detection.py 137.1 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18 19
from __future__ import print_function

20 21
from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
22
from ..layer_helper import LayerHelper
D
dengkaipeng 已提交
23
from ..framework import Variable
24 25
from . import tensor
from . import nn
26
from . import ops
M
minqiyang 已提交
27
from ... import compat as cpt
C
chengduoZH 已提交
28
import math
M
minqiyang 已提交
29
import six
30
import numpy
31
from functools import reduce
32

C
chengduoZH 已提交
33
__all__ = [
34 35 36 37 38 39 40 41
    'prior_box',
    'density_prior_box',
    'multi_box_head',
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
    'rpn_target_assign',
42
    'retinanet_target_assign',
43
    'sigmoid_focal_loss',
44 45 46 47
    'anchor_generator',
    'roi_perspective_transform',
    'generate_proposal_labels',
    'generate_proposals',
48
    'generate_mask_labels',
49 50 51 52
    'iou_similarity',
    'box_coder',
    'polygon_box_transform',
    'yolov3_loss',
D
dengkaipeng 已提交
53
    'yolo_box',
54
    'box_clip',
J
jerrywgz 已提交
55
    'multiclass_nms',
56
    'multiclass_nms2',
57
    'retinanet_detection_output',
58
    'distribute_fpn_proposals',
59
    'box_decoder_and_assign',
60
    'collect_fpn_proposals',
C
chengduoZH 已提交
61
]
62 63


64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
def retinanet_target_assign(bbox_pred,
                            cls_logits,
                            anchor_box,
                            anchor_var,
                            gt_boxes,
                            gt_labels,
                            is_crowd,
                            im_info,
                            num_classes=1,
                            positive_overlap=0.5,
                            negative_overlap=0.4):
    """
    **Target Assign Layer for Retinanet .**

    This layer can be, for given the Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each anchor, these target labels are used for training
    retinanet. Every anchor is assigned with a length :attr:`num_classes`
    one-hot vector of classification targets, and a 4-vector of box regression
    targets. The assignment rules are as followed:
    
    1. Anchors are assigned to ground-truth boxes when: (i) it has the highest
    IoU overlap with a ground-truth box, or (ii) it has an IoU overlap higher
    than positive_overlap(0.5) with any ground-truth box.
    
    2. Anchors are assigned to background when its IoU ratio is lower than
    negative_overlap (0.4) for all ground-truth boxes.
    
    When an anchor is assigned with a ground-truth box which is the i-th category,
    the i-th entry in its C vector of targets is set to 1 and all other entries
    are set to 0. When an anchor is assigned with background, all entries are set
    to 0. Anchors that are not assigned do not contribute to the training
    objective. The regression targets are the encoded ground-truth boxes
    associated with the assigned anchors.
 
    Args:
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
        cls_logits(Variable): A 3-D Tensor with shape [N, M, C] represents the
            predicted confidence predictions. N is the batch size, C is the
            number of classes (excluding background), M is number of bounding boxes.
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded 
            variances of anchors.
        gt_boxes(Variable): The ground-truth bounding boxes (bboxes) are a 2D
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
        gt_labels(variable): The ground-truth labels are a 2D LoDTensor with
            shape [Ng, 1], Ng is the total number of ground-truth labels of
            mini-batch input.
        is_crowd(Variable): A 1-D LoDTensor which indicates ground-truth is crowd.
        im_info(Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
            3 is the height, width and scale.
        num_classes(int32): The number of classes.
        positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
            example.
        negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
            examples.

    Returns:
        tuple:
               A tuple(predicted_scores, predicted_location, target_label,
               target_bbox, bbox_inside_weight, fg_num) is returned. The
               predicted_scores and predicted_location are the predicted result
               of the retinanet.The target_label and target_bbox are the ground
               truth, respectively. The predicted_location is a 2D Tensor with
               shape [F, 4], and the shape of target_bbox is same as the shape of
               the predicted_location, F is the number of the foreground
               anchors. The predicted_scores is a 2D Tensor with shape
               [F + B, C], and the shape of target_label is [F + B, 1], B is the
               number of the background anchors, the F and B is depends on the
               input of this operator. Bbox_inside_weight represents whether the
               predicted location is fake foreground or not and the shape is [F, 4].
               Fg_num is the foreground number (including fake foreground) which
               is needed by focal loss.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          bbox_pred = layers.data(name='bbox_pred', shape=[1, 100, 4],
                            append_batch_size=False, dtype='float32')
          cls_logits = layers.data(name='cls_logits', shape=[1, 100, 10],
                            append_batch_size=False, dtype='float32')
          anchor_box = layers.data(name='anchor_box', shape=[100, 4],
                            append_batch_size=False, dtype='float32')
          anchor_var = layers.data(name='anchor_var', shape=[100, 4],
                            append_batch_size=False, dtype='float32')
          gt_boxes = layers.data(name='gt_boxes', shape=[10, 4],
                            append_batch_size=False, dtype='float32')
          gt_labels = layers.data(name='gt_labels', shape=[10, 1],
                            append_batch_size=False, dtype='float32')
          is_crowd = fluid.layers.data(name='is_crowd', shape=[1],
                            append_batch_size=False, dtype='float32')
          im_info = fluid.layers.data(name='im_infoss', shape=[1, 3],
                            append_batch_size=False, dtype='float32')
          loc_pred, score_pred, loc_target, score_target, bbox_inside_weight, fg_num =
                fluid.layers.retinanet_target_assign(bbox_pred, cls_logits, anchor_box,
                anchor_var, gt_boxes, gt_labels, is_crowd, im_info, 10)

    """

    helper = LayerHelper('retinanet_target_assign', **locals())
    # Assign target label to anchors
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    fg_num = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="retinanet_target_assign",
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'GtLabels': gt_labels,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
            'TargetLabel': target_label,
            'TargetBBox': target_bbox,
            'BBoxInsideWeight': bbox_inside_weight,
            'ForegroundNumber': fg_num
        },
        attrs={
            'positive_overlap': positive_overlap,
            'negative_overlap': negative_overlap
        })

    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
    bbox_inside_weight.stop_gradient = True
    fg_num.stop_gradient = True

    cls_logits = nn.reshape(x=cls_logits, shape=(-1, num_classes))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)

    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight, fg_num


222 223
def rpn_target_assign(bbox_pred,
                      cls_logits,
Y
Yuan Gao 已提交
224
                      anchor_box,
225
                      anchor_var,
226 227 228
                      gt_boxes,
                      is_crowd,
                      im_info,
Y
Yuan Gao 已提交
229
                      rpn_batch_size_per_im=256,
230 231
                      rpn_straddle_thresh=0.0,
                      rpn_fg_fraction=0.5,
Y
Yuan Gao 已提交
232
                      rpn_positive_overlap=0.7,
233 234
                      rpn_negative_overlap=0.3,
                      use_random=True):
Y
Yuan Gao 已提交
235
    """
H
haowang101779990 已提交
236
    **Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection.**
Y
Yuan Gao 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

    This layer can be, for given the  Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each each anchor, these target labels are used for
    train RPN. The classification targets is a binary class label (of being
    an object or not). Following the paper of Faster-RCNN, the positive labels
    are two kinds of anchors: (i) the anchor/anchors with the highest IoU
    overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
    higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
    that a single ground-truth box may assign positive labels to multiple
    anchors. A non-positive anchor is when its IoU ratio is lower than
    rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
    neither positive nor negative do not contribute to the training objective.
    The regression targets are the encoded ground-truth boxes associated with
    the positive anchors.

    Args:
254
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Y
Yuan Gao 已提交
255 256
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
257
            is [xmin, ymin, xmax, ymax]. The data type can be float32 or float64.
258 259 260
        cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the
            predicted confidence predictions. N is the batch size, 1 is the
            frontground and background sigmoid, M is number of bounding boxes.
261
            The data type can be float32 or float64.
Y
Yuan Gao 已提交
262 263 264 265 266
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
267
            coordinate of the anchor box. The data type can be float32 or float64.
268
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded 
269
            variances of anchors. The data type can be float32 or float64.
翟飞跃 已提交
270
        gt_boxes (Variable): The ground-truth bounding boxes (bboxes) are a 2D
Y
Yuan Gao 已提交
271
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
272
            bboxes of mini-batch input. The data type can be float32 or float64.
273
        is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd.
274
                             The data type must be int32.
275 276
        im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
        3 is the height, width and scale.
Y
Yuan Gao 已提交
277
        rpn_batch_size_per_im(int): Total number of RPN examples per image.
278
                                    The data type must be int32.
279
        rpn_straddle_thresh(float): Remove RPN anchors that go outside the image
280
            by straddle_thresh pixels. The data type must be float32.
281
        rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled
282
            foreground (i.e. class > 0), 0-th class is background. The data type must be float32.
Y
Yuan Gao 已提交
283 284
        rpn_positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
285
            example. The data type must be float32.
Y
Yuan Gao 已提交
286 287
        rpn_negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
288
            examples. The data type must be float32.
Y
Yuan Gao 已提交
289 290

    Returns:
M
minqiyang 已提交
291
        tuple:
292 293 294 295 296 297 298 299 300 301 302 303 304
        A tuple(predicted_scores, predicted_location, target_label,
        target_bbox, bbox_inside_weight) is returned. The predicted_scores 
        and predicted_location is the predicted result of the RPN.
        The target_label and target_bbox is the ground truth,
        respectively. The predicted_location is a 2D Tensor with shape
        [F, 4], and the shape of target_bbox is same as the shape of
        the predicted_location, F is the number of the foreground
        anchors. The predicted_scores is a 2D Tensor with shape
        [F + B, 1], and the shape of target_label is same as the shape
        of the predicted_scores, B is the number of the background
        anchors, the F and B is depends on the input of this operator.
        Bbox_inside_weight represents whether the predicted loc is fake_fg
        or not and the shape is [F, 4].
Y
Yuan Gao 已提交
305 306 307 308

    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
309
            import paddle.fluid as fluid
310 311 312 313 314 315 316
            bbox_pred = fluid.data(name='bbox_pred', shape=[None, 4], dtype='float32')
            cls_logits = fluid.data(name='cls_logits', shape=[None, 1], dtype='float32')
            anchor_box = fluid.data(name='anchor_box', shape=[None, 4], dtype='float32')
            anchor_var = fluid.data(name='anchor_var', shape=[None, 4], dtype='float32')
            gt_boxes = fluid.data(name='gt_boxes', shape=[None, 4], dtype='float32')
            is_crowd = fluid.data(name='is_crowd', shape=[None], dtype='float32')
            im_info = fluid.data(name='im_infoss', shape=[None, 3], dtype='float32')
317 318
            loc, score, loc_target, score_target, inside_weight = fluid.layers.rpn_target_assign(
                bbox_pred, cls_logits, anchor_box, anchor_var, gt_boxes, is_crowd, im_info)
H
haowang101779990 已提交
319

Y
Yuan Gao 已提交
320 321 322
    """

    helper = LayerHelper('rpn_target_assign', **locals())
323
    # Assign target label to anchors
J
jerrywgz 已提交
324 325 326 327 328 329 330
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
Y
Yuan Gao 已提交
331 332
    helper.append_op(
        type="rpn_target_assign",
333 334 335 336 337 338
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
Y
Yuan Gao 已提交
339 340 341
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
342
            'TargetLabel': target_label,
J
jerrywgz 已提交
343
            'TargetBBox': target_bbox,
J
jerrywgz 已提交
344
            'BBoxInsideWeight': bbox_inside_weight
Y
Yuan Gao 已提交
345 346 347
        },
        attrs={
            'rpn_batch_size_per_im': rpn_batch_size_per_im,
348
            'rpn_straddle_thresh': rpn_straddle_thresh,
Y
Yuan Gao 已提交
349 350
            'rpn_positive_overlap': rpn_positive_overlap,
            'rpn_negative_overlap': rpn_negative_overlap,
351 352
            'rpn_fg_fraction': rpn_fg_fraction,
            'use_random': use_random
Y
Yuan Gao 已提交
353 354
        })

355 356 357 358
    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
J
jerrywgz 已提交
359
    bbox_inside_weight.stop_gradient = True
Y
Yuan Gao 已提交
360

361 362 363 364
    cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)
365

J
jerrywgz 已提交
366
    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight
Y
Yuan Gao 已提交
367 368


369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
def sigmoid_focal_loss(x, label, fg_num, gamma=2, alpha=0.25):
    """
    **Sigmoid Focal Loss Operator.**

    Focal loss is used to address the foreground-background class imbalance existed
    on the training phase of one-stage detectors. This operator computes the sigmoid
    value for each element in the input tensor, after which focal loss is measured.
    
    The focal loss is given as followed:

    .. math::
        loss_j = (-label_j * alpha * {(1 - \\sigma(x_j))}^{gamma} * \\log(\\sigma(x_j)) -
        (1 - labels_j) * (1 - alpha) * {(\sigma(x_j)}^{ gamma} * \\log(1 - \\sigma(x_j)))
        / fg\_num, j = 1,...,K

    We know that
    
    .. math::
        \\sigma(x_j) = \\frac{1}{1 + \\exp(-x_j)}

    Args:
        x(Variable): A 2-D tensor with shape [N, D], where N is the batch size and D is the number
            of classes (excluding background). This input is a tensor of logits computed by the
            previous operator.
        label(Variable): A 2-D tensor with shape [N, 1], which is the probabilistic labels.
        fg_num(Variable): A 1-D tensor with shape [1], which is the number of foreground.

        gamma(float): Hyper-parameter to balance the easy and hard examples. Default value is
            set to 2.0.
        alpha(float): Hyper-parameter to balance the positive and negative example. Default value
            is set to 0.25.

