detection.py 165.9 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18 19
import paddle

20 21
from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
22
from ..layer_helper import LayerHelper
Z
zhiboniu 已提交
23
from ..framework import Variable, _non_static_mode, static_only, in_dygraph_mode
24
from .. import core
25
from .loss import softmax_with_cross_entropy
26 27
from . import tensor
from . import nn
28
from . import ops
29
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype
C
chengduoZH 已提交
30
import math
31
import numpy as np
32
from functools import reduce
33 34 35 36 37 38
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
39
from paddle.utils import deprecated
40
from paddle import _C_ops, _legacy_C_ops
L
lyq 已提交
41
from ..framework import in_dygraph_mode
42

C
chengduoZH 已提交
43
__all__ = [
44 45 46 47 48 49 50 51
    'prior_box',
    'density_prior_box',
    'multi_box_head',
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
    'rpn_target_assign',
52
    'retinanet_target_assign',
53
    'sigmoid_focal_loss',
54 55 56 57
    'anchor_generator',
    'roi_perspective_transform',
    'generate_proposal_labels',
    'generate_proposals',
58
    'generate_mask_labels',
59 60 61 62
    'iou_similarity',
    'box_coder',
    'polygon_box_transform',
    'yolov3_loss',
D
dengkaipeng 已提交
63
    'yolo_box',
64
    'box_clip',
J
jerrywgz 已提交
65
    'multiclass_nms',
66
    'locality_aware_nms',
Y
Yang Zhang 已提交
67
    'matrix_nms',
68
    'retinanet_detection_output',
69
    'distribute_fpn_proposals',
70
    'box_decoder_and_assign',
71
    'collect_fpn_proposals',
C
chengduoZH 已提交
72
]
73 74


75 76 77 78 79 80 81 82 83 84 85 86 87
def retinanet_target_assign(
    bbox_pred,
    cls_logits,
    anchor_box,
    anchor_var,
    gt_boxes,
    gt_labels,
    is_crowd,
    im_info,
    num_classes=1,
    positive_overlap=0.5,
    negative_overlap=0.4,
):
88
    r"""
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    **Target Assign Layer for the detector RetinaNet.**

    This OP finds out positive and negative samples from all anchors
    for training the detector `RetinaNet <https://arxiv.org/abs/1708.02002>`_ ,
    and assigns target labels for classification along with target locations for
    regression to each sample, then takes out the part belonging to positive and
    negative samples from category prediction( :attr:`cls_logits`) and location
    prediction( :attr:`bbox_pred`) which belong to all anchors.

    The searching principles for positive and negative samples are as followed:

    1. Anchors are assigned to ground-truth boxes when it has the highest IoU
    overlap with a ground-truth box.

    2. Anchors are assigned to ground-truth boxes when it has an IoU overlap
    higher than :attr:`positive_overlap` with any ground-truth box.

    3. Anchors are assigned to background when its IoU overlap is lower than
    :attr:`negative_overlap` for all ground-truth boxes.

    4. Anchors which do not meet the above conditions do not participate in
    the training process.

    Retinanet predicts a :math:`C`-vector for classification and a 4-vector for box
T
tianshuo78520a 已提交
113
    regression for each anchor, hence the target label for each positive(or negative)
114 115 116 117 118 119 120 121 122 123 124 125 126 127
    sample is a :math:`C`-vector and the target locations for each positive sample
    is a 4-vector. As for a positive sample, if the category of its assigned
    ground-truth box is class :math:`i`, the corresponding entry in its length
    :math:`C` label vector is set to 1 and all other entries is set to 0, its box
    regression targets are computed as the offset between itself and its assigned
    ground-truth box. As for a negative sample, all entries in its length :math:`C`
    label vector are set to 0 and box regression targets are omitted because
    negative samples do not participate in the training process of location
    regression.

    After the assignment, the part belonging to positive and negative samples is
    taken out from category prediction( :attr:`cls_logits` ), and the part
    belonging to positive samples is taken out from location
    prediction( :attr:`bbox_pred` ).
128 129

    Args:
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
        bbox_pred(Variable): A 3-D Tensor with shape :math:`[N, M, 4]` represents
            the predicted locations of all anchors. :math:`N` is the batch size( the
            number of images in a mini-batch), :math:`M` is the number of all anchors
            of one image, and each anchor has 4 coordinate values. The data type of
            :attr:`bbox_pred` is float32 or float64.
        cls_logits(Variable): A 3-D Tensor with shape :math:`[N, M, C]` represents
            the predicted categories of all anchors. :math:`N` is the batch size,
            :math:`M` is the number of all anchors of one image, and :math:`C` is
            the number of categories (**Notice: excluding background**). The data type
            of :attr:`cls_logits` is float32 or float64.
        anchor_box(Variable): A 2-D Tensor with shape :math:`[M, 4]` represents
            the locations of all anchors. :math:`M` is the number of all anchors of
            one image, each anchor is represented as :math:`[xmin, ymin, xmax, ymax]`,
            :math:`[xmin, ymin]` is the left top coordinate of the anchor box,
            :math:`[xmax, ymax]` is the right bottom coordinate of the anchor box.
            The data type of :attr:`anchor_box` is float32 or float64. Please refer
146
            to the OP :ref:`api_fluid_layers_anchor_generator`
147
            for the generation of :attr:`anchor_box`.
148
        anchor_var(Variable): A 2-D Tensor with shape :math:`[M,4]` represents the expanded
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
            factors of anchor locations used in loss function. :math:`M` is number of
            all anchors of one image, each anchor possesses a 4-vector expanded factor.
            The data type of :attr:`anchor_var` is float32 or float64. Please refer
            to the OP :ref:`api_fluid_layers_anchor_generator`
            for the generation of :attr:`anchor_var`.
        gt_boxes(Variable): A 1-level 2-D LoDTensor with shape :math:`[G, 4]` represents
            locations of all ground-truth boxes. :math:`G` is the total number of
            all ground-truth boxes in a mini-batch, and each ground-truth box has 4
            coordinate values. The data type of :attr:`gt_boxes` is float32 or
            float64.
        gt_labels(variable): A 1-level 2-D LoDTensor with shape :math:`[G, 1]` represents
            categories of all ground-truth boxes, and the values are in the range of
            :math:`[1, C]`. :math:`G` is the total number of all ground-truth boxes
            in a mini-batch, and each ground-truth box has one category. The data type
            of :attr:`gt_labels` is int32.
        is_crowd(Variable): A 1-level 1-D LoDTensor with shape :math:`[G]` which
            indicates whether a ground-truth box is a crowd. If the value is 1, the
            corresponding box is a crowd, it is ignored during training. :math:`G` is
            the total number of all ground-truth boxes in a mini-batch. The data type
            of :attr:`is_crowd` is int32.
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents the size
            information of input images. :math:`N` is the batch size, the size
T
tianshuo78520a 已提交
171
            information of each image is a 3-vector which are the height and width
172 173 174 175 176 177 178 179 180 181 182 183
            of the network input along with the factor scaling the origin image to
            the network input. The data type of :attr:`im_info` is float32.
        num_classes(int32): The number of categories for classification, the default
            value is 1.
        positive_overlap(float32): Minimum overlap required between an anchor
            and ground-truth box for the anchor to be a positive sample, the default
            value is 0.5.
        negative_overlap(float32): Maximum overlap allowed between an anchor
            and ground-truth box for the anchor to be a negative sample, the default
            value is 0.4. :attr:`negative_overlap` should be less than or equal to
            :attr:`positive_overlap`, if not, the actual value of
            :attr:`positive_overlap` is :attr:`negative_overlap`.
184 185

    Returns:
186
        A tuple with 6 Variables:
187

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
        **predict_scores** (Variable): A 2-D Tensor with shape :math:`[F+B, C]` represents
        category prediction belonging to positive and negative samples. :math:`F`
        is the number of positive samples in a mini-batch, :math:`B` is the number
        of negative samples, and :math:`C` is the number of categories
        (**Notice: excluding background**). The data type of :attr:`predict_scores`
        is float32 or float64.

        **predict_location** (Variable): A 2-D Tensor with shape :math:`[F, 4]` represents
        location prediction belonging to positive samples. :math:`F` is the number
        of positive samples. :math:`F` is the number of positive samples, and each
        sample has 4 coordinate values. The data type of :attr:`predict_location`
        is float32 or float64.

        **target_label** (Variable): A 2-D Tensor with shape :math:`[F+B, 1]` represents
        target labels for classification belonging to positive and negative
        samples. :math:`F` is the number of positive samples, :math:`B` is the
        number of negative, and each sample has one target category. The data type
        of :attr:`target_label` is int32.

        **target_bbox** (Variable): A 2-D Tensor with shape :math:`[F, 4]` represents
        target locations for box regression belonging to positive samples.
        :math:`F` is the number of positive samples, and each sample has 4
        coordinate values. The data type of :attr:`target_bbox` is float32 or
        float64.

        **bbox_inside_weight** (Variable): A 2-D Tensor with shape :math:`[F, 4]`
        represents whether a positive sample is fake positive, if a positive
        sample is false positive, the corresponding entries in
        :attr:`bbox_inside_weight` are set 0, otherwise 1. :math:`F` is the number
        of total positive samples in a mini-batch, and each sample has 4
        coordinate values. The data type of :attr:`bbox_inside_weight` is float32
        or float64.

        **fg_num** (Variable): A 2-D Tensor with shape :math:`[N, 1]` represents the number
        of positive samples. :math:`N` is the batch size. **Notice: The number
        of positive samples is used as the denominator of later loss function,
        to avoid the condition that the denominator is zero, this OP has added 1
        to the actual number of positive samples of each image.** The data type of
        :attr:`fg_num` is int32.
227 228 229 230 231

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
232 233 234 235 236 237 238 239 240 241 242
          bbox_pred = fluid.data(name='bbox_pred', shape=[1, 100, 4],
                            dtype='float32')
          cls_logits = fluid.data(name='cls_logits', shape=[1, 100, 10],
                            dtype='float32')
          anchor_box = fluid.data(name='anchor_box', shape=[100, 4],
                            dtype='float32')
          anchor_var = fluid.data(name='anchor_var', shape=[100, 4],
                            dtype='float32')
          gt_boxes = fluid.data(name='gt_boxes', shape=[10, 4],
                            dtype='float32')
          gt_labels = fluid.data(name='gt_labels', shape=[10, 1],
243
                            dtype='int32')
244
          is_crowd = fluid.data(name='is_crowd', shape=[1],
245
                            dtype='int32')
246
          im_info = fluid.data(name='im_info', shape=[1, 3],
247
                            dtype='float32')
248
          score_pred, loc_pred, score_target, loc_target, bbox_inside_weight, fg_num = \\
249 250 251 252 253
                fluid.layers.retinanet_target_assign(bbox_pred, cls_logits, anchor_box,
                anchor_var, gt_boxes, gt_labels, is_crowd, im_info, 10)

    """

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    check_variable_and_dtype(
        bbox_pred,
        'bbox_pred',
        ['float32', 'float64'],
        'retinanet_target_assign',
    )
    check_variable_and_dtype(
        cls_logits,
        'cls_logits',
        ['float32', 'float64'],
        'retinanet_target_assign',
    )
    check_variable_and_dtype(
        anchor_box,
        'anchor_box',
        ['float32', 'float64'],
        'retinanet_target_assign',
    )
    check_variable_and_dtype(
        anchor_var,
        'anchor_var',
        ['float32', 'float64'],
        'retinanet_target_assign',
    )
    check_variable_and_dtype(
        gt_boxes, 'gt_boxes', ['float32', 'float64'], 'retinanet_target_assign'
    )
    check_variable_and_dtype(
        gt_labels, 'gt_labels', ['int32'], 'retinanet_target_assign'
    )
    check_variable_and_dtype(
        is_crowd, 'is_crowd', ['int32'], 'retinanet_target_assign'
    )
    check_variable_and_dtype(
        im_info, 'im_info', ['float32', 'float64'], 'retinanet_target_assign'
    )
290

