未验证 提交 f4c894a6 编写于 作者: K Kaipeng Deng 提交者: GitHub

alias yolo_loss & yolo_box to paddle.vision. (#28520)

* alias yolo_loss & decode_yolo_box to paddle.vision. test=develop
上级 4ceedec3
......@@ -33,6 +33,7 @@ import six
import numpy as np
from functools import reduce
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
from paddle.utils import deprecated
__all__ = [
'prior_box',
......@@ -998,6 +999,7 @@ def polygon_box_transform(input, name=None):
return output
@deprecated(since="2.0.0", update_to="paddle.vision.ops.yolo_loss")
@templatedoc(op_type="yolov3_loss")
def yolov3_loss(x,
gt_box,
......@@ -1127,6 +1129,7 @@ def yolov3_loss(x,
return loss
@deprecated(since="2.0.0", update_to="paddle.vision.ops.yolo_box")
@templatedoc(op_type="yolo_box")
def yolo_box(x,
img_size,
......
......@@ -18,6 +18,7 @@ import unittest
import numpy as np
from op_test import OpTest
import paddle
from paddle.fluid import core
......@@ -151,5 +152,44 @@ class TestYoloBoxOpScaleXY(TestYoloBoxOp):
self.scale_x_y = 1.2
class TestYoloBoxDygraph(unittest.TestCase):
def test_dygraph(self):
paddle.disable_static()
x = np.random.random([2, 14, 8, 8]).astype('float32')
img_size = np.ones((2, 2)).astype('int32')
x = paddle.to_tensor(x)
img_size = paddle.to_tensor(img_size)
boxes, scores = paddle.vision.ops.yolo_box(
x,
img_size=img_size,
anchors=[10, 13, 16, 30],
class_num=2,
conf_thresh=0.01,
downsample_ratio=8,
clip_bbox=True,
scale_x_y=1.)
assert boxes is not None and scores is not None
paddle.enable_static()
class TestYoloBoxStatic(unittest.TestCase):
def test_static(self):
x = paddle.static.data('x', [2, 14, 8, 8], 'float32')
img_size = paddle.static.data('img_size', [2, 2], 'int32')
boxes, scores = paddle.vision.ops.yolo_box(
x,
img_size=img_size,
anchors=[10, 13, 16, 30],
class_num=2,
conf_thresh=0.01,
downsample_ratio=8,
clip_bbox=True,
scale_x_y=1.)
assert boxes is not None and scores is not None
if __name__ == "__main__":
unittest.main()
......@@ -20,6 +20,7 @@ from scipy.special import logit
from scipy.special import expit
from op_test import OpTest
import paddle
from paddle.fluid import core
......@@ -281,5 +282,66 @@ class TestYolov3LossWithScaleXY(TestYolov3LossOp):
self.scale_x_y = 1.2
class TestYolov3LossDygraph(unittest.TestCase):
def test_dygraph(self):
paddle.disable_static()
x = np.random.random([2, 14, 8, 8]).astype('float32')
gt_box = np.random.random([2, 10, 4]).astype('float32')
gt_label = np.random.random([2, 10]).astype('int32')
x = paddle.to_tensor(x)
gt_box = paddle.to_tensor(gt_box)
gt_label = paddle.to_tensor(gt_label)
loss = paddle.vision.ops.yolo_loss(
x,
gt_box=gt_box,
gt_label=gt_label,
anchors=[10, 13, 16, 30],
anchor_mask=[0, 1],
class_num=2,
ignore_thresh=0.7,
downsample_ratio=8,
use_label_smooth=True,
scale_x_y=1.)
assert loss is not None
paddle.enable_static()
class TestYolov3LossStatic(unittest.TestCase):
def test_static(self):
x = paddle.static.data('x', [2, 14, 8, 8], 'float32')
gt_box = paddle.static.data('gt_box', [2, 10, 4], 'float32')
gt_label = paddle.static.data('gt_label', [2, 10], 'int32')
gt_score = paddle.static.data('gt_score', [2, 10], 'float32')
loss = paddle.vision.ops.yolo_loss(
x,
gt_box=gt_box,
gt_label=gt_label,
anchors=[10, 13, 16, 30],
anchor_mask=[0, 1],
class_num=2,
ignore_thresh=0.7,
downsample_ratio=8,
gt_score=gt_score,
use_label_smooth=True,
scale_x_y=1.)