    Returns:
        out(Variable): A 2-D tensor with shape [N, D], which is the focal loss.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            input = fluid.layers.data(
                name='data', shape=[10,80], append_batch_size=False, dtype='float32')
            label = fluid.layers.data(
                name='label', shape=[10,1], append_batch_size=False, dtype='int32')
            fg_num = fluid.layers.data(
                name='fg_num', shape=[1], append_batch_size=False, dtype='int32')
            loss = fluid.layers.sigmoid_focal_loss(x=input,
                                                   label=label,
                                                   fg_num=fg_num,
                                                   gamma=2.,
                                                   alpha=0.25)
    """

    helper = LayerHelper("sigmoid_focal_loss", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="sigmoid_focal_loss",
        inputs={"X": x,
                "Label": label,
                "FgNum": fg_num},
        attrs={"gamma": gamma,
               'alpha': alpha},
        outputs={"Out": out})
    return out


Y
Yuan Gao 已提交
437 438
def detection_output(loc,
                     scores,
439 440 441 442 443 444 445
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
446 447
                     nms_eta=1.0,
                     return_index=False):
448
    """
449
    **Detection Output Layer for Single Shot Multibox Detector (SSD).**
450

451 452
    This operation is to get the detection results by performing following
    two steps:
C
caoying03 已提交
453

454 455 456 457 458 459
    1. Decode input bounding box predictions according to the prior boxes.
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
460 461 462 463 464 465

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
466 467 468 469
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
            predicted confidence predictions. N is the batch size, C is the
            class number, M is number of bounding boxes. For each category
            there are total M scores which corresponding M bounding boxes.
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
            of variance.
        background_label(float): The index of background label,
            the background label will be ignored. If set to -1, then all
            categories will be considered.
        nms_threshold(float): The threshold to be used in NMS.
        nms_top_k(int): Maximum number of detections to be kept according
            to the confidences aftern the filtering detections based on
            score_threshold.
        keep_top_k(int): Number of total bboxes to be kept per image after
            NMS step. -1 means keeping all bboxes after NMS step.
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
        nms_eta(float): The parameter for adaptive NMS.
490
        return_index(bool): Whether return selected index. Default: False
491 492

    Returns:
M
minqiyang 已提交
493

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
        A tuple with two Variables: (Out, Index) if return_index is True,
        otherwise, a tuple with one Variable(Out) is returned. 

        Out: The detection outputs is a LoDTensor with shape [No, 6]. Each row 
        has six values: [label, confidence, xmin, ymin, xmax, ymax]. `No` is 
        the total number of detections in this mini-batch. For each instance, 
        the offsets in first dimension are called LoD, the offset number is 
        N + 1, N is the batch size. The i-th image has `LoD[i + 1] - LoD[i]` 
        detected results, if it is 0, the i-th image has no detected results. 

        If all images have not detected results, LoD will be set to {1}, and 
        output tensor only contains one value, which is -1.
        (After version 1.3, when no boxes detected, the lod is changed
        from {0} to {1}.)       
 
        Index: Only return when return_index is True. A 2-D LoDTensor with 
        shape [No, 1] represents the selected index which type is Integer. 
        The index is the absolute value cross batches. No is the same number 
        as Out. If the index is used to gather other attribute such as age, 
        one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
        N is the batch size and M is the number of boxes.

516 517 518 519

    Examples:
        .. code-block:: python

520 521 522
            import paddle.fluid as fluid

            pb = fluid.layers.data(name='prior_box', shape=[10, 4],
523
                         append_batch_size=False, dtype='float32')
524
            pbv = fluid.layers.data(name='prior_box_var', shape=[10, 4],
525
                          append_batch_size=False, dtype='float32')
526
            loc = fluid.layers.data(name='target_box', shape=[2, 21, 4],
527
                          append_batch_size=False, dtype='float32')
528
            scores = fluid.layers.data(name='scores', shape=[2, 21, 10],
529
                          append_batch_size=False, dtype='float32')
530
            nmsed_outs, index = fluid.layers.detection_output(scores=scores,
531 532
                                       loc=loc,
                                       prior_box=pb,
533 534
                                       prior_box_var=pbv,
                                       return_index=True)
535 536
    """
    helper = LayerHelper("detection_output", **locals())
537 538 539 540 541
    decoded_box = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=loc,
        code_type='decode_center_size')
542
    scores = nn.softmax(input=scores)
Y
Yuan Gao 已提交
543
    scores = nn.transpose(scores, perm=[0, 2, 1])
544
    scores.stop_gradient = True
X
Xin Pan 已提交
545 546
    nmsed_outs = helper.create_variable_for_type_inference(
        dtype=decoded_box.dtype)
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
    if return_index:
        index = helper.create_variable_for_type_inference(dtype='int')
        helper.append_op(
            type="multiclass_nms2",
            inputs={'Scores': scores,
                    'BBoxes': decoded_box},
            outputs={'Out': nmsed_outs,
                     'Index': index},
            attrs={
                'background_label': 0,
                'nms_threshold': nms_threshold,
                'nms_top_k': nms_top_k,
                'keep_top_k': keep_top_k,
                'score_threshold': score_threshold,
                'nms_eta': 1.0,
            })
        index.stop_gradient = True
    else:
        helper.append_op(
            type="multiclass_nms",
            inputs={'Scores': scores,
                    'BBoxes': decoded_box},
            outputs={'Out': nmsed_outs},
            attrs={
                'background_label': 0,
                'nms_threshold': nms_threshold,
                'nms_top_k': nms_top_k,
                'keep_top_k': keep_top_k,
                'score_threshold': score_threshold,
                'nms_eta': 1.0,
            })
578
    nmsed_outs.stop_gradient = True
579 580
    if return_index:
        return nmsed_outs, index
581
    return nmsed_outs
C
chengduoZH 已提交
582 583


X
Xin Pan 已提交
584 585 586 587 588 589
@templatedoc()
def iou_similarity(x, y, name=None):
    """
    ${comment}

    Args:
L
LielinJiang 已提交
590 591
        x (Variable): ${x_comment}.The data type is float32 or float64.
        y (Variable): ${y_comment}.The data type is float32 or float64.
X
Xin Pan 已提交
592 593

    Returns:
L
LielinJiang 已提交
594
        Variable: ${out_comment}.The data type is same with x.
595 596 597 598

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
599
            import numpy as np
600 601
            import paddle.fluid as fluid

L
LielinJiang 已提交
602 603 604 605 606 607
            use_gpu = False
            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)

            x = fluid.data(name='x', shape=[None, 4], dtype='float32')
            y = fluid.data(name='y', shape=[None, 4], dtype='float32')
608
            iou = fluid.layers.iou_similarity(x=x, y=y)
L
LielinJiang 已提交
609 610 611 612 613 614 615 616 617 618 619

            exe.run(fluid.default_startup_program())
            test_program = fluid.default_main_program().clone(for_test=True)

            [out_iou] = exe.run(test_program,
                    fetch_list=iou,
                    feed={'x': np.array([[0.5, 0.5, 2.0, 2.0],
                                         [0., 0., 1.0, 1.0]]).astype('float32'),
                          'y': np.array([[1.0, 1.0, 2.5, 2.5]]).astype('float32')})
            # out_iou is [[0.2857143],
            #             [0.       ]] with shape: [2, 1]
X
Xin Pan 已提交
620 621 622
    """
    helper = LayerHelper("iou_similarity", **locals())
    if name is None:
X
Xin Pan 已提交
623
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="iou_similarity",
        inputs={"X": x,
                "Y": y},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def box_coder(prior_box,
              prior_box_var,
              target_box,
              code_type="encode_center_size",
              box_normalized=True,
643 644
              name=None,
              axis=0):
X
Xin Pan 已提交
645
    """
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
    **Box Coder Layer**

    Encode/Decode the target bounding box with the priorbox information.
    
    The Encoding schema described below:

    .. math::

        ox = (tx - px) / pw / pxv

        oy = (ty - py) / ph / pyv

        ow = \log(\abs(tw / pw)) / pwv 

        oh = \log(\abs(th / ph)) / phv 

    The Decoding schema described below:
    
    .. math::
  
        ox = (pw * pxv * tx * + px) - tw / 2

        oy = (ph * pyv * ty * + py) - th / 2

        ow = \exp(pwv * tw) * pw + tw / 2

        oh = \exp(phv * th) * ph + th / 2   

    where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates, 
    width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote 
    the priorbox's (anchor) center coordinates, width and height. `pxv`, 
    `pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`, 
    `ow`, `oh` denote the encoded/decoded coordinates, width and height. 

    During Box Decoding, two modes for broadcast are supported. Say target 
    box has shape [N, M, 4], and the shape of prior box can be [N, 4] or 
    [M, 4]. Then prior box will broadcast to target box along the 
    assigned axis. 
X
Xin Pan 已提交
684 685

    Args:
686
        prior_box(Variable): Box list prior_box is a 2-D Tensor with shape 
W
wangguanzhong 已提交
687 688 689 690 691 692 693 694 695 696
            [M, 4] holds M boxes and data type is float32 or float64. Each box
            is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the 
            left top coordinate of the anchor box, if the input is image feature
            map, they are close to the origin of the coordinate system. 
            [xmax, ymax] is the right bottom coordinate of the anchor box.       
        prior_box_var(List|Variable|None): prior_box_var supports three types 
            of input. One is variable with shape [M, 4] which holds M group and 
            data type is float32 or float64. The second is list consist of 
            4 elements shared by all boxes and data type is float32 or float64. 
            Other is None and not involved in calculation. 
697
        target_box(Variable): This input can be a 2-D LoDTensor with shape 
W
wangguanzhong 已提交
698 699 700 701 702 703 704 705 706 707 708 709 710
            [N, 4] when code_type is 'encode_center_size'. This input also can 
            be a 3-D Tensor with shape [N, M, 4] when code_type is 
            'decode_center_size'. Each box is represented as 
            [xmin, ymin, xmax, ymax]. The data type is float32 or float64. 
            This tensor can contain LoD information to represent a batch of inputs. 
        code_type(str): The code type used with the target box. It can be
            `encode_center_size` or `decode_center_size`. `encode_center_size` 
            by default.
        box_normalized(bool): Whether treat the priorbox as a noramlized box.
            Set true by default.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
711
        axis(int): Which axis in PriorBox to broadcast for box decode, 
W
wangguanzhong 已提交
712 713 714 715
            for example, if axis is 0 and TargetBox has shape [N, M, 4] and 
            PriorBox has shape [M, 4], then PriorBox will broadcast to [N, M, 4]
            for decoding. It is only valid when code type is 
            `decode_center_size`. Set 0 by default. 
X
Xin Pan 已提交
716 717

    Returns:
W
wangguanzhong 已提交
718 719
        Variable:

720
        output_box(Variable): When code_type is 'encode_center_size', the 
W
wangguanzhong 已提交
721 722 723 724
        output tensor of box_coder_op with shape [N, M, 4] representing the 
        result of N target boxes encoded with M Prior boxes and variances. 
        When code_type is 'decode_center_size', N represents the batch size 
        and M represents the number of deocded boxes.
725 726 727 728 729

    Examples:
 
        .. code-block:: python
 
730
            import paddle.fluid as fluid
W
wangguanzhong 已提交
731
            # For encode
732
            prior_box_encode = fluid.data(name='prior_box_encode',
W
wangguanzhong 已提交
733
                                  shape=[512, 4],
734 735 736 737
                                  dtype='float32')
            target_box_encode = fluid.data(name='target_box_encode',
                                   shape=[81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
738 739 740 741 742
            output_encode = fluid.layers.box_coder(prior_box=prior_box_encode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_encode,
                                    code_type="encode_center_size")
            # For decode
743
            prior_box_decode = fluid.data(name='prior_box_decode',
W
wangguanzhong 已提交
744
                                  shape=[512, 4],
745 746 747 748
                                  dtype='float32')
            target_box_decode = fluid.data(name='target_box_decode',
                                   shape=[512, 81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
749 750 751 752 753 754
            output_decode = fluid.layers.box_coder(prior_box=prior_box_decode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_decode,
                                    code_type="decode_center_size",
                                    box_normalized=False,
                                    axis=1)
X
Xin Pan 已提交
755 756 757 758
    """
    helper = LayerHelper("box_coder", **locals())

    if name is None:
X
Xin Pan 已提交
759 760
        output_box = helper.create_variable_for_type_inference(
            dtype=prior_box.dtype)
X
Xin Pan 已提交
761 762 763 764
    else:
        output_box = helper.create_variable(
            name=name, dtype=prior_box.dtype, persistable=False)