291 292 293 294 295 296
    helper = LayerHelper('retinanet_target_assign', **locals())
    # Assign target label to anchors
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
297 298
        dtype=anchor_box.dtype
    )
299
    bbox_inside_weight = helper.create_variable_for_type_inference(
300 301
        dtype=anchor_box.dtype
    )
302
    fg_num = helper.create_variable_for_type_inference(dtype='int32')
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
    helper.append_op(
        type="retinanet_target_assign",
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'GtLabels': gt_labels,
            'IsCrowd': is_crowd,
            'ImInfo': im_info,
        },
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
            'TargetLabel': target_label,
            'TargetBBox': target_bbox,
            'BBoxInsideWeight': bbox_inside_weight,
            'ForegroundNumber': fg_num,
        },
        attrs={
            'positive_overlap': positive_overlap,
            'negative_overlap': negative_overlap,
        },
    )
325 326 327 328 329 330 331 332 333 334 335 336 337

    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
    bbox_inside_weight.stop_gradient = True
    fg_num.stop_gradient = True

    cls_logits = nn.reshape(x=cls_logits, shape=(-1, num_classes))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
    return (
        predicted_cls_logits,
        predicted_bbox_pred,
        target_label,
        target_bbox,
        bbox_inside_weight,
        fg_num,
    )


def rpn_target_assign(
    bbox_pred,
    cls_logits,
    anchor_box,
    anchor_var,
    gt_boxes,
    is_crowd,
    im_info,
    rpn_batch_size_per_im=256,
    rpn_straddle_thresh=0.0,
    rpn_fg_fraction=0.5,
    rpn_positive_overlap=0.7,
    rpn_negative_overlap=0.3,
    use_random=True,
):
Y
Yuan Gao 已提交
363
    """
H
haowang101779990 已提交
364
    **Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection.**
Y
Yuan Gao 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

    This layer can be, for given the  Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each each anchor, these target labels are used for
    train RPN. The classification targets is a binary class label (of being
    an object or not). Following the paper of Faster-RCNN, the positive labels
    are two kinds of anchors: (i) the anchor/anchors with the highest IoU
    overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
    higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
    that a single ground-truth box may assign positive labels to multiple
    anchors. A non-positive anchor is when its IoU ratio is lower than
    rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
    neither positive nor negative do not contribute to the training objective.
    The regression targets are the encoded ground-truth boxes associated with
    the positive anchors.

    Args:
382
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Y
Yuan Gao 已提交
383 384
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
385
            is [xmin, ymin, xmax, ymax]. The data type can be float32 or float64.
386 387 388
        cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the
            predicted confidence predictions. N is the batch size, 1 is the
            frontground and background sigmoid, M is number of bounding boxes.
389
            The data type can be float32 or float64.
Y
Yuan Gao 已提交
390 391 392 393 394
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
395
            coordinate of the anchor box. The data type can be float32 or float64.
396
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded
397
            variances of anchors. The data type can be float32 or float64.
翟飞跃 已提交
398
        gt_boxes (Variable): The ground-truth bounding boxes (bboxes) are a 2D
Y
Yuan Gao 已提交
399
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
400
            bboxes of mini-batch input. The data type can be float32 or float64.
401
        is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd.
402
                             The data type must be int32.
403 404
        im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
        3 is the height, width and scale.
Y
Yuan Gao 已提交
405
        rpn_batch_size_per_im(int): Total number of RPN examples per image.
406
                                    The data type must be int32.
407
        rpn_straddle_thresh(float): Remove RPN anchors that go outside the image
408
            by straddle_thresh pixels. The data type must be float32.
409
        rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled
410
            foreground (i.e. class > 0), 0-th class is background. The data type must be float32.
Y
Yuan Gao 已提交
411 412
        rpn_positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
413
            example. The data type must be float32.
Y
Yuan Gao 已提交
414 415
        rpn_negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
416
            examples. The data type must be float32.
Y
Yuan Gao 已提交
417 418

    Returns:
M
minqiyang 已提交
419
        tuple:
420
        A tuple(predicted_scores, predicted_location, target_label,
421
        target_bbox, bbox_inside_weight) is returned. The predicted_scores
422 423 424 425 426 427 428 429 430 431 432
        and predicted_location is the predicted result of the RPN.
        The target_label and target_bbox is the ground truth,
        respectively. The predicted_location is a 2D Tensor with shape
        [F, 4], and the shape of target_bbox is same as the shape of
        the predicted_location, F is the number of the foreground
        anchors. The predicted_scores is a 2D Tensor with shape
        [F + B, 1], and the shape of target_label is same as the shape
        of the predicted_scores, B is the number of the background
        anchors, the F and B is depends on the input of this operator.
        Bbox_inside_weight represents whether the predicted loc is fake_fg
        or not and the shape is [F, 4].
Y
Yuan Gao 已提交
433 434 435 436

    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
437
            import paddle.fluid as fluid
438 439 440 441 442 443 444
            bbox_pred = fluid.data(name='bbox_pred', shape=[None, 4], dtype='float32')
            cls_logits = fluid.data(name='cls_logits', shape=[None, 1], dtype='float32')
            anchor_box = fluid.data(name='anchor_box', shape=[None, 4], dtype='float32')
            anchor_var = fluid.data(name='anchor_var', shape=[None, 4], dtype='float32')
            gt_boxes = fluid.data(name='gt_boxes', shape=[None, 4], dtype='float32')
            is_crowd = fluid.data(name='is_crowd', shape=[None], dtype='float32')
            im_info = fluid.data(name='im_infoss', shape=[None, 3], dtype='float32')
445 446
            loc, score, loc_target, score_target, inside_weight = fluid.layers.rpn_target_assign(
                bbox_pred, cls_logits, anchor_box, anchor_var, gt_boxes, is_crowd, im_info)
H
haowang101779990 已提交
447

Y
Yuan Gao 已提交
448 449 450
    """

    helper = LayerHelper('rpn_target_assign', **locals())
451

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
    check_variable_and_dtype(
        bbox_pred, 'bbox_pred', ['float32', 'float64'], 'rpn_target_assign'
    )
    check_variable_and_dtype(
        cls_logits, 'cls_logits', ['float32', 'float64'], 'rpn_target_assign'
    )
    check_variable_and_dtype(
        anchor_box, 'anchor_box', ['float32', 'float64'], 'rpn_target_assign'
    )
    check_variable_and_dtype(
        anchor_var, 'anchor_var', ['float32', 'float64'], 'rpn_target_assign'
    )
    check_variable_and_dtype(
        gt_boxes, 'gt_boxes', ['float32', 'float64'], 'rpn_target_assign'
    )
    check_variable_and_dtype(
        is_crowd, 'is_crowd', ['int32'], 'rpn_target_assign'
    )
    check_variable_and_dtype(
        im_info, 'im_info', ['float32', 'float64'], 'rpn_target_assign'
    )
473

474
    # Assign target label to anchors
J
jerrywgz 已提交
475 476 477 478
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
479 480
        dtype=anchor_box.dtype
    )
J
jerrywgz 已提交
481
    bbox_inside_weight = helper.create_variable_for_type_inference(
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
        dtype=anchor_box.dtype
    )
    helper.append_op(
        type="rpn_target_assign",
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'IsCrowd': is_crowd,
            'ImInfo': im_info,
        },
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
            'TargetLabel': target_label,
            'TargetBBox': target_bbox,
            'BBoxInsideWeight': bbox_inside_weight,
        },
        attrs={
            'rpn_batch_size_per_im': rpn_batch_size_per_im,
            'rpn_straddle_thresh': rpn_straddle_thresh,
            'rpn_positive_overlap': rpn_positive_overlap,
            'rpn_negative_overlap': rpn_negative_overlap,
            'rpn_fg_fraction': rpn_fg_fraction,
            'use_random': use_random,
        },
    )
Y
Yuan Gao 已提交
508

509 510 511 512
    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
J
jerrywgz 已提交
513
    bbox_inside_weight.stop_gradient = True
Y
Yuan Gao 已提交
514

515 516 517 518
    cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)
519

520 521 522 523 524 525 526
    return (
        predicted_cls_logits,
        predicted_bbox_pred,
        target_label,
        target_bbox,
        bbox_inside_weight,
    )
Y
Yuan Gao 已提交
527 528


529
def sigmoid_focal_loss(x, label, fg_num, gamma=2.0, alpha=0.25):
530
    r"""
531 532 533
	:alias_main: paddle.nn.functional.sigmoid_focal_loss
	:alias: paddle.nn.functional.sigmoid_focal_loss,paddle.nn.functional.loss.sigmoid_focal_loss
	:old_api: paddle.fluid.layers.sigmoid_focal_loss
S
swtkiwi 已提交
534

535 536
    **Sigmoid Focal Loss Operator.**

537 538 539
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is used to address the foreground-background
    class imbalance existed on the training phase of many computer vision tasks. This OP computes
    the sigmoid value for each element in the input tensor :attr:`x`, after which focal loss is
540
    measured between the sigmoid value and target label.
541

542 543 544
    The focal loss is given as followed:

    .. math::
545

546 547 548 549 550 551
        \\mathop{loss_{i,\\,j}}\\limits_{i\\in\\mathbb{[0,\\,N-1]},\\,j\\in\\mathbb{[0,\\,C-1]}}=\\left\\{
        \\begin{array}{rcl}
        - \\frac{1}{fg\_num} * \\alpha * {(1 - \\sigma(x_{i,\\,j}))}^{\\gamma} * \\log(\\sigma(x_{i,\\,j})) & & {(j +1) = label_{i,\\,0}} \\\\
        - \\frac{1}{fg\_num} * (1 - \\alpha) * {\sigma(x_{i,\\,j})}^{ \\gamma} * \\log(1 - \\sigma(x_{i,\\,j})) & & {(j +1)!= label_{i,\\,0}}
        \\end{array} \\right.

552 553

    We know that
554

555 556 557 558
    .. math::
        \\sigma(x_j) = \\frac{1}{1 + \\exp(-x_j)}


559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
    Args:
        x(Variable): A 2-D tensor with shape :math:`[N, C]` represents the predicted categories of
            all samples. :math:`N` is the number of all samples responsible for optimization in
            a mini-batch, for example, samples are anchor boxes for object detection and :math:`N`
            is the total number of positive and negative samples in a mini-batch; Samples are images
            for image classification and :math:`N` is the number of images in a mini-batch. :math:`C`
            is the number of classes (**Notice: excluding background**). The data type of :attr:`x` is
            float32 or float64.
        label(Variable): A 2-D tensor with shape :math:`[N, 1]` represents the target labels for
            classification. :math:`N` is the number of all samples responsible for optimization in a
            mini-batch, each sample has one target category. The values for positive samples are in the
            range of :math:`[1, C]`, and the values for negative samples are 0. The data type of :attr:`label`
            is int32.
        fg_num(Variable): A 1-D tensor with shape [1] represents the number of positive samples in a
            mini-batch, which should be obtained before this OP. The data type of :attr:`fg_num` is int32.
574
        gamma(int|float): Hyper-parameter to balance the easy and hard examples. Default value is
575
            set to 2.0.
576
        alpha(int|float): Hyper-parameter to balance the positive and negative example. Default value
577 578 579
            is set to 0.25.

