 2-D Tensor with shape :math:`[M, 4]` represents
            the locations of all anchors. :math:`M` is the number of all anchors of
            one image, each anchor is represented as :math:`[xmin, ymin, xmax, ymax]`,
            :math:`[xmin, ymin]` is the left top coordinate of the anchor box,
            :math:`[xmax, ymax]` is the right bottom coordinate of the anchor box.
            The data type of :attr:`anchor_box` is float32 or float64. Please refer
            to the OP :ref:`api_fluid_layers_anchor_generator` 
            for the generation of :attr:`anchor_box`.
        anchor_var(Variable): A 2-D Tensor with shape :math:`[M,4]` represents the expanded 
            factors of anchor locations used in loss function. :math:`M` is number of
            all anchors of one image, each anchor possesses a 4-vector expanded factor.
            The data type of :attr:`anchor_var` is float32 or float64. Please refer
            to the OP :ref:`api_fluid_layers_anchor_generator`
            for the generation of :attr:`anchor_var`.
        gt_boxes(Variable): A 1-level 2-D LoDTensor with shape :math:`[G, 4]` represents
            locations of all ground-truth boxes. :math:`G` is the total number of
            all ground-truth boxes in a mini-batch, and each ground-truth box has 4
            coordinate values. The data type of :attr:`gt_boxes` is float32 or
            float64.
        gt_labels(variable): A 1-level 2-D LoDTensor with shape :math:`[G, 1]` represents
            categories of all ground-truth boxes, and the values are in the range of
            :math:`[1, C]`. :math:`G` is the total number of all ground-truth boxes
            in a mini-batch, and each ground-truth box has one category. The data type
            of :attr:`gt_labels` is int32.
        is_crowd(Variable): A 1-level 1-D LoDTensor with shape :math:`[G]` which
            indicates whether a ground-truth box is a crowd. If the value is 1, the
            corresponding box is a crowd, it is ignored during training. :math:`G` is
            the total number of all ground-truth boxes in a mini-batch. The data type
            of :attr:`is_crowd` is int32.
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents the size
            information of input images. :math:`N` is the batch size, the size
T
tianshuo78520a 已提交
161
            information of each image is a 3-vector which are the height and width
162 163 164 165 166 167 168 169 170 171 172 173
            of the network input along with the factor scaling the origin image to
            the network input. The data type of :attr:`im_info` is float32.
        num_classes(int32): The number of categories for classification, the default
            value is 1.
        positive_overlap(float32): Minimum overlap required between an anchor
            and ground-truth box for the anchor to be a positive sample, the default
            value is 0.5.
        negative_overlap(float32): Maximum overlap allowed between an anchor
            and ground-truth box for the anchor to be a negative sample, the default
            value is 0.4. :attr:`negative_overlap` should be less than or equal to
            :attr:`positive_overlap`, if not, the actual value of
            :attr:`positive_overlap` is :attr:`negative_overlap`.
174 175

    Returns:
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        A tuple with 6 Variables:
        
        **predict_scores** (Variable): A 2-D Tensor with shape :math:`[F+B, C]` represents
        category prediction belonging to positive and negative samples. :math:`F`
        is the number of positive samples in a mini-batch, :math:`B` is the number
        of negative samples, and :math:`C` is the number of categories
        (**Notice: excluding background**). The data type of :attr:`predict_scores`
        is float32 or float64.

        **predict_location** (Variable): A 2-D Tensor with shape :math:`[F, 4]` represents
        location prediction belonging to positive samples. :math:`F` is the number
        of positive samples. :math:`F` is the number of positive samples, and each
        sample has 4 coordinate values. The data type of :attr:`predict_location`
        is float32 or float64.

        **target_label** (Variable): A 2-D Tensor with shape :math:`[F+B, 1]` represents
        target labels for classification belonging to positive and negative
        samples. :math:`F` is the number of positive samples, :math:`B` is the
        number of negative, and each sample has one target category. The data type
        of :attr:`target_label` is int32.

        **target_bbox** (Variable): A 2-D Tensor with shape :math:`[F, 4]` represents
        target locations for box regression belonging to positive samples.
        :math:`F` is the number of positive samples, and each sample has 4
        coordinate values. The data type of :attr:`target_bbox` is float32 or
        float64.

        **bbox_inside_weight** (Variable): A 2-D Tensor with shape :math:`[F, 4]`
        represents whether a positive sample is fake positive, if a positive
        sample is false positive, the corresponding entries in
        :attr:`bbox_inside_weight` are set 0, otherwise 1. :math:`F` is the number
        of total positive samples in a mini-batch, and each sample has 4
        coordinate values. The data type of :attr:`bbox_inside_weight` is float32
        or float64.

        **fg_num** (Variable): A 2-D Tensor with shape :math:`[N, 1]` represents the number
        of positive samples. :math:`N` is the batch size. **Notice: The number
        of positive samples is used as the denominator of later loss function,
        to avoid the condition that the denominator is zero, this OP has added 1
        to the actual number of positive samples of each image.** The data type of
        :attr:`fg_num` is int32.
217 218 219 220 221

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
222 223 224 225 226 227 228 229 230 231 232 233 234 235
          bbox_pred = fluid.data(name='bbox_pred', shape=[1, 100, 4],
                            dtype='float32')
          cls_logits = fluid.data(name='cls_logits', shape=[1, 100, 10],
                            dtype='float32')
          anchor_box = fluid.data(name='anchor_box', shape=[100, 4],
                            dtype='float32')
          anchor_var = fluid.data(name='anchor_var', shape=[100, 4],
                            dtype='float32')
          gt_boxes = fluid.data(name='gt_boxes', shape=[10, 4],
                            dtype='float32')
          gt_labels = fluid.data(name='gt_labels', shape=[10, 1],
                            dtype='float32')
          is_crowd = fluid.data(name='is_crowd', shape=[1],
                            dtype='float32')
236
          im_info = fluid.data(name='im_info', shape=[1, 3],
237
                            dtype='float32')
238
          score_pred, loc_pred, score_target, loc_target, bbox_inside_weight, fg_num = \\
239 240 241 242 243
                fluid.layers.retinanet_target_assign(bbox_pred, cls_logits, anchor_box,
                anchor_var, gt_boxes, gt_labels, is_crowd, im_info, 10)

    """

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    check_variable_and_dtype(bbox_pred, 'bbox_pred', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(cls_logits, 'cls_logits', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(anchor_box, 'anchor_box', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(anchor_var, 'anchor_var', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(gt_boxes, 'gt_boxes', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(gt_labels, 'gt_labels', ['int32'],
                             'retinanet_target_assign')
    check_variable_and_dtype(is_crowd, 'is_crowd', ['int32'],
                             'retinanet_target_assign')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'retinanet_target_assign')

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    helper = LayerHelper('retinanet_target_assign', **locals())
    # Assign target label to anchors
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    fg_num = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="retinanet_target_assign",
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'GtLabels': gt_labels,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
            'TargetLabel': target_label,
            'TargetBBox': target_bbox,
            'BBoxInsideWeight': bbox_inside_weight,
            'ForegroundNumber': fg_num
        },
        attrs={
            'positive_overlap': positive_overlap,
            'negative_overlap': negative_overlap
        })

    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
    bbox_inside_weight.stop_gradient = True
    fg_num.stop_gradient = True

    cls_logits = nn.reshape(x=cls_logits, shape=(-1, num_classes))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)

    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight, fg_num


308 309
def rpn_target_assign(bbox_pred,
                      cls_logits,
Y
Yuan Gao 已提交
310
                      anchor_box,
311
                      anchor_var,
312 313 314
                      gt_boxes,
                      is_crowd,
                      im_info,
Y
Yuan Gao 已提交
315
                      rpn_batch_size_per_im=256,
316 317
                      rpn_straddle_thresh=0.0,
                      rpn_fg_fraction=0.5,
Y
Yuan Gao 已提交
318
                      rpn_positive_overlap=0.7,
319 320
                      rpn_negative_overlap=0.3,
                      use_random=True):
Y
Yuan Gao 已提交
321
    """
H
haowang101779990 已提交
322
    **Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection.**
Y
Yuan Gao 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

    This layer can be, for given the  Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each each anchor, these target labels are used for
    train RPN. The classification targets is a binary class label (of being
    an object or not). Following the paper of Faster-RCNN, the positive labels
    are two kinds of anchors: (i) the anchor/anchors with the highest IoU
    overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
    higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
    that a single ground-truth box may assign positive labels to multiple
    anchors. A non-positive anchor is when its IoU ratio is lower than
    rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
    neither positive nor negative do not contribute to the training objective.
    The regression targets are the encoded ground-truth boxes associated with
    the positive anchors.

    Args:
340
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Y
Yuan Gao 已提交
341 342
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
343
            is [xmin, ymin, xmax, ymax]. The data type can be float32 or float64.
344 345 346
        cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the
            predicted confidence predictions. N is the batch size, 1 is the
            frontground and background sigmoid, M is number of bounding boxes.
347
            The data type can be float32 or float64.
Y
Yuan Gao 已提交
348 349 350 351 352
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
353
            coordinate of the anchor box. The data type can be float32 or float64.
354
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded 
355
            variances of anchors. The data type can be float32 or float64.
翟飞跃 已提交
356
        gt_boxes (Variable): The ground-truth bounding boxes (bboxes) are a 2D
Y
Yuan Gao 已提交
357
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
358
            bboxes of mini-batch input. The data type can be float32 or float64.
359
        is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd.
360
                             The data type must be int32.
361 362
        im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
        3 is the height, width and scale.
Y
Yuan Gao 已提交
363
        rpn_batch_size_per_im(int): Total number of RPN examples per image.
364
                                    The data type must be int32.
365
        rpn_straddle_thresh(float): Remove RPN anchors that go outside the image
366
            by straddle_thresh pixels. The data type must be float32.
367
        rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled
368
            foreground (i.e. class > 0), 0-th class is background. The data type must be float32.
Y
Yuan Gao 已提交
369 370
        rpn_positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
371
            example. The data type must be float32.
Y
Yuan Gao 已提交
372 373
        rpn_negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
374
            examples. The data type must be float32.
Y
Yuan Gao 已提交
375 376

    Returns:
M
minqiyang 已提交
377
        tuple:
378 379 380 381 382 383 384 385 386 387 388 389 390
        A tuple(predicted_scores, predicted_location, target_label,
        target_bbox, bbox_inside_weight) is returned. The predicted_scores 
        and predicted_location is the predicted result of the RPN.
        The target_label and target_bbox is the ground truth,
        respectively. The predicted_location is a 2D Tensor with shape
        [F, 4], and the shape of target_bbox is same as the shape of
        the predicted_location, F is the number of the foreground
        anchors. The predicted_scores is a 2D Tensor with shape
        [F + B, 1], and the shape of target_label is same as the shape
        of the predicted_scores, B is the number of the background
        anchors, the F and B is depends on the input of this operator.
        Bbox_inside_weight represents whether the predicted loc is fake_fg
        or not and the shape is [F, 4].
Y
Yuan Gao 已提交
391 392 393 394

    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
395
            import paddle.fluid as fluid
396 397 398 399 400 401 402
            bbox_pred = fluid.data(name='bbox_pred', shape=[None, 4], dtype='float32')
            cls_logits = fluid.data(name='cls_logits', shape=[None, 1], dtype='float32')
            anchor_box = fluid.data(name='anchor_box', shape=[None, 4], dtype='float32')
            anchor_var = fluid.data(name='anchor_var', shape=[None, 4], dtype='float32')
            gt_boxes = fluid.data(name='gt_boxes', shape=[None, 4], dtype='float32')
            is_crowd = fluid.data(name='is_crowd', shape=[None], dtype='float32')
            im_info = fluid.data(name='im_infoss', shape=[None, 3], dtype='float32')
403 404
            loc, score, loc_target, score_target, inside_weight = fluid.layers.rpn_target_assign(
                bbox_pred, cls_logits, anchor_box, anchor_var, gt_boxes, is_crowd, im_info)
H
haowang101779990 已提交
405

Y
Yuan Gao 已提交
406 407 408
    """

    helper = LayerHelper('rpn_target_assign', **locals())
409
    # Assign target label to anchors
J
jerrywgz 已提交
410 411 412 413 414 415 416
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
Y
Yuan Gao 已提交
417 418
    helper.append_op(
        type="rpn_target_assign",
419 420 421 422 423 424
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
Y
Yuan Gao 已提交
425 426 427
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
428
            'TargetLabel': target_label,
J
jerrywgz 已提交
429
            'TargetBBox': target_bbox,
J
jerrywgz 已提交
430
            'BBoxInsideWeight': bbox_inside_weight
Y
Yuan Gao 已提交
431 432 433
        },
        attrs={
            'rpn_batch_size_per_im': rpn_batch_size_per_im,
434
            'rpn_straddle_thresh': rpn_straddle_thresh,
Y
Yuan Gao 已提交
435 436
            'rpn_positive_overlap': rpn_positive_overlap,
            'rpn_negative_overlap': rpn_negative_overlap,
437 438
            'rpn_fg_fraction': rpn_fg_fraction,
            'use_random': use_random
Y
Yuan Gao 已提交
439 440
        })

441 442 443 444
    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
J
jerrywgz 已提交
445
    bbox_inside_weight.stop_gradient = True
Y
Yuan Gao 已提交
446

447 448 449 450
    cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)
451

J
jerrywgz 已提交
452
    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight
Y
Yuan Gao 已提交
453 454


455
def sigmoid_focal_loss(x, label, fg_num, gamma=2.0, alpha=0.25):
456
    """
S
swtkiwi 已提交
457 458 459 460
	:alias_main: paddle.nn.functional.sigmoid_focal_loss
	:alias: paddle.nn.functional.sigmoid_focal_loss,paddle.nn.functional.loss.sigmoid_focal_loss
	:old_api: paddle.fluid.layers.sigmoid_focal_loss

461 462
    **Sigmoid Focal Loss Operator.**

463 464 465 466 467
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is used to address the foreground-background
    class imbalance existed on the training phase of many computer vision tasks. This OP computes
    the sigmoid value for each element in the input tensor :attr:`x`, after which focal loss is
    measured between the sigmoid value and target label. 

468 469 470
    The focal loss is given as followed:

    .. math::
471 472 473 474 475 476 477
  
        \\mathop{loss_{i,\\,j}}\\limits_{i\\in\\mathbb{[0,\\,N-1]},\\,j\\in\\mathbb{[0,\\,C-1]}}=\\left\\{
        \\begin{array}{rcl}
        - \\frac{1}{fg\_num} * \\alpha * {(1 - \\sigma(x_{i,\\,j}))}^{\\gamma} * \\log(\\sigma(x_{i,\\,j})) & & {(j +1) = label_{i,\\,0}} \\\\
        - \\frac{1}{fg\_num} * (1 - \\alpha) * {\sigma(x_{i,\\,j})}^{ \\gamma} * \\log(1 - \\sigma(x_{i,\\,j})) & & {(j +1)!= label_{i,\\,0}}
        \\end{array} \\right.

478 479 480 481 482 483 484

    We know that
    
    .. math::
        \\sigma(x_j) = \\frac{1}{1 + \\exp(-x_j)}


485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
    Args:
        x(Variable): A 2-D tensor with shape :math:`[N, C]` represents the predicted categories of
            all samples. :math:`N` is the number of all samples responsible for optimization in
            a mini-batch, for example, samples are anchor boxes for object detection and :math:`N`
            is the total number of positive and negative samples in a mini-batch; Samples are images
            for image classification and :math:`N` is the number of images in a mini-batch. :math:`C`
            is the number of classes (**Notice: excluding background**). The data type of :attr:`x` is
            float32 or float64.
        label(Variable): A 2-D tensor with shape :math:`[N, 1]` represents the target labels for
            classification. :math:`N` is the number of all samples responsible for optimization in a
            mini-batch, each sample has one target category. The values for positive samples are in the
            range of :math:`[1, C]`, and the values for negative samples are 0. The data type of :attr:`label`
            is int32.
        fg_num(Variable): A 1-D tensor with shape [1] represents the number of positive samples in a
            mini-batch, which should be obtained before this OP. The data type of :attr:`fg_num` is int32.
500
        gamma(int|float): Hyper-parameter to balance the easy and hard examples. Default value is
501
            set to 2.0.
502
        alpha(int|float): Hyper-parameter to balance the positive and negative example. Default value
503 504 505
            is set to 0.25.