765 766 767 768 769 770 771 772 773 774 775 776
    inputs = {"PriorBox": prior_box, "TargetBox": target_box}
    attrs = {
        "code_type": code_type,
        "box_normalized": box_normalized,
        "axis": axis
    }
    if isinstance(prior_box_var, Variable):
        inputs['PriorBoxVar'] = prior_box_var
    elif isinstance(prior_box_var, list):
        attrs['variance'] = prior_box_var
    else:
        raise TypeError("Input variance of box_coder must be Variable or lisz")
X
Xin Pan 已提交
777 778
    helper.append_op(
        type="box_coder",
779 780
        inputs=inputs,
        attrs=attrs,
X
Xin Pan 已提交
781 782 783 784 785 786 787 788 789 790
        outputs={"OutputBox": output_box})
    return output_box


@templatedoc()
def polygon_box_transform(input, name=None):
    """
    ${comment}

    Args:
791 792 793 794
        input(Variable): The input with shape [batch_size, geometry_channels, height, width].
                         A Tensor with type float32, float64.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
X
Xin Pan 已提交
795 796

    Returns:
797
        Variable: The output with the same shape as input. A Tensor with type float32, float64.
B
Bai Yifan 已提交
798 799 800 801 802

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
B
Bai Yifan 已提交
803
            input = fluid.data(name='input', shape=[4, 10, 5, 5], dtype='float32')
B
Bai Yifan 已提交
804
            out = fluid.layers.polygon_box_transform(input)
X
Xin Pan 已提交
805 806 807
    """
    helper = LayerHelper("polygon_box_transform", **locals())
    if name is None:
X
Xin Pan 已提交
808
        output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
Xin Pan 已提交
809 810 811 812 813 814 815 816 817 818 819 820
    else:
        output = helper.create_variable(
            name=name, dtype=prior_box.input, persistable=False)

    helper.append_op(
        type="polygon_box_transform",
        inputs={"Input": input},
        attrs={},
        outputs={"Output": output})
    return output


D
dengkaipeng 已提交
821 822
@templatedoc(op_type="yolov3_loss")
def yolov3_loss(x,
823 824
                gt_box,
                gt_label,
D
dengkaipeng 已提交
825
                anchors,
826
                anchor_mask,
D
dengkaipeng 已提交
827 828
                class_num,
                ignore_thresh,
829
                downsample_ratio,
830
                gt_score=None,
D
dengkaipeng 已提交
831
                use_label_smooth=True,
D
dengkaipeng 已提交
832 833 834 835 836 837
                name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
838
        gt_box (Variable): groud truth boxes, should be in shape of [N, B, 4],
839 840 841 842
                          in the third dimenstion, x, y, w, h should be stored. 
                          x,y is the center cordinate of boxes, w, h are the
                          width and height, x, y, w, h should be divided by 
                          input image height to scale to [0, 1].
D
dengkaipeng 已提交
843 844
                          N is the batch number and B is the max box number in 
                          an image.
845
        gt_label (Variable): class id of ground truth boxes, shoud be in shape
D
dengkaipeng 已提交
846
                            of [N, B].
D
dengkaipeng 已提交
847
        anchors (list|tuple): ${anchors_comment}
848
        anchor_mask (list|tuple): ${anchor_mask_comment}
D
dengkaipeng 已提交
849 850
        class_num (int): ${class_num_comment}
        ignore_thresh (float): ${ignore_thresh_comment}
851
        downsample_ratio (int): ${downsample_ratio_comment}
852
        name (string): the name of yolov3 loss. Default None.
853
        gt_score (Variable): mixup score of ground truth boxes, shoud be in shape
854
                            of [N, B]. Default None.
855
        use_label_smooth (bool): ${use_label_smooth_comment}
D
dengkaipeng 已提交
856 857

    Returns:
858
        Variable: A 1-D tensor with shape [N], the value of yolov3 loss
D
dengkaipeng 已提交
859 860 861

    Raises:
        TypeError: Input x of yolov3_loss must be Variable
D
dengkaipeng 已提交
862 863
        TypeError: Input gtbox of yolov3_loss must be Variable
        TypeError: Input gtlabel of yolov3_loss must be Variable
D
dengkaipeng 已提交
864
        TypeError: Input gtscore of yolov3_loss must be None or Variable
D
dengkaipeng 已提交
865 866 867
        TypeError: Attr anchors of yolov3_loss must be list or tuple
        TypeError: Attr class_num of yolov3_loss must be an integer
        TypeError: Attr ignore_thresh of yolov3_loss must be a float number
868
        TypeError: Attr use_label_smooth of yolov3_loss must be a bool value
D
dengkaipeng 已提交
869 870

    Examples:
871 872
      .. code-block:: python

873
          import paddle.fluid as fluid
874
          x = fluid.layers.data(name='x', shape=[255, 13, 13], dtype='float32')
875 876 877
          gt_box = fluid.layers.data(name='gt_box', shape=[6, 4], dtype='float32')
          gt_label = fluid.layers.data(name='gt_label', shape=[6], dtype='int32')
          gt_score = fluid.layers.data(name='gt_score', shape=[6], dtype='float32')
878 879
          anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
          anchor_mask = [0, 1, 2]
880 881
          loss = fluid.layers.yolov3_loss(x=x, gt_box=gt_box, gt_label=gt_label,
                                          gt_score=gt_score, anchors=anchors, 
882 883
                                          anchor_mask=anchor_mask, class_num=80,
                                          ignore_thresh=0.7, downsample_ratio=32)
D
dengkaipeng 已提交
884 885 886 887 888
    """
    helper = LayerHelper('yolov3_loss', **locals())

    if not isinstance(x, Variable):
        raise TypeError("Input x of yolov3_loss must be Variable")
889
    if not isinstance(gt_box, Variable):
D
dengkaipeng 已提交
890
        raise TypeError("Input gtbox of yolov3_loss must be Variable")
891
    if not isinstance(gt_label, Variable):
D
dengkaipeng 已提交
892
        raise TypeError("Input gtlabel of yolov3_loss must be Variable")
893
    if gt_score is not None and not isinstance(gt_score, Variable):
894
        raise TypeError("Input gtscore of yolov3_loss must be Variable")
D
dengkaipeng 已提交
895 896
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
        raise TypeError("Attr anchors of yolov3_loss must be list or tuple")
897 898
    if not isinstance(anchor_mask, list) and not isinstance(anchor_mask, tuple):
        raise TypeError("Attr anchor_mask of yolov3_loss must be list or tuple")
D
dengkaipeng 已提交
899 900 901 902 903
    if not isinstance(class_num, int):
        raise TypeError("Attr class_num of yolov3_loss must be an integer")
    if not isinstance(ignore_thresh, float):
        raise TypeError(
            "Attr ignore_thresh of yolov3_loss must be a float number")
904 905 906
    if not isinstance(use_label_smooth, bool):
        raise TypeError(
            "Attr use_label_smooth of yolov3_loss must be a bool value")
D
dengkaipeng 已提交
907 908 909 910 911 912 913

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

914 915 916
    objectness_mask = helper.create_variable_for_type_inference(dtype='int32')
    gt_match_mask = helper.create_variable_for_type_inference(dtype='int32')

917 918
    inputs = {
        "X": x,
919 920
        "GTBox": gt_box,
        "GTLabel": gt_label,
921
    }
922
    if gt_score:
923
        inputs["GTScore"] = gt_score
924

D
dengkaipeng 已提交
925 926
    attrs = {
        "anchors": anchors,
927
        "anchor_mask": anchor_mask,
D
dengkaipeng 已提交
928 929
        "class_num": class_num,
        "ignore_thresh": ignore_thresh,
930
        "downsample_ratio": downsample_ratio,
931
        "use_label_smooth": use_label_smooth,
D
dengkaipeng 已提交
932 933 934 935
    }

    helper.append_op(
        type='yolov3_loss',
936
        inputs=inputs,
937 938 939 940 941
        outputs={
            'Loss': loss,
            'ObjectnessMask': objectness_mask,
            'GTMatchMask': gt_match_mask
        },
D
dengkaipeng 已提交
942 943 944 945
        attrs=attrs)
    return loss


D
dengkaipeng 已提交
946
@templatedoc(op_type="yolo_box")
947 948 949 950 951 952 953
def yolo_box(x,
             img_size,
             anchors,
             class_num,
             conf_thresh,
             downsample_ratio,
             name=None):
D
dengkaipeng 已提交
954 955 956 957 958
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
959
        img_size (Variable): ${img_size_comment}
D
dengkaipeng 已提交
960 961 962 963
        anchors (list|tuple): ${anchors_comment}
        class_num (int): ${class_num_comment}
        conf_thresh (float): ${conf_thresh_comment}
        downsample_ratio (int): ${downsample_ratio_comment}
964
        name (string): the name of yolo box layer. Default None.
D
dengkaipeng 已提交
965 966

    Returns:
D
dengkaipeng 已提交
967
        Variable: A 3-D tensor with shape [N, M, 4], the coordinates of boxes,
D
dengkaipeng 已提交
968 969
        and a 3-D tensor with shape [N, M, :attr:`class_num`], the classification 
        scores of boxes.
D
dengkaipeng 已提交
970 971 972 973 974 975 976 977

    Raises:
        TypeError: Input x of yolov_box must be Variable
        TypeError: Attr anchors of yolo box must be list or tuple
        TypeError: Attr class_num of yolo box must be an integer
        TypeError: Attr conf_thresh of yolo box must be a float number

    Examples:
D
dengkaipeng 已提交
978

D
dengkaipeng 已提交
979 980
    .. code-block:: python

X
xiaoting 已提交
981
        import paddle.fluid as fluid
D
dengkaipeng 已提交
982
        x = fluid.layers.data(name='x', shape=[255, 13, 13], dtype='float32')
983
        img_size = fluid.layers.data(name='img_size',shape=[2],dtype='int64')
D
dengkaipeng 已提交
984
        anchors = [10, 13, 16, 30, 33, 23]
X
xiaoting 已提交
985
        boxes,scores = fluid.layers.yolo_box(x=x, img_size=img_size, class_num=80, anchors=anchors, 
D
dengkaipeng 已提交
986 987 988 989 990
                                        conf_thresh=0.01, downsample_ratio=32)
    """
    helper = LayerHelper('yolo_box', **locals())

    if not isinstance(x, Variable):
991 992 993
        raise TypeError("Input x of yolo_box must be Variable")
    if not isinstance(img_size, Variable):
        raise TypeError("Input img_size of yolo_box must be Variable")
D
dengkaipeng 已提交
994
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
995
        raise TypeError("Attr anchors of yolo_box must be list or tuple")
D
dengkaipeng 已提交
996
    if not isinstance(class_num, int):
997
        raise TypeError("Attr class_num of yolo_box must be an integer")
D
dengkaipeng 已提交
998
    if not isinstance(conf_thresh, float):
999
        raise TypeError("Attr ignore_thresh of yolo_box must be a float number")
D
dengkaipeng 已提交
1000 1001 1002 1003 1004 1005 1006

    boxes = helper.create_variable_for_type_inference(dtype=x.dtype)
    scores = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = {
        "anchors": anchors,
        "class_num": class_num,
D
dengkaipeng 已提交
1007
        "conf_thresh": conf_thresh,
D
dengkaipeng 已提交
1008 1009 1010 1011 1012
        "downsample_ratio": downsample_ratio,
    }

    helper.append_op(
        type='yolo_box',
1013 1014 1015 1016
        inputs={
            "X": x,
            "ImgSize": img_size,
        },
D
dengkaipeng 已提交
1017 1018 1019 1020 1021 1022 1023 1024
        outputs={
            'Boxes': boxes,
            'Scores': scores,
        },
        attrs=attrs)
    return boxes, scores


X
Xin Pan 已提交
1025
@templatedoc()
1026 1027
def detection_map(detect_res,
                  label,
1028 1029
                  class_num,
                  background_label=0,
1030 1031
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
1032 1033 1034 1035
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
X
Xin Pan 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
        input_states: If not None, It contains 3 elements:
            1. pos_count ${pos_count_comment}.
            2. true_pos ${true_pos_comment}.
            3. false_pos ${false_pos_comment}.
        out_states: If not None, it contains 3 elements.
            1. accum_pos_count ${accum_pos_count_comment}.
            2. accum_true_pos ${accum_true_pos_comment}.
            3. accum_false_pos ${accum_false_pos_comment}.
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

1064
            import paddle.fluid as fluid
1065
            from fluid.layers import detection
X
Xin Pan 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')
            label = fluid.layers.data(
                name='label',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')

1077
            map_out = detection.detection_map(detect_res, label, 21)
X
Xin Pan 已提交
1078
    """
1079 1080
    helper = LayerHelper("detection_map", **locals())

1081
    def __create_var(type):
X
Xin Pan 已提交
1082
        return helper.create_variable_for_type_inference(dtype=type)
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094

    map_out = __create_var('float32')
    accum_pos_count_out = out_states[0] if out_states else __create_var('int32')
    accum_true_pos_out = out_states[1] if out_states else __create_var(
        'float32')
    accum_false_pos_out = out_states[2] if out_states else __create_var(
        'float32')

    pos_count = input_states[0] if input_states else None
    true_pos = input_states[1] if input_states else None
    false_pos = input_states[2] if input_states else None