    Returns:
580
        Variable(the data type is float32 or float64):
581 582
            A 2-D tensor with shape :math:`[N, C]`, which is the focal loss of each element in the input
            tensor :attr:`x`.
583 584 585 586

    Examples:
        .. code-block:: python

587
            import numpy as np
588
            import paddle.fluid as fluid
589

590 591 592 593 594
            num_classes = 10  # exclude background
            image_width = 16
            image_height = 16
            batch_size = 32
            max_iter = 20
595 596


597 598 599 600 601 602
            def gen_train_data():
                x_data = np.random.uniform(0, 255, (batch_size, 3, image_height,
                                                    image_width)).astype('float64')
                label_data = np.random.randint(0, num_classes,
                                               (batch_size, 1)).astype('int32')
                return {"x": x_data, "label": label_data}
603 604


605 606 607 608 609 610 611 612
            def get_focal_loss(pred, label, fg_num, num_classes):
                pred = fluid.layers.reshape(pred, [-1, num_classes])
                label = fluid.layers.reshape(label, [-1, 1])
                label.stop_gradient = True
                loss = fluid.layers.sigmoid_focal_loss(
                    pred, label, fg_num, gamma=2.0, alpha=0.25)
                loss = fluid.layers.reduce_sum(loss)
                return loss
613 614


615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
            def build_model(mode='train'):
                x = fluid.data(name="x", shape=[-1, 3, -1, -1], dtype='float64')
                output = fluid.layers.pool2d(input=x, pool_type='avg', global_pooling=True)
                output = fluid.layers.fc(
                    input=output,
                    size=num_classes,
                    # Notice: size is set to be the number of target classes (excluding backgorund)
                    # because sigmoid activation will be done in the sigmoid_focal_loss op.
                    act=None)
                if mode == 'train':
                    label = fluid.data(name="label", shape=[-1, 1], dtype='int32')
                    # Obtain the fg_num needed by the sigmoid_focal_loss op:
                    # 0 in label represents background, >=1 in label represents foreground,
                    # find the elements in label which are greater or equal than 1, then
                    # computed the numbers of these elements.
                    data = fluid.layers.fill_constant(shape=[1], value=1, dtype='int32')
                    fg_label = fluid.layers.greater_equal(label, data)
                    fg_label = fluid.layers.cast(fg_label, dtype='int32')
                    fg_num = fluid.layers.reduce_sum(fg_label)
                    fg_num.stop_gradient = True
                    avg_loss = get_focal_loss(output, label, fg_num, num_classes)
                    return avg_loss
                else:
                    # During evaluating or testing phase,
                    # output of the final fc layer should be connected to a sigmoid layer.
                    pred = fluid.layers.sigmoid(output)
                    return pred
642 643


644 645 646 647 648 649 650 651 652 653
            loss = build_model('train')
            moment_optimizer = fluid.optimizer.MomentumOptimizer(
                learning_rate=0.001, momentum=0.9)
            moment_optimizer.minimize(loss)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            for i in range(max_iter):
                outs = exe.run(feed=gen_train_data(), fetch_list=[loss.name])
                print(outs)
654 655
    """

656 657 658
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64'], 'sigmoid_focal_loss'
    )
659 660 661
    check_variable_and_dtype(label, 'label', ['int32'], 'sigmoid_focal_loss')
    check_variable_and_dtype(fg_num, 'fg_num', ['int32'], 'sigmoid_focal_loss')

662 663 664 665
    helper = LayerHelper("sigmoid_focal_loss", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

666 667 668 669 670 671
    helper.append_op(
        type="sigmoid_focal_loss",
        inputs={"X": x, "Label": label, "FgNum": fg_num},
        attrs={"gamma": gamma, 'alpha': alpha},
        outputs={"Out": out},
    )
672 673 674
    return out


675 676 677 678 679 680 681 682 683 684 685 686 687
def detection_output(
    loc,
    scores,
    prior_box,
    prior_box_var,
    background_label=0,
    nms_threshold=0.3,
    nms_top_k=400,
    keep_top_k=200,
    score_threshold=0.01,
    nms_eta=1.0,
    return_index=False,
):
688
    """
S
swtkiwi 已提交
689

Q
qingqing01 已提交
690 691
    Given the regression locations, classification confidences and prior boxes,
    calculate the detection outputs by performing following steps:
692

Q
qingqing01 已提交
693 694
    1. Decode input bounding box predictions according to the prior boxes and
       regression locations.
695 696 697 698 699
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
700 701 702

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Q
qingqing01 已提交
703 704
            predicted locations of M bounding bboxes. Data type should be
            float32 or float64. N is the batch size,
705 706
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
707
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
Q
qingqing01 已提交
708 709 710
            predicted confidence predictions. Data type should be float32
            or float64. N is the batch size, C is the
            class number, M is number of bounding boxes.
711
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
Q
qingqing01 已提交
712 713
            each box is represented as [xmin, ymin, xmax, ymax]. Data type
            should be float32 or float64.
714
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
Q
qingqing01 已提交
715 716
            of variance. Data type should be float32 or float64.
        background_label(int): The index of background label,
717
            the background label will be ignored. If set to -1, then all
Q
qingqing01 已提交
718 719
            categories will be considered. Default: 0.
        nms_threshold(float): The threshold to be used in NMS. Default: 0.3.
720
        nms_top_k(int): Maximum number of detections to be kept according
T
tianshuo78520a 已提交
721
            to the confidences after filtering detections based on
Q
qingqing01 已提交
722
            score_threshold and before NMS. Default: 400.
723
        keep_top_k(int): Number of total bboxes to be kept per image after
Q
qingqing01 已提交
724
            NMS step. -1 means keeping all bboxes after NMS step. Default: 200.
725 726
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
Q
qingqing01 已提交
727 728 729
            Default: 0.01.
        nms_eta(float): The parameter for adaptive NMS. It works only when the
            value is less than 1.0. Default: 1.0.
730
        return_index(bool): Whether return selected index. Default: False
731 732

    Returns:
M
minqiyang 已提交
733

734
        A tuple with two Variables: (Out, Index) if return_index is True,
735
        otherwise, a tuple with one Variable(Out) is returned.
736

Q
qingqing01 已提交
737 738 739 740 741 742 743 744 745 746 747 748
        Out (Variable): The detection outputs is a LoDTensor with shape [No, 6].
        Data type is the same as input (loc). Each row has six values:
        [label, confidence, xmin, ymin, xmax, ymax]. `No` is
        the total number of detections in this mini-batch. For each instance,
        the offsets in first dimension are called LoD, the offset number is
        N + 1, N is the batch size. The i-th image has `LoD[i + 1] - LoD[i]`
        detected results, if it is 0, the i-th image has no detected results.

        Index (Variable): Only return when return_index is True. A 2-D LoDTensor
        with shape [No, 1] represents the selected index which type is Integer.
        The index is the absolute value cross batches. No is the same number
        as Out. If the index is used to gather other attribute such as age,
749 750 751
        one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
        N is the batch size and M is the number of boxes.

752 753 754 755

    Examples:
        .. code-block:: python

756
            import paddle.fluid as fluid
757 758 759
            import paddle

            paddle.enable_static()
760

Q
qingqing01 已提交
761 762 763 764
            pb = fluid.data(name='prior_box', shape=[10, 4], dtype='float32')
            pbv = fluid.data(name='prior_box_var', shape=[10, 4], dtype='float32')
            loc = fluid.data(name='target_box', shape=[2, 21, 4], dtype='float32')
            scores = fluid.data(name='scores', shape=[2, 21, 10], dtype='float32')
765
            nmsed_outs, index = fluid.layers.detection_output(scores=scores,
766 767
                                       loc=loc,
                                       prior_box=pb,
768 769
                                       prior_box_var=pbv,
                                       return_index=True)
770 771
    """
    helper = LayerHelper("detection_output", **locals())
772 773 774 775 776 777
    decoded_box = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=loc,
        code_type='decode_center_size',
    )
778
    scores = nn.softmax(input=scores)
Y
Yuan Gao 已提交
779
    scores = nn.transpose(scores, perm=[0, 2, 1])
780
    scores.stop_gradient = True
X
Xin Pan 已提交
781
    nmsed_outs = helper.create_variable_for_type_inference(
782 783
        dtype=decoded_box.dtype
    )
784 785
    if return_index:
        index = helper.create_variable_for_type_inference(dtype='int')
786 787 788 789 790 791 792 793 794 795 796 797 798
        helper.append_op(
            type="multiclass_nms2",
            inputs={'Scores': scores, 'BBoxes': decoded_box},
            outputs={'Out': nmsed_outs, 'Index': index},
            attrs={
                'background_label': 0,
                'nms_threshold': nms_threshold,
                'nms_top_k': nms_top_k,
                'keep_top_k': keep_top_k,
                'score_threshold': score_threshold,
                'nms_eta': 1.0,
            },
        )
799 800
        index.stop_gradient = True
    else:
801 802 803 804 805 806 807 808 809 810 811 812 813
        helper.append_op(
            type="multiclass_nms",
            inputs={'Scores': scores, 'BBoxes': decoded_box},
            outputs={'Out': nmsed_outs},
            attrs={
                'background_label': 0,
                'nms_threshold': nms_threshold,
                'nms_top_k': nms_top_k,
                'keep_top_k': keep_top_k,
                'score_threshold': score_threshold,
                'nms_eta': 1.0,
            },
        )
814
    nmsed_outs.stop_gradient = True
815 816
    if return_index:
        return nmsed_outs, index
817
    return nmsed_outs
C
chengduoZH 已提交
818 819


X
Xin Pan 已提交
820
@templatedoc()
821
def iou_similarity(x, y, box_normalized=True, name=None):
X
Xin Pan 已提交
822
    """
823 824 825
        :alias_main: paddle.nn.functional.iou_similarity
        :alias: paddle.nn.functional.iou_similarity,paddle.nn.functional.loss.iou_similarity
        :old_api: paddle.fluid.layers.iou_similarity
S
swtkiwi 已提交
826

X
Xin Pan 已提交
827 828 829
    ${comment}

    Args:
L
LielinJiang 已提交
830 831
        x (Variable): ${x_comment}.The data type is float32 or float64.
        y (Variable): ${y_comment}.The data type is float32 or float64.
T
tianshuo78520a 已提交
832
        box_normalized(bool): Whether treat the priorbox as a normalized box.
833
            Set true by default.
X
Xin Pan 已提交
834
    Returns:
L
LielinJiang 已提交
835
        Variable: ${out_comment}.The data type is same with x.
836 837 838 839

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
840
            import numpy as np
841 842
            import paddle.fluid as fluid

L
LielinJiang 已提交
843 844 845 846 847 848
            use_gpu = False
            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)

            x = fluid.data(name='x', shape=[None, 4], dtype='float32')
            y = fluid.data(name='y', shape=[None, 4], dtype='float32')
849
            iou = fluid.layers.iou_similarity(x=x, y=y)
L
LielinJiang 已提交
850 851 852 853 854 855 856 857 858 859 860

            exe.run(fluid.default_startup_program())
            test_program = fluid.default_main_program().clone(for_test=True)

            [out_iou] = exe.run(test_program,
                    fetch_list=iou,
                    feed={'x': np.array([[0.5, 0.5, 2.0, 2.0],
                                         [0., 0., 1.0, 1.0]]).astype('float32'),
                          'y': np.array([[1.0, 1.0, 2.5, 2.5]]).astype('float32')})
            # out_iou is [[0.2857143],
            #             [0.       ]] with shape: [2, 1]
X
Xin Pan 已提交
861 862
    """
    helper = LayerHelper("iou_similarity", **locals())
863
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
864

865 866 867 868 869 870
    helper.append_op(
        type="iou_similarity",
        inputs={"X": x, "Y": y},
        attrs={"box_normalized": box_normalized},
        outputs={"Out": out},
    )
X
Xin Pan 已提交
871 872 873 874
    return out


@templatedoc()
875 876 877 878 879 880 881 882 883
def box_coder(
    prior_box,
    prior_box_var,
    target_box,
    code_type="encode_center_size",
    box_normalized=True,
    name=None,
    axis=0,
):
884
    r"""
S
swtkiwi 已提交
885

886 887 888
    **Box Coder Layer**

    Encode/Decode the target bounding box with the priorbox information.
889

890 891 892 893 894 895 896 897
    The Encoding schema described below:

