Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
36f08eef
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
36f08eef
编写于
11月 23, 2018
作者:
Q
qingqing01
提交者:
GitHub
11月 23, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
CUDA kernel for density_prior_box_op. (#14513)
* CUDA kernel for density_prior_box_op. * Support flatten to 2D.
上级
dfbdece5
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
305 addition
and
117 deletion
+305
-117
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-1
paddle/fluid/framework/op_desc.cc
paddle/fluid/framework/op_desc.cc
+6
-0
paddle/fluid/operators/detection/CMakeLists.txt
paddle/fluid/operators/detection/CMakeLists.txt
+1
-1
paddle/fluid/operators/detection/density_prior_box_op.cc
paddle/fluid/operators/detection/density_prior_box_op.cc
+21
-15
paddle/fluid/operators/detection/density_prior_box_op.cu
paddle/fluid/operators/detection/density_prior_box_op.cu
+170
-0
paddle/fluid/operators/detection/density_prior_box_op.h
paddle/fluid/operators/detection/density_prior_box_op.h
+35
-38
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+20
-23
python/paddle/fluid/tests/test_detection.py
python/paddle/fluid/tests/test_detection.py
+32
-28
python/paddle/fluid/tests/unittests/test_density_prior_box_op.py
...paddle/fluid/tests/unittests/test_density_prior_box_op.py
+19
-11
未找到文件。
paddle/fluid/API.spec
浏览文件 @
36f08eef
...
...
@@ -276,7 +276,7 @@ paddle.fluid.layers.hard_shrink ArgSpec(args=['x', 'threshold'], varargs=None, k
paddle.fluid.layers.cumsum ArgSpec(args=['x', 'axis', 'exclusive', 'reverse'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.thresholded_relu ArgSpec(args=['x', 'threshold'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.prior_box ArgSpec(args=['input', 'image', 'min_sizes', 'max_sizes', 'aspect_ratios', 'variance', 'flip', 'clip', 'steps', 'offset', 'name', 'min_max_aspect_ratios_order'], varargs=None, keywords=None, defaults=(None, [1.0], [0.1, 0.1, 0.2, 0.2], False, False, [0.0, 0.0], 0.5, None, False))
paddle.fluid.layers.density_prior_box ArgSpec(args=['input', 'image', 'densities', 'fixed_sizes', 'fixed_ratios', 'variance', 'clip', 'steps', 'offset', '
name'], varargs=None, keywords=None, defaults=(None, None, None, [0.1, 0.1, 0.2, 0.2], False, [0.0, 0.0], 0.5
, None))
paddle.fluid.layers.density_prior_box ArgSpec(args=['input', 'image', 'densities', 'fixed_sizes', 'fixed_ratios', 'variance', 'clip', 'steps', 'offset', '
flatten_to_2d', 'name'], varargs=None, keywords=None, defaults=(None, None, None, [0.1, 0.1, 0.2, 0.2], False, [0.0, 0.0], 0.5, False
, None))
paddle.fluid.layers.multi_box_head ArgSpec(args=['inputs', 'image', 'base_size', 'num_classes', 'aspect_ratios', 'min_ratio', 'max_ratio', 'min_sizes', 'max_sizes', 'steps', 'step_w', 'step_h', 'offset', 'variance', 'flip', 'clip', 'kernel_size', 'pad', 'stride', 'name', 'min_max_aspect_ratios_order'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None, 0.5, [0.1, 0.1, 0.2, 0.2], True, False, 1, 0, 1, None, False))
paddle.fluid.layers.bipartite_match ArgSpec(args=['dist_matrix', 'match_type', 'dist_threshold', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.target_assign ArgSpec(args=['input', 'matched_indices', 'negative_indices', 'mismatch_value', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
...
...
paddle/fluid/framework/op_desc.cc
浏览文件 @
36f08eef
...
...