    Returns:
506 507 508
        Variable(the data type is float32 or float64): 
            A 2-D tensor with shape :math:`[N, C]`, which is the focal loss of each element in the input
            tensor :attr:`x`.
509 510 511 512

    Examples:
        .. code-block:: python

513
            import numpy as np
514
            import paddle.fluid as fluid
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
            
            num_classes = 10  # exclude background
            image_width = 16
            image_height = 16
            batch_size = 32
            max_iter = 20
            
            
            def gen_train_data():
                x_data = np.random.uniform(0, 255, (batch_size, 3, image_height,
                                                    image_width)).astype('float64')
                label_data = np.random.randint(0, num_classes,
                                               (batch_size, 1)).astype('int32')
                return {"x": x_data, "label": label_data}
            
            
            def get_focal_loss(pred, label, fg_num, num_classes):
                pred = fluid.layers.reshape(pred, [-1, num_classes])
                label = fluid.layers.reshape(label, [-1, 1])
                label.stop_gradient = True
                loss = fluid.layers.sigmoid_focal_loss(
                    pred, label, fg_num, gamma=2.0, alpha=0.25)
                loss = fluid.layers.reduce_sum(loss)
                return loss
            
            
            def build_model(mode='train'):
                x = fluid.data(name="x", shape=[-1, 3, -1, -1], dtype='float64')
                output = fluid.layers.pool2d(input=x, pool_type='avg', global_pooling=True)
                output = fluid.layers.fc(
                    input=output,
                    size=num_classes,
                    # Notice: size is set to be the number of target classes (excluding backgorund)
                    # because sigmoid activation will be done in the sigmoid_focal_loss op.
                    act=None)
                if mode == 'train':
                    label = fluid.data(name="label", shape=[-1, 1], dtype='int32')
                    # Obtain the fg_num needed by the sigmoid_focal_loss op:
                    # 0 in label represents background, >=1 in label represents foreground,
                    # find the elements in label which are greater or equal than 1, then
                    # computed the numbers of these elements.
                    data = fluid.layers.fill_constant(shape=[1], value=1, dtype='int32')
                    fg_label = fluid.layers.greater_equal(label, data)
                    fg_label = fluid.layers.cast(fg_label, dtype='int32')
                    fg_num = fluid.layers.reduce_sum(fg_label)
                    fg_num.stop_gradient = True
                    avg_loss = get_focal_loss(output, label, fg_num, num_classes)
                    return avg_loss
                else:
                    # During evaluating or testing phase,
                    # output of the final fc layer should be connected to a sigmoid layer.
                    pred = fluid.layers.sigmoid(output)
                    return pred
            
            
            loss = build_model('train')
            moment_optimizer = fluid.optimizer.MomentumOptimizer(
                learning_rate=0.001, momentum=0.9)
            moment_optimizer.minimize(loss)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            for i in range(max_iter):
                outs = exe.run(feed=gen_train_data(), fetch_list=[loss.name])
                print(outs)
580 581
    """

582 583 584 585 586
    check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                             'sigmoid_focal_loss')
    check_variable_and_dtype(label, 'label', ['int32'], 'sigmoid_focal_loss')
    check_variable_and_dtype(fg_num, 'fg_num', ['int32'], 'sigmoid_focal_loss')

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
    helper = LayerHelper("sigmoid_focal_loss", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="sigmoid_focal_loss",
        inputs={"X": x,
                "Label": label,
                "FgNum": fg_num},
        attrs={"gamma": gamma,
               'alpha': alpha},
        outputs={"Out": out})
    return out


Y
Yuan Gao 已提交
602 603
def detection_output(loc,
                     scores,
604 605 606 607 608 609 610
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
611 612
                     nms_eta=1.0,
                     return_index=False):
613
    """
S
swtkiwi 已提交
614 615 616 617
	:alias_main: paddle.nn.functional.detection_output
	:alias: paddle.nn.functional.detection_output,paddle.nn.functional.vision.detection_output
	:old_api: paddle.fluid.layers.detection_output

Q
qingqing01 已提交
618 619
    Given the regression locations, classification confidences and prior boxes,
    calculate the detection outputs by performing following steps:
620

Q
qingqing01 已提交
621 622
    1. Decode input bounding box predictions according to the prior boxes and
       regression locations.
623 624 625 626 627
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
628 629 630

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Q
qingqing01 已提交
631 632
            predicted locations of M bounding bboxes. Data type should be
            float32 or float64. N is the batch size,
633 634
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
635
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
Q
qingqing01 已提交
636 637 638
            predicted confidence predictions. Data type should be float32
            or float64. N is the batch size, C is the
            class number, M is number of bounding boxes.
639
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
Q
qingqing01 已提交
640 641
            each box is represented as [xmin, ymin, xmax, ymax]. Data type
            should be float32 or float64.
642
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
Q
qingqing01 已提交
643 644
            of variance. Data type should be float32 or float64.
        background_label(int): The index of background label,
645
            the background label will be ignored. If set to -1, then all
Q
qingqing01 已提交
646 647
            categories will be considered. Default: 0.
        nms_threshold(float): The threshold to be used in NMS. Default: 0.3.
648
        nms_top_k(int): Maximum number of detections to be kept according
T
tianshuo78520a 已提交
649
            to the confidences after filtering detections based on
Q
qingqing01 已提交
650
            score_threshold and before NMS. Default: 400.
651
        keep_top_k(int): Number of total bboxes to be kept per image after
Q
qingqing01 已提交
652
            NMS step. -1 means keeping all bboxes after NMS step. Default: 200.
653 654
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
Q
qingqing01 已提交
655 656 657
            Default: 0.01.
        nms_eta(float): The parameter for adaptive NMS. It works only when the
            value is less than 1.0. Default: 1.0.
658
        return_index(bool): Whether return selected index. Default: False
659 660

    Returns:
M
minqiyang 已提交
661

662 663 664
        A tuple with two Variables: (Out, Index) if return_index is True,
        otherwise, a tuple with one Variable(Out) is returned. 

Q
qingqing01 已提交
665 666 667 668 669 670 671 672 673 674 675 676
        Out (Variable): The detection outputs is a LoDTensor with shape [No, 6].
        Data type is the same as input (loc). Each row has six values:
        [label, confidence, xmin, ymin, xmax, ymax]. `No` is
        the total number of detections in this mini-batch. For each instance,
        the offsets in first dimension are called LoD, the offset number is
        N + 1, N is the batch size. The i-th image has `LoD[i + 1] - LoD[i]`
        detected results, if it is 0, the i-th image has no detected results.

        Index (Variable): Only return when return_index is True. A 2-D LoDTensor
        with shape [No, 1] represents the selected index which type is Integer.
        The index is the absolute value cross batches. No is the same number
        as Out. If the index is used to gather other attribute such as age,
677 678 679
        one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
        N is the batch size and M is the number of boxes.

680 681 682 683

    Examples:
        .. code-block:: python

684 685
            import paddle.fluid as fluid

Q
qingqing01 已提交
686 687 688 689
            pb = fluid.data(name='prior_box', shape=[10, 4], dtype='float32')
            pbv = fluid.data(name='prior_box_var', shape=[10, 4], dtype='float32')
            loc = fluid.data(name='target_box', shape=[2, 21, 4], dtype='float32')
            scores = fluid.data(name='scores', shape=[2, 21, 10], dtype='float32')
690
            nmsed_outs, index = fluid.layers.detection_output(scores=scores,
691 692
                                       loc=loc,
                                       prior_box=pb,
693 694
                                       prior_box_var=pbv,
                                       return_index=True)
695 696
    """
    helper = LayerHelper("detection_output", **locals())
697 698 699 700 701
    decoded_box = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=loc,
        code_type='decode_center_size')
702
    scores = nn.softmax(input=scores)
Y
Yuan Gao 已提交
703
    scores = nn.transpose(scores, perm=[0, 2, 1])
704
    scores.stop_gradient = True
X
Xin Pan 已提交
705 706
    nmsed_outs = helper.create_variable_for_type_inference(
        dtype=decoded_box.dtype)
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
    if return_index:
        index = helper.create_variable_for_type_inference(dtype='int')
        helper.append_op(
            type="multiclass_nms2",
            inputs={'Scores': scores,
                    'BBoxes': decoded_box},
            outputs={'Out': nmsed_outs,
                     'Index': index},
            attrs={
                'background_label': 0,
                'nms_threshold': nms_threshold,
                'nms_top_k': nms_top_k,
                'keep_top_k': keep_top_k,
                'score_threshold': score_threshold,
                'nms_eta': 1.0,
            })
        index.stop_gradient = True
    else:
        helper.append_op(
            type="multiclass_nms",
            inputs={'Scores': scores,
                    'BBoxes': decoded_box},
            outputs={'Out': nmsed_outs},
            attrs={
                'background_label': 0,
                'nms_threshold': nms_threshold,
                'nms_top_k': nms_top_k,
                'keep_top_k': keep_top_k,
                'score_threshold': score_threshold,
                'nms_eta': 1.0,
            })
738
    nmsed_outs.stop_gradient = True
739 740
    if return_index:
        return nmsed_outs, index
741
    return nmsed_outs
C
chengduoZH 已提交
742 743


X
Xin Pan 已提交
744
@templatedoc()
745
def iou_similarity(x, y, box_normalized=True, name=None):
X
Xin Pan 已提交
746
    """
S
swtkiwi 已提交
747 748 749 750
	:alias_main: paddle.nn.functional.iou_similarity
	:alias: paddle.nn.functional.iou_similarity,paddle.nn.functional.loss.iou_similarity
	:old_api: paddle.fluid.layers.iou_similarity

X
Xin Pan 已提交
751 752 753
    ${comment}

    Args:
L
LielinJiang 已提交
754 755
        x (Variable): ${x_comment}.The data type is float32 or float64.
        y (Variable): ${y_comment}.The data type is float32 or float64.
T
tianshuo78520a 已提交
756
        box_normalized(bool): Whether treat the priorbox as a normalized box.
757
            Set true by default.
X
Xin Pan 已提交
758
    Returns:
L
LielinJiang 已提交
759
        Variable: ${out_comment}.The data type is same with x.
760 761 762 763

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
764
            import numpy as np
765 766
            import paddle.fluid as fluid

L
LielinJiang 已提交
767 768 769 770 771 772
            use_gpu = False
            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)

            x = fluid.data(name='x', shape=[None, 4], dtype='float32')
            y = fluid.data(name='y', shape=[None, 4], dtype='float32')
773
            iou = fluid.layers.iou_similarity(x=x, y=y)
L
LielinJiang 已提交
774 775 776 777 778 779 780 781 782 783 784

            exe.run(fluid.default_startup_program())
            test_program = fluid.default_main_program().clone(for_test=True)

            [out_iou] = exe.run(test_program,
                    fetch_list=iou,
                    feed={'x': np.array([[0.5, 0.5, 2.0, 2.0],
                                         [0., 0., 1.0, 1.0]]).astype('float32'),
                          'y': np.array([[1.0, 1.0, 2.5, 2.5]]).astype('float32')})
            # out_iou is [[0.2857143],
            #             [0.       ]] with shape: [2, 1]
X
Xin Pan 已提交
785 786
    """
    helper = LayerHelper("iou_similarity", **locals())
787
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
788 789 790 791 792

    helper.append_op(
        type="iou_similarity",
        inputs={"X": x,
                "Y": y},
793
        attrs={"box_normalized": box_normalized},
X
Xin Pan 已提交
794 795 796 797 798 799 800 801 802 803
        outputs={"Out": out})
    return out


@templatedoc()
def box_coder(prior_box,
              prior_box_var,
              target_box,
              code_type="encode_center_size",
              box_normalized=True,
804 805
              name=None,
              axis=0):
X
Xin Pan 已提交
806
    """
S
swtkiwi 已提交
807 808 809 810
	:alias_main: paddle.nn.functional.box_coder
	:alias: paddle.nn.functional.box_coder,paddle.nn.functional.vision.box_coder
	:old_api: paddle.fluid.layers.box_coder

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
    **Box Coder Layer**

    Encode/Decode the target bounding box with the priorbox information.
    
    The Encoding schema described below:

    .. math::

        ox = (tx - px) / pw / pxv

        oy = (ty - py) / ph / pyv

        ow = \log(\abs(tw / pw)) / pwv 

        oh = \log(\abs(th / ph)) / phv 

    The Decoding schema described below:
    
    .. math::
  
        ox = (pw * pxv * tx * + px) - tw / 2

        oy = (ph * pyv * ty * + py) - th / 2

        ow = \exp(pwv * tw) * pw + tw / 2

        oh = \exp(phv * th) * ph + th / 2   

    where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates, 
    width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote 
    the priorbox's (anchor) center coordinates, width and height. `pxv`, 
    `pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`, 
    `ow`, `oh` denote the encoded/decoded coordinates, width and height. 

    During Box Decoding, two modes for broadcast are supported. Say target 
    box has shape [N, M, 4], and the shape of prior box can be [N, 4] or 
    [M, 4]. Then prior box will broadcast to target box along the 
    assigned axis. 
X
Xin Pan 已提交
849 850

    Args:
851
        prior_box(Variable): Box list prior_box is a 2-D Tensor with shape 
W
wangguanzhong 已提交
852 853 854 855 856 857 858 859 860 861
            [M, 4] holds M boxes and data type is float32 or float64. Each box
            is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the 
            left top coordinate of the anchor box, if the input is image feature
            map, they are close to the origin of the coordinate system. 
            [xmax, ymax] is the right bottom coordinate of the anchor box.       
        prior_box_var(List|Variable|None): prior_box_var supports three types 
            of input. One is variable with shape [M, 4] which holds M group and 
            data type is float32 or float64. The second is list consist of 
            4 elements shared by all boxes and data type is float32 or float64. 
            Other is None and not involved in calculation. 
862
        target_box(Variable): This input can be a 2-D LoDTensor with shape 
W
wangguanzhong 已提交
863 864 865 866 867 868 869 870
            [N, 4] when code_type is 'encode_center_size'. This input also can 
            be a 3-D Tensor with shape [N, M, 4] when code_type is 
            'decode_center_size'. Each box is represented as 
            [xmin, ymin, xmax, ymax]. The data type is float32 or float64. 
            This tensor can contain LoD information to represent a batch of inputs. 
        code_type(str): The code type used with the target box. It can be
            `encode_center_size` or `decode_center_size`. `encode_center_size` 
            by default.
T
tianshuo78520a 已提交
871
        box_normalized(bool): Whether treat the priorbox as a normalized box.
W
wangguanzhong 已提交
872 873 874 875
            Set true by default.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
876
        axis(int): Which axis in PriorBox to broadcast for box decode, 
W
wangguanzhong 已提交
877 878 879 880
            for example, if axis is 0 and TargetBox has shape [N, M, 4] and 
            PriorBox has shape [M, 4], then PriorBox will broadcast to [N, M, 4]
            for decoding. It is only valid when code type is 
            `decode_center_size`. Set 0 by default. 
X
Xin Pan 已提交
881 882

    Returns:
W
wangguanzhong 已提交
883 884
        Variable:

885
        output_box(Variable): When code_type is 'encode_center_size', the 
W
wangguanzhong 已提交
886 887 888
        output tensor of box_coder_op with shape [N, M, 4] representing the 
        result of N target boxes encoded with M Prior boxes and variances. 
        When code_type is 'decode_center_size', N represents the batch size 
T
tianshuo78520a 已提交
889
        and M represents the number of decoded boxes.
890 891 892 893 894

    Examples:
 
        .. code-block:: python
 
895
            import paddle.fluid as fluid
W
wangguanzhong 已提交
896
            # For encode
897
            prior_box_encode = fluid.data(name='prior_box_encode',
W
wangguanzhong 已提交
898
                                  shape=[512, 4],
899 900 901 902
                                  dtype='float32')
            target_box_encode = fluid.data(name='target_box_encode',
                                   shape=[81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
903 904 905 906 907
            output_encode = fluid.layers.box_coder(prior_box=prior_box_encode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_encode,
                                    code_type="encode_center_size")
            # For decode
908
            prior_box_decode = fluid.data(name='prior_box_decode',
W
wangguanzhong 已提交
909
                                  shape=[512, 4],
910 911 912 913
                                  dtype='float32')
            target_box_decode = fluid.data(name='target_box_decode',
                                   shape=[512, 81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
914 915 916 917 918 919
            output_decode = fluid.layers.box_coder(prior_box=prior_box_decode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_decode,
                                    code_type="decode_center_size",
                                    box_normalized=False,
                                    axis=1)
X
Xin Pan 已提交
920
    """
921 922 923 924
    check_variable_and_dtype(prior_box, 'prior_box', ['float32', 'float64'],
                             'box_coder')
    check_variable_and_dtype(target_box, 'target_box', ['float32', 'float64'],
                             'box_coder')
X
Xin Pan 已提交
925 926
    helper = LayerHelper("box_coder", **locals())

927 928
    output_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)
X
Xin Pan 已提交
929

930 931 932 933 934 935 936 937 938 939 940 941
    inputs = {"PriorBox": prior_box, "TargetBox": target_box}
    attrs = {
        "code_type": code_type,
        "box_normalized": box_normalized,
        "axis": axis
    }
    if isinstance(prior_box_var, Variable):
        inputs['PriorBoxVar'] = prior_box_var
    elif isinstance(prior_box_var, list):
        attrs['variance'] = prior_box_var
    else:
        raise TypeError("Input variance of box_coder must be Variable or lisz")
X
Xin Pan 已提交
942 943
    helper.append_op(
        type="box_coder",
944 945
        inputs=inputs,
        attrs=attrs,
X
Xin Pan 已提交
946 947 948 949 950 951 952 953 954 955
        outputs={"OutputBox": output_box})
    return output_box


@templatedoc()
def polygon_box_transform(input, name=None):
    """
    ${comment}

    Args:
956 957 958 959
        input(Variable): The input with shape [batch_size, geometry_channels, height, width].
                         A Tensor with type float32, float64.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
X
Xin Pan 已提交
960 961

    Returns:
962
        Variable: The output with the same shape as input. A Tensor with type float32, float64.
B
Bai Yifan 已提交
963 964 965 966 967