1095 1096 1097 1098 1099
    helper.append_op(
        type="detection_map",
        inputs={
            'Label': label,
            'DetectRes': detect_res,
1100
            'HasState': has_state,
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
            'PosCount': pos_count,
            'TruePos': true_pos,
            'FalsePos': false_pos
        },
        outputs={
            'MAP': map_out,
            'AccumPosCount': accum_pos_count_out,
            'AccumTruePos': accum_true_pos_out,
            'AccumFalsePos': accum_false_pos_out
        },
        attrs={
            'overlap_threshold': overlap_threshold,
            'evaluate_difficult': evaluate_difficult,
1114 1115
            'ap_type': ap_version,
            'class_num': class_num,
1116
        })
1117
    return map_out
1118 1119


1120 1121 1122 1123
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
1124
    """
Y
yuyang18 已提交
1125 1126
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
1127
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
1128 1129 1130 1131
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
W
wangguanzhong 已提交
1132
    matrix. **The OP only supports CPU**.
Y
yuyang18 已提交
1133 1134 1135

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
1136 1137 1138
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
1139

Y
yuyang18 已提交
1140
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
1141 1142 1143
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
1144 1145 1146
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

1147 1148
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
W
wangguanzhong 已提交
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
            [K, M]. The data type is float32 or float64. It is pair-wise 
            distance matrix between the entities represented by each row and 
            each column. For example, assumed one entity is A with shape [K], 
            another entity is B with shape [M]. The dist_matrix[i][j] is the 
            distance between A[i] and B[j]. The bigger the distance is, the 
            better matching the pairs are. NOTE: This tensor can contain LoD 
            information to represent a batch of inputs. One instance of this 
            batch can contain different numbers of entities.
        match_type(str, optional): The type of matching method, should be
           'bipartite' or 'per_prediction'. None ('bipartite') by default.
        dist_threshold(float32, optional): If `match_type` is 'per_prediction',
1160
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
1161
            on the maximum distance, 0.5 by default.
W
wangguanzhong 已提交
1162 1163 1164 1165
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
 
1166
    Returns:
W
wangguanzhong 已提交
1167
        Tuple:
Y
yuyang18 已提交
1168

W
wangguanzhong 已提交
1169 1170
        matched_indices(Variable): A 2-D Tensor with shape [N, M]. The data
        type is int32. N is the batch size. If match_indices[i][j] is -1, it
Y
yuyang18 已提交
1171 1172 1173 1174 1175
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

W
wangguanzhong 已提交
1176 1177
        matched_distance(Variable): A 2-D Tensor with shape [N, M]. The data
        type is float32. N is batch size. If match_indices[i][j] is -1,
Y
yuyang18 已提交
1178 1179 1180 1181 1182 1183 1184
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

1185
        >>> import paddle.fluid as fluid
1186 1187
        >>> x = fluid.data(name='x', shape=[None, 4], dtype='float32')
        >>> y = fluid.data(name='y', shape=[None, 4], dtype='float32')
Y
yuyang18 已提交
1188 1189
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
1190 1191
    """
    helper = LayerHelper('bipartite_match', **locals())
X
Xin Pan 已提交
1192 1193 1194
    match_indices = helper.create_variable_for_type_inference(dtype='int32')
    match_distance = helper.create_variable_for_type_inference(
        dtype=dist_matrix.dtype)
1195 1196 1197
    helper.append_op(
        type='bipartite_match',
        inputs={'DistMat': dist_matrix},
1198 1199 1200 1201
        attrs={
            'match_type': match_type,
            'dist_threshold': dist_threshold,
        },
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
        outputs={
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_distance
        })
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
1219

1220 1221 1222 1223 1224
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
1225

1226
    1. Assigning all outputs based on `match_indices`:
C
chengduoZH 已提交
1227

1228 1229 1230
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
1231

1232 1233
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
1234

1235
        Otherwise,
C
chengduoZH 已提交
1236

1237 1238
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
1239

1240
    2. Assigning out_weight based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
1241

1242 1243
    Assumed that the row offset for each instance in `neg_indices` is called neg_lod,
    for i-th instance and each `id` of neg_indices in this instance:
M
minqiyang 已提交
1244

1245
    .. code-block:: text
C
chengduoZH 已提交
1246

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
        out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
        out_weight[i][id] = 1.0

    Args:
       inputs (Variable): This input is a 3D LoDTensor with shape [M, P, K].
       matched_indices (Variable): Tensor<int>), The input matched indices
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
       negative_indices (Variable): The input negative example indices are
           an optional input with shape [Neg, 1] and int32 type, where Neg is
           the total number of negative example indices.
       mismatch_value (float32): Fill this value to the mismatched location.

    Returns:
M
minqiyang 已提交
1262 1263 1264 1265 1266
        tuple:
               A tuple(out, out_weight) is returned. out is a 3D Tensor with
               shape [N, P, K], N and P is the same as they are in
               `neg_indices`, K is the same as it in input of X. If
               `match_indices[i][j]`. out_weight is the weight for output with
1267 1268 1269 1270 1271 1272
               the shape of [N, P, 1].

    Examples:

        .. code-block:: python

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
            import paddle.fluid as fluid
            x = fluid.layers.data(
                name='x',
                shape=[4, 20, 4],
                dtype='float',
                lod_level=1,
                append_batch_size=False)
            matched_id = fluid.layers.data(
                name='indices',
                shape=[8, 20],
                dtype='int32',
                append_batch_size=False)
            trg, trg_weight = fluid.layers.target_assign(
                x,
                matched_id,
                mismatch_value=0)
1289 1290
    """
    helper = LayerHelper('target_assign', **locals())
X
Xin Pan 已提交
1291 1292
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_weight = helper.create_variable_for_type_inference(dtype='float32')
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
    helper.append_op(
        type='target_assign',
        inputs={
            'X': input,
            'MatchIndices': matched_indices,
            'NegIndices': negative_indices
        },
        outputs={'Out': out,
                 'OutWeight': out_weight},
        attrs={'mismatch_value': mismatch_value})
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
1320
             normalize=True,
1321 1322
             sample_size=None):
    """
Y
yuyang18 已提交
1323
    **Multi-box loss layer for object detection algorithm of SSD**
1324

翟飞跃 已提交
1325 1326
    This layer is to compute detection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth bounding
1327 1328 1329 1330
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
1331
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1332

1333
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
1334

1335
      1.2 Compute matched boundding box by bipartite matching algorithm.
Y
yuyang18 已提交
1336

1337
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
1338

1339
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
1340

1341
      2.2. Compute confidence loss.
Y
yuyang18 已提交
1342

1343 1344
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
1345

1346
    4. Assign classification and regression targets
Y
yuyang18 已提交
1347

1348
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
1349

1350
      4.2. Assign regression targets.
Y
yuyang18 已提交
1351

1352
      4.3. Assign classification targets.
Y
yuyang18 已提交
1353

1354
    5. Compute the overall objective loss.
Y
yuyang18 已提交
1355

1356
      5.1 Compute confidence loss.
Y
yuyang18 已提交
1357

1358
      5.2 Compute localization loss.
Y
yuyang18 已提交
1359

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
            the layout is [xmin, ymin, xmax, ymax].
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
            `location`, C is the class number.
翟飞跃 已提交
1370
        gt_box (Variable): The ground-truth bounding boxes (bboxes) are a 2D
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
            with shape [Ng, 1].
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
            with shape [Np, 4].
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
            `overlap_threshold` to determine the extra matching bboxes when
             finding matched boxes. 0.5 by default.
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
翟飞跃 已提交
1383
            boxes, used only when mining_type is 'max_negative', 3.0 by default.
1384
        neg_overlap (float): The negative overlap upper bound for the unmatched
1385
            predictions. Use only when mining_type is 'max_negative',
1386 1387 1388 1389
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
翟飞跃 已提交
1390
            be 'bipartite' or 'per_prediction', 'per_prediction' by default.
1391 1392
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
1393
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
1394
            of output locations, True by default.
1395 1396
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
1397 1398

    Returns:
Y
yuyang18 已提交
1399 1400
        The weighted sum of the localization loss and confidence loss, with \
        shape [N * Np, 1], N and Np are the same as they are in `location`.
1401 1402

    Raises:
Y
yuyang18 已提交
1403 1404
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
1405 1406

    Examples:
1407
        >>> import paddle.fluid as fluid
Y
yuyang18 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
        >>> pb = fluid.layers.data(
        >>>                   name='prior_box',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> pbv = fluid.layers.data(
        >>>                   name='prior_box_var',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> loc = fluid.layers.data(name='target_box', shape=[10, 4], dtype='float32')
        >>> scores = fluid.layers.data(name='scores', shape=[10, 21], dtype='float32')
        >>> gt_box = fluid.layers.data(
        >>>         name='gt_box', shape=[4], lod_level=1, dtype='float32')
        >>> gt_label = fluid.layers.data(
        >>>         name='gt_label', shape=[1], lod_level=1, dtype='float32')
        >>> loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
1425 1426 1427 1428 1429 1430 1431
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape
G
merge  
gongweibao 已提交
1432
    conf_shape = nn.shape(confidence)
1433 1434

    def __reshape_to_2d(var):
1435
        return nn.flatten(x=var, axis=2)
1436 1437 1438 1439 1440

    # 1. Find matched boundding box by prior box.
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
    #   1.2 Compute matched boundding box by bipartite matching algorithm.
1441 1442
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
1443 1444 1445

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
1446 1447
    gt_label = nn.reshape(
        x=gt_label, shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1))
1448
    gt_label.stop_gradient = True
1449 1450 1451 1452 1453 1454 1455
    target_label, _ = target_assign(
        gt_label, matched_indices, mismatch_value=background_label)
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
1456
    target_label.stop_gradient = True
1457 1458
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    # 3. Mining hard examples
G
merge  
gongweibao 已提交
1459
    actual_shape = nn.slice(conf_shape, axes=[0], starts=[0], ends=[2])
1460
    actual_shape.stop_gradient = True
1461 1462
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
1463
    conf_loss = nn.reshape(
1464
        x=conf_loss, shape=(-1, 0), actual_shape=actual_shape)
1465
    conf_loss.stop_gradient = True
X
Xin Pan 已提交
1466
    neg_indices = helper.create_variable_for_type_inference(dtype='int32')
1467
    dtype = matched_indices.dtype
X
Xin Pan 已提交
1468 1469
    updated_matched_indices = helper.create_variable_for_type_inference(
        dtype=dtype)
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
    helper.append_op(
        type='mine_hard_examples',
        inputs={
            'ClsLoss': conf_loss,
            'LocLoss': None,
            'MatchIndices': matched_indices,
            'MatchDist': matched_dist,
        },
        outputs={
            'NegIndices': neg_indices,
            'UpdatedMatchIndices': updated_matched_indices
        },
        attrs={
            'neg_pos_ratio': neg_pos_ratio,
B
Bai Yifan 已提交
1484
            'neg_dist_threshold': neg_overlap,
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
            'mining_type': mining_type,
            'sample_size': sample_size,
        })

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
    encoded_bbox = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=gt_box,
        code_type='encode_center_size')
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
1510

1511 1512 1513 1514
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

1515 1516 1517 1518
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

1519 1520 1521 1522 1523 1524 1525 1526
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

1527 1528 1529 1530
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

1531 1532
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
1533
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
1534 1535 1536
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
    loss = nn.reshape(x=loss, shape=(-1, 0), actual_shape=actual_shape)
1537 1538 1539 1540 1541
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

1542
    return loss
C
chengduoZH 已提交
1543 1544


1545 1546 1547 1548
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
1549
              aspect_ratios=[1.],
1550 1551 1552 1553 1554
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
1555 1556
              name=None,
              min_max_aspect_ratios_order=False):
1557
    """
Q
update  
qiaolongfei 已提交
1558
    **Prior Box Operator**
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569

    Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

    Args:
       input(Variable): The Input Variables, the format is NCHW.
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
1570
       min_sizes(list|tuple|float value): min sizes of generated prior boxes.
1571 1572
       max_sizes(list|tuple|None): max sizes of generated prior boxes.
            Default: None.
1573 1574
       aspect_ratios(list|tuple|float value): the aspect ratios of generated
            prior boxes. Default: [1.].
1575 1576 1577 1578
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
翟飞跃 已提交
1579
       step(list|tuple): Prior boxes step across width and height, If
1580
            step[0] == 0.0/step[1] == 0.0, the prior boxes step across
1581 1582
            height/weight of the input will be automatically calculated.
            Default: [0., 0.]
1583 1584
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.
1585
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1586
            in order of [min, max, aspect_ratios], which is consistent with
1587 1588 1589
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
1590 1591

    Returns:
Q
update  
qiaolongfei 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
        tuple: A tuple with two Variable (boxes, variances)

        boxes: the output prior boxes of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input,
        num_priors is the total
        box count of each position of input.

        variances: the expanded variances of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_priors is the total
        box count of each position of input
1605 1606 1607 1608


    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1609

1610
            import paddle.fluid as fluid
R
ruri 已提交
1611 1612
            input = fluid.layers.data(name="input", shape=[3,6,9])
            images = fluid.layers.data(name="images", shape=[3,9,12])
Q
update  
qiaolongfei 已提交
1613
            box, var = fluid.layers.prior_box(
R
ruri 已提交
1614
                input=input,
Q
update  
qiaolongfei 已提交
1615 1616 1617 1618
                image=images,
                min_sizes=[100.],
                flip=True,
                clip=True)
1619 1620 1621 1622
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