@@ -252,6 +252,12 @@ void OpDesc::SetAttr(const std::string &name, const Attribute &v) {
this
->
attrs_
[
name
]
=
std
::
vector
<
int
>
();
break
;
}
case
proto
::
AttrType
::
LONGS
:
{
VLOG
(
110
)
<<
"SetAttr: "
<<
Type
()
<<
", "
<<
name
<<
" from LONGS to LONGS"
;
this
->
attrs_
[
name
]
=
std
::
vector
<
int64_t
>
();
break
;
}
case
proto
::
AttrType
::
FLOATS
:
{
VLOG
(
110
)
<<
"SetAttr: "
<<
Type
()
<<
", "
<<
name
<<
" from INTS to FLOATS"
;
...
...
paddle/fluid/operators/detection/CMakeLists.txt
浏览文件 @
36f08eef
...
...
@@ -22,7 +22,7 @@ iou_similarity_op.cu)
detection_library
(
mine_hard_examples_op SRCS mine_hard_examples_op.cc
)
detection_library
(
multiclass_nms_op SRCS multiclass_nms_op.cc poly_util.cc gpc.cc
)
detection_library
(
prior_box_op SRCS prior_box_op.cc prior_box_op.cu
)
detection_library
(
density_prior_box_op SRCS density_prior_box_op.cc
)
detection_library
(
density_prior_box_op SRCS density_prior_box_op.cc
density_prior_box_op.cu
)
detection_library
(
anchor_generator_op SRCS anchor_generator_op.cc
anchor_generator_op.cu
)
detection_library
(
target_assign_op SRCS target_assign_op.cc
...
...
paddle/fluid/operators/detection/density_prior_box_op.cc
浏览文件 @
36f08eef
...
...
@@ -39,24 +39,27 @@ class DensityPriorBoxOp : public framework::OperatorWithKernel {
auto
fixed_sizes
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
float
>>
(
"fixed_sizes"
);
auto
fixed_ratios
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
float
>>
(
"fixed_ratios"
);
auto
densities
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"densities"
);
bool
flatten
=
ctx
->
Attrs
().
Get
<
bool
>
(
"flatten_to_2d"
);
PADDLE_ENFORCE_EQ
(
fixed_sizes
.
size
(),
densities
.
size
(),
"The number of fixed_sizes and densities must be equal."
);
size_t
num_priors
=
0
;
if
((
fixed_sizes
.
size
()
>
0
)
&&
(
densities
.
size
()
>
0
))
{
for
(
size_t
i
=
0
;
i
<
densities
.
size
();
++
i
)
{
if
(
fixed_ratios
.
size
()
>
0
)
{
num_priors
+=
(
fixed_ratios
.
size
())
*
(
pow
(
densities
[
i
],
2
));
}
}
for
(
size_t
i
=
0
;
i
<
densities
.
size
();
++
i
)
{
num_priors
+=
(
fixed_ratios
.
size
())
*
(
pow
(
densities
[
i
],
2
));
}
if
(
!
flatten
)
{
std
::
vector
<
int64_t
>
dim_vec
(
4
);
dim_vec
[
0
]
=
input_dims
[
2
];
dim_vec
[
1
]
=
input_dims
[
3
];
dim_vec
[
2
]
=
num_priors
;
dim_vec
[
3
]
=
4
;
ctx
->
SetOutputDim
(
"Boxes"
,
framework
::
make_ddim
(
dim_vec
));
ctx
->
SetOutputDim
(
"Variances"
,
framework
::
make_ddim
(
dim_vec
));
}
else
{
int64_t
dim0
=
input_dims
[
2
]
*
input_dims
[
3
]
*
num_priors
;
ctx
->
SetOutputDim
(
"Boxes"
,
{
dim0
,
4
});
ctx
->
SetOutputDim
(
"Variances"
,
{
dim0
,
4
});
}
std
::
vector
<
int64_t
>
dim_vec
(
4
);
dim_vec
[
0
]
=
input_dims
[
2
];
dim_vec
[
1
]
=
input_dims
[
3
];
dim_vec
[
2
]
=
num_priors
;
dim_vec
[
3
]
=
4
;
ctx
->
SetOutputDim
(
"Boxes"
,
framework
::
make_ddim
(
dim_vec
));
ctx
->
SetOutputDim
(
"Variances"
,
framework
::
make_ddim
(
dim_vec
));
}
protected:
...