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
B
Bai Yifan 已提交
968
            input = fluid.data(name='input', shape=[4, 10, 5, 5], dtype='float32')
B
Bai Yifan 已提交
969
            out = fluid.layers.polygon_box_transform(input)
X
Xin Pan 已提交
970
    """
971 972
    check_variable_and_dtype(input, "input", ['float32', 'float64'],
                             'polygon_box_transform')
X
Xin Pan 已提交
973
    helper = LayerHelper("polygon_box_transform", **locals())
974
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
Xin Pan 已提交
975 976 977 978 979 980 981 982 983

    helper.append_op(
        type="polygon_box_transform",
        inputs={"Input": input},
        attrs={},
        outputs={"Output": output})
    return output


D
dengkaipeng 已提交
984 985
@templatedoc(op_type="yolov3_loss")
def yolov3_loss(x,
986 987
                gt_box,
                gt_label,
D
dengkaipeng 已提交
988
                anchors,
989
                anchor_mask,
D
dengkaipeng 已提交
990 991
                class_num,
                ignore_thresh,
992
                downsample_ratio,
993
                gt_score=None,
D
dengkaipeng 已提交
994
                use_label_smooth=True,
995 996
                name=None,
                scale_x_y=1.):
D
dengkaipeng 已提交
997
    """
S
swtkiwi 已提交
998 999 1000 1001
	:alias_main: paddle.nn.functional.yolov3_loss
	:alias: paddle.nn.functional.yolov3_loss,paddle.nn.functional.vision.yolov3_loss
	:old_api: paddle.fluid.layers.yolov3_loss

D
dengkaipeng 已提交
1002 1003 1004
    ${comment}

    Args:
X
xiaoting 已提交
1005
        x (Variable): ${x_comment}The data type is float32 or float64. 
1006
        gt_box (Variable): groud truth boxes, should be in shape of [N, B, 4],
T
tianshuo78520a 已提交
1007 1008
                          in the third dimension, x, y, w, h should be stored. 
                          x,y is the center coordinate of boxes, w, h are the
1009 1010
                          width and height, x, y, w, h should be divided by 
                          input image height to scale to [0, 1].
D
dengkaipeng 已提交
1011
                          N is the batch number and B is the max box number in 
X
xiaoting 已提交
1012
                          an image.The data type is float32 or float64. 
T
tianshuo78520a 已提交
1013
        gt_label (Variable): class id of ground truth boxes, should be in shape
X
xiaoting 已提交
1014
                            of [N, B].The data type is int32. 
D
dengkaipeng 已提交
1015
        anchors (list|tuple): ${anchors_comment}
1016
        anchor_mask (list|tuple): ${anchor_mask_comment}
D
dengkaipeng 已提交
1017 1018
        class_num (int): ${class_num_comment}
        ignore_thresh (float): ${ignore_thresh_comment}
1019
        downsample_ratio (int): ${downsample_ratio_comment}
X
xiaoting 已提交
1020 1021 1022
        name (string): The default value is None.  Normally there is no need 
                       for user to set this property.  For more information, 
                       please refer to :ref:`api_guide_Name`
T
tianshuo78520a 已提交
1023
        gt_score (Variable): mixup score of ground truth boxes, should be in shape
1024
                            of [N, B]. Default None.
1025
        use_label_smooth (bool): ${use_label_smooth_comment}
1026
        scale_x_y (float): ${scale_x_y_comment}
D
dengkaipeng 已提交
1027 1028

    Returns:
1029
        Variable: A 1-D tensor with shape [N], the value of yolov3 loss
D
dengkaipeng 已提交
1030 1031 1032

    Raises:
        TypeError: Input x of yolov3_loss must be Variable
D
dengkaipeng 已提交
1033 1034
        TypeError: Input gtbox of yolov3_loss must be Variable
        TypeError: Input gtlabel of yolov3_loss must be Variable
D
dengkaipeng 已提交
1035
        TypeError: Input gtscore of yolov3_loss must be None or Variable
D
dengkaipeng 已提交
1036 1037 1038
        TypeError: Attr anchors of yolov3_loss must be list or tuple
        TypeError: Attr class_num of yolov3_loss must be an integer
        TypeError: Attr ignore_thresh of yolov3_loss must be a float number
1039
        TypeError: Attr use_label_smooth of yolov3_loss must be a bool value
D
dengkaipeng 已提交
1040 1041

    Examples:
1042 1043
      .. code-block:: python

1044
          import paddle.fluid as fluid
X
xiaoting 已提交
1045 1046 1047 1048
          x = fluid.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
          gt_box = fluid.data(name='gt_box', shape=[None, 6, 4], dtype='float32')
          gt_label = fluid.data(name='gt_label', shape=[None, 6], dtype='int32')
          gt_score = fluid.data(name='gt_score', shape=[None, 6], dtype='float32')
1049 1050
          anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
          anchor_mask = [0, 1, 2]
1051 1052
          loss = fluid.layers.yolov3_loss(x=x, gt_box=gt_box, gt_label=gt_label,
                                          gt_score=gt_score, anchors=anchors, 
1053 1054
                                          anchor_mask=anchor_mask, class_num=80,
                                          ignore_thresh=0.7, downsample_ratio=32)
D
dengkaipeng 已提交
1055 1056 1057 1058 1059
    """
    helper = LayerHelper('yolov3_loss', **locals())

    if not isinstance(x, Variable):
        raise TypeError("Input x of yolov3_loss must be Variable")
1060
    if not isinstance(gt_box, Variable):
D
dengkaipeng 已提交
1061
        raise TypeError("Input gtbox of yolov3_loss must be Variable")
1062
    if not isinstance(gt_label, Variable):
D
dengkaipeng 已提交
1063
        raise TypeError("Input gtlabel of yolov3_loss must be Variable")
1064
    if gt_score is not None and not isinstance(gt_score, Variable):
1065
        raise TypeError("Input gtscore of yolov3_loss must be Variable")
D
dengkaipeng 已提交
1066 1067
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
        raise TypeError("Attr anchors of yolov3_loss must be list or tuple")
1068 1069
    if not isinstance(anchor_mask, list) and not isinstance(anchor_mask, tuple):
        raise TypeError("Attr anchor_mask of yolov3_loss must be list or tuple")
D
dengkaipeng 已提交
1070 1071 1072 1073 1074
    if not isinstance(class_num, int):
        raise TypeError("Attr class_num of yolov3_loss must be an integer")
    if not isinstance(ignore_thresh, float):
        raise TypeError(
            "Attr ignore_thresh of yolov3_loss must be a float number")
1075 1076 1077
    if not isinstance(use_label_smooth, bool):
        raise TypeError(
            "Attr use_label_smooth of yolov3_loss must be a bool value")
D
dengkaipeng 已提交
1078

1079
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
D
dengkaipeng 已提交
1080

1081 1082 1083
    objectness_mask = helper.create_variable_for_type_inference(dtype='int32')
    gt_match_mask = helper.create_variable_for_type_inference(dtype='int32')

1084 1085
    inputs = {
        "X": x,
1086 1087
        "GTBox": gt_box,
        "GTLabel": gt_label,
1088
    }
1089
    if gt_score is not None:
1090
        inputs["GTScore"] = gt_score
1091

D
dengkaipeng 已提交
1092 1093
    attrs = {
        "anchors": anchors,
1094
        "anchor_mask": anchor_mask,
D
dengkaipeng 已提交
1095 1096
        "class_num": class_num,
        "ignore_thresh": ignore_thresh,
1097
        "downsample_ratio": downsample_ratio,
1098
        "use_label_smooth": use_label_smooth,
1099
        "scale_x_y": scale_x_y,
D
dengkaipeng 已提交
1100 1101 1102 1103
    }

    helper.append_op(
        type='yolov3_loss',
1104
        inputs=inputs,
1105 1106 1107 1108 1109
        outputs={
            'Loss': loss,
            'ObjectnessMask': objectness_mask,
            'GTMatchMask': gt_match_mask
        },
D
dengkaipeng 已提交
1110 1111 1112 1113
        attrs=attrs)
    return loss


D
dengkaipeng 已提交
1114
@templatedoc(op_type="yolo_box")
1115 1116 1117 1118 1119 1120
def yolo_box(x,
             img_size,
             anchors,
             class_num,
             conf_thresh,
             downsample_ratio,
1121
             clip_bbox=True,
1122 1123
             name=None,
             scale_x_y=1.):
D
dengkaipeng 已提交
1124
    """
S
swtkiwi 已提交
1125 1126 1127 1128
	:alias_main: paddle.nn.functional.yolo_box
	:alias: paddle.nn.functional.yolo_box,paddle.nn.functional.vision.yolo_box
	:old_api: paddle.fluid.layers.yolo_box

D
dengkaipeng 已提交
1129 1130 1131
    ${comment}

    Args:
X
xiaoting 已提交
1132 1133
        x (Variable): ${x_comment} The data type is float32 or float64. 
        img_size (Variable): ${img_size_comment} The data type is int32. 
D
dengkaipeng 已提交
1134 1135 1136 1137
        anchors (list|tuple): ${anchors_comment}
        class_num (int): ${class_num_comment}
        conf_thresh (float): ${conf_thresh_comment}
        downsample_ratio (int): ${downsample_ratio_comment}
1138
        clip_bbox (bool): ${clip_bbox_comment}
1139
        scale_x_y (float): ${scale_x_y_comment}
X
xiaoting 已提交
1140 1141 1142
        name (string): The default value is None.  Normally there is no need 
                       for user to set this property.  For more information, 
                       please refer to :ref:`api_guide_Name`
D
dengkaipeng 已提交
1143 1144

    Returns:
D
dengkaipeng 已提交
1145
        Variable: A 3-D tensor with shape [N, M, 4], the coordinates of boxes,
D
dengkaipeng 已提交
1146 1147
        and a 3-D tensor with shape [N, M, :attr:`class_num`], the classification 
        scores of boxes.
D
dengkaipeng 已提交
1148 1149 1150 1151 1152 1153 1154 1155

    Raises:
        TypeError: Input x of yolov_box must be Variable
        TypeError: Attr anchors of yolo box must be list or tuple
        TypeError: Attr class_num of yolo box must be an integer
        TypeError: Attr conf_thresh of yolo box must be a float number

    Examples:
D
dengkaipeng 已提交
1156

D
dengkaipeng 已提交
1157 1158
    .. code-block:: python

X
xiaoting 已提交
1159
        import paddle.fluid as fluid
X
xiaoting 已提交
1160 1161
        x = fluid.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
        img_size = fluid.data(name='img_size',shape=[None, 2],dtype='int64')
D
dengkaipeng 已提交
1162
        anchors = [10, 13, 16, 30, 33, 23]
X
xiaoting 已提交
1163
        boxes,scores = fluid.layers.yolo_box(x=x, img_size=img_size, class_num=80, anchors=anchors, 
D
dengkaipeng 已提交
1164 1165 1166 1167 1168
                                        conf_thresh=0.01, downsample_ratio=32)
    """
    helper = LayerHelper('yolo_box', **locals())

    if not isinstance(x, Variable):
1169 1170 1171
        raise TypeError("Input x of yolo_box must be Variable")
    if not isinstance(img_size, Variable):
        raise TypeError("Input img_size of yolo_box must be Variable")
D
dengkaipeng 已提交
1172
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
1173
        raise TypeError("Attr anchors of yolo_box must be list or tuple")
D
dengkaipeng 已提交
1174
    if not isinstance(class_num, int):
1175
        raise TypeError("Attr class_num of yolo_box must be an integer")
D
dengkaipeng 已提交
1176
    if not isinstance(conf_thresh, float):
1177
        raise TypeError("Attr ignore_thresh of yolo_box must be a float number")
D
dengkaipeng 已提交
1178 1179 1180 1181 1182 1183 1184

    boxes = helper.create_variable_for_type_inference(dtype=x.dtype)
    scores = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = {
        "anchors": anchors,
        "class_num": class_num,
D
dengkaipeng 已提交
1185
        "conf_thresh": conf_thresh,
D
dengkaipeng 已提交
1186
        "downsample_ratio": downsample_ratio,
1187
        "clip_bbox": clip_bbox,
1188
        "scale_x_y": scale_x_y,
D
dengkaipeng 已提交
1189 1190 1191 1192
    }

    helper.append_op(
        type='yolo_box',
1193 1194 1195 1196
        inputs={
            "X": x,
            "ImgSize": img_size,
        },
D
dengkaipeng 已提交
1197 1198 1199 1200 1201 1202 1203 1204
        outputs={
            'Boxes': boxes,
            'Scores': scores,
        },
        attrs=attrs)
    return boxes, scores


X
Xin Pan 已提交
1205
@templatedoc()
1206 1207
def detection_map(detect_res,
                  label,
1208 1209
                  class_num,
                  background_label=0,
1210 1211
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
1212 1213 1214 1215
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
X
Xin Pan 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
1227 1228 1229 1230 1231 1232 1233 1234
        input_states: (tuple|None) If not None, It contains 3 elements:
            (1) pos_count ${pos_count_comment}.
            (2) true_pos ${true_pos_comment}.
            (3) false_pos ${false_pos_comment}.
        out_states: (tuple|None) If not None, it contains 3 elements.
            (1) accum_pos_count ${accum_pos_count_comment}.
            (2) accum_true_pos ${accum_true_pos_comment}.
            (3) accum_false_pos ${accum_false_pos_comment}.
X
Xin Pan 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

1244
            import paddle.fluid as fluid
1245
            from fluid.layers import detection
1246
            detect_res = fluid.data(
X
Xin Pan 已提交
1247 1248 1249
                name='detect_res',
                shape=[10, 6],
                dtype='float32')
1250
            label = fluid.data(
X
Xin Pan 已提交
1251 1252 1253 1254
                name='label',
                shape=[10, 6],
                dtype='float32')

1255
            map_out = detection.detection_map(detect_res, label, 21)
X
Xin Pan 已提交
1256
    """
1257 1258
    helper = LayerHelper("detection_map", **locals())

1259
    def __create_var(type):
X
Xin Pan 已提交
1260
        return helper.create_variable_for_type_inference(dtype=type)
1261 1262

    map_out = __create_var('float32')
Z
zhongpu 已提交
1263 1264 1265 1266 1267 1268
    accum_pos_count_out = out_states[
        0] if out_states is not None else __create_var('int32')
    accum_true_pos_out = out_states[
        1] if out_states is not None else __create_var('float32')
    accum_false_pos_out = out_states[
        2] if out_states is not None else __create_var('float32')
1269

Z
zhongpu 已提交
1270 1271 1272
    pos_count = input_states[0] if input_states is not None else None
    true_pos = input_states[1] if input_states is not None else None
    false_pos = input_states[2] if input_states is not None else None
1273

1274 1275 1276 1277 1278
    helper.append_op(
        type="detection_map",
        inputs={
            'Label': label,
            'DetectRes': detect_res,
1279
            'HasState': has_state,
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
            'PosCount': pos_count,
            'TruePos': true_pos,
            'FalsePos': false_pos
        },
        outputs={
            'MAP': map_out,
            'AccumPosCount': accum_pos_count_out,
            'AccumTruePos': accum_true_pos_out,
            'AccumFalsePos': accum_false_pos_out
        },
        attrs={
            'overlap_threshold': overlap_threshold,
            'evaluate_difficult': evaluate_difficult,
1293 1294
            'ap_type': ap_version,
            'class_num': class_num,
1295
        })
1296
    return map_out
1297 1298


1299 1300 1301 1302
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
1303
    """
S
swtkiwi 已提交
1304 1305 1306 1307
	:alias_main: paddle.nn.functional.bipartite_match
	:alias: paddle.nn.functional.bipartite_match,paddle.nn.functional.vision.bipartite_match
	:old_api: paddle.fluid.layers.bipartite_match

Y
yuyang18 已提交
1308 1309
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
1310
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
1311 1312 1313 1314
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
W
wangguanzhong 已提交
1315
    matrix. **The OP only supports CPU**.
Y
yuyang18 已提交
1316 1317 1318

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
1319 1320 1321
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
1322

Y
yuyang18 已提交
1323
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
1324 1325 1326
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
1327 1328 1329
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

1330 1331
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
W
wangguanzhong 已提交
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
            [K, M]. The data type is float32 or float64. It is pair-wise 
            distance matrix between the entities represented by each row and 
            each column. For example, assumed one entity is A with shape [K], 
            another entity is B with shape [M]. The dist_matrix[i][j] is the 
            distance between A[i] and B[j]. The bigger the distance is, the 
            better matching the pairs are. NOTE: This tensor can contain LoD 
            information to represent a batch of inputs. One instance of this 
            batch can contain different numbers of entities.
        match_type(str, optional): The type of matching method, should be
           'bipartite' or 'per_prediction'. None ('bipartite') by default.
        dist_threshold(float32, optional): If `match_type` is 'per_prediction',
1343
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
1344
            on the maximum distance, 0.5 by default.
W
wangguanzhong 已提交
1345 1346 1347 1348
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
 
1349
    Returns:
W
wangguanzhong 已提交
1350
        Tuple:
Y
yuyang18 已提交
1351

W
wangguanzhong 已提交
1352 1353
        matched_indices(Variable): A 2-D Tensor with shape [N, M]. The data
        type is int32. N is the batch size. If match_indices[i][j] is -1, it
Y
yuyang18 已提交
1354 1355 1356 1357 1358
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

W
wangguanzhong 已提交
1359 1360
        matched_distance(Variable): A 2-D Tensor with shape [N, M]. The data
        type is float32. N is batch size. If match_indices[i][j] is -1,
Y
yuyang18 已提交
1361 1362 1363 1364 1365 1366 1367
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