    .. math::

        ox = (tx - px) / pw / pxv

        oy = (ty - py) / ph / pyv

898
        ow = \log(\abs(tw / pw)) / pwv
899

900
        oh = \log(\abs(th / ph)) / phv
901 902

    The Decoding schema described below:
903

904
    .. math::
905

906 907 908 909 910 911
        ox = (pw * pxv * tx * + px) - tw / 2

        oy = (ph * pyv * ty * + py) - th / 2

        ow = \exp(pwv * tw) * pw + tw / 2

912
        oh = \exp(phv * th) * ph + th / 2
913

914 915 916 917 918
    where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates,
    width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote
    the priorbox's (anchor) center coordinates, width and height. `pxv`,
    `pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`,
    `ow`, `oh` denote the encoded/decoded coordinates, width and height.
919

920 921 922 923
    During Box Decoding, two modes for broadcast are supported. Say target
    box has shape [N, M, 4], and the shape of prior box can be [N, 4] or
    [M, 4]. Then prior box will broadcast to target box along the
    assigned axis.
X
Xin Pan 已提交
924 925

    Args:
926
        prior_box(Variable): Box list prior_box is a 2-D Tensor with shape
W
wangguanzhong 已提交
927
            [M, 4] holds M boxes and data type is float32 or float64. Each box
928
            is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the
W
wangguanzhong 已提交
929
            left top coordinate of the anchor box, if the input is image feature
930 931 932 933 934 935 936 937 938 939 940 941 942
            map, they are close to the origin of the coordinate system.
            [xmax, ymax] is the right bottom coordinate of the anchor box.
        prior_box_var(List|Variable|None): prior_box_var supports three types
            of input. One is variable with shape [M, 4] which holds M group and
            data type is float32 or float64. The second is list consist of
            4 elements shared by all boxes and data type is float32 or float64.
            Other is None and not involved in calculation.
        target_box(Variable): This input can be a 2-D LoDTensor with shape
            [N, 4] when code_type is 'encode_center_size'. This input also can
            be a 3-D Tensor with shape [N, M, 4] when code_type is
            'decode_center_size'. Each box is represented as
            [xmin, ymin, xmax, ymax]. The data type is float32 or float64.
            This tensor can contain LoD information to represent a batch of inputs.
W
wangguanzhong 已提交
943
        code_type(str): The code type used with the target box. It can be
944
            `encode_center_size` or `decode_center_size`. `encode_center_size`
W
wangguanzhong 已提交
945
            by default.
T
tianshuo78520a 已提交
946
        box_normalized(bool): Whether treat the priorbox as a normalized box.
W
wangguanzhong 已提交
947
            Set true by default.
948 949 950 951 952
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.
        axis(int): Which axis in PriorBox to broadcast for box decode,
            for example, if axis is 0 and TargetBox has shape [N, M, 4] and
W
wangguanzhong 已提交
953
            PriorBox has shape [M, 4], then PriorBox will broadcast to [N, M, 4]
954 955
            for decoding. It is only valid when code type is
            `decode_center_size`. Set 0 by default.
X
Xin Pan 已提交
956 957

    Returns:
W
wangguanzhong 已提交
958 959
        Variable:

960 961 962 963
        output_box(Variable): When code_type is 'encode_center_size', the
        output tensor of box_coder_op with shape [N, M, 4] representing the
        result of N target boxes encoded with M Prior boxes and variances.
        When code_type is 'decode_center_size', N represents the batch size
T
tianshuo78520a 已提交
964
        and M represents the number of decoded boxes.
965 966

    Examples:
967

968
        .. code-block:: python
969

970
            import paddle.fluid as fluid
971 972
            import paddle
            paddle.enable_static()
W
wangguanzhong 已提交
973
            # For encode
974
            prior_box_encode = fluid.data(name='prior_box_encode',
W
wangguanzhong 已提交
975
                                  shape=[512, 4],
976 977 978 979
                                  dtype='float32')
            target_box_encode = fluid.data(name='target_box_encode',
                                   shape=[81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
980 981 982 983 984
            output_encode = fluid.layers.box_coder(prior_box=prior_box_encode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_encode,
                                    code_type="encode_center_size")
            # For decode
985
            prior_box_decode = fluid.data(name='prior_box_decode',
W
wangguanzhong 已提交
986
                                  shape=[512, 4],
987 988 989 990
                                  dtype='float32')
            target_box_decode = fluid.data(name='target_box_decode',
                                   shape=[512, 81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
991 992 993 994 995 996
            output_decode = fluid.layers.box_coder(prior_box=prior_box_decode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_decode,
                                    code_type="decode_center_size",
                                    box_normalized=False,
                                    axis=1)
X
Xin Pan 已提交
997
    """
998 999 1000 1001 1002 1003 1004 1005
    return paddle.vision.ops.box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=target_box,
        code_type=code_type,
        box_normalized=box_normalized,
        axis=axis,
        name=name,
1006
    )
X
Xin Pan 已提交
1007 1008 1009 1010 1011 1012 1013 1014


@templatedoc()
def polygon_box_transform(input, name=None):
    """
    ${comment}

    Args:
1015 1016 1017 1018
        input(Variable): The input with shape [batch_size, geometry_channels, height, width].
                         A Tensor with type float32, float64.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
X
Xin Pan 已提交
1019 1020

    Returns:
1021
        Variable: The output with the same shape as input. A Tensor with type float32, float64.
B
Bai Yifan 已提交
1022 1023 1024

    Examples:
        .. code-block:: python
1025

B
Bai Yifan 已提交
1026
            import paddle.fluid as fluid
B
Bai Yifan 已提交
1027
            input = fluid.data(name='input', shape=[4, 10, 5, 5], dtype='float32')
B
Bai Yifan 已提交
1028
            out = fluid.layers.polygon_box_transform(input)
X
Xin Pan 已提交
1029
    """
1030 1031 1032
    check_variable_and_dtype(
        input, "input", ['float32', 'float64'], 'polygon_box_transform'
    )
X
Xin Pan 已提交
1033
    helper = LayerHelper("polygon_box_transform", **locals())
1034
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
Xin Pan 已提交
1035

1036 1037 1038 1039 1040 1041
    helper.append_op(
        type="polygon_box_transform",
        inputs={"Input": input},
        attrs={},
        outputs={"Output": output},
    )
X
Xin Pan 已提交
1042 1043 1044
    return output


1045
@deprecated(since="2.0.0", update_to="paddle.vision.ops.yolo_loss")
D
dengkaipeng 已提交
1046
@templatedoc(op_type="yolov3_loss")
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
def yolov3_loss(
    x,
    gt_box,
    gt_label,
    anchors,
    anchor_mask,
    class_num,
    ignore_thresh,
    downsample_ratio,
    gt_score=None,
    use_label_smooth=True,
    name=None,
    scale_x_y=1.0,
):
D
dengkaipeng 已提交
1061
    """
S
swtkiwi 已提交
1062

D
dengkaipeng 已提交
1063 1064 1065
    ${comment}

    Args:
1066
        x (Variable): ${x_comment}The data type is float32 or float64.
1067
        gt_box (Variable): groud truth boxes, should be in shape of [N, B, 4],
1068
                          in the third dimension, x, y, w, h should be stored.
T
tianshuo78520a 已提交
1069
                          x,y is the center coordinate of boxes, w, h are the
1070
                          width and height, x, y, w, h should be divided by
1071
                          input image height to scale to [0, 1].
1072 1073
                          N is the batch number and B is the max box number in
                          an image.The data type is float32 or float64.
T
tianshuo78520a 已提交
1074
        gt_label (Variable): class id of ground truth boxes, should be in shape
1075
                            of [N, B].The data type is int32.
D
dengkaipeng 已提交
1076
        anchors (list|tuple): ${anchors_comment}
1077
        anchor_mask (list|tuple): ${anchor_mask_comment}
D
dengkaipeng 已提交
1078 1079
        class_num (int): ${class_num_comment}
        ignore_thresh (float): ${ignore_thresh_comment}
1080
        downsample_ratio (int): ${downsample_ratio_comment}
1081 1082
        name (string): The default value is None.  Normally there is no need
                       for user to set this property.  For more information,
X
xiaoting 已提交
1083
                       please refer to :ref:`api_guide_Name`
T
tianshuo78520a 已提交
1084
        gt_score (Variable): mixup score of ground truth boxes, should be in shape
1085
                            of [N, B]. Default None.
1086
        use_label_smooth (bool): ${use_label_smooth_comment}
1087
        scale_x_y (float): ${scale_x_y_comment}
D
dengkaipeng 已提交
1088 1089

    Returns:
1090
        Variable: A 1-D tensor with shape [N], the value of yolov3 loss
D
dengkaipeng 已提交
1091 1092 1093

    Raises:
        TypeError: Input x of yolov3_loss must be Variable
D
dengkaipeng 已提交
1094 1095
        TypeError: Input gtbox of yolov3_loss must be Variable
        TypeError: Input gtlabel of yolov3_loss must be Variable
D
dengkaipeng 已提交
1096
        TypeError: Input gtscore of yolov3_loss must be None or Variable
D
dengkaipeng 已提交
1097 1098 1099
        TypeError: Attr anchors of yolov3_loss must be list or tuple
        TypeError: Attr class_num of yolov3_loss must be an integer
        TypeError: Attr ignore_thresh of yolov3_loss must be a float number
1100
        TypeError: Attr use_label_smooth of yolov3_loss must be a bool value
D
dengkaipeng 已提交
1101 1102

    Examples:
1103 1104
      .. code-block:: python

1105
          import paddle.fluid as fluid
1106 1107
          import paddle
          paddle.enable_static()
X
xiaoting 已提交
1108 1109 1110 1111
          x = fluid.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
          gt_box = fluid.data(name='gt_box', shape=[None, 6, 4], dtype='float32')
          gt_label = fluid.data(name='gt_label', shape=[None, 6], dtype='int32')
          gt_score = fluid.data(name='gt_score', shape=[None, 6], dtype='float32')
1112 1113
          anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
          anchor_mask = [0, 1, 2]
1114
          loss = fluid.layers.yolov3_loss(x=x, gt_box=gt_box, gt_label=gt_label,
1115
                                          gt_score=gt_score, anchors=anchors,
1116 1117
                                          anchor_mask=anchor_mask, class_num=80,
                                          ignore_thresh=0.7, downsample_ratio=32)
D
dengkaipeng 已提交
1118 1119 1120 1121
    """

    if not isinstance(x, Variable):
        raise TypeError("Input x of yolov3_loss must be Variable")
1122
    if not isinstance(gt_box, Variable):
D
dengkaipeng 已提交
1123
        raise TypeError("Input gtbox of yolov3_loss must be Variable")
1124
    if not isinstance(gt_label, Variable):
D
dengkaipeng 已提交
1125
        raise TypeError("Input gtlabel of yolov3_loss must be Variable")
1126
    if gt_score is not None and not isinstance(gt_score, Variable):
1127
        raise TypeError("Input gtscore of yolov3_loss must be Variable")
D
dengkaipeng 已提交
1128 1129
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
        raise TypeError("Attr anchors of yolov3_loss must be list or tuple")
1130 1131
    if not isinstance(anchor_mask, list) and not isinstance(anchor_mask, tuple):
        raise TypeError("Attr anchor_mask of yolov3_loss must be list or tuple")
D
dengkaipeng 已提交
1132 1133 1134 1135
    if not isinstance(class_num, int):
        raise TypeError("Attr class_num of yolov3_loss must be an integer")
    if not isinstance(ignore_thresh, float):
        raise TypeError(
1136 1137
            "Attr ignore_thresh of yolov3_loss must be a float number"
        )
1138 1139
    if not isinstance(use_label_smooth, bool):
        raise TypeError(
1140 1141
            "Attr use_label_smooth of yolov3_loss must be a bool value"
        )
D
dengkaipeng 已提交
1142

1143
    if _non_static_mode():
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
        attrs = (
            "anchors",
            anchors,
            "anchor_mask",
            anchor_mask,
            "class_num",
            class_num,
            "ignore_thresh",
            ignore_thresh,
            "downsample_ratio",
            downsample_ratio,
            "use_label_smooth",
            use_label_smooth,
            "scale_x_y",
            scale_x_y,
        )
        loss, _, _ = _legacy_C_ops.yolov3_loss(
            x, gt_box, gt_label, gt_score, *attrs
        )
1163
        return loss
D
dengkaipeng 已提交
1164