...
@@ -64,7 +67,7 @@ class DensityPriorBoxOp : public framework::OperatorWithKernel {
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"Input"
)
->
type
()),
platform
::
CPU
Place
());
ctx
.
Get
Place
());
}
};
...
...
@@ -101,7 +104,10 @@ class DensityPriorBoxOpMaker : public framework::OpProtoAndCheckerMaker {
});
AddAttr
<
bool
>
(
"clip"
,
"(bool) Whether to clip out-of-boundary boxes."
)
.
SetDefault
(
true
);
AddAttr
<
bool
>
(
"flatten_to_2d"
,
"(bool) Whether to flatten to 2D and "
"the second dim is 4."
)
.
SetDefault
(
false
);
AddAttr
<
float
>
(
"step_w"
,
"Density prior boxes step across width, 0.0 for auto calculation."
)
...
...
paddle/fluid/operators/detection/density_prior_box_op.cu
0 → 100644
浏览文件 @
36f08eef
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/detection/density_prior_box_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
static
__device__
inline
T
Clip
(
T
in
)
{
return
min
(
max
(
in
,
0.
),
1.
);
}
template
<
typename
T
>
static
__global__
void
GenDensityPriorBox
(
const
int
height
,
const
int
width
,
const
int
im_height
,
const
int
im_width
,
const
T
offset
,
const
T
step_width
,
const
T
step_height
,
const
int
num_priors
,
const
T
*
ratios_shift
,
bool
is_clip
,
const
T
var_xmin
,
const
T
var_ymin
,
const
T
var_xmax
,
const
T
var_ymax
,
T
*
out
,
T
*
var
)
{
int
gidx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
gidy
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
int
step_x
=
blockDim
.
x
*
gridDim
.
x
;
int
step_y
=
blockDim
.
y
*
gridDim
.
y
;
const
T
*
width_ratio
=
ratios_shift
;
const
T
*
height_ratio
=
ratios_shift
+
num_priors
;
const
T
*
width_shift
=
ratios_shift
+
2
*
num_priors
;
const
T
*
height_shift
=
ratios_shift
+
3
*
num_priors
;
for
(
int
j
=
gidy
;
j
<
height
;
j
+=
step_y
)
{
for
(
int
i
=
gidx
;
i
<
width
*
num_priors
;
i
+=
step_x
)
{
int
h
=
j
;
int
w
=
i
/
num_priors
;
int
k
=
i
%
num_priors
;
T
center_x
=
(
w
+
offset
)
*
step_width
;
T
center_y
=
(
h
+
offset
)
*
step_height
;
T
center_x_temp
=
center_x
+
width_shift
[
k
];
T
center_y_temp
=
center_y
+
height_shift
[
k
];
T
box_width_ratio
=
width_ratio
[
k
]
/
2.
;
T
box_height_ratio
=
height_ratio
[
k
]
/
2.
;
T
xmin
=
max
((
center_x_temp
-
box_width_ratio
)
/
im_width
,
0.
);
T
ymin
=
max
((
center_y_temp
-
box_height_ratio
)
/
im_height
,
0.
);
T
xmax
=
min
((
center_x_temp
+
box_width_ratio
)
/
im_width
,
1.
);
T
ymax
=
min
((
center_y_temp
+
box_height_ratio
)
/
im_height
,
1.
);
int
out_offset
=
(
j
*
width
*
num_priors
+
i
)
*
4
;
out
[
out_offset
]
=
is_clip
?
Clip
<
T
>
(
xmin
)
:
xmin
;
out
[
out_offset
+
1
]
=
is_clip
?
Clip
<
T
>
(
ymin
)
:
ymin
;
out
[
out_offset
+
2
]
=
is_clip
?
Clip
<
T
>
(
xmax
)
:
xmax
;
out
[
out_offset
+
3
]
=
is_clip
?