1638 1639 1640 1641 1642 1643 1644 1645
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
1646 1647
        'offset': offset,
        'min_max_aspect_ratios_order': min_max_aspect_ratios_order
1648 1649
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
1650 1651
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
1652 1653
        attrs['max_sizes'] = max_sizes

X
Xin Pan 已提交
1654 1655
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
    helper.append_op(
        type="prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


R
ruri 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676
def density_prior_box(input,
                      image,
                      densities=None,
                      fixed_sizes=None,
                      fixed_ratios=None,
                      variance=[0.1, 0.1, 0.2, 0.2],
                      clip=False,
                      steps=[0.0, 0.0],
                      offset=0.5,
1677
                      flatten_to_2d=False,
R
ruri 已提交
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
                      name=None):
    """
    **Density Prior Box Operator**

    Generate density prior boxes for SSD(Single Shot MultiBox Detector) 
    algorithm. Each position of the input produce N prior boxes, N is 
    determined by the count of densities, fixed_sizes and fixed_ratios. 
    Boxes center at grid points around each input position is generated by 
    this operator, and the grid points is determined by densities and 
    the count of density prior box is determined by fixed_sizes and fixed_ratios. 
    Obviously, the number of fixed_sizes is equal to the number of densities.
    For densities_i in densities:
    N_density_prior_box =sum(N_fixed_ratios * densities_i^2),

    Args:
       input(Variable): The Input Variables, the format is NCHW.
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
       densities(list|tuple|None): the densities of generated density prior 
            boxes, this attribute should be a list or tuple of integers. 
            Default: None.
       fixed_sizes(list|tuple|None): the fixed sizes of generated density
            prior boxes, this attribute should a list or tuple of same 
            length with :attr:`densities`. Default: None.
       fixed_ratios(list|tuple|None): the fixed ratios of generated density
            prior boxes, if this attribute is not set and :attr:`densities`
            and :attr:`fix_sizes` is set, :attr:`aspect_ratios` will be used
            to generate density prior boxes.
       variance(list|tuple): the variances to be encoded in density prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
翟飞跃 已提交
1709
       step(list|tuple): Prior boxes step across width and height, If
R
ruri 已提交
1710 1711 1712 1713
            step[0] == 0.0/step[1] == 0.0, the density prior boxes step across
            height/weight of the input will be automatically calculated.
            Default: [0., 0.]
       offset(float): Prior boxes center offset. Default: 0.5
1714 1715
       flatten_to_2d(bool): Whether to flatten output prior boxes and variance
           to 2D shape, the second dim is 4. Default: False.
R
ruri 已提交
1716 1717 1718 1719 1720 1721
       name(str): Name of the density prior box op. Default: None.

    Returns:
        tuple: A tuple with two Variable (boxes, variances)

        boxes: the output density prior boxes of PriorBox.
1722 1723 1724 1725
            The layout is [H, W, num_priors, 4] when flatten_to_2d is False.
            The layout is [H * W * num_priors, 4] when flatten_to_2d is True.
            H is the height of input, W is the width of input,
            num_priors is the total box count of each position of input.
R
ruri 已提交
1726 1727

        variances: the expanded variances of PriorBox.
1728 1729 1730 1731
            The layout is [H, W, num_priors, 4] when flatten_to_2d is False.
            The layout is [H * W * num_priors, 4] when flatten_to_2d is True.
            H is the height of input, W is the width of input
            num_priors is the total box count of each position of input.
R
ruri 已提交
1732 1733 1734 1735 1736


    Examples:
        .. code-block:: python

1737
            import paddle.fluid as fluid
R
ruri 已提交
1738 1739
            input = fluid.layers.data(name="input", shape=[3,6,9])
            images = fluid.layers.data(name="images", shape=[3,9,12])
R
ruri 已提交
1740
            box, var = fluid.layers.density_prior_box(
R
ruri 已提交
1741
                input=input,
R
ruri 已提交
1742
                image=images,
1743 1744 1745 1746 1747
                densities=[4, 2, 1],
                fixed_sizes=[32.0, 64.0, 128.0],
                fixed_ratios=[1.],
                clip=True,
                flatten_to_2d=True)
R
ruri 已提交
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
    """
    helper = LayerHelper("density_prior_box", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(densities):
        raise TypeError('densities should be a list or a tuple or None.')
    if not _is_list_or_tuple_(fixed_sizes):
        raise TypeError('fixed_sizes should be a list or a tuple or None.')
    if not _is_list_or_tuple_(fixed_ratios):
        raise TypeError('fixed_ratios should be a list or a tuple or None.')
    if len(densities) != len(fixed_sizes):
        raise ValueError('densities and fixed_sizes length should be euqal.')
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    densities = list(map(int, densities))
    fixed_sizes = list(map(float, fixed_sizes))
    fixed_ratios = list(map(float, fixed_ratios))
    steps = list(map(float, steps))

    attrs = {
        'variances': variance,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
        'offset': offset,
1778 1779 1780 1781
        'densities': densities,
        'fixed_sizes': fixed_sizes,
        'fixed_ratios': fixed_ratios,
        'flatten_to_2d': flatten_to_2d,
R
ruri 已提交
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
    }
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="density_prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


C
chengduoZH 已提交
1797
def multi_box_head(inputs,
C
chengduoZH 已提交
1798 1799
                   image,
                   base_size,
C
chengduoZH 已提交
1800
                   num_classes,
C
chengduoZH 已提交
1801
                   aspect_ratios,
1802 1803
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
1804 1805
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
1806 1807 1808 1809
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
1810 1811
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
1812
                   clip=False,
C
chengduoZH 已提交
1813
                   kernel_size=1,
C
chengduoZH 已提交
1814
                   pad=0,
C
chengduoZH 已提交
1815
                   stride=1,
1816 1817
                   name=None,
                   min_max_aspect_ratios_order=False):
C
chengduoZH 已提交
1818
    """
C
chengduoZH 已提交
1819 1820
    Generate prior boxes for SSD(Single Shot MultiBox Detector)
    algorithm. The details of this algorithm, please refer the
Q
update  
qiaolongfei 已提交
1821
    section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
1822
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
1823 1824

    Args:
1825
       inputs(list|tuple): The list of input Variables, the format
C
chengduoZH 已提交
1826
            of all Variables is NCHW.
C
chengduoZH 已提交
1827 1828
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
C
chengduoZH 已提交
1829 1830
       base_size(int): the base_size is used to get min_size
            and max_size according to min_ratio and max_ratio.
C
chengduoZH 已提交
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
       num_classes(int): The number of classes.
       aspect_ratios(list|tuple): the aspect ratios of generated prior
            boxes. The length of input and aspect_ratios must be equal.
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
1853
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
1854 1855 1856 1857 1858 1859
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
       name(str): Name of the prior box layer. Default: None.
1860
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1861
            in order of [min, max, aspect_ratios], which is consistent with
1862 1863 1864
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the fininal
            detection results. Default: False.
C
chengduoZH 已提交
1865 1866

    Returns:
Q
update  
qiaolongfei 已提交
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

        mbox_loc: The predicted boxes' location of the inputs. The layout
        is [N, H*W*Priors, 4]. where Priors is the number of predicted
        boxes each position of each input.

        mbox_conf: The predicted boxes' confidence of the inputs. The layout
        is [N, H*W*Priors, C]. where Priors is the number of predicted boxes
        each position of each input and C is the number of Classes.

        boxes: the output prior boxes of PriorBox. The layout is [num_priors, 4].
        num_priors is the total box count of each position of inputs.

        variances: the expanded variances of PriorBox. The layout is
        [num_priors, 4]. num_priors is the total box count of each position of inputs
C
chengduoZH 已提交
1882

C
chengduoZH 已提交
1883 1884 1885

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1886

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
          import paddle.fluid as fluid

          images = fluid.layers.data(name='data', shape=[3, 300, 300], dtype='float32')
          conv1 = fluid.layers.data(name='conv1', shape=[512, 19, 19], dtype='float32')
          conv2 = fluid.layers.data(name='conv2', shape=[1024, 10, 10], dtype='float32')
          conv3 = fluid.layers.data(name='conv3', shape=[512, 5, 5], dtype='float32')
          conv4 = fluid.layers.data(name='conv4', shape=[256, 3, 3], dtype='float32')
          conv5 = fluid.layers.data(name='conv5', shape=[256, 2, 2], dtype='float32')
          conv6 = fluid.layers.data(name='conv6', shape=[128, 1, 1], dtype='float32')

Q
update  
qiaolongfei 已提交
1897
          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
1898
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
C
chengduoZH 已提交
1899 1900 1901 1902 1903 1904 1905 1906 1907
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
1908 1909
    """

C
chengduoZH 已提交
1910
    def _reshape_with_axis_(input, axis=1):
1911
        out = nn.flatten(x=input, axis=axis)
C
chengduoZH 已提交
1912
        return out
1913

1914 1915
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
1916

C
chengduoZH 已提交
1917 1918 1919 1920
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

1921 1922
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
1923

C
chengduoZH 已提交
1924 1925 1926 1927 1928
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
1929
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
1930 1931 1932
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
M
minqiyang 已提交
1933
        for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
C
chengduoZH 已提交
1934 1935 1936 1937 1938
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
    if step_h:
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
    if step_w:
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
    if steps:
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
1962 1963
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
1964 1965
    box_results = []
    var_results = []
C
chengduoZH 已提交
1966 1967
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
1968 1969
        max_size = max_sizes[i]

1970
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
1971
            min_size = [min_size]
C
chengduoZH 已提交
1972 1973
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
1974 1975 1976 1977

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
1978
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
1979
                aspect_ratio = [aspect_ratio]
1980
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
1981

1982
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
1983 1984
                             variance, flip, clip, step, offset, None,
                             min_max_aspect_ratios_order)
C
chengduoZH 已提交
1985 1986 1987 1988 1989

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
1990

1991
        # get loc
Y
Yuan Gao 已提交
1992
        num_loc_output = num_boxes * 4
1993
        mbox_loc = nn.conv2d(
C
chengduoZH 已提交
1994
            input=input,
1995 1996 1997 1998 1999
            num_filters=num_loc_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)

2000
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
2001
        mbox_loc_flatten = nn.flatten(mbox_loc, axis=1)
Y
Yuan Gao 已提交
2002
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
2003

2004
        # get conf
C
chengduoZH 已提交
2005
        num_conf_output = num_boxes * num_classes
2006
        conf_loc = nn.conv2d(
C
chengduoZH 已提交
2007
            input=input,
2008 2009 2010 2011
            num_filters=num_conf_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)
2012
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
2013
        conf_loc_flatten = nn.flatten(conf_loc, axis=1)
Y
Yuan Gao 已提交
2014
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
2015

C
chengduoZH 已提交
2016 2017 2018
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
2019 2020
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
2030
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
2031
        mbox_locs_concat = nn.reshape(mbox_locs_concat, shape=[0, -1, 4])
Y
Yuan Gao 已提交
2032
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
2033 2034
        mbox_confs_concat = nn.reshape(
            mbox_confs_concat, shape=[0, -1, num_classes])
C
chengduoZH 已提交
2035

2036 2037
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
2038
    return mbox_locs_concat, mbox_confs_concat, box, var
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
W
wangguanzhong 已提交
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
       input(Variable): 4-D Tensor with shape [N,C,H,W]. The input feature map.
       anchor_sizes(float32|list|tuple, optional): The anchor sizes of generated
          anchors, given in absolute pixels e.g. [64., 128., 256., 512.].
          For instance, the anchor size of 64 means the area of this anchor 
          equals to 64**2. None by default.
       aspect_ratios(float32|list|tuple, optional): The height / width ratios 
           of generated anchors, e.g. [0.5, 1.0, 2.0]. None by default.
       variance(list|tuple, optional): The variances to be used in box 
           regression deltas. The data type is float32, [0.1, 0.1, 0.2, 0.2] by 
           default.
       stride(list|tuple, optional): The anchors stride across width and height.
           The data type is float32. e.g. [16.0, 16.0]. None by default.
       offset(float32, optional): Prior boxes center offset. 0.5 by default.
       name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and None 
           by default. 
2073 2074

    Returns:
W
wangguanzhong 已提交
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
        Tuple:

        Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4].
        H is the height of input, W is the width of input,
        num_anchors is the box count of each position. 
        Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
 
        Variances(Variable): The expanded variances of anchors
        with a layout of [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_anchors is the box count of each position.
        Each variance is in (xcenter, ycenter, w, h) format.
2087 2088 2089 2090 2091 2092


    Examples:

        .. code-block:: python

2093
            import paddle.fluid as fluid
2094
            conv1 = fluid.data(name='conv1', shape=[None, 48, 16, 16], dtype='float32')
J
jerrywgz 已提交
2095
            anchor, var = fluid.layers.anchor_generator(
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

X
Xin Pan 已提交
2129 2130
    anchor = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
2131 2132 2133 2134 2135 2136 2137 2138 2139
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
        outputs={"Anchors": anchor,
                 "Variances": var},
        attrs=attrs, )
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var
2140 2141


W
whs 已提交
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
def roi_perspective_transform(input,
                              rois,
                              transformed_height,
                              transformed_width,
                              spatial_scale=1.0):
    """
    ROI perspective transform op.