1165 1166
    helper = LayerHelper('yolov3_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
1167 1168 1169
    objectness_mask = helper.create_variable_for_type_inference(dtype='int32')
    gt_match_mask = helper.create_variable_for_type_inference(dtype='int32')

1170 1171
    inputs = {
        "X": x,
1172 1173
        "GTBox": gt_box,
        "GTLabel": gt_label,
1174
    }
1175
    if gt_score is not None:
1176
        inputs["GTScore"] = gt_score
1177

D
dengkaipeng 已提交
1178 1179
    attrs = {
        "anchors": anchors,
1180
        "anchor_mask": anchor_mask,
D
dengkaipeng 已提交
1181 1182
        "class_num": class_num,
        "ignore_thresh": ignore_thresh,
1183
        "downsample_ratio": downsample_ratio,
1184
        "use_label_smooth": use_label_smooth,
1185
        "scale_x_y": scale_x_y,
D
dengkaipeng 已提交
1186 1187
    }

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
    helper.append_op(
        type='yolov3_loss',
        inputs=inputs,
        outputs={
            'Loss': loss,
            'ObjectnessMask': objectness_mask,
            'GTMatchMask': gt_match_mask,
        },
        attrs=attrs,
    )
D
dengkaipeng 已提交
1198 1199 1200
    return loss


1201
@deprecated(since="2.0.0", update_to="paddle.vision.ops.yolo_box")
D
dengkaipeng 已提交
1202
@templatedoc(op_type="yolo_box")
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
def yolo_box(
    x,
    img_size,
    anchors,
    class_num,
    conf_thresh,
    downsample_ratio,
    clip_bbox=True,
    name=None,
    scale_x_y=1.0,
    iou_aware=False,
    iou_aware_factor=0.5,
):
D
dengkaipeng 已提交
1216
    """
S
swtkiwi 已提交
1217

D
dengkaipeng 已提交
1218 1219 1220
    ${comment}

    Args:
1221 1222
        x (Variable): ${x_comment} The data type is float32 or float64.
        img_size (Variable): ${img_size_comment} The data type is int32.
D
dengkaipeng 已提交
1223 1224 1225 1226
        anchors (list|tuple): ${anchors_comment}
        class_num (int): ${class_num_comment}
        conf_thresh (float): ${conf_thresh_comment}
        downsample_ratio (int): ${downsample_ratio_comment}
1227
        clip_bbox (bool): ${clip_bbox_comment}
1228
        scale_x_y (float): ${scale_x_y_comment}
1229 1230
        name (string): The default value is None.  Normally there is no need
                       for user to set this property.  For more information,
X
xiaoting 已提交
1231
                       please refer to :ref:`api_guide_Name`
1232 1233
        iou_aware (bool): ${iou_aware_comment}
        iou_aware_factor (float): ${iou_aware_factor_comment}
D
dengkaipeng 已提交
1234 1235

    Returns:
D
dengkaipeng 已提交
1236
        Variable: A 3-D tensor with shape [N, M, 4], the coordinates of boxes,
1237
        and a 3-D tensor with shape [N, M, :attr:`class_num`], the classification
D
dengkaipeng 已提交
1238
        scores of boxes.
D
dengkaipeng 已提交
1239 1240 1241 1242 1243 1244 1245 1246

    Raises:
        TypeError: Input x of yolov_box must be Variable
        TypeError: Attr anchors of yolo box must be list or tuple
        TypeError: Attr class_num of yolo box must be an integer
        TypeError: Attr conf_thresh of yolo box must be a float number

    Examples:
D
dengkaipeng 已提交
1247

D
dengkaipeng 已提交
1248 1249
    .. code-block:: python

X
xiaoting 已提交
1250
        import paddle.fluid as fluid
1251 1252
        import paddle
        paddle.enable_static()
X
xiaoting 已提交
1253 1254
        x = fluid.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
        img_size = fluid.data(name='img_size',shape=[None, 2],dtype='int64')
D
dengkaipeng 已提交
1255
        anchors = [10, 13, 16, 30, 33, 23]
1256
        boxes,scores = fluid.layers.yolo_box(x=x, img_size=img_size, class_num=80, anchors=anchors,
D
dengkaipeng 已提交
1257 1258 1259 1260 1261
                                        conf_thresh=0.01, downsample_ratio=32)
    """
    helper = LayerHelper('yolo_box', **locals())

    if not isinstance(x, Variable):
1262 1263 1264
        raise TypeError("Input x of yolo_box must be Variable")
    if not isinstance(img_size, Variable):
        raise TypeError("Input img_size of yolo_box must be Variable")
D
dengkaipeng 已提交
1265
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
1266
        raise TypeError("Attr anchors of yolo_box must be list or tuple")
D
dengkaipeng 已提交
1267
    if not isinstance(class_num, int):
1268
        raise TypeError("Attr class_num of yolo_box must be an integer")
D
dengkaipeng 已提交
1269
    if not isinstance(conf_thresh, float):
1270
        raise TypeError("Attr ignore_thresh of yolo_box must be a float number")
D
dengkaipeng 已提交
1271 1272 1273 1274 1275 1276 1277

    boxes = helper.create_variable_for_type_inference(dtype=x.dtype)
    scores = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = {
        "anchors": anchors,
        "class_num": class_num,
D
dengkaipeng 已提交
1278
        "conf_thresh": conf_thresh,
D
dengkaipeng 已提交
1279
        "downsample_ratio": downsample_ratio,
1280
        "clip_bbox": clip_bbox,
1281
        "scale_x_y": scale_x_y,
1282
        "iou_aware": iou_aware,
1283
        "iou_aware_factor": iou_aware_factor,
D
dengkaipeng 已提交
1284 1285
    }

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
    helper.append_op(
        type='yolo_box',
        inputs={
            "X": x,
            "ImgSize": img_size,
        },
        outputs={
            'Boxes': boxes,
            'Scores': scores,
        },
        attrs=attrs,
    )
D
dengkaipeng 已提交
1298 1299 1300
    return boxes, scores


X
Xin Pan 已提交
1301
@templatedoc()
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
def detection_map(
    detect_res,
    label,
    class_num,
    background_label=0,
    overlap_threshold=0.3,
    evaluate_difficult=True,
    has_state=None,
    input_states=None,
    out_states=None,
    ap_version='integral',
):
X
Xin Pan 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
1325 1326 1327 1328 1329 1330 1331 1332
        input_states: (tuple|None) If not None, It contains 3 elements:
            (1) pos_count ${pos_count_comment}.
            (2) true_pos ${true_pos_comment}.
            (3) false_pos ${false_pos_comment}.
        out_states: (tuple|None) If not None, it contains 3 elements.
            (1) accum_pos_count ${accum_pos_count_comment}.
            (2) accum_true_pos ${accum_true_pos_comment}.
            (3) accum_false_pos ${accum_false_pos_comment}.
X
Xin Pan 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

1342
            import paddle.fluid as fluid
1343
            from fluid.layers import detection
1344
            detect_res = fluid.data(
X
Xin Pan 已提交
1345 1346 1347
                name='detect_res',
                shape=[10, 6],
                dtype='float32')
1348
            label = fluid.data(
X
Xin Pan 已提交
1349 1350 1351 1352
                name='label',
                shape=[10, 6],
                dtype='float32')

1353
            map_out = detection.detection_map(detect_res, label, 21)
X
Xin Pan 已提交
1354
    """
1355 1356
    helper = LayerHelper("detection_map", **locals())

1357
    def __create_var(type):
X
Xin Pan 已提交
1358
        return helper.create_variable_for_type_inference(dtype=type)
1359 1360

    map_out = __create_var('float32')
1361 1362 1363 1364 1365 1366 1367 1368 1369
    accum_pos_count_out = (
        out_states[0] if out_states is not None else __create_var('int32')
    )
    accum_true_pos_out = (
        out_states[1] if out_states is not None else __create_var('float32')
    )
    accum_false_pos_out = (
        out_states[2] if out_states is not None else __create_var('float32')
    )
1370

Z
zhongpu 已提交
1371 1372 1373
    pos_count = input_states[0] if input_states is not None else None
    true_pos = input_states[1] if input_states is not None else None
    false_pos = input_states[2] if input_states is not None else None
1374

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
    helper.append_op(
        type="detection_map",
        inputs={
            'Label': label,
            'DetectRes': detect_res,
            'HasState': has_state,
            'PosCount': pos_count,
            'TruePos': true_pos,
            'FalsePos': false_pos,
        },
        outputs={
            'MAP': map_out,
            'AccumPosCount': accum_pos_count_out,
            'AccumTruePos': accum_true_pos_out,
            'AccumFalsePos': accum_false_pos_out,
        },
        attrs={
            'overlap_threshold': overlap_threshold,
            'evaluate_difficult': evaluate_difficult,
            'ap_type': ap_version,
            'class_num': class_num,
        },
    )
1398
    return map_out
1399 1400


1401 1402 1403
def bipartite_match(
    dist_matrix, match_type=None, dist_threshold=None, name=None
):
1404
    """
S
swtkiwi 已提交
1405

Y
yuyang18 已提交
1406 1407
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
1408
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
1409 1410 1411 1412
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
W
wangguanzhong 已提交
1413
    matrix. **The OP only supports CPU**.
Y
yuyang18 已提交
1414 1415 1416

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
1417 1418 1419
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
1420

Y
yuyang18 已提交
1421
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
1422 1423 1424
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
1425 1426 1427
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

1428 1429
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
1430 1431 1432 1433 1434 1435 1436
            [K, M]. The data type is float32 or float64. It is pair-wise
            distance matrix between the entities represented by each row and
            each column. For example, assumed one entity is A with shape [K],
            another entity is B with shape [M]. The dist_matrix[i][j] is the
            distance between A[i] and B[j]. The bigger the distance is, the
            better matching the pairs are. NOTE: This tensor can contain LoD
            information to represent a batch of inputs. One instance of this
W
wangguanzhong 已提交
1437 1438 1439 1440
            batch can contain different numbers of entities.
        match_type(str, optional): The type of matching method, should be
           'bipartite' or 'per_prediction'. None ('bipartite') by default.
        dist_threshold(float32, optional): If `match_type` is 'per_prediction',
1441
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
1442
            on the maximum distance, 0.5 by default.
1443 1444
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
W
wangguanzhong 已提交
1445
            None by default.
1446

1447
    Returns:
W
wangguanzhong 已提交
1448
        Tuple:
Y
yuyang18 已提交
1449

W
wangguanzhong 已提交
1450 1451
        matched_indices(Variable): A 2-D Tensor with shape [N, M]. The data
        type is int32. N is the batch size. If match_indices[i][j] is -1, it
Y
yuyang18 已提交
1452 1453 1454 1455 1456
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

W
wangguanzhong 已提交
1457 1458
        matched_distance(Variable): A 2-D Tensor with shape [N, M]. The data
        type is float32. N is batch size. If match_indices[i][j] is -1,
Y
yuyang18 已提交
1459 1460 1461 1462 1463 1464 1465
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

1466
        >>> import paddle.fluid as fluid
1467 1468
        >>> x = fluid.data(name='x', shape=[None, 4], dtype='float32')
        >>> y = fluid.data(name='y', shape=[None, 4], dtype='float32')
Y
yuyang18 已提交
1469 1470
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
1471 1472
    """
    helper = LayerHelper('bipartite_match', **locals())
X
Xin Pan 已提交
1473 1474
    match_indices = helper.create_variable_for_type_inference(dtype='int32')
    match_distance = helper.create_variable_for_type_inference(
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
        dtype=dist_matrix.dtype
    )
    helper.append_op(
        type='bipartite_match',
        inputs={'DistMat': dist_matrix},
        attrs={
            'match_type': match_type,
            'dist_threshold': dist_threshold,
        },
        outputs={
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_distance,
        },
    )
1489 1490 1491
    return match_indices, match_distance