Clip
<
T
>
(
ymax
)
:
ymax
;
var
[
out_offset
]
=
var_xmin
;
var
[
out_offset
+
1
]
=
var_ymin
;
var
[
out_offset
+
2
]
=
var_xmax
;
var
[
out_offset
+
3
]
=
var_ymax
;
}
}
}
template
<
typename
T
>
class
DensityPriorBoxOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
paddle
::
framework
::
Tensor
>
(
"Input"
);
auto
*
image
=
ctx
.
Input
<
paddle
::
framework
::
Tensor
>
(
"Image"
);
auto
*
boxes
=
ctx
.
Output
<
paddle
::
framework
::
Tensor
>
(
"Boxes"
);
auto
*
vars
=
ctx
.
Output
<
paddle
::
framework
::
Tensor
>
(
"Variances"
);
auto
variances
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"variances"
);
auto
is_clip
=
ctx
.
Attr
<
bool
>
(
"clip"
);
auto
fixed_sizes
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"fixed_sizes"
);
auto
fixed_ratios
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"fixed_ratios"
);
auto
densities
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"densities"
);
T
step_w
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"step_w"
));
T
step_h
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"step_h"
));
T
offset
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"offset"
));
auto
img_width
=
image
->
dims
()[
3
];
auto
img_height
=
image
->
dims
()[
2
];
auto
feature_width
=
input
->
dims
()[
3
];
auto
feature_height
=
input
->
dims
()[
2
];
T
step_width
,
step_height
;
if
(
step_w
==
0
||
step_h
==
0
)
{
step_width
=
static_cast
<
T
>
(
img_width
)
/
feature_width
;
step_height
=
static_cast
<
T
>
(
img_height
)
/
feature_height
;
}
else
{
step_width
=
step_w
;
step_height
=
step_h
;
}
int
num_priors
=
0
;
for
(
size_t
i
=
0
;
i
<
densities
.
size
();
++
i
)
{
num_priors
+=
(
fixed_ratios
.
size
())
*
(
pow
(
densities
[
i
],
2
));
}
int
step_average
=
static_cast
<
int
>
((
step_width
+
step_height
)
*
0.5
);
framework
::
Tensor
h_temp
;
T
*
tdata
=
h_temp
.
mutable_data
<
T
>
({
num_priors
*
4
},
platform
::
CPUPlace
());
int
idx
=
0
;
for
(
size_t
s
=
0
;
s
<
fixed_sizes
.
size
();
++
s
)
{
auto
fixed_size
=
fixed_sizes
[
s
];
int
density
=
densities
[
s
];
for
(
size_t
r
=
0
;
r
<
fixed_ratios
.
size
();
++
r
)
{
float
ar
=
fixed_ratios
[
r
];
int
shift
=
step_average
/
density
;
float
box_width_ratio
=
fixed_size
*
sqrt
(
ar
);
float
box_height_ratio
=
fixed_size
/
sqrt
(
ar
);
for
(
int
di
=
0
;
di
<
density
;
++
di
)
{
for
(
int
dj
=
0
;
dj
<
density
;
++
dj
)
{
float
center_x_temp
=
shift
/
2.
+
dj
*
shift
-
step_average
/
2.
;
float
center_y_temp
=
shift
/
2.
+
di
*
shift
-
step_average
/
2.
;
tdata
[
idx
]
=
box_width_ratio
;
tdata
[
num_priors
+
idx
]
=
box_height_ratio
;
tdata
[
2
*
num_priors
+
idx
]
=
center_x_temp
;
tdata
[
3
*
num_priors
+
idx
]
=
center_y_temp
;
idx
++
;
}
}
}
}
boxes
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
vars
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
framework
::
Tensor
d_temp
;
framework
::
TensorCopySync
(
h_temp
,
ctx
.
GetPlace
(),
&
d_temp
);
// At least use 32 threads, at most 512 threads.
