detection.py 42.4 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18
from layer_function_generator import generate_layer_fn
X
Xin Pan 已提交
19
from layer_function_generator import autodoc, templatedoc
20
from ..layer_helper import LayerHelper
21 22
import tensor
import nn
C
chengduoZH 已提交
23
import math
24

C
chengduoZH 已提交
25
__all__ = [
26
    'prior_box',
C
chengduoZH 已提交
27
    'multi_box_head',
28 29 30 31
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
32
    'detection_map',
33
    'anchor_generator',
C
chengduoZH 已提交
34
]
35

36 37 38
__auto__ = [
    'iou_similarity',
    'box_coder',
C
chengduoZH 已提交
39
]
40

41 42 43 44 45
__all__ += __auto__

for _OP in set(__auto__):
    globals()[_OP] = generate_layer_fn(_OP)

46

Y
Yuan Gao 已提交
47 48
def detection_output(loc,
                     scores,
49 50 51 52 53 54 55 56 57
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
                     nms_eta=1.0):
    """
58
    **Detection Output Layer for Single Shot Multibox Detector (SSD).**
59

60 61
    This operation is to get the detection results by performing following
    two steps:
C
caoying03 已提交
62

63 64 65 66 67 68
    1. Decode input bounding box predictions according to the prior boxes.
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
69 70 71 72 73 74

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
75 76 77 78
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
            predicted confidence predictions. N is the batch size, C is the
            class number, M is number of bounding boxes. For each category
            there are total M scores which corresponding M bounding boxes.
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
            of variance.
        background_label(float): The index of background label,
            the background label will be ignored. If set to -1, then all
            categories will be considered.
        nms_threshold(float): The threshold to be used in NMS.
        nms_top_k(int): Maximum number of detections to be kept according
            to the confidences aftern the filtering detections based on
            score_threshold.
        keep_top_k(int): Number of total bboxes to be kept per image after
            NMS step. -1 means keeping all bboxes after NMS step.
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
        nms_eta(float): The parameter for adaptive NMS.

    Returns:
101 102 103
        Variable: 
        
            The detection outputs is a LoDTensor with shape [No, 6].
104 105 106 107 108 109 110 111
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
            `No` is the total number of detections in this mini-batch. For each
            instance, the offsets in first dimension are called LoD, the offset
            number is N + 1, N is the batch size. The i-th image has
            `LoD[i + 1] - LoD[i]` detected results, if it is 0, the i-th image
            has no detected results. If all images have not detected results,
            all the elements in LoD are 0, and output tensor only contains one
            value, which is -1.
112 113 114 115

    Examples:
        .. code-block:: python

116
            pb = layers.data(name='prior_box', shape=[10, 4],
117
                         append_batch_size=False, dtype='float32')
118
            pbv = layers.data(name='prior_box_var', shape=[10, 4],
119
                          append_batch_size=False, dtype='float32')
120
            loc = layers.data(name='target_box', shape=[2, 21, 4],
121
                          append_batch_size=False, dtype='float32')
122
            scores = layers.data(name='scores', shape=[2, 21, 10],
123
                          append_batch_size=False, dtype='float32')
124
            nmsed_outs = fluid.layers.detection_output(scores=scores,
125 126 127 128 129
                                       loc=loc,
                                       prior_box=pb,
                                       prior_box_var=pbv)
    """
    helper = LayerHelper("detection_output", **locals())
130 131 132 133 134
    decoded_box = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=loc,
        code_type='decode_center_size')
135
    old_shape = scores.shape
C
caoying03 已提交
136
    scores = nn.reshape(x=scores, shape=(-1, old_shape[-1]))
137
    scores = nn.softmax(input=scores)
C
caoying03 已提交
138
    scores = nn.reshape(x=scores, shape=old_shape)
Y
Yuan Gao 已提交
139
    scores = nn.transpose(scores, perm=[0, 2, 1])
140
    scores.stop_gradient = True
141
    nmsed_outs = helper.create_tmp_variable(dtype=decoded_box.dtype)
142 143 144 145 146 147 148 149 150 151 152 153 154
    helper.append_op(
        type="multiclass_nms",
        inputs={'Scores': scores,
                'BBoxes': decoded_box},
        outputs={'Out': nmsed_outs},
        attrs={
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0
        })
155
    nmsed_outs.stop_gradient = True
156
    return nmsed_outs
C
chengduoZH 已提交
157 158