assert loss is not None
loss = paddle.vision.ops.yolo_loss(
x,
gt_box=gt_box,
gt_label=gt_label,
anchors=[10, 13, 16, 30],
anchor_mask=[0, 1],
class_num=2,
ignore_thresh=0.7,
downsample_ratio=8,
use_label_smooth=True,
scale_x_y=1.)
assert loss is not None
if __name__ == "__main__":
unittest.main()
......@@ -24,6 +24,8 @@ from .datasets import *
from . import image
from .image import *
from . import ops
__all__ = models.__all__ \
+ transforms.__all__ \
+ datasets.__all__ \
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
from ..fluid import core, layers
from paddle.common_ops_import import *
__all__ = ['yolo_loss', 'yolo_box']
def yolo_loss(x,
gt_box,
gt_label,
anchors,
anchor_mask,
class_num,
ignore_thresh,
downsample_ratio,
gt_score=None,
use_label_smooth=True,
name=None,
scale_x_y=1.):
"""
This operator generates YOLOv3 loss based on given predict result and ground
truth boxes.
The output of previous network is in shape [N, C, H, W], while H and W
should be the same, H and W specify the grid size, each grid point predict
given number bounding boxes, this given number, which following will be represented as S,
is specified by the number of anchor clusters in each scale. In the second dimension(the channel
dimension), C should be equal to S * (class_num + 5), class_num is the object
category number of source dataset(such as 80 in coco dataset), so in the
second(channel) dimension, apart from 4 box location coordinates x, y, w, h,
also includes confidence score of the box and class one-hot key of each anchor box.
Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box predictions
should be as follows:
$$
b_x = \\sigma(t_x) + c_x
$$
$$
b_y = \\sigma(t_y) + c_y
$$
$$
b_w = p_w e^{t_w}
$$
$$
b_h = p_h e^{t_h}
$$
In the equation above, :math:`c_x, c_y` is the left top corner of current grid
and :math:`p_w, p_h` is specified by anchors.
As for confidence score, it is the logistic regression value of IoU between
anchor boxes and ground truth boxes, the score of the anchor box which has
the max IoU should be 1, and if the anchor box has IoU bigger than ignore
thresh, the confidence score loss of this anchor box will be ignored.
Therefore, the YOLOv3 loss consists of three major parts: box location loss,
objectness loss and classification loss. The L1 loss is used for
box coordinates (w, h), sigmoid cross entropy loss is used for box
coordinates (x, y), objectness loss and classification loss.
Each groud truth box finds a best matching anchor box in all anchors.
Prediction of this anchor box will incur all three parts of losses, and
prediction of anchor boxes with no GT box matched will only incur objectness
loss.
In order to trade off box coordinate losses between big boxes and small
boxes, box coordinate losses will be mutiplied by scale weight, which is
calculated as follows.
$$
weight_{box} = 2.0 - t_w * t_h
$$
Final loss will be represented as follows.
$$
loss = (loss_{xy} + loss_{wh}) * weight_{box}
+ loss_{conf} + loss_{class}
$$
While :attr:`use_label_smooth` is set to be :attr:`True`, the classification
target will be smoothed when calculating classification loss, target of
positive samples will be smoothed to :math:`1.0 - 1.0 / class\_num` and target of
negetive samples will be smoothed to :math:`1.0 / class\_num`.
While :attr:`gt_score` is given, which means the mixup score of ground truth
boxes, all losses incured by a ground truth box will be multiplied by its
mixup score.
Args:
x (Tensor): The input tensor of YOLOv3 loss operator, This is a 4-D
tensor with shape of [N, C, H, W]. H and W should be same,
and the second dimension(C) stores box locations, confidence
score and classification one-hot keys of each anchor box.
The data type is float32 or float64.
gt_box (Tensor): groud truth boxes, should be in shape of [N, B, 4],
in the third dimension, x, y, w, h should be stored.
x,y is the center coordinate of boxes, w, h are the
width and height, x, y, w, h should be divided by
input image height to scale to [0, 1].
N is the batch number and B is the max box number in
an image.The data type is float32 or float64.
gt_label (Tensor): class id of ground truth boxes, should be in shape
of [N, B].The data type is int32.
anchors (list|tuple): The anchor width and height, it will be parsed
pair by pair.
anchor_mask (list|tuple): The mask index of anchors used in current
YOLOv3 loss calculation.
class_num (int): The number of classes.
ignore_thresh (float): The ignore threshold to ignore confidence loss.
downsample_ratio (int): The downsample ratio from network input to YOLOv3
loss input, so 32, 16, 8 should be set for the
first, second, and thrid YOLOv3 loss operators.
name (string): The default value is None. Normally there is no need
for user to set this property. For more information,
please refer to :ref:`api_guide_Name`
gt_score (Tensor): mixup score of ground truth boxes, should be in shape
of [N, B]. Default None.
use_label_smooth (bool): Whether to use label smooth. Default True.
scale_x_y (float): Scale the center point of decoded bounding box.