// blockx is multiple of 32.
int
blockx
=
std
::
min
(((
feature_width
*
num_priors
+
31
)
>>
5
)
<<
5
,
512L
);
int
gridx
=
(
feature_width
*
num_priors
+
blockx
-
1
)
/
blockx
;
dim3
threads
(
blockx
,
1
);
dim3
grids
(
gridx
,
feature_height
);
auto
stream
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>().
stream
();
GenDensityPriorBox
<
T
><<<
grids
,
threads
,
0
,
stream
>>>
(
feature_height
,
feature_width
,
img_height
,
img_width
,
offset
,
step_width
,
step_height
,
num_priors
,
d_temp
.
data
<
T
>
(),
is_clip
,
variances
[
0
],
variances
[
1
],
variances
[
2
],
variances
[
3
],
boxes
->
data
<
T
>
(),
vars
->
data
<
T
>
());
}
};
// namespace operators
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
density_prior_box
,
ops
::
DensityPriorBoxOpCUDAKernel
<
float
>
,
ops
::
DensityPriorBoxOpCUDAKernel
<
double
>
);
paddle/fluid/operators/detection/density_prior_box_op.h
浏览文件 @
36f08eef
/* Copyright (c) 201
6
PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 201
8
PaddlePaddle Authors. All Rights Reserved.
licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
...
...
@@ -52,18 +52,16 @@ class DensityPriorBoxOpKernel : public framework::OpKernel<T> {
step_height
=
step_h
;
}
int
num_priors
=
0
;
if
(
fixed_sizes
.
size
()
>
0
&&
densities
.
size
()
>
0
)
{
for
(
size_t
i
=
0
;
i
<
densities
.
size
();
++
i
)
{
if
(
fixed_ratios
.
size
()
>
0
)
{
num_priors
+=
(
fixed_ratios
.
size
())
*
(
pow
(
densities
[
i
],
2
));
}
}
for
(
size_t
i
=
0
;
i
<
densities
.
size
();
++
i
)
{
num_priors
+=
(
fixed_ratios
.
size
())
*
(
pow
(
densities
[
i
],
2
));
}
boxes
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
vars
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
e_boxes
=
framework
::
EigenTensor
<
T
,
4
>::
From
(
*
boxes
).
setConstant
(
0.0
);
auto
box_dim
=
vars
->
dims
();
boxes
->
Resize
({
feature_height
,
feature_width
,
num_priors
,
4
});
auto
e_boxes
=
framework
::
EigenTensor
<
T
,
4
>::
From
(
*
boxes
).
setConstant
(
0.0
);
int
step_average
=
static_cast
<
int
>
((
step_width
+
step_height
)
*
0.5
);
for
(
int
h
=
0
;
h
<
feature_height
;
++
h
)
{
...
...
@@ -76,36 +74,34 @@ class DensityPriorBoxOpKernel : public framework::OpKernel<T> {
auto
fixed_size
=
fixed_sizes
[
s
];
int
density
=
densities
[
s
];
// Generate density prior boxes with fixed ratios.
if
(
fixed_ratios
.
size
()
>
0
)
{
for
(
size_t
r
=
0
;
r
<
fixed_ratios
.
size
();
++
r
)
{
float
ar
=
fixed_ratios
[
r
];
int
shift
=
step_average
/
density
;
float
box_width_ratio
=
fixed_size
*
sqrt
(
ar
);
float
box_height_ratio
=
fixed_size
/
sqrt
(
ar
);
for
(
int
di
=
0
;
di
<
density
;
++
di
)
{
for
(
int
dj
=
0
;
dj
<
density
;
++
dj
)
{
float
center_x_temp
=
center_x
-
step_average
/
2.
+
shift
/
2.
+
dj
*
shift
;
float
center_y_temp
=
center_y
-
step_average
/
2.
+
shift
/
2.
+
di
*
shift
;
e_boxes
(
h
,
w
,
idx
,
0
)
=
(
center_x_temp
-
box_width_ratio
/
2.
)
/
img_width
>=
0
?
(
center_x_temp
-
box_width_ratio
/
2.
)
/
img_width
:
0
;
e_boxes
(
h
,
w
,
idx
,
1
)
=
(
center_y_temp
-
box_height_ratio
/
2.
)
/
img_height
>=
0
?
(
center_y_temp
-
box_height_ratio
/
2.
)
/
img_height
:
0
;
e_boxes
(
h
,
w
,
idx
,
2
)
=
(
center_x_temp
+
box_width_ratio
/
2.