X
Xin Pan 已提交
159
@templatedoc()
160 161
def detection_map(detect_res,
                  label,
162 163
                  class_num,
                  background_label=0,
164 165
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
166 167 168 169
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
X
Xin Pan 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
        input_states: If not None, It contains 3 elements:
            1. pos_count ${pos_count_comment}.
            2. true_pos ${true_pos_comment}.
            3. false_pos ${false_pos_comment}.
        out_states: If not None, it contains 3 elements.
            1. accum_pos_count ${accum_pos_count_comment}.
            2. accum_true_pos ${accum_true_pos_comment}.
            3. accum_false_pos ${accum_false_pos_comment}.
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')
            label = fluid.layers.data(
                name='label',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')

            map_out = fluid.layers.detection_map(detect_res, label, 21)
    """
211 212
    helper = LayerHelper("detection_map", **locals())

213 214 215 216 217 218 219 220 221 222 223 224 225 226
    def __create_var(type):
        return helper.create_tmp_variable(dtype=type)

    map_out = __create_var('float32')
    accum_pos_count_out = out_states[0] if out_states else __create_var('int32')
    accum_true_pos_out = out_states[1] if out_states else __create_var(
        'float32')
    accum_false_pos_out = out_states[2] if out_states else __create_var(
        'float32')

    pos_count = input_states[0] if input_states else None
    true_pos = input_states[1] if input_states else None
    false_pos = input_states[2] if input_states else None

227 228 229 230 231
    helper.append_op(
        type="detection_map",
        inputs={
            'Label': label,
            'DetectRes': detect_res,
232
            'HasState': has_state,
233 234 235 236 237 238 239 240 241 242 243 244 245
            'PosCount': pos_count,
            'TruePos': true_pos,
            'FalsePos': false_pos
        },
        outputs={
            'MAP': map_out,
            'AccumPosCount': accum_pos_count_out,
            'AccumTruePos': accum_true_pos_out,
            'AccumFalsePos': accum_false_pos_out
        },
        attrs={
            'overlap_threshold': overlap_threshold,
            'evaluate_difficult': evaluate_difficult,
246 247
            'ap_type': ap_version,
            'class_num': class_num,
248
        })
249
    return map_out
250 251


252 253 254 255
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
256
    """
Y
yuyang18 已提交
257 258
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
259
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
260 261 262 263 264 265 266 267
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
    matrix.

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
268 269 270
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
271

Y
yuyang18 已提交
272
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
273 274 275
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
276 277 278
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

279 280 281 282 283
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
            [K, M]. It is pair-wise distance matrix between the entities
            represented by each row and each column. For example, assumed one
            entity is A with shape [K], another entity is B with shape [M]. The
Y
yuyang18 已提交
284 285 286 287 288 289
            dist_matrix[i][j] is the distance between A[i] and B[j]. The bigger
            the distance is, the better matching the pairs are.

            NOTE: This tensor can contain LoD information to represent a batch
            of inputs. One instance of this batch can contain different numbers
            of entities.
290
        match_type(string|None): The type of matching method, should be
Y
yuyang18 已提交
291
           'bipartite' or 'per_prediction'. [default 'bipartite'].
292 293
        dist_threshold(float|None): If `match_type` is 'per_prediction',
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
294
            on the maximum distance, 0.5 by default.
295
    Returns:
Y
yuyang18 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
        tuple: a tuple with two elements is returned. The first is
        matched_indices, the second is matched_distance.