    Args:
        input (Variable): The input of ROIPerspectiveTransformOp. The format of 
                          input tensor is NCHW. Where N is batch size, C is the
                          number of input channels, H is the height of the feature,
                          and W is the width of the feature.
        rois (Variable):  ROIs (Regions of Interest) to be transformed. It should be
                          a 2-D LoDTensor of shape (num_rois, 8). Given as 
                          [[x1, y1, x2, y2, x3, y3, x4, y4], ...], (x1, y1) is the 
                          top left coordinates, and (x2, y2) is the top right 
                          coordinates, and (x3, y3) is the bottom right coordinates, 
                          and (x4, y4) is the bottom left coordinates.
        transformed_height (integer): The height of transformed output.
S
SunGaofeng 已提交
2162
        transformed_width (integer): The width of transformed output.
W
whs 已提交
2163 2164 2165
        spatial_scale (float): Spatial scale factor to scale ROI coords. Default: 1.0

    Returns:
2166 2167 2168 2169 2170 2171 2172 2173 2174
            tuple: A tuple with three Variables. (out, mask, transform_matrix)

            out: The output of ROIPerspectiveTransformOp which is a 4-D tensor with shape
            (num_rois, channels, transformed_h, transformed_w).

            mask: The mask of ROIPerspectiveTransformOp which is a 4-D tensor with shape
            (num_rois, 1, transformed_h, transformed_w).

            transform_matrix: The transform matrix of ROIPerspectiveTransformOp which is
2175
            a 2-D tensor with shape (num_rois, 9).
W
whs 已提交
2176 2177 2178 2179

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
2180
            import paddle.fluid as fluid
2181

S
SunGaofeng 已提交
2182 2183
            x = fluid.layers.data(name='x', shape=[256, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[8], lod_level=1, dtype='float32')
2184
            out, mask, transform_matrix = fluid.layers.roi_perspective_transform(x, rois, 7, 7, 1.0)
W
whs 已提交
2185 2186 2187
    """
    helper = LayerHelper('roi_perspective_transform', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2188
    out = helper.create_variable_for_type_inference(dtype)
2189 2190
    mask = helper.create_variable_for_type_inference(dtype="int32")
    transform_matrix = helper.create_variable_for_type_inference(dtype)
2191 2192
    out2in_idx = helper.create_variable_for_type_inference(dtype="int32")
    out2in_w = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
2193 2194 2195 2196
    helper.append_op(
        type="roi_perspective_transform",
        inputs={"X": input,
                "ROIs": rois},
2197 2198 2199
        outputs={
            "Out": out,
            "Out2InIdx": out2in_idx,
2200 2201 2202
            "Out2InWeights": out2in_w,
            "Mask": mask,
            "TransformMatrix": transform_matrix
2203
        },
W
whs 已提交
2204 2205 2206 2207 2208
        attrs={
            "transformed_height": transformed_height,
            "transformed_width": transformed_width,
            "spatial_scale": spatial_scale
        })
2209
    return out, mask, transform_matrix
W
whs 已提交
2210 2211


2212 2213
def generate_proposal_labels(rpn_rois,
                             gt_classes,
2214
                             is_crowd,
2215
                             gt_boxes,
2216
                             im_info,
2217 2218 2219 2220 2221 2222
                             batch_size_per_im=256,
                             fg_fraction=0.25,
                             fg_thresh=0.25,
                             bg_thresh_hi=0.5,
                             bg_thresh_lo=0.0,
                             bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
2223
                             class_nums=None,
2224 2225 2226
                             use_random=True,
                             is_cls_agnostic=False,
                             is_cascade_rcnn=False):
2227
    """
2228
    **Generate Proposal Labels of Faster-RCNN**
2229

B
buxingyuan 已提交
2230
    This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
B
buxingyuan 已提交
2231
    to sample foreground boxes and background boxes, and compute loss target.
B
buxingyuan 已提交
2232 2233 2234

    RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes
    were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction,
B
buxingyuan 已提交
2235
    If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample.
B
buxingyuan 已提交
2236 2237
    If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi,
    then it was considered as a background sample.
B
buxingyuan 已提交
2238
    After all foreground and background boxes are chosen (so called Rois),
B
buxingyuan 已提交
2239
    then we apply random sampling to make sure
B
buxingyuan 已提交
2240
    the number of foreground boxes is no more than batch_size_per_im * fg_fraction.
B
buxingyuan 已提交
2241 2242 2243 2244 2245

    For each box in Rois, we assign the classification (class label) and regression targets (box label) to it.
    Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss.

    Args:
2246 2247 2248
        rpn_rois(Variable): A 2-D LoDTensor with shape [N, 4]. N is the number of the GenerateProposalOp's output, each element is a bounding box with [xmin, ymin, xmax, ymax] format. The data type can be float32 or float64.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a class label of groundtruth. The data type must be int32.
        is_crowd(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a flag indicates whether a groundtruth is crowd. The data type must be int32.
B
buxingyuan 已提交
2249 2250 2251
        gt_boxes(Variable): A 2-D LoDTensor with shape [M, 4]. M is the number of groundtruth, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        im_info(Variable): A 2-D LoDTensor with shape [B, 3]. B is the number of input images, each element consists of im_height, im_width, im_scale.

2252 2253 2254 2255 2256 2257 2258
        batch_size_per_im(int): Batch size of rois per images. The data type must be int32.
        fg_fraction(float): Foreground fraction in total batch_size_per_im. The data type must be float32.
        fg_thresh(float): Overlap threshold which is used to chose foreground sample. The data type must be float32.
        bg_thresh_hi(float): Overlap threshold upper bound which is used to chose background sample. The data type must be float32.
        bg_thresh_lo(float): Overlap threshold lower bound which is used to chose background sample. The data type must be float32.
        bbox_reg_weights(list|tuple): Box regression weights. The data type must be float32.
        class_nums(int): Class number. The data type must be int32.
B
buxingyuan 已提交
2259
        use_random(bool): Use random sampling to choose foreground and background boxes.
2260 2261
        is_cls_agnostic(bool): bbox regression use class agnostic simply which only represent fg and bg boxes.
        is_cascade_rcnn(bool): it will filter some bbox crossing the image's boundary when setting True.
B
Bai Yifan 已提交
2262

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
    Returns:
        tuple:
        A tuple with format``(rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights)``.

        - **rois**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4]``. The data type is the same as ``rpn_rois``.
        - **labels_int32**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 1]``. The data type must be int32.
        - **bbox_targets**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The regression targets of all RoIs. The data type is the same as ``rpn_rois``.
        - **bbox_inside_weights**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The weights of foreground boxes' regression loss. The data type is the same as ``rpn_rois``.
        - **bbox_outside_weights**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The weights of regression loss. The data type is the same as ``rpn_rois``.


B
Bai Yifan 已提交
2274 2275 2276 2277
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
2278 2279 2280 2281 2282
            rpn_rois = fluid.data(name='rpn_rois', shape=[None, 4], dtype='float32')
            gt_classes = fluid.data(name='gt_classes', shape=[None, 1], dtype='float32')
            is_crowd = fluid.data(name='is_crowd', shape=[None, 1], dtype='float32')
            gt_boxes = fluid.data(name='gt_boxes', shape=[None, 4], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[None, 3], dtype='float32')
2283
            rois, labels, bbox, inside_weights, outside_weights = fluid.layers.generate_proposal_labels(
B
Bai Yifan 已提交
2284 2285 2286
                           rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
                           class_nums=10)

2287 2288 2289 2290
    """

    helper = LayerHelper('generate_proposal_labels', **locals())

X
Xin Pan 已提交
2291 2292 2293 2294 2295 2296 2297 2298 2299
    rois = helper.create_variable_for_type_inference(dtype=rpn_rois.dtype)
    labels_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    bbox_targets = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_inside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_outside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
2300 2301 2302 2303 2304 2305

    helper.append_op(
        type="generate_proposal_labels",
        inputs={
            'RpnRois': rpn_rois,
            'GtClasses': gt_classes,
2306
            'IsCrowd': is_crowd,
2307
            'GtBoxes': gt_boxes,
2308
            'ImInfo': im_info
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
        },
        outputs={
            'Rois': rois,
            'LabelsInt32': labels_int32,
            'BboxTargets': bbox_targets,
            'BboxInsideWeights': bbox_inside_weights,
            'BboxOutsideWeights': bbox_outside_weights
        },
        attrs={
            'batch_size_per_im': batch_size_per_im,
            'fg_fraction': fg_fraction,
            'fg_thresh': fg_thresh,
            'bg_thresh_hi': bg_thresh_hi,
            'bg_thresh_lo': bg_thresh_lo,
            'bbox_reg_weights': bbox_reg_weights,
2324
            'class_nums': class_nums,
2325 2326 2327
            'use_random': use_random,
            'is_cls_agnostic': is_cls_agnostic,
            'is_cascade_rcnn': is_cascade_rcnn
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
        })

    rois.stop_gradient = True
    labels_int32.stop_gradient = True
    bbox_targets.stop_gradient = True
    bbox_inside_weights.stop_gradient = True
    bbox_outside_weights.stop_gradient = True

    return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights


2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
def generate_mask_labels(im_info, gt_classes, is_crowd, gt_segms, rois,
                         labels_int32, num_classes, resolution):
    """
    ** Generate Mask Labels for Mask-RCNN **

    This operator can be, for given the RoIs and corresponding labels,
    to sample foreground RoIs. This mask branch also has
    a :math: `K \\times M^{2}` dimensional output targets for each foreground
    RoI, which encodes K binary masks of resolution M x M, one for each of the
    K classes. This mask targets are used to compute loss of mask branch.

    Please note, the data format of groud-truth segmentation, assumed the
    segmentations are as follows. The first instance has two gt objects.
    The second instance has one gt object, this object has two gt segmentations.

        .. code-block:: python

            #[
            #  [[[229.14, 370.9, 229.14, 370.9, ...]],
            #   [[343.7, 139.85, 349.01, 138.46, ...]]], # 0-th instance
            #  [[[500.0, 390.62, ...],[115.48, 187.86, ...]]] # 1-th instance
            #]

            batch_masks = []
            for semgs in batch_semgs:
                gt_masks = []
                for semg in semgs:
                    gt_segm = []
                    for polys in semg:
                        gt_segm.append(np.array(polys).reshape(-1, 2))
                    gt_masks.append(gt_segm)
                batch_masks.append(gt_masks)
            
            
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(place=place, feed_list=feeds)
            feeder.feed(batch_masks)

    Args:
        im_info(Variable): A 2-D Tensor with shape [N, 3]. N is the batch size,
            each element is [height, width, scale] of image. Image scale is
            target_size) / original_size.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the total
            number of ground-truth, each element is a class label.
        is_crowd(Variable): A 2-D LoDTensor with shape as gt_classes,
            each element is a flag indicating whether a groundtruth is crowd.
        gt_segms(Variable): This input is a 2D LoDTensor with shape [S, 2],
            it's LoD level is 3. Usually users do not needs to understand LoD,
            The users should return correct data format in reader.



            The LoD[0] represents the gt objects number of
            each instance. LoD[1] represents the segmentation counts of each
            objects. LoD[2] represents the polygons number of each segmentation.
            S the total number of polygons coordinate points. Each element is
            (x, y) coordinate points.
        rois(Variable): A 2-D LoDTensor with shape [R, 4]. R is the total
            number of RoIs, each element is a bounding box with
            (xmin, ymin, xmax, ymax) format in the range of original image.
        labels_int32(Variable): A 2-D LoDTensor in shape of [R, 1] with type
            of int32. R is the same as it in `rois`. Each element repersents
            a class label of a RoI.
        num_classes(int): Class number.
        resolution(int): Resolution of mask predictions.

    Returns:
        mask_rois (Variable):  A 2D LoDTensor with shape [P, 4]. P is the total
            number of sampled RoIs. Each element is a bounding box with
            [xmin, ymin, xmax, ymax] format in range of orignal image size.
        mask_rois_has_mask_int32 (Variable): A 2D LoDTensor with shape [P, 1],
            each element repersents the output mask RoI index with regard to
            to input RoIs.
        mask_int32 (Variable): A 2D LoDTensor with shape [P, K * M * M],
            K is the classes number and M is the resolution of mask predictions.
            Each element repersents the binary mask targets.