)
/
img_width
<=
1
?
(
center_x_temp
+
box_width_ratio
/
2.
)
/
img_width
:
1
;
e_boxes
(
h
,
w
,
idx
,
3
)
=
(
center_y_temp
+
box_height_ratio
/
2.
)
/
img_height
<=
1
?
(
center_y_temp
+
box_height_ratio
/
2.
)
/
img_height
:
1
;
idx
++
;
}
for
(
size_t
r
=
0
;
r
<
fixed_ratios
.
size
();
++
r
)
{
float
ar
=
fixed_ratios
[
r
];
int
shift
=
step_average
/
density
;
float
box_width_ratio
=
fixed_size
*
sqrt
(
ar
);
float
box_height_ratio
=
fixed_size
/
sqrt
(
ar
);
for
(
int
di
=
0
;
di
<
density
;
++
di
)
{
for
(
int
dj
=
0
;
dj
<
density
;
++
dj
)
{
float
center_x_temp
=
center_x
-
step_average
/
2.
+
shift
/
2.
+
dj
*
shift
;
float
center_y_temp
=
center_y
-
step_average
/
2.
+
shift
/
2.
+
di
*
shift
;
e_boxes
(
h
,
w
,
idx
,
0
)
=
(
center_x_temp
-
box_width_ratio
/
2.
)
/
img_width
>=
0
?
(
center_x_temp
-
box_width_ratio
/
2.
)
/
img_width
:
0
;
e_boxes
(
h
,
w
,
idx
,
1
)
=
(
center_y_temp
-
box_height_ratio
/
2.
)
/
img_height
>=
0
?
(
center_y_temp
-
box_height_ratio
/
2.
)
/
img_height
:
0
;
e_boxes
(
h
,
w
,
idx
,
2
)
=
(
center_x_temp
+
box_width_ratio
/
2.
)
/
img_width
<=
1
?
(
center_x_temp
+
box_width_ratio
/
2.
)
/
img_width
:
1
;
e_boxes
(
h
,
w
,
idx
,
3
)
=
(
center_y_temp
+
box_height_ratio
/
2.
)
/
img_height
<=
1
?
(
center_y_temp
+
box_height_ratio
/
2.
)
/
img_height
:
1
;
idx
++
;
}
}
}
...
...
@@ -139,6 +135,7 @@ class DensityPriorBoxOpKernel : public framework::OpKernel<T> {
e_vars
=
var_et
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
box_num
,
1
));
vars
->
Resize
(
var_dim
);
boxes
->
Resize
(
box_dim
);
}
};
// namespace operators
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
36f08eef
...
...
@@ -1029,6 +1029,7 @@ def density_prior_box(input,
clip
=
False
,
steps
=
[
0.0
,
0.0
],
offset
=
0.5
,
flatten_to_2d
=
False
,
name
=
None
):
"""
**Density Prior Box Operator**
...
...
@@ -1065,22 +1066,24 @@ def density_prior_box(input,
height/weight of the input will be automatically calculated.
Default: [0., 0.]
offset(float): Prior boxes center offset. Default: 0.5
flatten_to_2d(bool): Whether to flatten output prior boxes and variance
to 2D shape, the second dim is 4. Default: False.
name(str): Name of the density prior box op. Default: None.
Returns:
tuple: A tuple with two Variable (boxes, variances)
boxes: the output density prior boxes of PriorBox.
The layout is [H, W, num_priors, 4]
.
H is the height of input, W is the width of input,
num_priors is the total
box count of each position of input.
The layout is [H, W, num_priors, 4] when flatten_to_2d is False
.
The layout is [H * W * num_priors, 4] when flatten_to_2d is True.
H is the height of input, W is the width of input,
num_priors is the total
box count of each position of input.
variances: the expanded variances of PriorBox.
The layout is [H, W, num_priors, 4]
.
H is the height of input, W is the width of input
num_priors is the total
box count of each position of input
The layout is [H, W, num_priors, 4] when flatten_to_2d is False
.
The layout is [H * W * num_priors, 4] when flatten_to_2d is True.