        The matched_indices is a 2-D Tensor with shape [N, M] in int type.
        N is the batch size. If match_indices[i][j] is -1, it
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

        The matched_distance is a 2-D Tensor with shape [N, M] in float type
        . N is batch size. If match_indices[i][j] is -1,
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

        >>> x = fluid.layers.data(name='x', shape=[4], dtype='float32')
        >>> y = fluid.layers.data(name='y', shape=[4], dtype='float32')
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
319 320 321 322 323 324 325
    """
    helper = LayerHelper('bipartite_match', **locals())
    match_indices = helper.create_tmp_variable(dtype='int32')
    match_distance = helper.create_tmp_variable(dtype=dist_matrix.dtype)
    helper.append_op(
        type='bipartite_match',
        inputs={'DistMat': dist_matrix},
326 327 328 329
        attrs={
            'match_type': match_type,
            'dist_threshold': dist_threshold,
        },
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
        outputs={
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_distance
        })
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
347

348 349 350 351 352
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
353

354
    1. Assigning all outpts based on `match_indices`:
C
chengduoZH 已提交
355

356 357 358
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
359

360 361
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
362

363
        Otherwise,
C
chengduoZH 已提交
364

365 366
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
367

368
    2. Assigning out_weight based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
369

370 371
    Assumed that the row offset for each instance in `neg_indices` is called neg_lod,
    for i-th instance and each `id` of neg_indices in this instance:
372 373
    
    .. code-block:: text
C
chengduoZH 已提交
374

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
        out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
        out_weight[i][id] = 1.0

    Args:
       inputs (Variable): This input is a 3D LoDTensor with shape [M, P, K].
       matched_indices (Variable): Tensor<int>), The input matched indices
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
       negative_indices (Variable): The input negative example indices are
           an optional input with shape [Neg, 1] and int32 type, where Neg is
           the total number of negative example indices.
       mismatch_value (float32): Fill this value to the mismatched location.

    Returns:
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
        tuple: 
        
               A tuple(out, out_weight) is returned. out is a 3D Tensor with 
               shape [N, P, K], N and P is the same as they are in 
               `neg_indices`, K is the same as it in input of X. If 
               `match_indices[i][j]`. out_weight is the weight for output with 
               the shape of [N, P, 1].

    Examples:

        .. code-block:: python

            matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
            gt = layers.data(
                        name='gt', shape=[1, 1], dtype='int32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                            gt, matched_indices, mismatch_value=0)
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
    """
    helper = LayerHelper('target_assign', **locals())
    out = helper.create_tmp_variable(dtype=input.dtype)
    out_weight = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type='target_assign',
        inputs={
            'X': input,
            'MatchIndices': matched_indices,
            'NegIndices': negative_indices
        },
        outputs={'Out': out,
                 'OutWeight': out_weight},
        attrs={'mismatch_value': mismatch_value})
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
438
             normalize=True,
439 440
             sample_size=None):
    """
Y
yuyang18 已提交
441
    **Multi-box loss layer for object detection algorithm of SSD**
442 443 444 445 446 447 448

    This layer is to compute dection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth boudding
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
449
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
450

451
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
452

453
      1.2 Compute matched boundding box by bipartite matching algorithm.
Y
yuyang18 已提交
454

455
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
456

457
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
458

459
      2.2. Compute confidence loss.
Y
yuyang18 已提交
460

461 462
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
463

464
    4. Assign classification and regression targets
Y
yuyang18 已提交
465

466
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
467

468
      4.2. Assign regression targets.
Y
yuyang18 已提交
469

470
      4.3. Assign classification targets.
Y
yuyang18 已提交
471

472
    5. Compute the overall objective loss.
Y
yuyang18 已提交
473

474
      5.1 Compute confidence loss.
Y
yuyang18 已提交
475

476
      5.1 Compute localization loss.
Y
yuyang18 已提交
477

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
            the layout is [xmin, ymin, xmax, ymax].
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
            `location`, C is the class number.
        gt_box (Variable): The ground-truth boudding boxes (bboxes) are a 2D
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
            with shape [Ng, 1].
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
            with shape [Np, 4].
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
            `overlap_threshold` to determine the extra matching bboxes when
             finding matched boxes. 0.5 by default.
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
501
            boxes, used only when mining_type is 'max_negative', 3.0 by defalut.
502
        neg_overlap (float): The negative overlap upper bound for the unmatched
503
            predictions. Use only when mining_type is 'max_negative',
504 505 506 507
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
508
            be 'bipartite' or 'per_prediction', 'per_prediction' by defalut.
509 510
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
511
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
512
            of output locations, True by default.
513 514
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
515 516