1368
        >>> import paddle.fluid as fluid
1369 1370
        >>> x = fluid.data(name='x', shape=[None, 4], dtype='float32')
        >>> y = fluid.data(name='y', shape=[None, 4], dtype='float32')
Y
yuyang18 已提交
1371 1372
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
1373 1374
    """
    helper = LayerHelper('bipartite_match', **locals())
X
Xin Pan 已提交
1375 1376 1377
    match_indices = helper.create_variable_for_type_inference(dtype='int32')
    match_distance = helper.create_variable_for_type_inference(
        dtype=dist_matrix.dtype)
1378 1379 1380
    helper.append_op(
        type='bipartite_match',
        inputs={'DistMat': dist_matrix},
1381 1382 1383 1384
        attrs={
            'match_type': match_type,
            'dist_threshold': dist_threshold,
        },
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
        outputs={
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_distance
        })
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
S
swtkiwi 已提交
1398 1399 1400 1401
	:alias_main: paddle.nn.functional.target_assign
	:alias: paddle.nn.functional.target_assign,paddle.nn.functional.extension.target_assign
	:old_api: paddle.fluid.layers.target_assign

1402 1403 1404 1405
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
1406

1407 1408 1409 1410 1411
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
1412

1413
    1. Assigning all outputs based on `match_indices`:
C
chengduoZH 已提交
1414

1415 1416 1417
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
1418

1419 1420
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
1421

1422
        Otherwise,
C
chengduoZH 已提交
1423

1424 1425
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
1426

Q
qingqing01 已提交
1427
    2. Assigning outputs based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
1428

Q
qingqing01 已提交
1429 1430
    Assumed that i-th instance in `neg_indices` is called `neg_indice`,
    for i-th instance:
M
minqiyang 已提交
1431

1432
    .. code-block:: text
C
chengduoZH 已提交
1433

Q
qingqing01 已提交
1434 1435 1436
        for id in neg_indice:
            out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][id] = 1.0
1437 1438

    Args:
Q
qingqing01 已提交
1439 1440 1441
       input (Variable): This input is a 3D LoDTensor with shape [M, P, K].
           Data type should be int32 or float32.
       matched_indices (Variable): The input matched indices
1442 1443 1444
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
Q
qingqing01 已提交
1445 1446
       negative_indices (Variable, optional): The input negative example indices
           are an optional input with shape [Neg, 1] and int32 type, where Neg is
1447
           the total number of negative example indices.
Q
qingqing01 已提交
1448 1449 1450 1451 1452
       mismatch_value (float32, optional): Fill this value to the mismatched
           location.
       name (string): The default value is None.  Normally there is no need for
           user to set this property.  For more information, please refer
           to :ref:`api_guide_Name`.
1453 1454

    Returns:
Q
qingqing01 已提交
1455 1456 1457 1458 1459 1460 1461 1462
        tuple: A tuple(out, out_weight) is returned.

        out (Variable): a 3D Tensor with shape [N, P, K] and same data type
        with `input`, N and P is the same as they are in `matched_indices`,
        K is the same as it in input of X.

        out_weight (Variable): the weight for output with the shape of [N, P, 1].
        Data type is float32.
1463 1464 1465 1466 1467

    Examples:

        .. code-block:: python

1468
            import paddle.fluid as fluid
Q
qingqing01 已提交
1469
            x = fluid.data(
1470 1471 1472
                name='x',
                shape=[4, 20, 4],
                dtype='float',
Q
qingqing01 已提交
1473 1474
                lod_level=1)
            matched_id = fluid.data(
1475 1476
                name='indices',
                shape=[8, 20],
Q
qingqing01 已提交
1477
                dtype='int32')
1478 1479 1480 1481
            trg, trg_weight = fluid.layers.target_assign(
                x,
                matched_id,
                mismatch_value=0)
1482 1483
    """
    helper = LayerHelper('target_assign', **locals())
X
Xin Pan 已提交
1484 1485
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_weight = helper.create_variable_for_type_inference(dtype='float32')
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
    helper.append_op(
        type='target_assign',
        inputs={
            'X': input,
            'MatchIndices': matched_indices,
            'NegIndices': negative_indices
        },
        outputs={'Out': out,
                 'OutWeight': out_weight},
        attrs={'mismatch_value': mismatch_value})
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
1513
             normalize=True,
1514 1515
             sample_size=None):
    """
S
swtkiwi 已提交
1516 1517 1518 1519
	:alias_main: paddle.nn.functional.ssd_loss
	:alias: paddle.nn.functional.ssd_loss,paddle.nn.functional.loss.ssd_loss
	:old_api: paddle.fluid.layers.ssd_loss

Y
yuyang18 已提交
1520
    **Multi-box loss layer for object detection algorithm of SSD**
1521

翟飞跃 已提交
1522 1523
    This layer is to compute detection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth bounding
1524 1525 1526 1527
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
1528
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1529

1530
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
1531

T
tianshuo78520a 已提交
1532
      1.2 Compute matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1533

1534
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
1535

1536
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
1537

1538
      2.2. Compute confidence loss.
Y
yuyang18 已提交
1539

1540 1541
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
1542

1543
    4. Assign classification and regression targets
Y
yuyang18 已提交
1544

1545
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
1546

1547
      4.2. Assign regression targets.
Y
yuyang18 已提交
1548

1549
      4.3. Assign classification targets.
Y
yuyang18 已提交
1550

1551
    5. Compute the overall objective loss.
Y
yuyang18 已提交
1552

1553
      5.1 Compute confidence loss.
Y
yuyang18 已提交
1554

1555
      5.2 Compute localization loss.
Y
yuyang18 已提交
1556

1557 1558 1559 1560 1561 1562
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
1563 1564
            the layout is [xmin, ymin, xmax, ymax].The data type is float32 or
            float64.
1565 1566
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
1567 1568
            `location`, C is the class number.The data type is float32 or
            float64.
翟飞跃 已提交
1569
        gt_box (Variable): The ground-truth bounding boxes (bboxes) are a 2D
1570
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
1571
            bboxes of mini-batch input.The data type is float32 or float64.
1572
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
1573 1574 1575
            with shape [Ng, 1].Ng is the total number of ground-truth bboxes of
            mini-batch input, 1 is the number of class. The data type is float32
            or float64.
1576
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
1577 1578
            Np and 4 are the same as they are in `location`. The data type is
            float32 or float64.
1579
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
1580
            with shape [Np, 4]. Np and 4 are the same as they are in `prior_box`
1581 1582
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
1583 1584
            'overlap_threshold' to determine the extra matching bboxes when finding \
            matched boxes. 0.5 by default.
1585
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
翟飞跃 已提交
1586
            boxes, used only when mining_type is 'max_negative', 3.0 by default.
1587
        neg_overlap (float): The negative overlap upper bound for the unmatched
1588
            predictions. Use only when mining_type is 'max_negative',
1589 1590 1591 1592
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
翟飞跃 已提交
1593
            be 'bipartite' or 'per_prediction', 'per_prediction' by default.
1594 1595
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
1596
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
1597
            of output locations, True by default.
1598 1599
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
1600 1601

    Returns:
1602 1603 1604
        Variable(Tensor):  The weighted sum of the localization loss and confidence loss, \
        with shape [N * Np, 1], N and Np are the same as they are in
        `location`.The data type is float32 or float64.
1605 1606

    Raises:
Y
yuyang18 已提交
1607 1608
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
1609 1610

    Examples:
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629

        .. code-block:: python

            import paddle.fluid as fluid
            pb = fluid.data(
                           name='prior_box',
                           shape=[10, 4],
                           dtype='float32')
            pbv = fluid.data(
                           name='prior_box_var',
                           shape=[10, 4],
                           dtype='float32')
            loc = fluid.data(name='target_box', shape=[10, 4], dtype='float32')
            scores = fluid.data(name='scores', shape=[10, 21], dtype='float32')
            gt_box = fluid.data(
                 name='gt_box', shape=[4], lod_level=1, dtype='float32')
            gt_label = fluid.data(
                 name='gt_label', shape=[1], lod_level=1, dtype='float32')
            loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
1630 1631 1632 1633 1634 1635 1636
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape
G
merge  
gongweibao 已提交
1637
    conf_shape = nn.shape(confidence)
1638 1639

    def __reshape_to_2d(var):
1640
        return nn.flatten(x=var, axis=2)
1641

T
tianshuo78520a 已提交
1642
    # 1. Find matched bounding box by prior box.
1643 1644
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
T
tianshuo78520a 已提交
1645
    #   1.2 Compute matched bounding box by bipartite matching algorithm.
1646 1647
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
1648 1649 1650

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
1651 1652
    gt_label = nn.reshape(
        x=gt_label, shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1))
1653
    gt_label.stop_gradient = True
1654 1655 1656 1657 1658 1659 1660
    target_label, _ = target_assign(
        gt_label, matched_indices, mismatch_value=background_label)
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
1661
    target_label.stop_gradient = True
1662
    conf_loss = softmax_with_cross_entropy(confidence, target_label)
1663
    # 3. Mining hard examples
G
merge  
gongweibao 已提交
1664
    actual_shape = nn.slice(conf_shape, axes=[0], starts=[0], ends=[2])
1665
    actual_shape.stop_gradient = True
1666 1667
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
1668
    conf_loss = nn.reshape(
1669
        x=conf_loss, shape=(-1, 0), actual_shape=actual_shape)
1670
    conf_loss.stop_gradient = True
X
Xin Pan 已提交
1671
    neg_indices = helper.create_variable_for_type_inference(dtype='int32')
1672
    dtype = matched_indices.dtype
X
Xin Pan 已提交
1673 1674
    updated_matched_indices = helper.create_variable_for_type_inference(
        dtype=dtype)
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
    helper.append_op(
        type='mine_hard_examples',
        inputs={
            'ClsLoss': conf_loss,
            'LocLoss': None,
            'MatchIndices': matched_indices,
            'MatchDist': matched_dist,
        },
        outputs={
            'NegIndices': neg_indices,
            'UpdatedMatchIndices': updated_matched_indices
        },
        attrs={
            'neg_pos_ratio': neg_pos_ratio,
B
Bai Yifan 已提交
1689
            'neg_dist_threshold': neg_overlap,
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
            'mining_type': mining_type,
            'sample_size': sample_size,
        })

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
    encoded_bbox = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=gt_box,
        code_type='encode_center_size')
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
1715

1716
    conf_loss = softmax_with_cross_entropy(confidence, target_label)
1717 1718 1719
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

1720 1721 1722 1723
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

1724 1725 1726 1727 1728 1729 1730 1731
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

1732 1733 1734 1735
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

1736 1737
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
1738
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
1739 1740 1741
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
    loss = nn.reshape(x=loss, shape=(-1, 0), actual_shape=actual_shape)
1742 1743 1744 1745 1746
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

1747
    return loss
C
chengduoZH 已提交
1748 1749


1750 1751 1752 1753
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
1754
              aspect_ratios=[1.],
1755 1756 1757 1758 1759
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
1760 1761
              name=None,
              min_max_aspect_ratios_order=False):
1762
    """
S
swtkiwi 已提交
1763 1764 1765 1766
	:alias_main: paddle.nn.functional.prior_box
	:alias: paddle.nn.functional.prior_box,paddle.nn.functional.vision.prior_box
	:old_api: paddle.fluid.layers.prior_box

R
ruri 已提交
1767
    This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
1768 1769 1770 1771 1772
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

R
ruri 已提交
1773
    Parameters:
T
tianshuo78520a 已提交
1774
       input(Variable): 4-D tensor(NCHW), the data type should be float32 or float64.
R
ruri 已提交
1775 1776 1777 1778
       image(Variable): 4-D tensor(NCHW), the input image data of PriorBoxOp,
            the data type should be float32 or float64.
       min_sizes(list|tuple|float): the min sizes of generated prior boxes.
       max_sizes(list|tuple|None): the max sizes of generated prior boxes.
1779
            Default: None.
R
ruri 已提交
1780
       aspect_ratios(list|tuple|float): the aspect ratios of generated
1781
            prior boxes. Default: [1.].
1782 1783 1784 1785
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
翟飞跃 已提交
1786
       step(list|tuple): Prior boxes step across width and height, If
R
ruri 已提交
1787 1788
            step[0] equals to 0.0 or step[1] equals to 0.0, the prior boxes step across
            height or weight of the input will be automatically calculated.
1789
            Default: [0., 0.]
1790
       offset(float): Prior boxes center offset. Default: 0.5
1791
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1792
            in order of [min, max, aspect_ratios], which is consistent with
1793 1794 1795
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
R
ruri 已提交
1796
       name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1797 1798

    Returns:
R
ruri 已提交
1799
        Tuple: A tuple with two Variable (boxes, variances)
Q
update  
qiaolongfei 已提交
1800

R
ruri 已提交
1801 1802
        boxes(Variable): the output prior boxes of PriorBox.
	4-D tensor, the layout is [H, W, num_priors, 4].
Q
update  
qiaolongfei 已提交
1803
        H is the height of input, W is the width of input,
R
ruri 已提交
1804
        num_priors is the total box count of each position of input.
Q
update  
qiaolongfei 已提交
1805

R
ruri 已提交
1806 1807
        variances(Variable): the expanded variances of PriorBox.
    	4-D tensor, the layput is [H, W, num_priors, 4].
Q
update  
qiaolongfei 已提交
1808
        H is the height of input, W is the width of input
R
ruri 已提交
1809
        num_priors is the total box count of each position of input
1810 1811 1812

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1813

R
ruri 已提交
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,9])
	    image = fluid.data(name="image", shape=[None,3,9,12])
	    box, var = fluid.layers.prior_box(
                 input=input,
                 image=image,
		 min_sizes=[100.],
                 clip=True,
                 flip=True)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    # prepare a batch of data
	    input_data = np.random.rand(1,3,6,9).astype("float32")
	    image_data = np.random.rand(1,3,9,12).astype("float32")
 
	    box_out, var_out = exe.run(fluid.default_main_program(),
                feed={"input":input_data,"image":image_data},
                fetch_list=[box,var],
                return_numpy=True)
 
	    # print(box_out.shape)
	    # (6, 9, 1, 4)
	    # print(var_out.shape)
	    # (6, 9, 1, 4)

	    # imperative mode
	    import paddle.fluid.dygraph as dg

	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		image = dg.to_variable(image_data)
    		box, var = fluid.layers.prior_box(
		    input=input,
		    image=image,
		    min_sizes=[100.],
		    clip=True,
		    flip=True)
		# print(box.shape)
		# [6L, 9L, 1L, 4L]
                # print(var.shape)
		# [6L, 9L, 1L, 4L]

1861 1862 1863
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()
1864 1865
    check_variable_and_dtype(
        input, 'input', ['uint8', 'int8', 'float32', 'float64'], 'prior_box')
1866

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

1882 1883 1884 1885 1886 1887 1888 1889
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
1890 1891
        'offset': offset,
        'min_max_aspect_ratios_order': min_max_aspect_ratios_order
1892 1893
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
1894 1895
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
1896 1897
        attrs['max_sizes'] = max_sizes

X
Xin Pan 已提交
1898 1899
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
    helper.append_op(
        type="prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


R
ruri 已提交
1912 1913 1914 1915 1916 1917 1918 1919 1920
def density_prior_box(input,
                      image,
                      densities=None,
                      fixed_sizes=None,
                      fixed_ratios=None,
                      variance=[0.1, 0.1, 0.2, 0.2],
                      clip=False,
                      steps=[0.0, 0.0],
                      offset=0.5,
1921
                      flatten_to_2d=False,
R
ruri 已提交
1922 1923
                      name=None):
    """
S
swtkiwi 已提交
1924 1925 1926 1927
	:alias_main: paddle.nn.functional.density_prior_box
	:alias: paddle.nn.functional.density_prior_box,paddle.nn.functional.vision.density_prior_box
	:old_api: paddle.fluid.layers.density_prior_box

R
ruri 已提交
1928

R
ruri 已提交
1929
    This op generates density prior boxes for SSD(Single Shot MultiBox Detector) 
R
ruri 已提交
1930 1931 1932 1933 1934 1935
    algorithm. Each position of the input produce N prior boxes, N is 
    determined by the count of densities, fixed_sizes and fixed_ratios. 
    Boxes center at grid points around each input position is generated by 
    this operator, and the grid points is determined by densities and 
    the count of density prior box is determined by fixed_sizes and fixed_ratios. 
    Obviously, the number of fixed_sizes is equal to the number of densities.
R
ruri 已提交
1936
    
R
ruri 已提交
1937
    For densities_i in densities:
R
ruri 已提交
1938 1939
    
    .. math::
R
ruri 已提交
1940

R
ruri 已提交
1941 1942 1943 1944 1945 1946 1947
        N\_density_prior\_box = SUM(N\_fixed\_ratios * densities\_i^2)

    N_density_prior_box is the number of density_prior_box and N_fixed_ratios is the number of fixed_ratios.