H is the height of input, W is the width of input
num_priors is the total box count of each position of input.
Examples:
...
...
@@ -1089,14 +1092,11 @@ def density_prior_box(input,
box, var = fluid.layers.density_prior_box(
input=conv1,
image=images,
min_sizes=[100.],
max_sizes=[200.],
aspect_ratios=[1.0, 1.0 / 2.0, 2.0],
densities=[3, 4],
fixed_sizes=[50., 60.],
fixed_ratios=[1.0, 3.0, 1.0 / 3.0],
flip=True,
clip=True)
densities=[4, 2, 1],
fixed_sizes=[32.0, 64.0, 128.0],
fixed_ratios=[1.],
clip=True,
flatten_to_2d=True)
"""
helper
=
LayerHelper
(
"density_prior_box"
,
**
locals
())
dtype
=
helper
.
input_dtype
()
...
...
@@ -1127,14 +1127,11 @@ def density_prior_box(input,
'step_w'
:
steps
[
0
],
'step_h'
:
steps
[
1
],
'offset'
:
offset
,
'densities'
:
densities
,
'fixed_sizes'
:
fixed_sizes
,
'fixed_ratios'
:
fixed_ratios
,
'flatten_to_2d'
:
flatten_to_2d
,
}
if
densities
is
not
None
and
len
(
densities
)
>
0
:
attrs
[
'densities'
]
=
densities
if
fixed_sizes
is
not
None
and
len
(
fixed_sizes
)
>
0
:
attrs
[
'fixed_sizes'
]
=
fixed_sizes
if
fixed_ratios
is
not
None
and
len
(
fixed_ratios
)
>
0
:
attrs
[
'fixed_ratios'
]
=
fixed_ratios
box
=
helper
.
create_variable_for_type_inference
(
dtype
)
var
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
...
...
python/paddle/fluid/tests/test_detection.py
浏览文件 @
36f08eef
...
...
@@ -112,38 +112,42 @@ class TestDetection(unittest.TestCase):
class
TestPriorBox
(
unittest
.
TestCase
):
def
test_prior_box
(
self
):
data_shape
=
[
3
,
224
,
224
]
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
data_shape
,
dtype
=
'float32'
)
conv1
=
fluid
.
layers
.
conv2d
(
images
,
3
,
3
,
2
)
box
,
var
=
layers
.
prior_box
(
input
=
conv1
,
image
=
images
,
min_sizes
=
[
100.0
],
aspect_ratios
=
[
1.
],
flip
=
True
,
clip
=
True
)
assert
len
(
box
.
shape
)
==
4
assert
box
.
shape
==
var
.
shape
assert
box
.
shape
[
3
]
==
4
program
=
Program
()
with
program_guard
(
program
):
data_shape
=
[
3
,
224
,
224
]
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
data_shape
,
dtype
=
'float32'
)
conv1
=
fluid
.
layers
.
conv2d
(
images
,
3
,
3
,
2
)
box
,
var
=
layers
.
prior_box
(
input
=
conv1
,
image
=
images
,
min_sizes
=
[
100.0
],
aspect_ratios
=
[
1.
],
flip
=
True
,
clip
=
True
)
assert
len
(
box
.
shape
)
==
4
assert
box
.
shape
==
var
.
shape
assert
box
.
shape
[
3
]
==
4
class
TestDensityPriorBox
(
unittest
.
TestCase
):
def
test_density_prior_box
(
self
):
data_shape
=
[
3
,
224
,
224
]
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
data_shape
,
dtype
=
'float32'
)
conv1
=
fluid
.
layers
.
conv2d
(
images
,
3
,
3
,
2
)
box
,
var
=
layers
.
density_prior_box
(
input
=
conv1
,
image
=
images
,
densities
=
[
3
,
4
],
fixed_sizes
=
[
50.
,
60.