    Returns:
Y
yuyang18 已提交
517 518
        The weighted sum of the localization loss and confidence loss, with \
        shape [N * Np, 1], N and Np are the same as they are in `location`.
519 520

    Raises:
Y
yuyang18 已提交
521 522
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541

    Examples:
        >>> pb = fluid.layers.data(
        >>>                   name='prior_box',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> pbv = fluid.layers.data(
        >>>                   name='prior_box_var',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> loc = fluid.layers.data(name='target_box', shape=[10, 4], dtype='float32')
        >>> scores = fluid.layers.data(name='scores', shape=[10, 21], dtype='float32')
        >>> gt_box = fluid.layers.data(
        >>>         name='gt_box', shape=[4], lod_level=1, dtype='float32')
        >>> gt_label = fluid.layers.data(
        >>>         name='gt_label', shape=[1], lod_level=1, dtype='float32')
        >>> loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
542 543 544 545 546 547 548 549 550
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape

    def __reshape_to_2d(var):
C
caoying03 已提交
551
        return nn.reshape(x=var, shape=[-1, var.shape[-1]])
552 553 554 555 556

    # 1. Find matched boundding box by prior box.
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
    #   1.2 Compute matched boundding box by bipartite matching algorithm.
557 558
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
559 560 561

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
C
caoying03 已提交
562
    gt_label = nn.reshape(x=gt_label, shape=gt_label.shape + (1, ))
563
    gt_label.stop_gradient = True
564 565 566 567 568 569 570
    target_label, _ = target_assign(
        gt_label, matched_indices, mismatch_value=background_label)
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
571
    target_label.stop_gradient = True
572 573 574
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)

    # 3. Mining hard examples
C
caoying03 已提交
575
    conf_loss = nn.reshape(x=conf_loss, shape=(num, num_prior))
576
    conf_loss.stop_gradient = True
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
    neg_indices = helper.create_tmp_variable(dtype='int32')
    dtype = matched_indices.dtype
    updated_matched_indices = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='mine_hard_examples',
        inputs={
            'ClsLoss': conf_loss,
            'LocLoss': None,
            'MatchIndices': matched_indices,
            'MatchDist': matched_dist,
        },
        outputs={
            'NegIndices': neg_indices,
            'UpdatedMatchIndices': updated_matched_indices
        },
        attrs={
            'neg_pos_ratio': neg_pos_ratio,
            'neg_dist_threshold': neg_pos_ratio,
            'mining_type': mining_type,
            'sample_size': sample_size,
        })

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
    encoded_bbox = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=gt_box,
        code_type='encode_center_size')
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
620

621 622 623 624
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

625 626 627 628
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

629 630 631 632 633 634 635 636
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

637 638 639 640
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

641 642
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
643
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
C
caoying03 已提交
644
    loss = nn.reshape(x=loss, shape=[-1, num_prior])
645 646 647 648 649
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

650
    return loss
C
chengduoZH 已提交
651 652


653 654 655 656
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
657
              aspect_ratios=[1.],
658 659 660 661 662 663 664
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
              name=None):
    """
Q
update  
qiaolongfei 已提交
665
    **Prior Box Operator**
666 667 668 669 670 671 672 673 674 675 676

    Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

    Args:
       input(Variable): The Input Variables, the format is NCHW.
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
677
       min_sizes(list|tuple|float value): min sizes of generated prior boxes.
678 679
       max_sizes(list|tuple|None): max sizes of generated prior boxes.
            Default: None.
680 681
       aspect_ratios(list|tuple|float value): the aspect ratios of generated
            prior boxes. Default: [1.].
682 683 684 685
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
686
       step(list|turple): Prior boxes step across width and height, If
687
            step[0] == 0.0/step[1] == 0.0, the prior boxes step across
688 689
            height/weight of the input will be automatically calculated.
            Default: [0., 0.]
690 691 692 693
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.