1492 1493 1494 1495 1496 1497 1498
def target_assign(
    input,
    matched_indices,
    negative_indices=None,
    mismatch_value=None,
    name=None,
):
1499
    """
S
swtkiwi 已提交
1500

1501 1502 1503 1504
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
1505

1506 1507 1508 1509 1510
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
1511

1512
    1. Assigning all outputs based on `match_indices`:
C
chengduoZH 已提交
1513

1514 1515 1516
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
1517

1518 1519
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
1520

1521
        Otherwise,
C
chengduoZH 已提交
1522

1523 1524
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
1525

Q
qingqing01 已提交
1526
    2. Assigning outputs based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
1527

Q
qingqing01 已提交
1528 1529
    Assumed that i-th instance in `neg_indices` is called `neg_indice`,
    for i-th instance:
M
minqiyang 已提交
1530

1531
    .. code-block:: text
C
chengduoZH 已提交
1532

Q
qingqing01 已提交
1533 1534 1535
        for id in neg_indice:
            out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][id] = 1.0
1536 1537

    Args:
Q
qingqing01 已提交
1538 1539 1540
       input (Variable): This input is a 3D LoDTensor with shape [M, P, K].
           Data type should be int32 or float32.
       matched_indices (Variable): The input matched indices
1541 1542 1543
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
Q
qingqing01 已提交
1544 1545
       negative_indices (Variable, optional): The input negative example indices
           are an optional input with shape [Neg, 1] and int32 type, where Neg is
1546
           the total number of negative example indices.
Q
qingqing01 已提交
1547 1548 1549 1550 1551
       mismatch_value (float32, optional): Fill this value to the mismatched
           location.
       name (string): The default value is None.  Normally there is no need for
           user to set this property.  For more information, please refer
           to :ref:`api_guide_Name`.
1552 1553

    Returns:
Q
qingqing01 已提交
1554 1555 1556 1557 1558 1559 1560 1561
        tuple: A tuple(out, out_weight) is returned.

        out (Variable): a 3D Tensor with shape [N, P, K] and same data type
        with `input`, N and P is the same as they are in `matched_indices`,
        K is the same as it in input of X.

        out_weight (Variable): the weight for output with the shape of [N, P, 1].
        Data type is float32.
1562 1563 1564 1565 1566

    Examples:

        .. code-block:: python

1567
            import paddle.fluid as fluid
1568 1569
            import paddle
            paddle.enable_static()
Q
qingqing01 已提交
1570
            x = fluid.data(
1571 1572 1573
                name='x',
                shape=[4, 20, 4],
                dtype='float',
Q
qingqing01 已提交
1574 1575
                lod_level=1)
            matched_id = fluid.data(
1576 1577
                name='indices',
                shape=[8, 20],
Q
qingqing01 已提交
1578
                dtype='int32')
1579 1580 1581 1582
            trg, trg_weight = fluid.layers.target_assign(
                x,
                matched_id,
                mismatch_value=0)
1583 1584
    """
    helper = LayerHelper('target_assign', **locals())
X
Xin Pan 已提交
1585 1586
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_weight = helper.create_variable_for_type_inference(dtype='float32')
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
    helper.append_op(
        type='target_assign',
        inputs={
            'X': input,
            'MatchIndices': matched_indices,
            'NegIndices': negative_indices,
        },
        outputs={'Out': out, 'OutWeight': out_weight},
        attrs={'mismatch_value': mismatch_value},
    )
1597 1598 1599
    return out, out_weight


1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
def ssd_loss(
    location,
    confidence,
    gt_box,
    gt_label,
    prior_box,
    prior_box_var=None,
    background_label=0,
    overlap_threshold=0.5,
    neg_pos_ratio=3.0,
    neg_overlap=0.5,
    loc_loss_weight=1.0,
    conf_loss_weight=1.0,
    match_type='per_prediction',
    mining_type='max_negative',
    normalize=True,
    sample_size=None,
):
1618
    r"""
1619 1620 1621
	:alias_main: paddle.nn.functional.ssd_loss
	:alias: paddle.nn.functional.ssd_loss,paddle.nn.functional.loss.ssd_loss
	:old_api: paddle.fluid.layers.ssd_loss
S
swtkiwi 已提交
1622

Y
yuyang18 已提交
1623
    **Multi-box loss layer for object detection algorithm of SSD**
1624

翟飞跃 已提交
1625 1626
    This layer is to compute detection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth bounding
1627 1628 1629 1630
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
1631
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1632

1633
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
1634

T
tianshuo78520a 已提交
1635
      1.2 Compute matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1636

1637
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
1638

1639
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
1640

1641
      2.2. Compute confidence loss.
Y
yuyang18 已提交
1642

1643 1644
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
1645

1646
    4. Assign classification and regression targets
Y
yuyang18 已提交
1647

1648
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
1649

1650
      4.2. Assign regression targets.
Y
yuyang18 已提交
1651

1652
      4.3. Assign classification targets.
Y
yuyang18 已提交
1653

1654
    5. Compute the overall objective loss.
Y
yuyang18 已提交
1655

1656
      5.1 Compute confidence loss.
Y
yuyang18 已提交
1657

1658
      5.2 Compute localization loss.
Y
yuyang18 已提交
1659

1660 1661 1662 1663 1664 1665
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
1666 1667
            the layout is [xmin, ymin, xmax, ymax].The data type is float32 or
            float64.
1668 1669
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
1670 1671
            `location`, C is the class number.The data type is float32 or
            float64.
翟飞跃 已提交
1672
        gt_box (Variable): The ground-truth bounding boxes (bboxes) are a 2D
1673
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
1674
            bboxes of mini-batch input.The data type is float32 or float64.
1675
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
1676 1677 1678
            with shape [Ng, 1].Ng is the total number of ground-truth bboxes of
            mini-batch input, 1 is the number of class. The data type is float32
            or float64.
1679
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
1680 1681
            Np and 4 are the same as they are in `location`. The data type is
            float32 or float64.
1682
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
1683
            with shape [Np, 4]. Np and 4 are the same as they are in `prior_box`
1684 1685
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
1686 1687
            'overlap_threshold' to determine the extra matching bboxes when finding \
            matched boxes. 0.5 by default.
1688
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
翟飞跃 已提交
1689
            boxes, used only when mining_type is 'max_negative', 3.0 by default.
1690
        neg_overlap (float): The negative overlap upper bound for the unmatched
1691
            predictions. Use only when mining_type is 'max_negative',
1692 1693 1694 1695
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
翟飞跃 已提交
1696
            be 'bipartite' or 'per_prediction', 'per_prediction' by default.
1697 1698
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
1699
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
1700
            of output locations, True by default.
1701 1702
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
1703 1704

    Returns:
1705 1706 1707
        Variable(Tensor):  The weighted sum of the localization loss and confidence loss, \
        with shape [N * Np, 1], N and Np are the same as they are in
        `location`.The data type is float32 or float64.
1708 1709

    Raises:
Y
yuyang18 已提交
1710 1711
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
1712 1713

    Examples:
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732

        .. code-block:: python

            import paddle.fluid as fluid
            pb = fluid.data(
                           name='prior_box',
                           shape=[10, 4],
                           dtype='float32')
            pbv = fluid.data(
                           name='prior_box_var',
                           shape=[10, 4],
                           dtype='float32')
            loc = fluid.data(name='target_box', shape=[10, 4], dtype='float32')
            scores = fluid.data(name='scores', shape=[10, 21], dtype='float32')
            gt_box = fluid.data(
                 name='gt_box', shape=[4], lod_level=1, dtype='float32')
            gt_label = fluid.data(
                 name='gt_label', shape=[1], lod_level=1, dtype='float32')
            loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
1733 1734 1735 1736 1737 1738 1739
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape
G
merge  
gongweibao 已提交
1740
    conf_shape = nn.shape(confidence)
1741 1742

    def __reshape_to_2d(var):
1743
        return nn.flatten(x=var, axis=2)
1744

T
tianshuo78520a 已提交
1745
    # 1. Find matched bounding box by prior box.
1746 1747
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
T
tianshuo78520a 已提交
1748
    #   1.2 Compute matched bounding box by bipartite matching algorithm.
1749 1750 1751
    matched_indices, matched_dist = bipartite_match(
        iou, match_type, overlap_threshold
    )
1752 1753 1754

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
1755 1756 1757
    gt_label = nn.reshape(
        x=gt_label, shape=(len(gt_label.shape) - 1) * (0,) + (-1, 1)
    )
1758
    gt_label.stop_gradient = True
1759 1760 1761
    target_label, _ = target_assign(
        gt_label, matched_indices, mismatch_value=background_label
    )
1762 1763 1764 1765 1766
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
1767
    target_label.stop_gradient = True
1768
    conf_loss = softmax_with_cross_entropy(confidence, target_label)
1769
    # 3. Mining hard examples
G
merge  
gongweibao 已提交
1770
    actual_shape = nn.slice(conf_shape, axes=[0], starts=[0], ends=[2])
1771
    actual_shape.stop_gradient = True
1772 1773
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
1774 1775 1776
    conf_loss = nn.reshape(
        x=conf_loss, shape=(-1, 0), actual_shape=actual_shape
    )
1777
    conf_loss.stop_gradient = True
X
Xin Pan 已提交
1778
    neg_indices = helper.create_variable_for_type_inference(dtype='int32')
1779
    dtype = matched_indices.dtype
X
Xin Pan 已提交
1780
    updated_matched_indices = helper.create_variable_for_type_inference(
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
        dtype=dtype
    )
    helper.append_op(
        type='mine_hard_examples',
        inputs={
            'ClsLoss': conf_loss,
            'LocLoss': None,
            'MatchIndices': matched_indices,
            'MatchDist': matched_dist,
        },
        outputs={
            'NegIndices': neg_indices,
            'UpdatedMatchIndices': updated_matched_indices,
        },
        attrs={
            'neg_pos_ratio': neg_pos_ratio,
            'neg_dist_threshold': neg_overlap,
            'mining_type': mining_type,
            'sample_size': sample_size,
        },
    )
1802 1803 1804

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
1805 1806 1807 1808 1809 1810
    encoded_bbox = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=gt_box,
        code_type='encode_center_size',
    )
1811 1812
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
1813 1814
        encoded_bbox, updated_matched_indices, mismatch_value=background_label
    )
1815 1816 1817 1818 1819
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
1820 1821
        mismatch_value=background_label,
    )
1822 1823 1824 1825 1826

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
1827

1828
    conf_loss = softmax_with_cross_entropy(confidence, target_label)
1829 1830 1831
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

1832 1833 1834 1835
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

1836 1837 1838 1839 1840 1841 1842 1843
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

1844 1845 1846 1847
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

1848 1849
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
1850
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
1851 1852 1853
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
    loss = nn.reshape(x=loss, shape=(-1, 0), actual_shape=actual_shape)
1854 1855 1856 1857 1858
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

1859
    return loss
C
chengduoZH 已提交
1860 1861


Z
zhiboniu 已提交
1862 1863 1864 1865 1866
def prior_box(
    input,
    image,
    min_sizes,
    max_sizes=None,
1867
    aspect_ratios=[1.0],
Z
zhiboniu 已提交
1868 1869 1870 1871 1872 1873 1874 1875
    variance=[0.1, 0.1, 0.2, 0.2],
    flip=False,
    clip=False,
    steps=[0.0, 0.0],
    offset=0.5,
    name=None,
    min_max_aspect_ratios_order=False,
):
1876
    """
S
swtkiwi 已提交
1877

R
ruri 已提交
1878
    This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
1879 1880 1881 1882 1883
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