    Parameters:
       input(Variable): 4-D tensor(NCHW), the data type should be float32 of float64.
       image(Variable): 4-D tensor(NCHW), the input image data of PriorBoxOp, the data type should be float32 or float64.
R
ruri 已提交
1948
            the layout is NCHW.
R
ruri 已提交
1949
       densities(list|tuple|None): The densities of generated density prior 
R
ruri 已提交
1950 1951
            boxes, this attribute should be a list or tuple of integers. 
            Default: None.
R
ruri 已提交
1952
       fixed_sizes(list|tuple|None): The fixed sizes of generated density
R
ruri 已提交
1953 1954
            prior boxes, this attribute should a list or tuple of same 
            length with :attr:`densities`. Default: None.
R
ruri 已提交
1955
       fixed_ratios(list|tuple|None): The fixed ratios of generated density
R
ruri 已提交
1956 1957 1958
            prior boxes, if this attribute is not set and :attr:`densities`
            and :attr:`fix_sizes` is set, :attr:`aspect_ratios` will be used
            to generate density prior boxes.
R
ruri 已提交
1959
       variance(list|tuple): The variances to be encoded in density prior boxes.
R
ruri 已提交
1960
            Default:[0.1, 0.1, 0.2, 0.2].
R
ruri 已提交
1961
       clip(bool): Whether to clip out of boundary boxes. Default: False.
翟飞跃 已提交
1962
       step(list|tuple): Prior boxes step across width and height, If
R
ruri 已提交
1963 1964
            step[0] equals 0.0 or step[1] equals 0.0, the density prior boxes step across
            height or weight of the input will be automatically calculated.
R
ruri 已提交
1965 1966
            Default: [0., 0.]
       offset(float): Prior boxes center offset. Default: 0.5
1967 1968
       flatten_to_2d(bool): Whether to flatten output prior boxes and variance
           to 2D shape, the second dim is 4. Default: False.
R
ruri 已提交
1969 1970
       name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
R
ruri 已提交
1971
    Returns:
R
ruri 已提交
1972
        Tuple: A tuple with two Variable (boxes, variances)
R
ruri 已提交
1973 1974

        boxes: the output density prior boxes of PriorBox.
R
ruri 已提交
1975 1976 1977
        4-D tensor, the layout is [H, W, num_priors, 4] when flatten_to_2d is False.
        2-D tensor, the layout is [H * W * num_priors, 4] when flatten_to_2d is True.
        H is the height of input, W is the width of input, and num_priors is the total box count of each position of input.
R
ruri 已提交
1978 1979

        variances: the expanded variances of PriorBox.
R
ruri 已提交
1980 1981 1982
        4-D tensor, the layout is [H, W, num_priors, 4] when flatten_to_2d is False.
        2-D tensor, the layout is [H * W * num_priors, 4] when flatten_to_2d is True.
        H is the height of input, W is the width of input, and num_priors is the total box count of each position of input.
R
ruri 已提交
1983 1984 1985


    Examples:
R
ruri 已提交
1986

R
ruri 已提交
1987 1988
        .. code-block:: python

R
ruri 已提交
1989
            #declarative mode
R
ruri 已提交
1990

R
ruri 已提交
1991 1992
            import paddle.fluid as fluid
            import numpy as np
R
ruri 已提交
1993

R
ruri 已提交
1994 1995 1996
            input = fluid.data(name="input", shape=[None,3,6,9])
            image = fluid.data(name="image", shape=[None,3,9,12])
            box, var = fluid.layers.density_prior_box(
R
ruri 已提交
1997 1998 1999 2000 2001 2002 2003 2004
                 input=input,
                 image=image,
                 densities=[4, 2, 1],
                 fixed_sizes=[32.0, 64.0, 128.0],
                 fixed_ratios=[1.],
                 clip=True,
                 flatten_to_2d=True)

R
ruri 已提交
2005 2006 2007
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
R
ruri 已提交
2008
 
R
ruri 已提交
2009 2010 2011 2012 2013 2014
            # prepare a batch of data
            input_data = np.random.rand(1,3,6,9).astype("float32")
            image_data = np.random.rand(1,3,9,12).astype("float32")

            box_out, var_out = exe.run(
                fluid.default_main_program(),
R
ruri 已提交
2015
                feed={"input":input_data,
R
ruri 已提交
2016
                      "image":image_data},
R
ruri 已提交
2017 2018 2019
                fetch_list=[box,var],
                return_numpy=True)

R
ruri 已提交
2020 2021 2022 2023
            # print(box_out.shape)
            # (1134, 4)
            # print(var_out.shape)
            # (1134, 4)
R
ruri 已提交
2024 2025


R
ruri 已提交
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
            #imperative mode
            import paddle.fluid.dygraph as dg

            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                image = dg.to_variable(image_data)
                box, var = fluid.layers.density_prior_box(
                    input=input,
                    image=image,
                    densities=[4, 2, 1],
                    fixed_sizes=[32.0, 64.0, 128.0],
                    fixed_ratios=[1.],
                    clip=True)

                # print(box.shape)
                # [6L, 9L, 21L, 4L]
                # print(var.shape)
                # [6L, 9L, 21L, 4L]
R
ruri 已提交
2044

R
ruri 已提交
2045 2046 2047
    """
    helper = LayerHelper("density_prior_box", **locals())
    dtype = helper.input_dtype()
2048 2049
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'density_prior_box')
R
ruri 已提交
2050 2051 2052 2053

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

2054 2055 2056
    check_type(densities, 'densities', (list, tuple), 'density_prior_box')
    check_type(fixed_sizes, 'fixed_sizes', (list, tuple), 'density_prior_box')
    check_type(fixed_ratios, 'fixed_ratios', (list, tuple), 'density_prior_box')
R
ruri 已提交
2057 2058
    if len(densities) != len(fixed_sizes):
        raise ValueError('densities and fixed_sizes length should be euqal.')
2059

R
ruri 已提交
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    densities = list(map(int, densities))
    fixed_sizes = list(map(float, fixed_sizes))
    fixed_ratios = list(map(float, fixed_ratios))
    steps = list(map(float, steps))

    attrs = {
        'variances': variance,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
        'offset': offset,
2075 2076 2077 2078
        'densities': densities,
        'fixed_sizes': fixed_sizes,
        'fixed_ratios': fixed_ratios,
        'flatten_to_2d': flatten_to_2d,
R
ruri 已提交
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
    }
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="density_prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


C
chengduoZH 已提交
2094
def multi_box_head(inputs,
C
chengduoZH 已提交
2095 2096
                   image,
                   base_size,
C
chengduoZH 已提交
2097
                   num_classes,
C
chengduoZH 已提交
2098
                   aspect_ratios,
2099 2100
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
2101 2102
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
2103 2104 2105 2106
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
2107 2108
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
2109
                   clip=False,
C
chengduoZH 已提交
2110
                   kernel_size=1,
C
chengduoZH 已提交
2111
                   pad=0,
C
chengduoZH 已提交
2112
                   stride=1,
2113 2114
                   name=None,
                   min_max_aspect_ratios_order=False):
C
chengduoZH 已提交
2115
    """
S
swtkiwi 已提交
2116 2117
	:api_attr: Static Graph

Q
qingqing01 已提交
2118 2119 2120 2121
    Base on SSD ((Single Shot MultiBox Detector) algorithm, generate prior boxes,
    regression location and classification confidence on multiple input feature
    maps, then output the concatenate results. The details of this algorithm,
    please refer the section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
2122
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
2123 2124

    Args:
Q
qingqing01 已提交
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
       inputs (list(Variable)|tuple(Variable)): The list of input variables,
           the format of all Variables are 4-D Tensor, layout is NCHW.
           Data type should be float32 or float64.
       image (Variable): The input image, layout is NCHW. Data type should be
           the same as inputs.
       base_size(int): the base_size is input image size. When len(inputs) > 2
           and `min_size` and `max_size` are None, the `min_size` and `max_size`
           are calculated by `baze_size`, 'min_ratio' and `max_ratio`. The
           formula is as follows:

              ..  code-block:: text

                  min_sizes = []
                  max_sizes = []
                  step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
                  for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
                      min_sizes.append(base_size * ratio / 100.)
                      max_sizes.append(base_size * (ratio + step) / 100.)
                      min_sizes = [base_size * .10] + min_sizes
                      max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
2146
       num_classes(int): The number of classes.
Q
qingqing01 已提交
2147 2148
       aspect_ratios(list(float) | tuple(float)): the aspect ratios of generated
           prior boxes. The length of input and aspect_ratios must be equal.
C
chengduoZH 已提交
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
2168
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
2169 2170 2171 2172 2173
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
Q
qingqing01 已提交
2174 2175 2176
       name(str): The default value is None.  Normally there is no need
           for user to set this property.  For more information, please
           refer to :ref:`api_guide_Name`.
2177
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
2178
            in order of [min, max, aspect_ratios], which is consistent with
2179
            Caffe. Please note, this order affects the weights order of
T
tianshuo78520a 已提交
2180
            convolution layer followed by and does not affect the final
2181
            detection results. Default: False.
C
chengduoZH 已提交
2182 2183

    Returns:
Q
update  
qiaolongfei 已提交
2184 2185
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

Q
qingqing01 已提交
2186 2187 2188
        mbox_loc (Variable): The predicted boxes' location of the inputs. The
        layout is [N, num_priors, 4], where N is batch size, ``num_priors``
        is the number of prior boxes. Data type is the same as input.
Q
update  
qiaolongfei 已提交
2189

Q
qingqing01 已提交
2190 2191 2192 2193
        mbox_conf (Variable): The predicted boxes' confidence of the inputs.
        The layout is [N, num_priors, C], where ``N`` and ``num_priors`` 
        has the same meaning as above. C is the number of Classes.
        Data type is the same as input.
Q
update  
qiaolongfei 已提交
2194

Q
qingqing01 已提交
2195 2196 2197
        boxes (Variable): the output prior boxes. The layout is [num_priors, 4].
        The meaning of num_priors is the same as above.
        Data type is the same as input.
C
chengduoZH 已提交
2198

Q
qingqing01 已提交
2199 2200
        variances (Variable): the expanded variances for prior boxes.
        The layout is [num_priors, 4]. Data type is the same as input.
C
chengduoZH 已提交
2201

Q
qingqing01 已提交
2202
    Examples 1: set min_ratio and max_ratio:
C
chengduoZH 已提交
2203
        .. code-block:: python
Q
update  
qiaolongfei 已提交
2204

2205 2206
          import paddle.fluid as fluid

Q
qingqing01 已提交
2207 2208 2209 2210 2211 2212 2213
          images = fluid.data(name='data', shape=[None, 3, 300, 300], dtype='float32')
          conv1 = fluid.data(name='conv1', shape=[None, 512, 19, 19], dtype='float32')
          conv2 = fluid.data(name='conv2', shape=[None, 1024, 10, 10], dtype='float32')
          conv3 = fluid.data(name='conv3', shape=[None, 512, 5, 5], dtype='float32')
          conv4 = fluid.data(name='conv4', shape=[None, 256, 3, 3], dtype='float32')
          conv5 = fluid.data(name='conv5', shape=[None, 256, 2, 2], dtype='float32')
          conv6 = fluid.data(name='conv6', shape=[None, 128, 1, 1], dtype='float32')
2214

Q
update  
qiaolongfei 已提交
2215
          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
2216
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
C
chengduoZH 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
Q
qingqing01 已提交
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251

    Examples 2: set min_sizes and max_sizes:
        .. code-block:: python

          import paddle.fluid as fluid

          images = fluid.data(name='data', shape=[None, 3, 300, 300], dtype='float32')
          conv1 = fluid.data(name='conv1', shape=[None, 512, 19, 19], dtype='float32')
          conv2 = fluid.data(name='conv2', shape=[None, 1024, 10, 10], dtype='float32')
          conv3 = fluid.data(name='conv3', shape=[None, 512, 5, 5], dtype='float32')
          conv4 = fluid.data(name='conv4', shape=[None, 256, 3, 3], dtype='float32')
          conv5 = fluid.data(name='conv5', shape=[None, 256, 2, 2], dtype='float32')
          conv6 = fluid.data(name='conv6', shape=[None, 128, 1, 1], dtype='float32')

          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
            image=images,
            num_classes=21,
            min_sizes=[60.0, 105.0, 150.0, 195.0, 240.0, 285.0],
            max_sizes=[[], 150.0, 195.0, 240.0, 285.0, 300.0],
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)

C
chengduoZH 已提交
2252 2253
    """

C
chengduoZH 已提交
2254
    def _reshape_with_axis_(input, axis=1):
2255
        out = nn.flatten(x=input, axis=axis)
C
chengduoZH 已提交
2256
        return out
2257

2258 2259
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
2260

C
chengduoZH 已提交
2261 2262 2263 2264
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

2265 2266
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
2267

C
chengduoZH 已提交
2268 2269 2270 2271 2272
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
2273
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
2274 2275 2276
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
M
minqiyang 已提交
2277
        for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
C
chengduoZH 已提交
2278 2279 2280 2281 2282
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
2283 2284 2285 2286 2287
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
Z
zhongpu 已提交
2288
    if step_h is not None:
C
chengduoZH 已提交
2289 2290 2291 2292
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
Z
zhongpu 已提交
2293
    if step_w is not None:
C
chengduoZH 已提交
2294 2295 2296 2297
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
Z
zhongpu 已提交
2298
    if steps is not None:
C
chengduoZH 已提交
2299 2300 2301 2302 2303 2304 2305
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
2306 2307
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
2308 2309
    box_results = []
    var_results = []
C
chengduoZH 已提交
2310 2311
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
2312 2313
        max_size = max_sizes[i]

2314
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
2315
            min_size = [min_size]
C
chengduoZH 已提交
2316 2317
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
2318 2319 2320 2321

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
2322
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
2323
                aspect_ratio = [aspect_ratio]
2324
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
2325

2326
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
2327 2328
                             variance, flip, clip, step, offset, None,
                             min_max_aspect_ratios_order)
C
chengduoZH 已提交
2329 2330 2331 2332 2333

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
2334

2335
        # get loc
Y
Yuan Gao 已提交
2336
        num_loc_output = num_boxes * 4
2337
        mbox_loc = nn.conv2d(
C
chengduoZH 已提交
2338
            input=input,
2339 2340 2341 2342 2343
            num_filters=num_loc_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)

2344
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
2345
        mbox_loc_flatten = nn.flatten(mbox_loc, axis=1)
Y
Yuan Gao 已提交
2346
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
2347

2348
        # get conf
C
chengduoZH 已提交
2349
        num_conf_output = num_boxes * num_classes
2350
        conf_loc = nn.conv2d(
C
chengduoZH 已提交
2351
            input=input,
2352 2353 2354 2355
            num_filters=num_conf_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)
2356
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
2357
        conf_loc_flatten = nn.flatten(conf_loc, axis=1)
Y
Yuan Gao 已提交
2358
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
2359

C
chengduoZH 已提交
2360 2361 2362
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
2363 2364
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
2365 2366 2367 2368 2369 2370 2371 2372 2373
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
2374
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
2375
        mbox_locs_concat = nn.reshape(mbox_locs_concat, shape=[0, -1, 4])
Y
Yuan Gao 已提交
2376
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
2377 2378
        mbox_confs_concat = nn.reshape(
            mbox_confs_concat, shape=[0, -1, num_classes])
C
chengduoZH 已提交
2379

2380 2381
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
2382
    return mbox_locs_concat, mbox_confs_concat, box, var
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """
S
swtkiwi 已提交
2393 2394 2395 2396
	:alias_main: paddle.nn.functional.anchor_generator
	:alias: paddle.nn.functional.anchor_generator,paddle.nn.functional.vision.anchor_generator
	:old_api: paddle.fluid.layers.anchor_generator

2397 2398 2399 2400 2401 2402 2403 2404
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
W
wangguanzhong 已提交
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
       input(Variable): 4-D Tensor with shape [N,C,H,W]. The input feature map.
       anchor_sizes(float32|list|tuple, optional): The anchor sizes of generated
          anchors, given in absolute pixels e.g. [64., 128., 256., 512.].
          For instance, the anchor size of 64 means the area of this anchor 
          equals to 64**2. None by default.
       aspect_ratios(float32|list|tuple, optional): The height / width ratios 
           of generated anchors, e.g. [0.5, 1.0, 2.0]. None by default.
       variance(list|tuple, optional): The variances to be used in box 
           regression deltas. The data type is float32, [0.1, 0.1, 0.2, 0.2] by 
           default.
       stride(list|tuple, optional): The anchors stride across width and height.
           The data type is float32. e.g. [16.0, 16.0]. None by default.
       offset(float32, optional): Prior boxes center offset. 0.5 by default.
       name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and None 
           by default. 
2421 2422

    Returns:
W
wangguanzhong 已提交
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
        Tuple:

        Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4].
        H is the height of input, W is the width of input,
        num_anchors is the box count of each position. 
        Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
 
        Variances(Variable): The expanded variances of anchors
        with a layout of [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_anchors is the box count of each position.
        Each variance is in (xcenter, ycenter, w, h) format.
2435 2436 2437 2438 2439 2440


    Examples:

        .. code-block:: python

2441
            import paddle.fluid as fluid
2442
            conv1 = fluid.data(name='conv1', shape=[None, 48, 16, 16], dtype='float32')
J
jerrywgz 已提交
2443
            anchor, var = fluid.layers.anchor_generator(
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

X
Xin Pan 已提交
2477 2478
    anchor = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
2479 2480 2481 2482 2483 2484 2485 2486 2487
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
        outputs={"Anchors": anchor,
                 "Variances": var},
        attrs=attrs, )
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var
2488 2489


W
whs 已提交
2490 2491 2492 2493
def roi_perspective_transform(input,
                              rois,
                              transformed_height,
                              transformed_width,
S
SunGaofeng 已提交
2494 2495
                              spatial_scale=1.0,
                              name=None):
W
whs 已提交
2496
    """
S
SunGaofeng 已提交
2497
    **The** `rois` **of this op should be a LoDTensor.**
W
whs 已提交
2498

S
SunGaofeng 已提交
2499 2500 2501 2502 2503
    ROI perspective transform op applies perspective transform to map each roi into an 
    rectangular region. Perspective transform is a type of transformation in linear algebra.