    Returns:
Q
update  
qiaolongfei 已提交
694 695 696 697 698 699 700 701 702 703 704 705 706
        tuple: A tuple with two Variable (boxes, variances)

        boxes: the output prior boxes of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input,
        num_priors is the total
        box count of each position of input.

        variances: the expanded variances of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_priors is the total
        box count of each position of input
707 708 709 710


    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
711 712 713 714 715 716 717

            box, var = fluid.layers.prior_box(
                input=conv1,
                image=images,
                min_sizes=[100.],
                flip=True,
                clip=True)
718 719 720 721
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()

722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

737 738 739 740 741 742 743 744 745 746 747
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
        'offset': offset
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
748 749
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
        attrs['max_sizes'] = max_sizes

    box = helper.create_tmp_variable(dtype)
    var = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


C
chengduoZH 已提交
766
def multi_box_head(inputs,
C
chengduoZH 已提交
767 768
                   image,
                   base_size,
C
chengduoZH 已提交
769
                   num_classes,
C
chengduoZH 已提交
770
                   aspect_ratios,
771 772
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
773 774
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
775 776 777 778
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
779 780
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
781
                   clip=False,
C
chengduoZH 已提交
782
                   kernel_size=1,
C
chengduoZH 已提交
783
                   pad=0,
C
chengduoZH 已提交
784
                   stride=1,
C
chengduoZH 已提交
785
                   name=None):
C
chengduoZH 已提交
786
    """
C
chengduoZH 已提交
787 788
    Generate prior boxes for SSD(Single Shot MultiBox Detector)
    algorithm. The details of this algorithm, please refer the
Q
update  
qiaolongfei 已提交
789
    section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
790
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
791 792

    Args:
793
       inputs(list|tuple): The list of input Variables, the format
C
chengduoZH 已提交
794
            of all Variables is NCHW.
C
chengduoZH 已提交
795 796
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
C
chengduoZH 已提交
797 798
       base_size(int): the base_size is used to get min_size
            and max_size according to min_ratio and max_ratio.
C
chengduoZH 已提交
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
       num_classes(int): The number of classes.
       aspect_ratios(list|tuple): the aspect ratios of generated prior
            boxes. The length of input and aspect_ratios must be equal.
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
821
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
822 823 824 825 826 827
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
       name(str): Name of the prior box layer. Default: None.
C
chengduoZH 已提交
828 829

    Returns:
Q
update  
qiaolongfei 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

        mbox_loc: The predicted boxes' location of the inputs. The layout
        is [N, H*W*Priors, 4]. where Priors is the number of predicted
        boxes each position of each input.

        mbox_conf: The predicted boxes' confidence of the inputs. The layout
        is [N, H*W*Priors, C]. where Priors is the number of predicted boxes
        each position of each input and C is the number of Classes.

        boxes: the output prior boxes of PriorBox. The layout is [num_priors, 4].
        num_priors is the total box count of each position of inputs.

        variances: the expanded variances of PriorBox. The layout is
        [num_priors, 4]. num_priors is the total box count of each position of inputs
C
chengduoZH 已提交
845

C
chengduoZH 已提交
846 847 848

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
849 850

          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
C
chengduoZH 已提交
851 852 853 854 855 856 857 858 859 860
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
861 862
    """

C
chengduoZH 已提交
863 864 865 866 867 868 869
    def _reshape_with_axis_(input, axis=1):
        if not (axis > 0 and axis < len(input.shape)):
            raise ValueError("The axis should be smaller than "
                             "the arity of input and bigger than 0.")
        new_shape = [
            -1, reduce(lambda x, y: x * y, input.shape[axis:len(input.shape)])
        ]
C
caoying03 已提交
870
        out = nn.reshape(x=input, shape=new_shape)
C
chengduoZH 已提交
871
        return out
872