    Examples:
        .. code-block:: python

2419 2420
          import paddle.fluid as fluid

2421 2422 2423 2424 2425 2426 2427 2428
          im_info = fluid.layers.data(name="im_info", shape=[3],
              dtype="float32")
          gt_classes = fluid.layers.data(name="gt_classes", shape=[1],
              dtype="float32", lod_level=1)
          is_crowd = fluid.layers.data(name="is_crowd", shape=[1],
              dtype="float32", lod_level=1)
          gt_masks = fluid.layers.data(name="gt_masks", shape=[2],
              dtype="float32", lod_level=3)
2429
          # rois, roi_labels can be the output of
2430
          # fluid.layers.generate_proposal_labels.
2431 2432 2433 2434
          rois = fluid.layers.data(name="rois", shape=[4],
              dtype="float32", lod_level=1)
          roi_labels = fluid.layers.data(name="roi_labels", shape=[1],
              dtype="int32", lod_level=1)
2435 2436 2437 2438 2439 2440
          mask_rois, mask_index, mask_int32 = fluid.layers.generate_mask_labels(
              im_info=im_info,
              gt_classes=gt_classes,
              is_crowd=is_crowd,
              gt_segms=gt_masks,
              rois=rois,
2441
              labels_int32=roi_labels,
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
              num_classes=81,
              resolution=14)
    """

    helper = LayerHelper('generate_mask_labels', **locals())

    mask_rois = helper.create_variable_for_type_inference(dtype=rois.dtype)
    roi_has_mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)

    helper.append_op(
        type="generate_mask_labels",
        inputs={
            'ImInfo': im_info,
            'GtClasses': gt_classes,
            'IsCrowd': is_crowd,
            'GtSegms': gt_segms,
            'Rois': rois,
            'LabelsInt32': labels_int32
        },
        outputs={
            'MaskRois': mask_rois,
            'RoiHasMaskInt32': roi_has_mask_int32,
            'MaskInt32': mask_int32
        },
        attrs={'num_classes': num_classes,
               'resolution': resolution})

    mask_rois.stop_gradient = True
    roi_has_mask_int32.stop_gradient = True
    mask_int32.stop_gradient = True

    return mask_rois, roi_has_mask_int32, mask_int32


2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
def generate_proposals(scores,
                       bbox_deltas,
                       im_info,
                       anchors,
                       variances,
                       pre_nms_top_n=6000,
                       post_nms_top_n=1000,
                       nms_thresh=0.5,
                       min_size=0.1,
                       eta=1.0,
                       name=None):
    """
H
haowang101779990 已提交
2491 2492
    **Generate proposal Faster-RCNN**

2493 2494 2495 2496
    This operation proposes RoIs according to each box with their
    probability to be a foreground object and 
    the box can be calculated by anchors. Bbox_deltais and scores
    to be an object are the output of RPN. Final proposals
H
haowang101779990 已提交
2497 2498 2499 2500
    could be used to train detection net.

    For generating proposals, this operation performs following steps:

2501 2502
    1. Transposes and resizes scores and bbox_deltas in size of
       (H*W*A, 1) and (H*W*A, 4)
H
haowang101779990 已提交
2503 2504 2505 2506 2507 2508
    2. Calculate box locations as proposals candidates. 
    3. Clip boxes to image
    4. Remove predicted boxes with small area. 
    5. Apply NMS to get final proposals as output.

    Args:
2509 2510 2511
        scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents
            the probability for each box to be an object.
            N is batch size, A is number of anchors, H and W are height and
2512
            width of the feature map. The data type must be float32.
2513 2514
        bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W]
            represents the differece between predicted box locatoin and
2515
            anchor location. The data type must be float32.
2516 2517
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin
            image information for N batch. Info contains height, width and scale
H
haowang101779990 已提交
2518
            between origin image size and the size of feature map.
2519
            The data type must be int32.
2520 2521 2522
        anchors(Variable):   A 4-D Tensor represents the anchors with a layout
            of [H, W, A, 4]. H and W are height and width of the feature map,
            num_anchors is the box count of each position. Each anchor is
2523 2524
            in (xmin, ymin, xmax, ymax) format an unnormalized. The data type must be float32.
        variances(Variable): A 4-D Tensor. The expanded variances of anchors with a layout of
2525
            [H, W, num_priors, 4]. Each variance is in
2526
            (xcenter, ycenter, w, h) format. The data type must be float32.
2527
        pre_nms_top_n(float): Number of total bboxes to be kept per
2528
            image before NMS. The data type must be float32. `6000` by default.
2529
        post_nms_top_n(float): Number of total bboxes to be kept per
2530 2531
            image after NMS. The data type must be float32. `1000` by default.
        nms_thresh(float): Threshold in NMS. The data type must be float32. `0.5` by default.
2532
        min_size(float): Remove predicted boxes with either height or
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
            width < min_size. The data type must be float32. `0.1` by default.
        eta(float): Apply in adaptive NMS, if adaptive `threshold > 0.5`,
            `adaptive_threshold = adaptive_threshold * eta` in each iteration.

    Returns:
        tuple:
        A tuple with format ``(rpn_rois, rpn_roi_probs)``.

        - **rpn_rois**: The generated RoIs. 2-D Tensor with shape ``[N, 4]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
        - **rpn_roi_probs**: The scores of generated RoIs. 2-D Tensor with shape ``[N, 1]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
B
Bai Yifan 已提交
2543 2544 2545 2546 2547

    Examples:
        .. code-block:: python
        
            import paddle.fluid as fluid
2548 2549 2550 2551 2552
            scores = fluid.data(name='scores', shape=[None, 4, 5, 5], dtype='float32')
            bbox_deltas = fluid.data(name='bbox_deltas', shape=[None, 16, 5, 5], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[None, 3], dtype='float32')
            anchors = fluid.data(name='anchors', shape=[None, 5, 4, 4], dtype='float32')
            variances = fluid.data(name='variances', shape=[None, 5, 10, 4], dtype='float32')
B
Bai Yifan 已提交
2553 2554 2555
            rois, roi_probs = fluid.layers.generate_proposals(scores, bbox_deltas,
                         im_info, anchors, variances)

2556 2557 2558
    """
    helper = LayerHelper('generate_proposals', **locals())

X
Xin Pan 已提交
2559 2560 2561 2562
    rpn_rois = helper.create_variable_for_type_inference(
        dtype=bbox_deltas.dtype)
    rpn_roi_probs = helper.create_variable_for_type_inference(
        dtype=scores.dtype)
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
    helper.append_op(
        type="generate_proposals",
        inputs={
            'Scores': scores,
            'BboxDeltas': bbox_deltas,
            'ImInfo': im_info,
            'Anchors': anchors,
            'Variances': variances
        },
        attrs={
            'pre_nms_topN': pre_nms_top_n,
            'post_nms_topN': post_nms_top_n,
            'nms_thresh': nms_thresh,
            'min_size': min_size,
            'eta': eta
        },
        outputs={'RpnRois': rpn_rois,
                 'RpnRoiProbs': rpn_roi_probs})
    rpn_rois.stop_gradient = True
    rpn_roi_probs.stop_gradient = True

    return rpn_rois, rpn_roi_probs
J
jerrywgz 已提交
2585 2586


J
jerrywgz 已提交
2587
def box_clip(input, im_info, name=None):
J
jerrywgz 已提交
2588 2589
    """
    Clip the box into the size given by im_info
J
jerrywgz 已提交
2590
    For each input box, The formula is given as follows:
2591 2592 2593
        
    .. code-block:: text

J
jerrywgz 已提交
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
        xmin = max(min(xmin, im_w - 1), 0)
        ymin = max(min(ymin, im_h - 1), 0) 
        xmax = max(min(xmax, im_w - 1), 0)
        ymax = max(min(ymax, im_h - 1), 0)
    
    where im_w and im_h are computed from im_info:
 
    .. code-block:: text

        im_h = round(height / scale)
        im_w = round(weight / scale)
J
jerrywgz 已提交
2605 2606

    Args:
W
wangguanzhong 已提交
2607 2608 2609 2610 2611 2612 2613 2614 2615
        input(Variable): The input Tensor with shape :math:`[N_1, N_2, ..., N_k, 4]`,
            the last dimension is 4 and data type is float32 or float64.
        im_info(Variable): The 2-D Tensor with shape [N, 3] with layout 
            (height, width, scale) represeting the information of image. 
            height and width is the input size and scale is the ratio of input
            size and original size. The data type is float32 or float64.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
2616 2617
    
    Returns:
W
wangguanzhong 已提交
2618 2619 2620 2621 2622
        Variable:

        output(Variable): The cliped tensor with data type float32 or float64. 
        The shape is same as input.

2623
        
J
jerrywgz 已提交
2624 2625
    Examples:
        .. code-block:: python
2626
        
2627
            import paddle.fluid as fluid
2628 2629 2630
            boxes = fluid.data(
                name='boxes', shape=[None, 8, 4], dtype='float32', lod_level=1)
            im_info = fluid.data(name='im_info', shape=[-1 ,3])
J
jerrywgz 已提交
2631
            out = fluid.layers.box_clip(
J
jerrywgz 已提交
2632
                input=boxes, im_info=im_info)
J
jerrywgz 已提交
2633 2634 2635
    """

    helper = LayerHelper("box_clip", **locals())
J
jerrywgz 已提交
2636
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
2637
    inputs = {"Input": input, "ImInfo": im_info}
J
jerrywgz 已提交
2638
    helper.append_op(type="box_clip", inputs=inputs, outputs={"Output": output})
J
jerrywgz 已提交
2639

2640 2641
    return output

J
jerrywgz 已提交
2642

2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
def retinanet_detection_output(bboxes,
                               scores,
                               anchors,
                               im_info,
                               score_threshold=0.05,
                               nms_top_k=1000,
                               keep_top_k=100,
                               nms_threshold=0.3,
                               nms_eta=1.):
    """
    **Detection Output Layer for Retinanet.**

    This operation is to get the detection results by performing following
    steps:

    1. Decode top-scoring bounding box predictions per FPN level according 
       to the anchor boxes.
    2. Merge top predictions from all levels and apply multi-class non 
       maximum suppression (NMS) on them to get the final detections.

    Args:
        bboxes(List): A list of tensors from multiple FPN levels. Each
            element is a 3-D Tensor with shape [N, Mi, 4] representing the
            predicted locations of Mi bounding boxes. N is the batch size,
            Mi is the number of bounding boxes from i-th FPN level and each 
            bounding box has four coordinate values and the layout is
            [xmin, ymin, xmax, ymax].
        scores(List): A list of tensors from multiple FPN levels. Each
            element is a 3-D Tensor with shape [N, Mi, C] representing the
            predicted confidence predictions. N is the batch size, C is the
            class number (excluding background), Mi is the number of bounding
            boxes from i-th FPN level. For each bounding box, there are total
            C scores.
        anchors(List): A 2-D Tensor with shape [Mi, 4] represents the locations
            of Mi anchor boxes from all FPN level. Each bounding box has four
            coordinate values and the layout is [xmin, ymin, xmax, ymax].
        im_info(Variable): A 2-D LoDTensor with shape [N, 3] represents the
            image information. N is the batch size, each image information
            includes height, width and scale.
        score_threshold(float): Threshold to filter out bounding boxes
            with a confidence score.
        nms_top_k(int): Maximum number of detections per FPN layer to be
            kept according to the confidences before NMS.
        keep_top_k(int): Number of total bounding boxes to be kept per image after
            NMS step. -1 means keeping all bounding boxes after NMS step.
        nms_threshold(float): The threshold to be used in NMS.
        nms_eta(float): The parameter for adaptive NMS.

    Returns:
        Variable:
            The detection output is a LoDTensor with shape [No, 6].
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
            `No` is the total number of detections in this mini-batch. For each
            instance, the offsets in first dimension are called LoD, the offset
            number is N + 1, N is the batch size. The i-th image has
            `LoD[i + 1] - LoD[i]` detected results, if it is 0, the i-th image
            has no detected results. If all images have no detected results,
            LoD will be set to 0, and the output tensor is empty (None).

    Examples:
        .. code-block:: python
        
            import paddle.fluid as fluid

            bboxes = layers.data(name='bboxes', shape=[1, 21, 4],
                append_batch_size=False, dtype='float32')
            scores = layers.data(name='scores', shape=[1, 21, 10],
                append_batch_size=False, dtype='float32')
            anchors = layers.data(name='anchors', shape=[21, 4],
                append_batch_size=False, dtype='float32')
            im_info = layers.data(name="im_info", shape=[1, 3],
                append_batch_size=False, dtype='float32')
            nmsed_outs = fluid.layers.retinanet_detection_output(
                                                    bboxes=[bboxes, bboxes],
                                                    scores=[scores, scores],
                                                    anchors=[anchors, anchors],
                                                    im_info=im_info,
                                                    score_threshold=0.05,
                                                    nms_top_k=1000,
                                                    keep_top_k=100,
                                                    nms_threshold=0.3,
                                                    nms_eta=1.)
    """

    helper = LayerHelper('retinanet_detection_output', **locals())
    output = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('scores'))
    helper.append_op(
        type="retinanet_detection_output",
        inputs={
            'BBoxes': bboxes,
            'Scores': scores,
            'Anchors': anchors,
            'ImInfo': im_info
        },
        attrs={
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'keep_top_k': keep_top_k,
            'nms_eta': 1.,
        },
        outputs={'Out': output})
    output.stop_gradient = True
    return output


J
jerrywgz 已提交
2750 2751 2752 2753 2754
def multiclass_nms(bboxes,
                   scores,
                   score_threshold,
                   nms_top_k,
                   keep_top_k,
J
jerrywgz 已提交
2755
                   nms_threshold=0.3,
J
jerrywgz 已提交
2756 2757
                   normalized=True,
                   nms_eta=1.,
2758 2759
                   background_label=0,
                   name=None):
J
jerrywgz 已提交
2760
    """
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
    **Multiclass NMS**
    
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.