    Parameters:
        input (Variable): 4-D Tensor, input of ROIPerspectiveTransformOp. The format of 
W
whs 已提交
2504 2505
                          input tensor is NCHW. Where N is batch size, C is the
                          number of input channels, H is the height of the feature,
S
SunGaofeng 已提交
2506 2507 2508
                          and W is the width of the feature. The data type is float32.
        rois (Variable):  2-D LoDTensor, ROIs (Regions of Interest) to be transformed. 
                          It should be a 2-D LoDTensor of shape (num_rois, 8). Given as 
W
whs 已提交
2509 2510 2511
                          [[x1, y1, x2, y2, x3, y3, x4, y4], ...], (x1, y1) is the 
                          top left coordinates, and (x2, y2) is the top right 
                          coordinates, and (x3, y3) is the bottom right coordinates, 
S
SunGaofeng 已提交
2512 2513 2514 2515
                          and (x4, y4) is the bottom left coordinates. The data type is the
                          same as `input` 
        transformed_height (int): The height of transformed output.
        transformed_width (int): The width of transformed output.
W
whs 已提交
2516
        spatial_scale (float): Spatial scale factor to scale ROI coords. Default: 1.0
S
SunGaofeng 已提交
2517 2518 2519
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
W
whs 已提交
2520 2521

    Returns:
S
SunGaofeng 已提交
2522
            A tuple with three Variables. (out, mask, transform_matrix)
2523 2524

            out: The output of ROIPerspectiveTransformOp which is a 4-D tensor with shape
S
SunGaofeng 已提交
2525
            (num_rois, channels, transformed_h, transformed_w). The data type is the same as `input`
2526 2527

            mask: The mask of ROIPerspectiveTransformOp which is a 4-D tensor with shape
S
SunGaofeng 已提交
2528
            (num_rois, 1, transformed_h, transformed_w). The data type is int32
2529 2530

            transform_matrix: The transform matrix of ROIPerspectiveTransformOp which is
S
SunGaofeng 已提交
2531 2532 2533 2534
            a 2-D tensor with shape (num_rois, 9). The data type is the same as `input`

    Return Type:
        tuple
W
whs 已提交
2535 2536 2537 2538

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
2539
            import paddle.fluid as fluid
2540

S
SunGaofeng 已提交
2541 2542
            x = fluid.data(name='x', shape=[100, 256, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 8], lod_level=1, dtype='float32')
2543
            out, mask, transform_matrix = fluid.layers.roi_perspective_transform(x, rois, 7, 7, 1.0)
W
whs 已提交
2544
    """
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
    check_variable_and_dtype(input, 'input', ['float32'],
                             'roi_perspective_transform')
    check_variable_and_dtype(rois, 'rois', ['float32'],
                             'roi_perspective_transform')
    check_type(transformed_height, 'transformed_height', int,
               'roi_perspective_transform')
    check_type(transformed_width, 'transformed_width', int,
               'roi_perspective_transform')
    check_type(spatial_scale, 'spatial_scale', float,
               'roi_perspective_transform')

W
whs 已提交
2556 2557
    helper = LayerHelper('roi_perspective_transform', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2558
    out = helper.create_variable_for_type_inference(dtype)
2559 2560
    mask = helper.create_variable_for_type_inference(dtype="int32")
    transform_matrix = helper.create_variable_for_type_inference(dtype)
2561 2562
    out2in_idx = helper.create_variable_for_type_inference(dtype="int32")
    out2in_w = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
2563 2564 2565 2566
    helper.append_op(
        type="roi_perspective_transform",
        inputs={"X": input,
                "ROIs": rois},
2567 2568 2569
        outputs={
            "Out": out,
            "Out2InIdx": out2in_idx,
2570 2571 2572
            "Out2InWeights": out2in_w,
            "Mask": mask,
            "TransformMatrix": transform_matrix
2573
        },
W
whs 已提交
2574 2575 2576 2577 2578
        attrs={
            "transformed_height": transformed_height,
            "transformed_width": transformed_width,
            "spatial_scale": spatial_scale
        })
2579
    return out, mask, transform_matrix
W
whs 已提交
2580 2581


2582 2583
def generate_proposal_labels(rpn_rois,
                             gt_classes,
2584
                             is_crowd,
2585
                             gt_boxes,
2586
                             im_info,
2587 2588 2589 2590 2591 2592
                             batch_size_per_im=256,
                             fg_fraction=0.25,
                             fg_thresh=0.25,
                             bg_thresh_hi=0.5,
                             bg_thresh_lo=0.0,
                             bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
2593
                             class_nums=None,
2594 2595 2596
                             use_random=True,
                             is_cls_agnostic=False,
                             is_cascade_rcnn=False):
2597
    """
S
swtkiwi 已提交
2598 2599 2600 2601
	:alias_main: paddle.nn.functional.generate_proposal_labels
	:alias: paddle.nn.functional.generate_proposal_labels,paddle.nn.functional.vision.generate_proposal_labels
	:old_api: paddle.fluid.layers.generate_proposal_labels

2602
    **Generate Proposal Labels of Faster-RCNN**
2603

B
buxingyuan 已提交
2604
    This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
B
buxingyuan 已提交
2605
    to sample foreground boxes and background boxes, and compute loss target.
B
buxingyuan 已提交
2606 2607 2608

    RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes
    were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction,
B
buxingyuan 已提交
2609
    If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample.
B
buxingyuan 已提交
2610 2611
    If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi,
    then it was considered as a background sample.
B
buxingyuan 已提交
2612
    After all foreground and background boxes are chosen (so called Rois),
B
buxingyuan 已提交
2613
    then we apply random sampling to make sure
B
buxingyuan 已提交
2614
    the number of foreground boxes is no more than batch_size_per_im * fg_fraction.
B
buxingyuan 已提交
2615 2616 2617 2618 2619

    For each box in Rois, we assign the classification (class label) and regression targets (box label) to it.
    Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss.

    Args:
2620 2621 2622
        rpn_rois(Variable): A 2-D LoDTensor with shape [N, 4]. N is the number of the GenerateProposalOp's output, each element is a bounding box with [xmin, ymin, xmax, ymax] format. The data type can be float32 or float64.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a class label of groundtruth. The data type must be int32.
        is_crowd(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a flag indicates whether a groundtruth is crowd. The data type must be int32.
B
buxingyuan 已提交
2623 2624 2625
        gt_boxes(Variable): A 2-D LoDTensor with shape [M, 4]. M is the number of groundtruth, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        im_info(Variable): A 2-D LoDTensor with shape [B, 3]. B is the number of input images, each element consists of im_height, im_width, im_scale.

2626 2627 2628 2629 2630 2631 2632
        batch_size_per_im(int): Batch size of rois per images. The data type must be int32.
        fg_fraction(float): Foreground fraction in total batch_size_per_im. The data type must be float32.
        fg_thresh(float): Overlap threshold which is used to chose foreground sample. The data type must be float32.
        bg_thresh_hi(float): Overlap threshold upper bound which is used to chose background sample. The data type must be float32.
        bg_thresh_lo(float): Overlap threshold lower bound which is used to chose background sample. The data type must be float32.
        bbox_reg_weights(list|tuple): Box regression weights. The data type must be float32.
        class_nums(int): Class number. The data type must be int32.
B
buxingyuan 已提交
2633
        use_random(bool): Use random sampling to choose foreground and background boxes.
2634 2635
        is_cls_agnostic(bool): bbox regression use class agnostic simply which only represent fg and bg boxes.
        is_cascade_rcnn(bool): it will filter some bbox crossing the image's boundary when setting True.
B
Bai Yifan 已提交
2636

2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
    Returns:
        tuple:
        A tuple with format``(rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights)``.

        - **rois**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4]``. The data type is the same as ``rpn_rois``.
        - **labels_int32**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 1]``. The data type must be int32.
        - **bbox_targets**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The regression targets of all RoIs. The data type is the same as ``rpn_rois``.
        - **bbox_inside_weights**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The weights of foreground boxes' regression loss. The data type is the same as ``rpn_rois``.
        - **bbox_outside_weights**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The weights of regression loss. The data type is the same as ``rpn_rois``.


B
Bai Yifan 已提交
2648 2649 2650 2651
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
2652 2653 2654 2655 2656
            rpn_rois = fluid.data(name='rpn_rois', shape=[None, 4], dtype='float32')
            gt_classes = fluid.data(name='gt_classes', shape=[None, 1], dtype='float32')
            is_crowd = fluid.data(name='is_crowd', shape=[None, 1], dtype='float32')
            gt_boxes = fluid.data(name='gt_boxes', shape=[None, 4], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[None, 3], dtype='float32')
2657
            rois, labels, bbox, inside_weights, outside_weights = fluid.layers.generate_proposal_labels(
B
Bai Yifan 已提交
2658 2659 2660
                           rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
                           class_nums=10)

2661 2662 2663 2664
    """

    helper = LayerHelper('generate_proposal_labels', **locals())

X
Xin Pan 已提交
2665 2666 2667 2668 2669 2670 2671 2672 2673
    rois = helper.create_variable_for_type_inference(dtype=rpn_rois.dtype)
    labels_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    bbox_targets = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_inside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_outside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
2674 2675 2676 2677 2678 2679

    helper.append_op(
        type="generate_proposal_labels",
        inputs={
            'RpnRois': rpn_rois,
            'GtClasses': gt_classes,
2680
            'IsCrowd': is_crowd,
2681
            'GtBoxes': gt_boxes,
2682
            'ImInfo': im_info
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
        },
        outputs={
            'Rois': rois,
            'LabelsInt32': labels_int32,
            'BboxTargets': bbox_targets,
            'BboxInsideWeights': bbox_inside_weights,
            'BboxOutsideWeights': bbox_outside_weights
        },
        attrs={
            'batch_size_per_im': batch_size_per_im,
            'fg_fraction': fg_fraction,
            'fg_thresh': fg_thresh,
            'bg_thresh_hi': bg_thresh_hi,
            'bg_thresh_lo': bg_thresh_lo,
            'bbox_reg_weights': bbox_reg_weights,
2698
            'class_nums': class_nums,
2699 2700 2701
            'use_random': use_random,
            'is_cls_agnostic': is_cls_agnostic,
            'is_cascade_rcnn': is_cascade_rcnn
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
        })

    rois.stop_gradient = True
    labels_int32.stop_gradient = True
    bbox_targets.stop_gradient = True
    bbox_inside_weights.stop_gradient = True
    bbox_outside_weights.stop_gradient = True

    return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights


2713 2714 2715
def generate_mask_labels(im_info, gt_classes, is_crowd, gt_segms, rois,
                         labels_int32, num_classes, resolution):
    """
S
swtkiwi 已提交
2716 2717 2718 2719
	:alias_main: paddle.nn.functional.generate_mask_labels
	:alias: paddle.nn.functional.generate_mask_labels,paddle.nn.functional.vision.generate_mask_labels
	:old_api: paddle.fluid.layers.generate_mask_labels

Q
qingqing01 已提交
2720
    **Generate Mask Labels for Mask-RCNN**
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755

    This operator can be, for given the RoIs and corresponding labels,
    to sample foreground RoIs. This mask branch also has
    a :math: `K \\times M^{2}` dimensional output targets for each foreground
    RoI, which encodes K binary masks of resolution M x M, one for each of the
    K classes. This mask targets are used to compute loss of mask branch.

    Please note, the data format of groud-truth segmentation, assumed the
    segmentations are as follows. The first instance has two gt objects.
    The second instance has one gt object, this object has two gt segmentations.

        .. code-block:: python

            #[
            #  [[[229.14, 370.9, 229.14, 370.9, ...]],
            #   [[343.7, 139.85, 349.01, 138.46, ...]]], # 0-th instance
            #  [[[500.0, 390.62, ...],[115.48, 187.86, ...]]] # 1-th instance
            #]

            batch_masks = []
            for semgs in batch_semgs:
                gt_masks = []
                for semg in semgs:
                    gt_segm = []
                    for polys in semg:
                        gt_segm.append(np.array(polys).reshape(-1, 2))
                    gt_masks.append(gt_segm)
                batch_masks.append(gt_masks)
            
            
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(place=place, feed_list=feeds)
            feeder.feed(batch_masks)

    Args:
Q
qingqing01 已提交
2756 2757 2758 2759 2760 2761
        im_info (Variable): A 2-D Tensor with shape [N, 3] and float32
            data type. N is the batch size, each element is
            [height, width, scale] of image. Image scale is
            target_size / original_size, target_size is the size after resize,
            original_size is the original image size.
        gt_classes (Variable): A 2-D LoDTensor with shape [M, 1]. Data type
T
tianshuo78520a 已提交
2762
            should be int. M is the total number of ground-truth, each
Q
qingqing01 已提交
2763 2764 2765 2766 2767 2768 2769
            element is a class label.
        is_crowd (Variable): A 2-D LoDTensor with same shape and same data type
            as gt_classes, each element is a flag indicating whether a
            groundtruth is crowd.
        gt_segms (Variable): This input is a 2D LoDTensor with shape [S, 2] and
            float32 data type, it's LoD level is 3.
            Usually users do not needs to understand LoD,
2770
            The users should return correct data format in reader.
Q
qingqing01 已提交
2771
            The LoD[0] represents the ground-truth objects number of
2772 2773 2774 2775
            each instance. LoD[1] represents the segmentation counts of each
            objects. LoD[2] represents the polygons number of each segmentation.
            S the total number of polygons coordinate points. Each element is
            (x, y) coordinate points.
Q
qingqing01 已提交
2776 2777 2778 2779
        rois (Variable): A 2-D LoDTensor with shape [R, 4] and float32 data type
            float32. R is the total number of RoIs, each element is a bounding
            box with (xmin, ymin, xmax, ymax) format in the range of original image.
        labels_int32 (Variable): A 2-D LoDTensor in shape of [R, 1] with type
T
tianshuo78520a 已提交
2780
            of int32. R is the same as it in `rois`. Each element represents
2781
            a class label of a RoI.
Q
qingqing01 已提交
2782 2783
        num_classes (int): Class number.
        resolution (int): Resolution of mask predictions.
2784 2785

    Returns:
Q
qingqing01 已提交
2786 2787 2788
        mask_rois (Variable):  A 2D LoDTensor with shape [P, 4] and same data
        type as `rois`. P is the total number of sampled RoIs. Each element
        is a bounding box with [xmin, ymin, xmax, ymax] format in range of
T
tianshuo78520a 已提交
2789
        original image size.
Q
qingqing01 已提交
2790 2791

        mask_rois_has_mask_int32 (Variable): A 2D LoDTensor with shape [P, 1]
T
tianshuo78520a 已提交
2792
        and int data type, each element represents the output mask RoI
Q
qingqing01 已提交
2793 2794 2795 2796
        index with regard to input RoIs.

        mask_int32 (Variable): A 2D LoDTensor with shape [P, K * M * M] and int
        data type, K is the classes number and M is the resolution of mask
T
tianshuo78520a 已提交
2797
        predictions. Each element represents the binary mask targets.
2798 2799 2800 2801

    Examples:
        .. code-block:: python

2802 2803
          import paddle.fluid as fluid

Q
qingqing01 已提交
2804
          im_info = fluid.data(name="im_info", shape=[None, 3],
2805
              dtype="float32")
Q
qingqing01 已提交
2806
          gt_classes = fluid.data(name="gt_classes", shape=[None, 1],
2807
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2808
          is_crowd = fluid.data(name="is_crowd", shape=[None, 1],
2809
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2810
          gt_masks = fluid.data(name="gt_masks", shape=[None, 2],
2811
              dtype="float32", lod_level=3)
2812
          # rois, roi_labels can be the output of
2813
          # fluid.layers.generate_proposal_labels.
Q
qingqing01 已提交
2814
          rois = fluid.data(name="rois", shape=[None, 4],
2815
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2816
          roi_labels = fluid.data(name="roi_labels", shape=[None, 1],
2817
              dtype="int32", lod_level=1)
2818 2819 2820 2821 2822 2823
          mask_rois, mask_index, mask_int32 = fluid.layers.generate_mask_labels(
              im_info=im_info,
              gt_classes=gt_classes,
              is_crowd=is_crowd,
              gt_segms=gt_masks,
              rois=rois,
2824
              labels_int32=roi_labels,
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
              num_classes=81,
              resolution=14)
    """

    helper = LayerHelper('generate_mask_labels', **locals())

    mask_rois = helper.create_variable_for_type_inference(dtype=rois.dtype)
    roi_has_mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)

    helper.append_op(
        type="generate_mask_labels",
        inputs={
            'ImInfo': im_info,
            'GtClasses': gt_classes,
            'IsCrowd': is_crowd,
            'GtSegms': gt_segms,
            'Rois': rois,
            'LabelsInt32': labels_int32
        },
        outputs={
            'MaskRois': mask_rois,
            'RoiHasMaskInt32': roi_has_mask_int32,
            'MaskInt32': mask_int32
        },
        attrs={'num_classes': num_classes,
               'resolution': resolution})

    mask_rois.stop_gradient = True
    roi_has_mask_int32.stop_gradient = True
    mask_int32.stop_gradient = True

    return mask_rois, roi_has_mask_int32, mask_int32


2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
def generate_proposals(scores,
                       bbox_deltas,
                       im_info,
                       anchors,
                       variances,
                       pre_nms_top_n=6000,
                       post_nms_top_n=1000,
                       nms_thresh=0.5,
                       min_size=0.1,
                       eta=1.0,
F
FDInSky 已提交
2872 2873
                       name=None,
                       return_rois_num=False):
2874
    """
S
swtkiwi 已提交
2875 2876 2877 2878
	:alias_main: paddle.nn.functional.generate_proposals
	:alias: paddle.nn.functional.generate_proposals,paddle.nn.functional.vision.generate_proposals
	:old_api: paddle.fluid.layers.generate_proposals

H
haowang101779990 已提交
2879 2880
    **Generate proposal Faster-RCNN**

2881 2882 2883 2884
    This operation proposes RoIs according to each box with their
    probability to be a foreground object and 
    the box can be calculated by anchors. Bbox_deltais and scores
    to be an object are the output of RPN. Final proposals
H
haowang101779990 已提交
2885 2886 2887 2888
    could be used to train detection net.