R
ruri 已提交
1884
    Parameters:
T
tianshuo78520a 已提交
1885
       input(Variable): 4-D tensor(NCHW), the data type should be float32 or float64.
R
ruri 已提交
1886 1887 1888 1889
       image(Variable): 4-D tensor(NCHW), the input image data of PriorBoxOp,
            the data type should be float32 or float64.
       min_sizes(list|tuple|float): the min sizes of generated prior boxes.
       max_sizes(list|tuple|None): the max sizes of generated prior boxes.
1890
            Default: None.
R
ruri 已提交
1891
       aspect_ratios(list|tuple|float): the aspect ratios of generated
1892
            prior boxes. Default: [1.].
1893 1894 1895 1896
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
翟飞跃 已提交
1897
       step(list|tuple): Prior boxes step across width and height, If
R
ruri 已提交
1898 1899
            step[0] equals to 0.0 or step[1] equals to 0.0, the prior boxes step across
            height or weight of the input will be automatically calculated.
1900
            Default: [0., 0.]
1901
       offset(float): Prior boxes center offset. Default: 0.5
1902
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1903
            in order of [min, max, aspect_ratios], which is consistent with
1904 1905 1906
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
R
ruri 已提交
1907
       name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1908 1909

    Returns:
R
ruri 已提交
1910
        Tuple: A tuple with two Variable (boxes, variances)
Q
update  
qiaolongfei 已提交
1911

R
ruri 已提交
1912
        boxes(Variable): the output prior boxes of PriorBox.
1913
        4-D tensor, the layout is [H, W, num_priors, 4].
Q
update  
qiaolongfei 已提交
1914
        H is the height of input, W is the width of input,
R
ruri 已提交
1915
        num_priors is the total box count of each position of input.
Q
update  
qiaolongfei 已提交
1916

R
ruri 已提交
1917
        variances(Variable): the expanded variances of PriorBox.
1918
        4-D tensor, the layput is [H, W, num_priors, 4].
Q
update  
qiaolongfei 已提交
1919
        H is the height of input, W is the width of input
R
ruri 已提交
1920
        num_priors is the total box count of each position of input
1921 1922 1923

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1924

1925 1926 1927
            #declarative mode
            import paddle.fluid as fluid
            import numpy as np
1928 1929
            import paddle
            paddle.enable_static()
1930 1931 1932
            input = fluid.data(name="input", shape=[None,3,6,9])
            image = fluid.data(name="image", shape=[None,3,9,12])
            box, var = fluid.layers.prior_box(
R
ruri 已提交
1933 1934
                 input=input,
                 image=image,
1935
                 min_sizes=[100.],
R
ruri 已提交
1936 1937 1938
                 clip=True,
                 flip=True)

1939 1940 1941
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
1942

1943 1944 1945
            # prepare a batch of data
            input_data = np.random.rand(1,3,6,9).astype("float32")
            image_data = np.random.rand(1,3,9,12).astype("float32")
1946

1947
            box_out, var_out = exe.run(fluid.default_main_program(),
R
ruri 已提交
1948 1949 1950
                feed={"input":input_data,"image":image_data},
                fetch_list=[box,var],
                return_numpy=True)
1951

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
            # print(box_out.shape)
            # (6, 9, 1, 4)
            # print(var_out.shape)
            # (6, 9, 1, 4)

            # imperative mode
            import paddle.fluid.dygraph as dg

            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                image = dg.to_variable(image_data)
                box, var = fluid.layers.prior_box(
                    input=input,
                    image=image,
                    min_sizes=[100.],
                    clip=True,
                    flip=True)
                # print(box.shape)
                # [6L, 9L, 1L, 4L]
R
ruri 已提交
1971
                # print(var.shape)
1972
                # [6L, 9L, 1L, 4L]
R
ruri 已提交
1973

1974
    """
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
    return paddle.vision.ops.prior_box(
        input=input,
        image=image,
        min_sizes=min_sizes,
        max_sizes=max_sizes,
        aspect_ratios=aspect_ratios,
        variance=variance,
        flip=flip,
        clip=clip,
        steps=steps,
        offset=offset,
        min_max_aspect_ratios_order=min_max_aspect_ratios_order,
        name=name,
1988
    )
1989 1990


1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
def density_prior_box(
    input,
    image,
    densities=None,
    fixed_sizes=None,
    fixed_ratios=None,
    variance=[0.1, 0.1, 0.2, 0.2],
    clip=False,
    steps=[0.0, 0.0],
    offset=0.5,
    flatten_to_2d=False,
    name=None,
):
2004
    r"""
R
ruri 已提交
2005

2006 2007 2008 2009 2010 2011
    This op generates density prior boxes for SSD(Single Shot MultiBox Detector)
    algorithm. Each position of the input produce N prior boxes, N is
    determined by the count of densities, fixed_sizes and fixed_ratios.
    Boxes center at grid points around each input position is generated by
    this operator, and the grid points is determined by densities and
    the count of density prior box is determined by fixed_sizes and fixed_ratios.
R
ruri 已提交
2012
    Obviously, the number of fixed_sizes is equal to the number of densities.
2013

R
ruri 已提交
2014
    For densities_i in densities:
2015

R
ruri 已提交
2016
    .. math::
R
ruri 已提交
2017

R
ruri 已提交
2018 2019 2020 2021 2022 2023 2024
        N\_density_prior\_box = SUM(N\_fixed\_ratios * densities\_i^2)

    N_density_prior_box is the number of density_prior_box and N_fixed_ratios is the number of fixed_ratios.

    Parameters:
       input(Variable): 4-D tensor(NCHW), the data type should be float32 of float64.
       image(Variable): 4-D tensor(NCHW), the input image data of PriorBoxOp, the data type should be float32 or float64.
R
ruri 已提交
2025
            the layout is NCHW.
2026 2027
       densities(list|tuple|None): The densities of generated density prior
            boxes, this attribute should be a list or tuple of integers.
R
ruri 已提交
2028
            Default: None.
R
ruri 已提交
2029
       fixed_sizes(list|tuple|None): The fixed sizes of generated density
2030
            prior boxes, this attribute should a list or tuple of same
R
ruri 已提交
2031
            length with :attr:`densities`. Default: None.
R
ruri 已提交
2032
       fixed_ratios(list|tuple|None): The fixed ratios of generated density
R
ruri 已提交
2033 2034 2035
            prior boxes, if this attribute is not set and :attr:`densities`
            and :attr:`fix_sizes` is set, :attr:`aspect_ratios` will be used
            to generate density prior boxes.
R
ruri 已提交
2036
       variance(list|tuple): The variances to be encoded in density prior boxes.
R
ruri 已提交
2037
            Default:[0.1, 0.1, 0.2, 0.2].
R
ruri 已提交
2038
       clip(bool): Whether to clip out of boundary boxes. Default: False.
翟飞跃 已提交
2039
       step(list|tuple): Prior boxes step across width and height, If
R
ruri 已提交
2040 2041
            step[0] equals 0.0 or step[1] equals 0.0, the density prior boxes step across
            height or weight of the input will be automatically calculated.
R
ruri 已提交
2042 2043
            Default: [0., 0.]
       offset(float): Prior boxes center offset. Default: 0.5
2044 2045
       flatten_to_2d(bool): Whether to flatten output prior boxes and variance
           to 2D shape, the second dim is 4. Default: False.
R
ruri 已提交
2046
       name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
2047

R
ruri 已提交
2048
    Returns:
R
ruri 已提交
2049
        Tuple: A tuple with two Variable (boxes, variances)
R
ruri 已提交
2050 2051

        boxes: the output density prior boxes of PriorBox.
R
ruri 已提交
2052 2053 2054
        4-D tensor, the layout is [H, W, num_priors, 4] when flatten_to_2d is False.
        2-D tensor, the layout is [H * W * num_priors, 4] when flatten_to_2d is True.
        H is the height of input, W is the width of input, and num_priors is the total box count of each position of input.
R
ruri 已提交
2055 2056

        variances: the expanded variances of PriorBox.
R
ruri 已提交
2057 2058 2059
        4-D tensor, the layout is [H, W, num_priors, 4] when flatten_to_2d is False.
        2-D tensor, the layout is [H * W * num_priors, 4] when flatten_to_2d is True.
        H is the height of input, W is the width of input, and num_priors is the total box count of each position of input.
R
ruri 已提交
2060 2061 2062


    Examples:
R
ruri 已提交
2063

R
ruri 已提交
2064 2065
        .. code-block:: python

R
ruri 已提交
2066
            #declarative mode
R
ruri 已提交
2067

R
ruri 已提交
2068 2069
            import paddle.fluid as fluid
            import numpy as np
2070 2071
            import paddle
            paddle.enable_static()
R
ruri 已提交
2072

R
ruri 已提交
2073 2074 2075
            input = fluid.data(name="input", shape=[None,3,6,9])
            image = fluid.data(name="image", shape=[None,3,9,12])
            box, var = fluid.layers.density_prior_box(
R
ruri 已提交
2076 2077 2078 2079 2080 2081 2082 2083
                 input=input,
                 image=image,
                 densities=[4, 2, 1],
                 fixed_sizes=[32.0, 64.0, 128.0],
                 fixed_ratios=[1.],
                 clip=True,
                 flatten_to_2d=True)

R
ruri 已提交
2084 2085 2086
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
2087

R
ruri 已提交
2088 2089 2090 2091 2092 2093
            # prepare a batch of data
            input_data = np.random.rand(1,3,6,9).astype("float32")
            image_data = np.random.rand(1,3,9,12).astype("float32")

            box_out, var_out = exe.run(
                fluid.default_main_program(),
R
ruri 已提交
2094
                feed={"input":input_data,
R
ruri 已提交
2095
                      "image":image_data},
R
ruri 已提交
2096 2097 2098
                fetch_list=[box,var],
                return_numpy=True)

R
ruri 已提交
2099 2100 2101 2102
            # print(box_out.shape)
            # (1134, 4)
            # print(var_out.shape)
            # (1134, 4)
R
ruri 已提交
2103 2104


R
ruri 已提交
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
            #imperative mode
            import paddle.fluid.dygraph as dg

            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                image = dg.to_variable(image_data)
                box, var = fluid.layers.density_prior_box(
                    input=input,
                    image=image,
                    densities=[4, 2, 1],
                    fixed_sizes=[32.0, 64.0, 128.0],
                    fixed_ratios=[1.],
                    clip=True)

                # print(box.shape)
                # [6L, 9L, 21L, 4L]
                # print(var.shape)
                # [6L, 9L, 21L, 4L]
R
ruri 已提交
2123

R
ruri 已提交
2124 2125 2126
    """
    helper = LayerHelper("density_prior_box", **locals())
    dtype = helper.input_dtype()
2127 2128 2129
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'density_prior_box'
    )
R
ruri 已提交
2130 2131

    def _is_list_or_tuple_(data):
2132
        return isinstance(data, list) or isinstance(data, tuple)
R
ruri 已提交
2133

2134 2135 2136
    check_type(densities, 'densities', (list, tuple), 'density_prior_box')
    check_type(fixed_sizes, 'fixed_sizes', (list, tuple), 'density_prior_box')
    check_type(fixed_ratios, 'fixed_ratios', (list, tuple), 'density_prior_box')
R
ruri 已提交
2137 2138
    if len(densities) != len(fixed_sizes):
        raise ValueError('densities and fixed_sizes length should be euqal.')
2139

R
ruri 已提交
2140
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
2141 2142 2143 2144
        raise ValueError(
            'steps should be a list or tuple ',
            'with length 2, (step_width, step_height).',
        )
R
ruri 已提交
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156

    densities = list(map(int, densities))
    fixed_sizes = list(map(float, fixed_sizes))
    fixed_ratios = list(map(float, fixed_ratios))
    steps = list(map(float, steps))

    attrs = {
        'variances': variance,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
        'offset': offset,
2157 2158 2159 2160
        'densities': densities,
        'fixed_sizes': fixed_sizes,
        'fixed_ratios': fixed_ratios,
        'flatten_to_2d': flatten_to_2d,
R
ruri 已提交
2161 2162 2163 2164 2165
    }
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="density_prior_box",
2166 2167
        inputs={"Input": input, "Image": image},
        outputs={"Boxes": box, "Variances": var},
2168 2169
        attrs=attrs,
    )
R
ruri 已提交
2170 2171 2172 2173 2174
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