    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
    See below for an example:

    .. code-block:: text

        if:
            box1.data = (2.0, 3.0, 7.0, 5.0) format is (xmin, ymin, xmax, ymax)
            box1.scores = (0.7, 0.2, 0.4)  which is (label0.score=0.7, label1.score=0.2, label2.cores=0.4)

            box2.data = (3.0, 4.0, 8.0, 5.0)
            box2.score = (0.3, 0.3, 0.1)

            nms_threshold = 0.3
            background_label = 0
            score_threshold = 0
2789

2790 2791 2792 2793 2794 2795 2796

        Then:
            iou = 4/11 > 0.3
            out.data = [[1, 0.3, 3.0, 4.0, 8.0, 5.0],    
                         [2, 0.4, 2.0, 3.0, 7.0, 5.0]]
                         
            Out format is (label, confidence, xmin, ymin, xmax, ymax)
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is 
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
                           M is the number of bounding boxes, C is the 
                           class number   
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is 
                           number of bounding boxes. For each category there 
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes.
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
                           case with shape [M, C, 4].
        background_label (int): The index of background label, the background 
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided, 
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
                         the confidences aftern the filtering detections based
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
2837
        Out(Variable): A 2-D LoDTensor with shape [No, 6] represents the detections.
2838 2839 2840 2841 2842
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values: 
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the 
             total number of detections. If there is no detected boxes for all
J
jerrywgz 已提交
2843 2844 2845 2846
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed 
             from {0} to {1}) 
2847

2848

2849 2850 2851
    Examples:
        .. code-block:: python

2852

2853
            import paddle.fluid as fluid
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
            boxes = fluid.layers.data(name='bboxes', shape=[81, 4],
                                      dtype='float32', lod_level=1)
            scores = fluid.layers.data(name='scores', shape=[81],
                                      dtype='float32', lod_level=1)
            out = fluid.layers.multiclass_nms(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
J
jerrywgz 已提交
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
    """
    helper = LayerHelper('multiclass_nms', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    helper.append_op(
        type="multiclass_nms",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'nms_eta': nms_eta,
            'normalized': normalized
        },
        outputs={'Out': output})
    output.stop_gradient = True
J
jerrywgz 已提交
2886 2887

    return output
2888 2889


2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
def multiclass_nms2(bboxes,
                    scores,
                    score_threshold,
                    nms_top_k,
                    keep_top_k,
                    nms_threshold=0.3,
                    normalized=True,
                    nms_eta=1.,
                    background_label=0,
                    return_index=False,
                    name=None):
    """
    **Multiclass NMS2**
    
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.

    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.

    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is 
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
                           M is the number of bounding boxes, C is the 
                           class number   
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is 
                           number of bounding boxes. For each category there 
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes.
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
                           case with shape [M, C, 4].
        background_label (int): The index of background label, the background 
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided, 
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
                         the confidences aftern the filtering detections based
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        return_index(bool): Whether return selected index. Default: False
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
        A tuple with two Variables: (Out, Index) if return_index is True,
        otherwise, a tuple with one Variable(Out) is returned. 

        Out: A 2-D LoDTensor with shape [No, 6] represents the detections. 
        Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax] 
        or A 2-D LoDTensor with shape [No, 10] represents the detections. 
        Each row has 10 values: [label, confidence, x1, y1, x2, y2, x3, y3, 
        x4, y4]. No is the total number of detections. 

        If all images have not detected results, all elements in LoD will be
        0, and output tensor is empty (None).

        Index: Only return when return_index is True. A 2-D LoDTensor with 
        shape [No, 1] represents the selected index which type is Integer. 
        The index is the absolute value cross batches. No is the same number 
        as Out. If the index is used to gather other attribute such as age, 
        one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where 
        N is the batch size and M is the number of boxes.


    Examples:
        .. code-block:: python


            import paddle.fluid as fluid
            boxes = fluid.layers.data(name='bboxes', shape=[81, 4],
                                      dtype='float32', lod_level=1)
            scores = fluid.layers.data(name='scores', shape=[81],
                                      dtype='float32', lod_level=1)
            out, index = fluid.layers.multiclass_nms2(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False,
                                              return_index=True)
    """
    helper = LayerHelper('multiclass_nms2', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    index = helper.create_variable_for_type_inference(dtype='int')
    helper.append_op(
        type="multiclass_nms2",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'nms_eta': nms_eta,
            'normalized': normalized
        },
        outputs={'Out': output,
                 'Index': index})
    output.stop_gradient = True
    index.stop_gradient = True

    if return_index:
        return output, index
    return output


3025 3026 3027 3028 3029 3030 3031
def distribute_fpn_proposals(fpn_rois,
                             min_level,
                             max_level,
                             refer_level,
                             refer_scale,
                             name=None):
    """
W
wangguanzhong 已提交
3032 3033 3034 3035 3036 3037
    **This op only takes LoDTensor as input.** In Feature Pyramid Networks 
    (FPN) models, it is needed to distribute all proposals into different FPN 
    level, with respect to scale of the proposals, the referring scale and the 
    referring level. Besides, to restore the order of proposals, we return an 
    array which indicates the original index of rois in current proposals. 
    To compute FPN level for each roi, the formula is given as follows:
3038
    
J
jerrywgz 已提交
3039
    .. math::
3040

J
jerrywgz 已提交
3041
        roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
3042

J
jerrywgz 已提交
3043 3044 3045
        level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)

    where BBoxArea is a function to compute the area of each roi.
3046 3047

    Args:
W
wangguanzhong 已提交
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059

        fpn_rois(Variable): 2-D Tensor with shape [N, 4] and data type is 
            float32 or float64. The input fpn_rois.
        min_level(int32): The lowest level of FPN layer where the proposals come 
            from.
        max_level(int32): The highest level of FPN layer where the proposals
            come from.
        refer_level(int32): The referring level of FPN layer with specified scale.
        refer_scale(int32): The referring scale of FPN layer with specified level.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
3060

3061
    Returns:
W
wangguanzhong 已提交
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
        Tuple:

        multi_rois(List) : A list of 2-D LoDTensor with shape [M, 4] 
        and data type of float32 and float64. The length is 
        max_level-min_level+1. The proposals in each FPN level.

        restore_ind(Variable): A 2-D Tensor with shape [N, 1], N is 
        the number of total rois. The data type is int32. It is
        used to restore the order of fpn_rois.

3072 3073 3074 3075

    Examples:
        .. code-block:: python

3076
            import paddle.fluid as fluid
3077 3078
            fpn_rois = fluid.data(
                name='data', shape=[None, 4], dtype='float32', lod_level=1)
3079
            multi_rois, restore_ind = fluid.layers.distribute_fpn_proposals(
3080 3081 3082
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
3083 3084 3085 3086 3087
                refer_level=4,
                refer_scale=224)
    """

    helper = LayerHelper('distribute_fpn_proposals', **locals())
3088
    dtype = helper.input_dtype('fpn_rois')
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
    num_lvl = max_level - min_level + 1
    multi_rois = [
        helper.create_variable_for_type_inference(dtype) for i in range(num_lvl)
    ]
    restore_ind = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type='distribute_fpn_proposals',
        inputs={'FpnRois': fpn_rois},
        outputs={'MultiFpnRois': multi_rois,
                 'RestoreIndex': restore_ind},
        attrs={
            'min_level': min_level,
            'max_level': max_level,
            'refer_level': refer_level,
            'refer_scale': refer_scale
        })
    return multi_rois, restore_ind
3106 3107


3108
@templatedoc()
J
jerrywgz 已提交
3109 3110 3111 3112 3113 3114
def box_decoder_and_assign(prior_box,
                           prior_box_var,
                           target_box,
                           box_score,
                           box_clip,
                           name=None):
3115 3116 3117 3118 3119 3120 3121
    """
    ${comment}
    Args:
        prior_box(${prior_box_type}): ${prior_box_comment}
        prior_box_var(${prior_box_var_type}): ${prior_box_var_comment}
        target_box(${target_box_type}): ${target_box_comment}
        box_score(${box_score_type}): ${box_score_comment}
J
jerrywgz 已提交
3122
        box_clip(${box_clip_type}): ${box_clip_comment}
W
wangguanzhong 已提交
3123 3124 3125 3126
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 

3127
    Returns:
W
wangguanzhong 已提交
3128
        Tuple:
J
jerrywgz 已提交
3129

W
wangguanzhong 已提交
3130 3131 3132
        decode_box(${decode_box_type}): ${decode_box_comment}

        output_assign_box(${output_assign_box_type}): ${output_assign_box_comment}
J
jerrywgz 已提交
3133 3134


3135 3136 3137
    Examples:
        .. code-block:: python

3138
            import paddle.fluid as fluid
3139 3140 3141 3142 3143 3144 3145 3146
            pb = fluid.data(
                name='prior_box', shape=[None, 4], dtype='float32')
            pbv = fluid.data(
                name='prior_box_var', shape=[4], dtype='float32')
            loc = fluid.data(
                name='target_box', shape=[None, 4*81], dtype='float32')
            scores = fluid.data(
                name='scores', shape=[None, 81], dtype='float32')
J
jerrywgz 已提交
3147
            decoded_box, output_assign_box = fluid.layers.box_decoder_and_assign(
J
jerrywgz 已提交
3148
                pb, pbv, loc, scores, 4.135)
3149 3150 3151 3152

    """
    helper = LayerHelper("box_decoder_and_assign", **locals())

J
jerrywgz 已提交
3153
    decoded_box = helper.create_variable_for_type_inference(
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
        dtype=prior_box.dtype)
    output_assign_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)

    helper.append_op(
        type="box_decoder_and_assign",
        inputs={
            "PriorBox": prior_box,
            "PriorBoxVar": prior_box_var,
            "TargetBox": target_box,
            "BoxScore": box_score
        },
        attrs={"box_clip": box_clip},
        outputs={
J
jerrywgz 已提交
3168
            "DecodeBox": decoded_box,
3169 3170
            "OutputAssignBox": output_assign_box
        })
J
jerrywgz 已提交
3171
    return decoded_box, output_assign_box
3172 3173 3174 3175 3176 3177 3178 3179 3180


def collect_fpn_proposals(multi_rois,
                          multi_scores,
                          min_level,
                          max_level,
                          post_nms_top_n,
                          name=None):
    """
W
wangguanzhong 已提交
3181 3182 3183
    **This OP only supports LoDTensor as input**. Concat multi-level RoIs 
    (Region of Interest) and select N RoIs with respect to multi_scores. 
    This operation performs the following steps:
3184 3185 3186 3187 3188 3189 3190 3191

    1. Choose num_level RoIs and scores as input: num_level = max_level - min_level
    2. Concat multi-level RoIs and scores
    3. Sort scores and select post_nms_top_n scores
    4. Gather RoIs by selected indices from scores
    5. Re-sort RoIs by corresponding batch_id

    Args:
W
wangguanzhong 已提交
3192 3193 3194 3195 3196 3197
        multi_rois(list): List of RoIs to collect. Element in list is 2-D 
            LoDTensor with shape [N, 4] and data type is float32 or float64, 
            N is the number of RoIs.
        multi_scores(list): List of scores of RoIs to collect. Element in list 
            is 2-D LoDTensor with shape [N, 1] and data type is float32 or
            float64, N is the number of RoIs.
3198 3199 3200
        min_level(int): The lowest level of FPN layer to collect
        max_level(int): The highest level of FPN layer to collect
        post_nms_top_n(int): The number of selected RoIs
W
wangguanzhong 已提交
3201 3202 3203 3204
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.        

3205
    Returns:
W
wangguanzhong 已提交
3206 3207 3208 3209 3210
        Variable:

        fpn_rois(Variable): 2-D LoDTensor with shape [N, 4] and data type is 
        float32 or float64. Selected RoIs. 

3211 3212 3213 3214

    Examples:
        .. code-block:: python
           
3215
            import paddle.fluid as fluid
3216 3217 3218
            multi_rois = []
            multi_scores = []
            for i in range(4):
3219 3220
                multi_rois.append(fluid.data(
                    name='roi_'+str(i), shape=[None, 4], dtype='float32', lod_level=1))
3221
            for i in range(4):
3222 3223
                multi_scores.append(fluid.data(
                    name='score_'+str(i), shape=[None, 1], dtype='float32', lod_level=1))
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248

            fpn_rois = fluid.layers.collect_fpn_proposals(
                multi_rois=multi_rois, 
                multi_scores=multi_scores,
                min_level=2, 
                max_level=5, 
                post_nms_top_n=2000)
    """

    helper = LayerHelper('collect_fpn_proposals', **locals())
    dtype = helper.input_dtype('multi_rois')
    num_lvl = max_level - min_level + 1
    input_rois = multi_rois[:num_lvl]
    input_scores = multi_scores[:num_lvl]
    output_rois = helper.create_variable_for_type_inference(dtype)
    output_rois.stop_gradient = True
    helper.append_op(
        type='collect_fpn_proposals',
        inputs={
            'MultiLevelRois': input_rois,
            'MultiLevelScores': input_scores
        },
        outputs={'FpnRois': output_rois},
        attrs={'post_nms_topN': post_nms_top_n})
    return output_rois