    For generating proposals, this operation performs following steps:

2889 2890
    1. Transposes and resizes scores and bbox_deltas in size of
       (H*W*A, 1) and (H*W*A, 4)
H
haowang101779990 已提交
2891 2892 2893 2894 2895 2896
    2. Calculate box locations as proposals candidates. 
    3. Clip boxes to image
    4. Remove predicted boxes with small area. 
    5. Apply NMS to get final proposals as output.

    Args:
2897 2898 2899
        scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents
            the probability for each box to be an object.
            N is batch size, A is number of anchors, H and W are height and
2900
            width of the feature map. The data type must be float32.
2901
        bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W]
T
tianshuo78520a 已提交
2902
            represents the difference between predicted box location and
2903
            anchor location. The data type must be float32.
2904
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin
2905 2906
            image information for N batch. Height and width are the input sizes 
            and scale is the ratio of network input size and original size. 
2907
            The data type must be int32.
2908 2909 2910
        anchors(Variable):   A 4-D Tensor represents the anchors with a layout
            of [H, W, A, 4]. H and W are height and width of the feature map,
            num_anchors is the box count of each position. Each anchor is
2911 2912
            in (xmin, ymin, xmax, ymax) format an unnormalized. The data type must be float32.
        variances(Variable): A 4-D Tensor. The expanded variances of anchors with a layout of
2913
            [H, W, num_priors, 4]. Each variance is in
2914
            (xcenter, ycenter, w, h) format. The data type must be float32.
2915
        pre_nms_top_n(float): Number of total bboxes to be kept per
2916
            image before NMS. The data type must be float32. `6000` by default.
2917
        post_nms_top_n(float): Number of total bboxes to be kept per
2918 2919
            image after NMS. The data type must be float32. `1000` by default.
        nms_thresh(float): Threshold in NMS. The data type must be float32. `0.5` by default.
2920
        min_size(float): Remove predicted boxes with either height or
2921 2922 2923
            width < min_size. The data type must be float32. `0.1` by default.
        eta(float): Apply in adaptive NMS, if adaptive `threshold > 0.5`,
            `adaptive_threshold = adaptive_threshold * eta` in each iteration.
F
FDInSky 已提交
2924 2925 2926 2927
        return_rois_num(bool): When setting True, it will return a 1D Tensor with shape [N, ] that includes Rois's 
            num of each image in one batch. The N is the image's num. For example, the tensor has values [4,5] that represents
            the first image has 4 Rois, the second image has 5 Rois. It only used in rcnn model. 
            'False' by default. 
2928 2929 2930 2931 2932 2933
    Returns:
        tuple:
        A tuple with format ``(rpn_rois, rpn_roi_probs)``.

        - **rpn_rois**: The generated RoIs. 2-D Tensor with shape ``[N, 4]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
        - **rpn_roi_probs**: The scores of generated RoIs. 2-D Tensor with shape ``[N, 1]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
B
Bai Yifan 已提交
2934 2935 2936 2937 2938

    Examples:
        .. code-block:: python
        
            import paddle.fluid as fluid
2939 2940 2941 2942 2943
            scores = fluid.data(name='scores', shape=[None, 4, 5, 5], dtype='float32')
            bbox_deltas = fluid.data(name='bbox_deltas', shape=[None, 16, 5, 5], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[None, 3], dtype='float32')
            anchors = fluid.data(name='anchors', shape=[None, 5, 4, 4], dtype='float32')
            variances = fluid.data(name='variances', shape=[None, 5, 10, 4], dtype='float32')
B
Bai Yifan 已提交
2944 2945 2946
            rois, roi_probs = fluid.layers.generate_proposals(scores, bbox_deltas,
                         im_info, anchors, variances)

2947 2948 2949
    """
    helper = LayerHelper('generate_proposals', **locals())

X
Xin Pan 已提交
2950 2951 2952 2953
    rpn_rois = helper.create_variable_for_type_inference(
        dtype=bbox_deltas.dtype)
    rpn_roi_probs = helper.create_variable_for_type_inference(
        dtype=scores.dtype)
F
FDInSky 已提交
2954 2955
    rpn_rois_lod = helper.create_variable_for_type_inference(dtype='int32')

2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
    helper.append_op(
        type="generate_proposals",
        inputs={
            'Scores': scores,
            'BboxDeltas': bbox_deltas,
            'ImInfo': im_info,
            'Anchors': anchors,
            'Variances': variances
        },
        attrs={
            'pre_nms_topN': pre_nms_top_n,
            'post_nms_topN': post_nms_top_n,
            'nms_thresh': nms_thresh,
            'min_size': min_size,
            'eta': eta
        },
F
FDInSky 已提交
2972 2973 2974 2975 2976
        outputs={
            'RpnRois': rpn_rois,
            'RpnRoiProbs': rpn_roi_probs,
            'RpnRoisLod': rpn_rois_lod
        })
2977 2978
    rpn_rois.stop_gradient = True
    rpn_roi_probs.stop_gradient = True
F
FDInSky 已提交
2979
    rpn_rois_lod.stop_gradient = True
2980

F
FDInSky 已提交
2981 2982 2983 2984
    if return_rois_num:
        return rpn_rois, rpn_roi_probs, rpn_rois_lod
    else:
        return rpn_rois, rpn_roi_probs
J
jerrywgz 已提交
2985 2986


J
jerrywgz 已提交
2987
def box_clip(input, im_info, name=None):
J
jerrywgz 已提交
2988
    """
S
swtkiwi 已提交
2989 2990 2991 2992
	:alias_main: paddle.nn.functional.box_clip
	:alias: paddle.nn.functional.box_clip,paddle.nn.functional.vision.box_clip
	:old_api: paddle.fluid.layers.box_clip
	
J
jerrywgz 已提交
2993
    Clip the box into the size given by im_info
J
jerrywgz 已提交
2994
    For each input box, The formula is given as follows:
2995 2996 2997
        
    .. code-block:: text

J
jerrywgz 已提交
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
        xmin = max(min(xmin, im_w - 1), 0)
        ymin = max(min(ymin, im_h - 1), 0) 
        xmax = max(min(xmax, im_w - 1), 0)
        ymax = max(min(ymax, im_h - 1), 0)
    
    where im_w and im_h are computed from im_info:
 
    .. code-block:: text

        im_h = round(height / scale)
        im_w = round(weight / scale)
J
jerrywgz 已提交
3009 3010

    Args:
W
wangguanzhong 已提交
3011 3012 3013
        input(Variable): The input Tensor with shape :math:`[N_1, N_2, ..., N_k, 4]`,
            the last dimension is 4 and data type is float32 or float64.
        im_info(Variable): The 2-D Tensor with shape [N, 3] with layout 
T
tianshuo78520a 已提交
3014
            (height, width, scale) representing the information of image. 
3015
            Height and width are the input sizes and scale is the ratio of network input
W
wangguanzhong 已提交
3016 3017 3018 3019
            size and original size. The data type is float32 or float64.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
3020 3021
    
    Returns:
W
wangguanzhong 已提交
3022 3023
        Variable:

T
tianshuo78520a 已提交
3024
        output(Variable): The clipped tensor with data type float32 or float64. 
W
wangguanzhong 已提交
3025 3026
        The shape is same as input.

3027
        
J
jerrywgz 已提交
3028 3029
    Examples:
        .. code-block:: python
3030
        
3031
            import paddle.fluid as fluid
3032 3033 3034
            boxes = fluid.data(
                name='boxes', shape=[None, 8, 4], dtype='float32', lod_level=1)
            im_info = fluid.data(name='im_info', shape=[-1 ,3])
J
jerrywgz 已提交
3035
            out = fluid.layers.box_clip(
J
jerrywgz 已提交
3036
                input=boxes, im_info=im_info)
J
jerrywgz 已提交
3037 3038
    """

3039 3040 3041 3042
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'box_clip')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'box_clip')

J
jerrywgz 已提交
3043
    helper = LayerHelper("box_clip", **locals())
J
jerrywgz 已提交
3044
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
3045
    inputs = {"Input": input, "ImInfo": im_info}
J
jerrywgz 已提交
3046
    helper.append_op(type="box_clip", inputs=inputs, outputs={"Output": output})
J
jerrywgz 已提交
3047

3048 3049
    return output

J
jerrywgz 已提交
3050

3051 3052 3053 3054 3055 3056 3057 3058
def retinanet_detection_output(bboxes,
                               scores,
                               anchors,
                               im_info,
                               score_threshold=0.05,
                               nms_top_k=1000,
                               keep_top_k=100,
                               nms_threshold=0.3,
3059
                               nms_eta=1.0):
3060
    """
3061
    **Detection Output Layer for the detector RetinaNet.**
3062

3063 3064 3065 3066
    In the detector `RetinaNet <https://arxiv.org/abs/1708.02002>`_ , many 
    `FPN <https://arxiv.org/abs/1612.03144>`_ levels output the category
    and location predictions, this OP is to get the detection results by
    performing following steps:
3067

3068 3069 3070
    1. For each FPN level, decode box predictions according to the anchor
       boxes from at most :attr:`nms_top_k` top-scoring predictions after
       thresholding detector confidence at :attr:`score_threshold`.
3071 3072 3073 3074
    2. Merge top predictions from all levels and apply multi-class non 
       maximum suppression (NMS) on them to get the final detections.

    Args:
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
        bboxes(List): A list of Tensors from multiple FPN levels represents
            the location prediction for all anchor boxes. Each element is
            a 3-D Tensor with shape :math:`[N, Mi, 4]`, :math:`N` is the
            batch size, :math:`Mi` is the number of bounding boxes from
            :math:`i`-th FPN level and each bounding box has four coordinate
            values and the layout is [xmin, ymin, xmax, ymax]. The data type
            of each element is float32 or float64.
        scores(List): A list of Tensors from multiple FPN levels represents
            the category prediction for all anchor boxes. Each element is a
            3-D Tensor with shape :math:`[N, Mi, C]`,  :math:`N` is the batch
            size, :math:`C` is the class number (**excluding background**),
            :math:`Mi` is the number of bounding boxes from :math:`i`-th FPN
            level. The data type of each element is float32 or float64.
        anchors(List): A list of Tensors from multiple FPN levels represents
            the locations of all anchor boxes. Each element is a 2-D Tensor
            with shape :math:`[Mi, 4]`, :math:`Mi` is the number of bounding
            boxes from :math:`i`-th FPN level, and each bounding box has four
3092
            coordinate values and the layout is [xmin, ymin, xmax, ymax].
3093 3094 3095
            The data type of each element is float32 or float64.
        im_info(Variable): A 2-D Tensor with shape :math:`[N, 3]` represents the size
            information of input images. :math:`N` is the batch size, the size
T
tianshuo78520a 已提交
3096
            information of each image is a 3-vector which are the height and width
3097 3098
            of the network input along with the factor scaling the origin image to
            the network input. The data type of :attr:`im_info` is float32.
3099
        score_threshold(float): Threshold to filter out bounding boxes
3100
            with a confidence score before NMS, default value is set to 0.05.
3101
        nms_top_k(int): Maximum number of detections per FPN layer to be
3102 3103
            kept according to the confidences before NMS, default value is set to
            1000.
3104
        keep_top_k(int): Number of total bounding boxes to be kept per image after
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
            NMS step. Default value is set to 100, -1 means keeping all bounding
            boxes after NMS step.
        nms_threshold(float): The Intersection-over-Union(IoU) threshold used to 
            filter out boxes in NMS.
        nms_eta(float): The parameter for adjusting :attr:`nms_threshold` in NMS.
            Default value is set to 1., which represents the value of
            :attr:`nms_threshold` keep the same in NMS. If :attr:`nms_eta` is set
            to be lower than 1. and the value of :attr:`nms_threshold` is set to
            be higher than 0.5, everytime a bounding box is filtered out,
            the adjustment for :attr:`nms_threshold` like :attr:`nms_threshold`
            = :attr:`nms_threshold` * :attr:`nms_eta`  will not be stopped until
            the actual value of :attr:`nms_threshold` is lower than or equal to
            0.5.

    **Notice**: In some cases where the image sizes are very small, it's possible
    that there is no detection if :attr:`score_threshold` are used at all
    levels. Hence, this OP do not filter out anchors from the highest FPN level
    before NMS. And the last element in :attr:`bboxes`:, :attr:`scores` and
T
tianshuo78520a 已提交
3123
    :attr:`anchors` is required to be from the highest FPN level.
3124 3125

    Returns:
3126 3127
        Variable(The data type is float32 or float64):
            The detection output is a 1-level LoDTensor with shape :math:`[No, 6]`.
3128
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
3129 3130 3131
            :math:`No` is the total number of detections in this mini-batch.
            The :math:`i`-th image has `LoD[i + 1] - LoD[i]` detected
            results, if `LoD[i + 1] - LoD[i]` is 0, the :math:`i`-th image
3132 3133 3134 3135 3136 3137
            has no detected results. If all images have no detected results,
            LoD will be set to 0, and the output tensor is empty (None).

    Examples:
        .. code-block:: python

3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
           import paddle.fluid as fluid

           bboxes_low = fluid.data(
               name='bboxes_low', shape=[1, 44, 4], dtype='float32')
           bboxes_high = fluid.data(
               name='bboxes_high', shape=[1, 11, 4], dtype='float32')
           scores_low = fluid.data(
               name='scores_low', shape=[1, 44, 10], dtype='float32')
           scores_high = fluid.data(
               name='scores_high', shape=[1, 11, 10], dtype='float32')
           anchors_low = fluid.data(
               name='anchors_low', shape=[44, 4], dtype='float32')
           anchors_high = fluid.data(
               name='anchors_high', shape=[11, 4], dtype='float32')
           im_info = fluid.data(
               name="im_info", shape=[1, 3], dtype='float32')
           nmsed_outs = fluid.layers.retinanet_detection_output(
3155 3156 3157 3158 3159 3160 3161 3162 3163
               bboxes=[bboxes_low, bboxes_high],
               scores=[scores_low, scores_high],
               anchors=[anchors_low, anchors_high],
               im_info=im_info,
               score_threshold=0.05,
               nms_top_k=1000,
               keep_top_k=100,
               nms_threshold=0.45,
               nms_eta=1.0)
3164 3165
    """

3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
    check_type(bboxes, 'bboxes', (list), 'retinanet_detection_output')
    for i, bbox in enumerate(bboxes):
        check_variable_and_dtype(bbox, 'bbox{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_type(scores, 'scores', (list), 'retinanet_detection_output')
    for i, score in enumerate(scores):
        check_variable_and_dtype(score, 'score{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_type(anchors, 'anchors', (list), 'retinanet_detection_output')
    for i, anchor in enumerate(anchors):
        check_variable_and_dtype(anchor, 'anchor{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'retinanet_detection_output')

3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
    helper = LayerHelper('retinanet_detection_output', **locals())
    output = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('scores'))
    helper.append_op(
        type="retinanet_detection_output",
        inputs={
            'BBoxes': bboxes,
            'Scores': scores,
            'Anchors': anchors,
            'ImInfo': im_info
        },
        attrs={
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'keep_top_k': keep_top_k,
            'nms_eta': 1.,
        },
        outputs={'Out': output})
    output.stop_gradient = True
    return output


J
jerrywgz 已提交
3207 3208 3209 3210 3211
def multiclass_nms(bboxes,
                   scores,
                   score_threshold,
                   nms_top_k,
                   keep_top_k,
J
jerrywgz 已提交
3212
                   nms_threshold=0.3,
J
jerrywgz 已提交
3213 3214
                   normalized=True,
                   nms_eta=1.,
3215 3216
                   background_label=0,
                   name=None):
J
jerrywgz 已提交
3217
    """
S
swtkiwi 已提交
3218 3219 3220 3221
	:alias_main: paddle.nn.functional.multiclass_nms
	:alias: paddle.nn.functional.multiclass_nms,paddle.nn.functional.extension.multiclass_nms
	:old_api: paddle.fluid.layers.multiclass_nms

3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
    **Multiclass NMS**
    
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.