873 874
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
875

C
chengduoZH 已提交
876 877 878 879
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

880 881
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
882

C
chengduoZH 已提交
883 884 885 886 887
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
888
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
889 890 891 892 893 894 895 896 897
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
        for ratio in xrange(min_ratio, max_ratio + 1, step):
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
    if step_h:
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
    if step_w:
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
    if steps:
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
921 922
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
923 924
    box_results = []
    var_results = []
C
chengduoZH 已提交
925 926
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
927 928
        max_size = max_sizes[i]

929
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
930
            min_size = [min_size]
C
chengduoZH 已提交
931 932
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
933 934 935 936

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
937
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
938
                aspect_ratio = [aspect_ratio]
939
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
940

941 942
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
                             variance, flip, clip, step, offset)
C
chengduoZH 已提交
943 944 945 946 947

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
948

949
        # get loc
Y
Yuan Gao 已提交
950
        num_loc_output = num_boxes * 4
951
        mbox_loc = nn.conv2d(
C
chengduoZH 已提交
952
            input=input,
953 954 955 956 957
            num_filters=num_loc_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)

958
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
Y
Yuan Gao 已提交
959 960 961 962
        new_shape = [
            mbox_loc.shape[0],
            mbox_loc.shape[1] * mbox_loc.shape[2] * mbox_loc.shape[3] / 4, 4
        ]
C
caoying03 已提交
963
        mbox_loc_flatten = nn.reshape(mbox_loc, shape=new_shape)
Y
Yuan Gao 已提交
964
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
965

966
        # get conf
C
chengduoZH 已提交
967
        num_conf_output = num_boxes * num_classes
968
        conf_loc = nn.conv2d(
C
chengduoZH 已提交
969
            input=input,
970 971 972 973
            num_filters=num_conf_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)
974
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
Y
Yuan Gao 已提交
975 976 977 978
        new_shape = [
            conf_loc.shape[0], conf_loc.shape[1] * conf_loc.shape[2] *
            conf_loc.shape[3] / num_classes, num_classes
        ]
C
caoying03 已提交
979
        conf_loc_flatten = nn.reshape(conf_loc, shape=new_shape)
Y
Yuan Gao 已提交
980
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
981

C
chengduoZH 已提交
982 983 984
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
985 986
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
987 988 989 990 991 992 993 994 995
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
996 997
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
C
chengduoZH 已提交
998

999 1000
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
1001
    return mbox_locs_concat, mbox_confs_concat, box, var
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
       input(Variable): The input feature map, the format is NCHW.
       anchor_sizes(list|tuple|float): The anchor sizes of generated anchors,
       given in absolute pixels e.g. [64., 128., 256., 512.].
       For instance, the anchor size of 64 means the area of this anchor equals to 64**2.
       aspect_ratios(list|tuple|float): The height / width ratios of generated
            anchors, e.g. [0.5, 1.0, 2.0].
       variance(list|tuple): The variances to be used in box regression deltas.
            Default:[0.1, 0.1, 0.2, 0.2].
       stride(list|turple): The anchors stride across width and height,
            e.g. [16.0, 16.0]
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.

    Returns:
        Anchors(Variable):  The output anchors with a layout of [H, W, num_anchors, 4].
              H is the height of input, W is the width of input,
              num_anchors is the box count of each position.
              Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
        Variances(Variable): The expanded variances of anchors
              with a layout of [H, W, num_priors, 4].
              H is the height of input, W is the width of input
              num_anchors is the box count of each position.
              Each variance is in (xcenter, ycenter, w, h) format.


    Examples:

        .. code-block:: python

            anchor, var = anchor_generator(
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

    anchor = helper.create_tmp_variable(dtype)
    var = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
        outputs={"Anchors": anchor,
                 "Variances": var},
        attrs=attrs, )
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var