],
fixed_ratios
=
[
1.0
],
clip
=
True
)
assert
len
(
box
.
shape
)
==
4
assert
box
.
shape
==
var
.
shape
assert
box
.
shape
[
3
]
==
4
program
=
Program
()
with
program_guard
(
program
):
data_shape
=
[
3
,
224
,
224
]
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
data_shape
,
dtype
=
'float32'
)
conv1
=
fluid
.
layers
.
conv2d
(
images
,
3
,
3
,
2
)
box
,
var
=
layers
.
density_prior_box
(
input
=
conv1
,
image
=
images
,
densities
=
[
3
,
4
],
fixed_sizes
=
[
50.
,
60.
],
fixed_ratios
=
[
1.0
],
clip
=
True
)
assert
len
(
box
.
shape
)
==
4
assert
box
.
shape
==
var
.
shape
assert
box
.
shape
[
-
1
]
==
4
class
TestAnchorGenerator
(
unittest
.
TestCase
):
...
...
python/paddle/fluid/tests/unittests/test_density_prior_box_op.py
浏览文件 @
36f08eef
...
...
@@ -36,7 +36,8 @@ class TestDensityPriorBoxOp(OpTest):
'offset'
:
self
.
offset
,
'densities'
:
self
.
densities
,
'fixed_sizes'
:
self
.
fixed_sizes
,
'fixed_ratios'
:
self
.
fixed_ratios
'fixed_ratios'
:
self
.
fixed_ratios
,
'flatten_to_2d'
:
self
.
flatten_to_2d
}
self
.
outputs
=
{
'Boxes'
:
self
.
out_boxes
,
'Variances'
:
self
.
out_var
}
...
...
@@ -48,16 +49,17 @@ class TestDensityPriorBoxOp(OpTest):
self
.
set_data
()
def
set_density
(
self
):
self
.
densities
=
[]
self
.
fixed_sizes
=
[]
self
.
fixed_ratios
=
[]
self
.
densities
=
[
4
,
2
,
1
]
self
.
fixed_sizes
=
[
32.0
,
64.0
,
128.0
]
self
.
fixed_ratios
=
[
1.0
]
self
.
layer_w
=
17
self
.
layer_h
=
17
self
.
image_w
=
533
self
.
image_h
=
533
self
.
flatten_to_2d
=
False
def
init_test_params
(
self
):
self
.
layer_w
=
32
self
.
layer_h
=
32
self
.
image_w
=
40
self
.
image_h
=
40
self
.
set_density
()
self
.
step_w
=
float
(
self
.
image_w
)
/
float
(
self
.
layer_w
)
self
.
step_h
=
float
(
self
.
image_h
)
/
float
(
self
.
layer_h
)
...
...
@@ -69,8 +71,6 @@ class TestDensityPriorBoxOp(OpTest):
self
.
variances
=
[
0.1
,
0.1
,
0.2
,
0.2
]
self
.
variances
=
np
.
array
(
self
.
variances
,
dtype
=
np
.
float
).
flatten
()
self
.
set_density
()
self
.
clip
=
True
self
.
num_priors
=
0
if
len
(
self
.
fixed_sizes
)
>
0
and
len
(
self
.
densities
)
>
0
:
...
...
@@ -129,6 +129,9 @@ class TestDensityPriorBoxOp(OpTest):
(
self
.
layer_h
,
self
.
layer_w
,
self
.
num_priors
,
1
))
self
.
out_boxes
=
out_boxes
.
astype
(
'float32'
)
self
.
out_var
=
out_var
.
astype
(
'float32'
)
if
self
.
flatten_to_2d
:
self
.
out_boxes
=
self
.
out_boxes
.
reshape
((
-
1
,
4
))
self
.
out_var
=
self
.
out_var
.
reshape
((
-
1
,
4
))
class
TestDensityPriorBox
(
TestDensityPriorBoxOp
):
...
...
@@ -136,6 +139,11 @@ class TestDensityPriorBox(TestDensityPriorBoxOp):
self
.
densities
=
[
3
,
4
]
self
.
fixed_sizes
=
[
1.0
,
2.0
]
self
.
fixed_ratios
=
[
1.0
]
self
.
layer_w
=
32
self
.
layer_h
=
32
self
.
image_w
=
40
self
.
image_h
=
40
self
.
flatten_to_2d
=
True
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录