    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
    See below for an example:

    .. code-block:: text

        if:
            box1.data = (2.0, 3.0, 7.0, 5.0) format is (xmin, ymin, xmax, ymax)
            box1.scores = (0.7, 0.2, 0.4)  which is (label0.score=0.7, label1.score=0.2, label2.cores=0.4)

            box2.data = (3.0, 4.0, 8.0, 5.0)
            box2.score = (0.3, 0.3, 0.1)

            nms_threshold = 0.3
            background_label = 0
            score_threshold = 0
3250

3251 3252 3253 3254 3255 3256 3257

        Then:
            iou = 4/11 > 0.3
            out.data = [[1, 0.3, 3.0, 4.0, 8.0, 5.0],    
                         [2, 0.4, 2.0, 3.0, 7.0, 5.0]]
                         
            Out format is (label, confidence, xmin, ymin, xmax, ymax)
3258 3259 3260 3261 3262 3263 3264 3265
    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is 
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
X
xiaoting 已提交
3266
                           The data type is float32 or float64.
3267 3268
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
                           M is the number of bounding boxes, C is the 
X
xiaoting 已提交
3269
                           class number. The data type is float32 or float64.   
3270 3271 3272 3273 3274 3275 3276
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is 
                           number of bounding boxes. For each category there 
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
X
xiaoting 已提交
3277
                           of BBoxes.The data type is float32 or float64. 
3278 3279 3280
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
X
xiaoting 已提交
3281
                           case with shape [M, C, 4].The data type is float32 or float64. 
3282 3283 3284 3285 3286 3287 3288
        background_label (int): The index of background label, the background 
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided, 
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
T
tianshuo78520a 已提交
3289
                         the confidences after the filtering detections based
3290 3291 3292 3293 3294 3295 3296 3297 3298
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
X
xiaoting 已提交
3299
        Variable: A 2-D LoDTensor with shape [No, 6] represents the detections.
3300 3301 3302 3303 3304
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values: 
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the 
             total number of detections. If there is no detected boxes for all
J
jerrywgz 已提交
3305 3306 3307 3308
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed 
             from {0} to {1}) 
3309

3310

3311 3312 3313
    Examples:
        .. code-block:: python

3314

3315
            import paddle.fluid as fluid
X
xiaoting 已提交
3316
            boxes = fluid.data(name='bboxes', shape=[None,81, 4],
3317
                                      dtype='float32', lod_level=1)
X
xiaoting 已提交
3318
            scores = fluid.data(name='scores', shape=[None,81],
3319 3320 3321 3322 3323 3324 3325 3326 3327
                                      dtype='float32', lod_level=1)
            out = fluid.layers.multiclass_nms(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
J
jerrywgz 已提交
3328
    """
X
xiaoting 已提交
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
    check_variable_and_dtype(bboxes, 'BBoxes', ['float32', 'float64'],
                             'multiclass_nms')
    check_variable_and_dtype(scores, 'Scores', ['float32', 'float64'],
                             'multiclass_nms')
    check_type(score_threshold, 'score_threshold', float, 'multicalss_nms')
    check_type(nms_top_k, 'nums_top_k', int, 'multiclass_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'mutliclass_nms')
    check_type(nms_threshold, 'nms_threshold', float, 'multiclass_nms')
    check_type(normalized, 'normalized', bool, 'multiclass_nms')
    check_type(nms_eta, 'nms_eta', float, 'multiclass_nms')
    check_type(background_label, 'background_label', int, 'multiclass_nms')

J
jerrywgz 已提交
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
    helper = LayerHelper('multiclass_nms', **locals())
    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    helper.append_op(
        type="multiclass_nms",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'normalized': normalized
        },
        outputs={'Out': output})
    output.stop_gradient = True
J
jerrywgz 已提交
3358 3359

    return output
3360 3361


3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
def locality_aware_nms(bboxes,
                       scores,
                       score_threshold,
                       nms_top_k,
                       keep_top_k,
                       nms_threshold=0.3,
                       normalized=True,
                       nms_eta=1.,
                       background_label=-1,
                       name=None):
    """
    **Local Aware NMS**
    
    `Local Aware NMS <https://arxiv.org/abs/1704.03155>`_ is to do locality-aware non maximum
    suppression (LANMS) on boxes and scores.

    Firstly, this operator merge box and score according their IOU
    (intersection over union). In the NMS step, this operator greedily selects a
    subset of detection bounding boxes that have high scores larger than score_threshold,
    if providing this threshold, then selects the largest nms_top_k confidences scores
    if nms_top_k is larger than -1. Then this operator pruns away boxes that have high
    IOU overlap with already selected boxes by adaptive threshold NMS based on parameters
    of nms_threshold and nms_eta.

    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): A 3-D Tensor with shape [N, M, 4 or 8 16 24 32]
                           represents the predicted locations of M bounding
                           bboxes, N is the batch size. Each bounding box
                           has four coordinate values and the layout is
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           The data type is float32 or float64.
        scores (Variable): A 3-D Tensor with shape [N, C, M] represents the
                           predicted confidence predictions. N is the batch
                           size, C is the class number, M is number of bounding
                           boxes. Now only support 1 class. For each category
                           there are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension of
                           BBoxes. The data type is float32 or float64.
        background_label (int): The index of background label, the background
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: -1
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided,
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
T
tianshuo78520a 已提交
3410
                         the confidences after the filtering detections based
3411 3412 3413
                         on score_threshold.
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
3414 3415
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the locality aware nms op, please refer to :ref:`api_guide_Name` .
                          Default: None.

    Returns:
        Variable: A 2-D LoDTensor with shape [No, 6] represents the detections.
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values:
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the
             total number of detections. If there is no detected boxes for all
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed
             from {0} to {1}). The data type is float32 or float64.


    Examples:
        .. code-block:: python


            import paddle.fluid as fluid
            boxes = fluid.data(name='bboxes', shape=[None, 81, 8],
                                      dtype='float32')
            scores = fluid.data(name='scores', shape=[None, 1, 81],
                                      dtype='float32')
            out = fluid.layers.locality_aware_nms(bboxes=boxes,
                                              scores=scores,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
    """
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
    check_variable_and_dtype(bboxes, 'bboxes', ['float32', 'float64'],
                             'locality_aware_nms')
    check_variable_and_dtype(scores, 'scores', ['float32', 'float64'],
                             'locality_aware_nms')
    check_type(background_label, 'background_label', int, 'locality_aware_nms')
    check_type(score_threshold, 'score_threshold', float, 'locality_aware_nms')
    check_type(nms_top_k, 'nms_top_k', int, 'locality_aware_nms')
    check_type(nms_eta, 'nms_eta', float, 'locality_aware_nms')
    check_type(nms_threshold, 'nms_threshold', float, 'locality_aware_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'locality_aware_nms')
    check_type(normalized, 'normalized', bool, 'locality_aware_nms')

3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
    shape = scores.shape
    assert len(shape) == 3, "dim size of scores must be 3"
    assert shape[
        1] == 1, "locality_aware_nms only support one class, Tensor score shape must be [N, 1, M]"

    helper = LayerHelper('locality_aware_nms', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    out = {'Out': output}

    helper.append_op(
        type="locality_aware_nms",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'nms_eta': nms_eta,
            'normalized': normalized
        },
        outputs={'Out': output})
    output.stop_gradient = True

    return output


3492 3493 3494 3495 3496 3497 3498
def distribute_fpn_proposals(fpn_rois,
                             min_level,
                             max_level,
                             refer_level,
                             refer_scale,
                             name=None):
    """
S
swtkiwi 已提交
3499 3500 3501 3502
	:alias_main: paddle.nn.functional.distribute_fpn_proposals
	:alias: paddle.nn.functional.distribute_fpn_proposals,paddle.nn.functional.vision.distribute_fpn_proposals
	:old_api: paddle.fluid.layers.distribute_fpn_proposals
	
W
wangguanzhong 已提交
3503 3504 3505 3506 3507 3508
    **This op only takes LoDTensor as input.** In Feature Pyramid Networks 
    (FPN) models, it is needed to distribute all proposals into different FPN 
    level, with respect to scale of the proposals, the referring scale and the 
    referring level. Besides, to restore the order of proposals, we return an 
    array which indicates the original index of rois in current proposals. 
    To compute FPN level for each roi, the formula is given as follows:
3509
    
J
jerrywgz 已提交
3510
    .. math::
3511

J
jerrywgz 已提交
3512
        roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
3513

J
jerrywgz 已提交
3514 3515 3516
        level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)

    where BBoxArea is a function to compute the area of each roi.
3517 3518

    Args:
W
wangguanzhong 已提交
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530

        fpn_rois(Variable): 2-D Tensor with shape [N, 4] and data type is 
            float32 or float64. The input fpn_rois.
        min_level(int32): The lowest level of FPN layer where the proposals come 
            from.
        max_level(int32): The highest level of FPN layer where the proposals
            come from.
        refer_level(int32): The referring level of FPN layer with specified scale.
        refer_scale(int32): The referring scale of FPN layer with specified level.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
3531

3532
    Returns:
W
wangguanzhong 已提交
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
        Tuple:

        multi_rois(List) : A list of 2-D LoDTensor with shape [M, 4] 
        and data type of float32 and float64. The length is 
        max_level-min_level+1. The proposals in each FPN level.

        restore_ind(Variable): A 2-D Tensor with shape [N, 1], N is 
        the number of total rois. The data type is int32. It is
        used to restore the order of fpn_rois.

3543 3544 3545 3546

    Examples:
        .. code-block:: python

3547
            import paddle.fluid as fluid
3548 3549
            fpn_rois = fluid.data(
                name='data', shape=[None, 4], dtype='float32', lod_level=1)
3550
            multi_rois, restore_ind = fluid.layers.distribute_fpn_proposals(
3551 3552 3553
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
3554 3555 3556
                refer_level=4,
                refer_scale=224)
    """
3557 3558
    check_variable_and_dtype(fpn_rois, 'fpn_rois', ['float32', 'float64'],
                             'distribute_fpn_proposals')
3559
    helper = LayerHelper('distribute_fpn_proposals', **locals())
3560
    dtype = helper.input_dtype('fpn_rois')
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
    num_lvl = max_level - min_level + 1
    multi_rois = [
        helper.create_variable_for_type_inference(dtype) for i in range(num_lvl)
    ]
    restore_ind = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type='distribute_fpn_proposals',
        inputs={'FpnRois': fpn_rois},
        outputs={'MultiFpnRois': multi_rois,
                 'RestoreIndex': restore_ind},
        attrs={
            'min_level': min_level,
            'max_level': max_level,
            'refer_level': refer_level,
            'refer_scale': refer_scale
        })
    return multi_rois, restore_ind
3578 3579


3580
@templatedoc()
J
jerrywgz 已提交
3581 3582 3583 3584 3585 3586
def box_decoder_and_assign(prior_box,
                           prior_box_var,
                           target_box,
                           box_score,
                           box_clip,
                           name=None):
3587
    """
S
swtkiwi 已提交
3588 3589 3590 3591
	:alias_main: paddle.nn.functional.box_decoder_and_assign
	:alias: paddle.nn.functional.box_decoder_and_assign,paddle.nn.functional.vision.box_decoder_and_assign
	:old_api: paddle.fluid.layers.box_decoder_and_assign
	
3592 3593 3594 3595 3596 3597
    ${comment}
    Args:
        prior_box(${prior_box_type}): ${prior_box_comment}
        prior_box_var(${prior_box_var_type}): ${prior_box_var_comment}
        target_box(${target_box_type}): ${target_box_comment}
        box_score(${box_score_type}): ${box_score_comment}
J
jerrywgz 已提交
3598
        box_clip(${box_clip_type}): ${box_clip_comment}
W
wangguanzhong 已提交
3599 3600 3601 3602
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 

3603
    Returns:
W
wangguanzhong 已提交
3604
        Tuple:
J
jerrywgz 已提交
3605

W
wangguanzhong 已提交
3606 3607 3608
        decode_box(${decode_box_type}): ${decode_box_comment}

        output_assign_box(${output_assign_box_type}): ${output_assign_box_comment}
J
jerrywgz 已提交
3609 3610


3611 3612 3613
    Examples:
        .. code-block:: python

3614
            import paddle.fluid as fluid
3615 3616 3617 3618 3619 3620 3621 3622
            pb = fluid.data(
                name='prior_box', shape=[None, 4], dtype='float32')
            pbv = fluid.data(
                name='prior_box_var', shape=[4], dtype='float32')
            loc = fluid.data(
                name='target_box', shape=[None, 4*81], dtype='float32')
            scores = fluid.data(
                name='scores', shape=[None, 81], dtype='float32')
J
jerrywgz 已提交
3623
            decoded_box, output_assign_box = fluid.layers.box_decoder_and_assign(
J
jerrywgz 已提交
3624
                pb, pbv, loc, scores, 4.135)
3625 3626

    """
3627 3628 3629 3630 3631 3632
    check_variable_and_dtype(prior_box, 'prior_box', ['float32', 'float64'],
                             'box_decoder_and_assign')
    check_variable_and_dtype(target_box, 'target_box', ['float32', 'float64'],
                             'box_decoder_and_assign')
    check_variable_and_dtype(box_score, 'box_score', ['float32', 'float64'],
                             'box_decoder_and_assign')
3633 3634
    helper = LayerHelper("box_decoder_and_assign", **locals())

J
jerrywgz 已提交
3635
    decoded_box = helper.create_variable_for_type_inference(
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
        dtype=prior_box.dtype)
    output_assign_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)

    helper.append_op(
        type="box_decoder_and_assign",
        inputs={
            "PriorBox": prior_box,
            "PriorBoxVar": prior_box_var,
            "TargetBox": target_box,
            "BoxScore": box_score
        },
        attrs={"box_clip": box_clip},
        outputs={
J
jerrywgz 已提交
3650
            "DecodeBox": decoded_box,
3651 3652
            "OutputAssignBox": output_assign_box
        })
J
jerrywgz 已提交
3653
    return decoded_box, output_assign_box
3654 3655 3656 3657 3658 3659 3660 3661 3662


def collect_fpn_proposals(multi_rois,
                          multi_scores,
                          min_level,
                          max_level,
                          post_nms_top_n,
                          name=None):
    """
S
swtkiwi 已提交
3663 3664 3665 3666
	:alias_main: paddle.nn.functional.collect_fpn_proposals
	:alias: paddle.nn.functional.collect_fpn_proposals,paddle.nn.functional.vision.collect_fpn_proposals
	:old_api: paddle.fluid.layers.collect_fpn_proposals
	
W
wangguanzhong 已提交
3667 3668 3669
    **This OP only supports LoDTensor as input**. Concat multi-level RoIs 
    (Region of Interest) and select N RoIs with respect to multi_scores. 
    This operation performs the following steps:
3670 3671 3672 3673 3674 3675 3676 3677

    1. Choose num_level RoIs and scores as input: num_level = max_level - min_level
    2. Concat multi-level RoIs and scores
    3. Sort scores and select post_nms_top_n scores
    4. Gather RoIs by selected indices from scores
    5. Re-sort RoIs by corresponding batch_id

    Args:
W
wangguanzhong 已提交
3678 3679 3680 3681 3682 3683
        multi_rois(list): List of RoIs to collect. Element in list is 2-D 
            LoDTensor with shape [N, 4] and data type is float32 or float64, 
            N is the number of RoIs.
        multi_scores(list): List of scores of RoIs to collect. Element in list 
            is 2-D LoDTensor with shape [N, 1] and data type is float32 or
            float64, N is the number of RoIs.
3684 3685 3686
        min_level(int): The lowest level of FPN layer to collect
        max_level(int): The highest level of FPN layer to collect
        post_nms_top_n(int): The number of selected RoIs
W
wangguanzhong 已提交
3687 3688 3689 3690
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.        

3691
    Returns:
W
wangguanzhong 已提交
3692 3693 3694 3695 3696
        Variable:

        fpn_rois(Variable): 2-D LoDTensor with shape [N, 4] and data type is 
        float32 or float64. Selected RoIs. 

3697 3698 3699 3700

    Examples:
        .. code-block:: python
           
3701
            import paddle.fluid as fluid
3702 3703 3704
            multi_rois = []
            multi_scores = []
            for i in range(4):
3705 3706
                multi_rois.append(fluid.data(
                    name='roi_'+str(i), shape=[None, 4], dtype='float32', lod_level=1))
3707
            for i in range(4):
3708 3709
                multi_scores.append(fluid.data(
                    name='score_'+str(i), shape=[None, 1], dtype='float32', lod_level=1))
3710 3711 3712 3713 3714 3715 3716 3717

            fpn_rois = fluid.layers.collect_fpn_proposals(
                multi_rois=multi_rois, 
                multi_scores=multi_scores,
                min_level=2, 
                max_level=5, 
                post_nms_top_n=2000)
    """
3718 3719
    check_type(multi_rois, 'multi_rois', list, 'collect_fpn_proposals')
    check_type(multi_scores, 'multi_scores', list, 'collect_fpn_proposals')
3720 3721
    helper = LayerHelper('collect_fpn_proposals', **locals())
    dtype = helper.input_dtype('multi_rois')
3722 3723
    check_dtype(dtype, 'multi_rois', ['float32', 'float64'],
                'collect_fpn_proposals')
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
    num_lvl = max_level - min_level + 1
    input_rois = multi_rois[:num_lvl]
    input_scores = multi_scores[:num_lvl]
    output_rois = helper.create_variable_for_type_inference(dtype)
    output_rois.stop_gradient = True
    helper.append_op(
        type='collect_fpn_proposals',
        inputs={
            'MultiLevelRois': input_rois,
            'MultiLevelScores': input_scores
        },
        outputs={'FpnRois': output_rois},
        attrs={'post_nms_topN': post_nms_top_n})
    return output_rois