Default 1.0
Returns:
Tensor: A 1-D tensor with shape [N], the value of yolov3 loss
Raises:
TypeError: Input x of yolov3_loss must be Tensor
TypeError: Input gtbox of yolov3_loss must be Tensor
TypeError: Input gtlabel of yolov3_loss must be Tensor
TypeError: Input gtscore of yolov3_loss must be None or Tensor
TypeError: Attr anchors of yolov3_loss must be list or tuple
TypeError: Attr class_num of yolov3_loss must be an integer
TypeError: Attr ignore_thresh of yolov3_loss must be a float number
TypeError: Attr use_label_smooth of yolov3_loss must be a bool value
Examples:
.. code-block:: python
import paddle
import numpy as np
x = np.random.random([2, 14, 8, 8]).astype('float32')
gt_box = np.random.random([2, 10, 4]).astype('float32')
gt_label = np.random.random([2, 10]).astype('int32')
x = paddle.to_tensor(x)
gt_box = paddle.to_tensor(gt_box)
gt_label = paddle.to_tensor(gt_label)
loss = paddle.vision.ops.yolo_loss(x,
gt_box=gt_box,
gt_label=gt_label,
anchors=[10, 13, 16, 30],
anchor_mask=[0, 1],
class_num=2,
ignore_thresh=0.7,
downsample_ratio=8,
use_label_smooth=True,
scale_x_y=1.)
"""
if in_dygraph_mode() and gt_score is None:
loss = core.ops.yolov3_loss(
x, gt_box, gt_label, 'anchors', anchors, 'anchor_mask', anchor_mask,
'class_num', class_num, 'ignore_thresh', ignore_thresh,
'downsample_ratio', downsample_ratio, 'use_label_smooth',
use_label_smooth, 'scale_x_y', scale_x_y)
return loss
helper = LayerHelper('yolov3_loss', **locals())
check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'yolo_loss')
check_variable_and_dtype(gt_box, 'gt_box', ['float32', 'float64'],
'yolo_loss')
check_variable_and_dtype(gt_label, 'gt_label', 'int32', 'yolo_loss')
check_type(anchors, 'anchors', (list, tuple), 'yolo_loss')
check_type(anchor_mask, 'anchor_mask', (list, tuple), 'yolo_loss')
check_type(class_num, 'class_num', int, 'yolo_loss')
check_type(ignore_thresh, 'ignore_thresh', float, 'yolo_loss')
check_type(use_label_smooth, 'use_label_smooth', bool, 'yolo_loss')
loss = helper.create_variable_for_type_inference(dtype=x.dtype)
objectness_mask = helper.create_variable_for_type_inference(dtype='int32')
gt_match_mask = helper.create_variable_for_type_inference(dtype='int32')
inputs = {
"X": x,
"GTBox": gt_box,
"GTLabel": gt_label,
}
if gt_score is not None:
inputs["GTScore"] = gt_score
attrs = {
"anchors": anchors,
"anchor_mask": anchor_mask,
"class_num": class_num,
"ignore_thresh": ignore_thresh,
"downsample_ratio": downsample_ratio,
"use_label_smooth": use_label_smooth,
"scale_x_y": scale_x_y,
}
helper.append_op(
type='yolov3_loss',
inputs=inputs,
outputs={
'Loss': loss,
'ObjectnessMask': objectness_mask,
'GTMatchMask': gt_match_mask
},
attrs=attrs)
return loss
def yolo_box(x,
img_size,
anchors,
class_num,
conf_thresh,
downsample_ratio,
clip_bbox=True,
name=None,
scale_x_y=1.):
"""
This operator generates YOLO detection boxes from output of YOLOv3 network.
The output of previous network is in shape [N, C, H, W], while H and W
should be the same, H and W specify the grid size, each grid point predict
given number boxes, this given number, which following will be represented as S,
is specified by the number of anchors. In the second dimension(the channel
dimension), C should be equal to S * (5 + class_num), class_num is the object
category number of source dataset(such as 80 in coco dataset), so the
second(channel) dimension, apart from 4 box location coordinates x, y, w, h,
also includes confidence score of the box and class one-hot key of each anchor
box.
Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box
predictions should be as follows:
$$
b_x = \\sigma(t_x) + c_x
$$
$$
b_y = \\sigma(t_y) + c_y
$$
$$
b_w = p_w e^{t_w}
$$
$$
b_h = p_h e^{t_h}
$$
in the equation above, :math:`c_x, c_y` is the left top corner of current grid
and :math:`p_w, p_h` is specified by anchors.
The logistic regression value of the 5th channel of each anchor prediction boxes
represents the confidence score of each prediction box, and the logistic
regression value of the last :attr:`class_num` channels of each anchor prediction
boxes represents the classifcation scores. Boxes with confidence scores less than
:attr:`conf_thresh` should be ignored, and box final scores is the product of
confidence scores and classification scores.
$$
score_{pred} = score_{conf} * score_{class}
$$
Args:
x (Tensor): The input tensor of YoloBox operator is a 4-D tensor with
shape of [N, C, H, W]. The second dimension(C) stores box
locations, confidence score and classification one-hot keys
of each anchor box. Generally, X should be the output of
YOLOv3 network. The data type is float32 or float64.
img_size (Tensor): The image size tensor of YoloBox operator, This is a
2-D tensor with shape of [N, 2]. This tensor holds
height and width of each input image used for resizing
output box in input image scale. The data type is int32.
anchors (list|tuple): The anchor width and height, it will be parsed pair
by pair.
class_num (int): The number of classes.
conf_thresh (float): The confidence scores threshold of detection boxes.
Boxes with confidence scores under threshold should
be ignored.
downsample_ratio (int): The downsample ratio from network input to
:attr:`yolo_box` operator input, so 32, 16, 8
should be set for the first, second, and thrid
:attr:`yolo_box` layer.
clip_bbox (bool): Whether clip output bonding box in :attr:`img_size`
boundary. Default true."
"
scale_x_y (float): Scale the center point of decoded bounding box.
Default 1.0
name (string): The default value is None. Normally there is no need
for user to set this property. For more information,
please refer to :ref:`api_guide_Name`
Returns:
Tensor: A 3-D tensor with shape [N, M, 4], the coordinates of boxes,
and a 3-D tensor with shape [N, M, :attr:`class_num`], the classification
scores of boxes.
Raises:
TypeError: Input x of yolov_box must be Tensor
TypeError: Attr anchors of yolo box must be list or tuple
TypeError: Attr class_num of yolo box must be an integer
TypeError: Attr conf_thresh of yolo box must be a float number
Examples:
.. code-block:: python
import paddle
import numpy as np
x = np.random.random([2, 14, 8, 8]).astype('float32')
img_size = np.ones((2, 2)).astype('int32')
x = paddle.to_tensor(x)
img_size = paddle.to_tensor(img_size)
boxes, scores = paddle.vision.ops.yolo_box(x,
img_size=img_size,
anchors=[10, 13, 16, 30],
class_num=2,
conf_thresh=0.01,
downsample_ratio=8,
clip_bbox=True,
scale_x_y=1.)
"""
if in_dygraph_mode():
boxes, scores = core.ops.yolo_box(
x, img_size, 'anchors', anchors, 'class_num', class_num,
'conf_thresh', conf_thresh, 'downsample_ratio', downsample_ratio,
'clip_bbox', clip_bbox, 'scale_x_y', scale_x_y)
return boxes, scores
helper = LayerHelper('yolo_box', **locals())
check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'yolo_box')
check_variable_and_dtype(img_size, 'img_size', 'int32', 'yolo_box')
check_type(anchors, 'anchors', (list, tuple), 'yolo_box')
check_type(conf_thresh, 'conf_thresh', float, 'yolo_box')
boxes = helper.create_variable_for_type_inference(dtype=x.dtype)
scores = helper.create_variable_for_type_inference(dtype=x.dtype)
attrs = {
"anchors": anchors,
"class_num": class_num,
"conf_thresh": conf_thresh,
"downsample_ratio": downsample_ratio,
"clip_bbox": clip_bbox,
"scale_x_y": scale_x_y,
}
helper.append_op(
type='yolo_box',
inputs={
"X": x,
"ImgSize": img_size,
},
outputs={
'Boxes': boxes,
'Scores': scores,
},
attrs=attrs)
return boxes, scores
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册