2175
@static_only
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
def multi_box_head(
    inputs,
    image,
    base_size,
    num_classes,
    aspect_ratios,
    min_ratio=None,
    max_ratio=None,
    min_sizes=None,
    max_sizes=None,
    steps=None,
    step_w=None,
    step_h=None,
    offset=0.5,
    variance=[0.1, 0.1, 0.2, 0.2],
    flip=True,
    clip=False,
    kernel_size=1,
    pad=0,
    stride=1,
    name=None,
    min_max_aspect_ratios_order=False,
):
C
chengduoZH 已提交
2199
    """
2200
        :api_attr: Static Graph
S
swtkiwi 已提交
2201

Q
qingqing01 已提交
2202 2203 2204 2205
    Base on SSD ((Single Shot MultiBox Detector) algorithm, generate prior boxes,
    regression location and classification confidence on multiple input feature
    maps, then output the concatenate results. The details of this algorithm,
    please refer the section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
2206
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
2207 2208

    Args:
Q
qingqing01 已提交
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
       inputs (list(Variable)|tuple(Variable)): The list of input variables,
           the format of all Variables are 4-D Tensor, layout is NCHW.
           Data type should be float32 or float64.
       image (Variable): The input image, layout is NCHW. Data type should be
           the same as inputs.
       base_size(int): the base_size is input image size. When len(inputs) > 2
           and `min_size` and `max_size` are None, the `min_size` and `max_size`
           are calculated by `baze_size`, 'min_ratio' and `max_ratio`. The
           formula is as follows:

              ..  code-block:: text

                  min_sizes = []
                  max_sizes = []
                  step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
2224
                  for ratio in range(min_ratio, max_ratio + 1, step):
Q
qingqing01 已提交
2225 2226 2227 2228 2229
                      min_sizes.append(base_size * ratio / 100.)
                      max_sizes.append(base_size * (ratio + step) / 100.)
                      min_sizes = [base_size * .10] + min_sizes
                      max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
2230
       num_classes(int): The number of classes.
Q
qingqing01 已提交
2231 2232
       aspect_ratios(list(float) | tuple(float)): the aspect ratios of generated
           prior boxes. The length of input and aspect_ratios must be equal.
C
chengduoZH 已提交
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
2252
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
2253 2254 2255 2256 2257
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
Q
qingqing01 已提交
2258 2259 2260
       name(str): The default value is None.  Normally there is no need
           for user to set this property.  For more information, please
           refer to :ref:`api_guide_Name`.
2261
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
2262
            in order of [min, max, aspect_ratios], which is consistent with
2263
            Caffe. Please note, this order affects the weights order of
T
tianshuo78520a 已提交
2264
            convolution layer followed by and does not affect the final
2265
            detection results. Default: False.
C
chengduoZH 已提交
2266 2267

    Returns:
Q
update  
qiaolongfei 已提交
2268 2269
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

Q
qingqing01 已提交
2270 2271 2272
        mbox_loc (Variable): The predicted boxes' location of the inputs. The
        layout is [N, num_priors, 4], where N is batch size, ``num_priors``
        is the number of prior boxes. Data type is the same as input.
Q
update  
qiaolongfei 已提交
2273

Q
qingqing01 已提交
2274
        mbox_conf (Variable): The predicted boxes' confidence of the inputs.
2275
        The layout is [N, num_priors, C], where ``N`` and ``num_priors``
Q
qingqing01 已提交
2276 2277
        has the same meaning as above. C is the number of Classes.
        Data type is the same as input.
Q
update  
qiaolongfei 已提交
2278

Q
qingqing01 已提交
2279 2280 2281
        boxes (Variable): the output prior boxes. The layout is [num_priors, 4].
        The meaning of num_priors is the same as above.
        Data type is the same as input.
C
chengduoZH 已提交
2282

Q
qingqing01 已提交
2283 2284
        variances (Variable): the expanded variances for prior boxes.
        The layout is [num_priors, 4]. Data type is the same as input.
C
chengduoZH 已提交
2285

Q
qingqing01 已提交
2286
    Examples 1: set min_ratio and max_ratio:
C
chengduoZH 已提交
2287
        .. code-block:: python
Q
update  
qiaolongfei 已提交
2288

2289 2290
          import paddle
          paddle.enable_static()
2291

2292 2293 2294 2295 2296 2297 2298
          images = paddle.static.data(name='data', shape=[None, 3, 300, 300], dtype='float32')
          conv1 = paddle.static.data(name='conv1', shape=[None, 512, 19, 19], dtype='float32')
          conv2 = paddle.static.data(name='conv2', shape=[None, 1024, 10, 10], dtype='float32')
          conv3 = paddle.static.data(name='conv3', shape=[None, 512, 5, 5], dtype='float32')
          conv4 = paddle.static.data(name='conv4', shape=[None, 256, 3, 3], dtype='float32')
          conv5 = paddle.static.data(name='conv5', shape=[None, 256, 2, 2], dtype='float32')
          conv6 = paddle.static.data(name='conv6', shape=[None, 128, 1, 1], dtype='float32')
2299

2300
          mbox_locs, mbox_confs, box, var = paddle.static.nn.multi_box_head(
2301
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
C
chengduoZH 已提交
2302 2303 2304 2305 2306 2307 2308 2309 2310
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
Q
qingqing01 已提交
2311 2312 2313 2314

    Examples 2: set min_sizes and max_sizes:
        .. code-block:: python

2315 2316
          import paddle
          paddle.enable_static()
Q
qingqing01 已提交
2317

2318 2319 2320 2321 2322 2323 2324
          images = paddle.static.data(name='data', shape=[None, 3, 300, 300], dtype='float32')
          conv1 = paddle.static.data(name='conv1', shape=[None, 512, 19, 19], dtype='float32')
          conv2 = paddle.static.data(name='conv2', shape=[None, 1024, 10, 10], dtype='float32')
          conv3 = paddle.static.data(name='conv3', shape=[None, 512, 5, 5], dtype='float32')
          conv4 = paddle.static.data(name='conv4', shape=[None, 256, 3, 3], dtype='float32')
          conv5 = paddle.static.data(name='conv5', shape=[None, 256, 2, 2], dtype='float32')
          conv6 = paddle.static.data(name='conv6', shape=[None, 128, 1, 1], dtype='float32')
Q
qingqing01 已提交
2325

2326
          mbox_locs, mbox_confs, box, var = paddle.static.nn.multi_box_head(
Q
qingqing01 已提交
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
            image=images,
            num_classes=21,
            min_sizes=[60.0, 105.0, 150.0, 195.0, 240.0, 285.0],
            max_sizes=[[], 150.0, 195.0, 240.0, 285.0, 300.0],
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)

C
chengduoZH 已提交
2338 2339
    """

C
chengduoZH 已提交
2340
    def _reshape_with_axis_(input, axis=1):
2341
        out = nn.flatten(x=input, axis=axis)
C
chengduoZH 已提交
2342
        return out
2343

2344
    def _is_list_or_tuple_(data):
2345
        return isinstance(data, list) or isinstance(data, tuple)
2346

C
chengduoZH 已提交
2347 2348 2349 2350
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

2351 2352
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
2353

C
chengduoZH 已提交
2354 2355 2356 2357 2358
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
2359
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
2360 2361 2362
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
2363
        for ratio in range(min_ratio, max_ratio + 1, step):
2364 2365 2366 2367
            min_sizes.append(base_size * ratio / 100.0)
            max_sizes.append(base_size * (ratio + step) / 100.0)
        min_sizes = [base_size * 0.10] + min_sizes
        max_sizes = [base_size * 0.20] + max_sizes
C
chengduoZH 已提交
2368

C
chengduoZH 已提交
2369 2370
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
2371 2372
            aspect_ratios,
            num_layer,
C
chengduoZH 已提交
2373
            'aspect_ratios should be list or tuple, and the length of inputs '
2374 2375
            'and aspect_ratios should be the same.',
        )
Z
zhongpu 已提交
2376
    if step_h is not None:
C
chengduoZH 已提交
2377
        _is_list_or_tuple_and_equal(
2378 2379
            step_h,
            num_layer,
C
chengduoZH 已提交
2380
            'step_h should be list or tuple, and the length of inputs and '
2381 2382
            'step_h should be the same.',
        )
Z
zhongpu 已提交
2383
    if step_w is not None:
C
chengduoZH 已提交
2384
        _is_list_or_tuple_and_equal(
2385 2386
            step_w,
            num_layer,
C
chengduoZH 已提交
2387
            'step_w should be list or tuple, and the length of inputs and '
2388 2389
            'step_w should be the same.',
        )
Z
zhongpu 已提交
2390
    if steps is not None:
C
chengduoZH 已提交
2391
        _is_list_or_tuple_and_equal(
2392 2393
            steps,
            num_layer,
C
chengduoZH 已提交
2394
            'steps should be list or tuple, and the length of inputs and '
2395 2396
            'step_w should be the same.',
        )
C
chengduoZH 已提交
2397 2398 2399
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
2400 2401
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
2402 2403
    box_results = []
    var_results = []
C
chengduoZH 已提交
2404 2405
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
2406 2407
        max_size = max_sizes[i]

2408
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
2409
            min_size = [min_size]
C
chengduoZH 已提交
2410 2411
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
2412 2413 2414 2415

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
2416
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
2417
                aspect_ratio = [aspect_ratio]
2418
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
2419

2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
        box, var = prior_box(
            input,
            image,
            min_size,
            max_size,
            aspect_ratio,
            variance,
            flip,
            clip,
            step,
            offset,
            None,
            min_max_aspect_ratios_order,
        )
C
chengduoZH 已提交
2434 2435 2436 2437 2438

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
2439

2440
        # get loc
Y
Yuan Gao 已提交
2441
        num_loc_output = num_boxes * 4
2442 2443 2444 2445 2446 2447 2448
        mbox_loc = nn.conv2d(
            input=input,
            num_filters=num_loc_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride,
        )
2449

2450
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
2451
        mbox_loc_flatten = nn.flatten(mbox_loc, axis=1)
Y
Yuan Gao 已提交
2452
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
2453

2454
        # get conf
C
chengduoZH 已提交
2455
        num_conf_output = num_boxes * num_classes
2456 2457 2458 2459 2460 2461 2462
        conf_loc = nn.conv2d(
            input=input,
            num_filters=num_conf_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride,
        )
2463
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
2464
        conf_loc_flatten = nn.flatten(conf_loc, axis=1)
Y
Yuan Gao 已提交
2465
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
2466

C
chengduoZH 已提交
2467 2468 2469
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
2470 2471
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
2472 2473 2474 2475 2476 2477 2478 2479 2480
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
2481
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
2482
        mbox_locs_concat = nn.reshape(mbox_locs_concat, shape=[0, -1, 4])
Y
Yuan Gao 已提交
2483
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
2484 2485 2486
        mbox_confs_concat = nn.reshape(
            mbox_confs_concat, shape=[0, -1, num_classes]
        )
C
chengduoZH 已提交
2487

2488 2489
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
2490
    return mbox_locs_concat, mbox_confs_concat, box, var
2491 2492


2493 2494 2495 2496 2497 2498 2499 2500 2501
def anchor_generator(
    input,
    anchor_sizes=None,
    aspect_ratios=None,
    variance=[0.1, 0.1, 0.2, 0.2],
    stride=None,
    offset=0.5,
    name=None,
):
2502
    """
S
swtkiwi 已提交
2503

2504 2505 2506 2507 2508 2509 2510 2511
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
W
wangguanzhong 已提交
2512 2513 2514
       input(Variable): 4-D Tensor with shape [N,C,H,W]. The input feature map.
       anchor_sizes(float32|list|tuple, optional): The anchor sizes of generated
          anchors, given in absolute pixels e.g. [64., 128., 256., 512.].
2515
          For instance, the anchor size of 64 means the area of this anchor
W
wangguanzhong 已提交
2516
          equals to 64**2. None by default.
2517
       aspect_ratios(float32|list|tuple, optional): The height / width ratios
W
wangguanzhong 已提交
2518
           of generated anchors, e.g. [0.5, 1.0, 2.0]. None by default.
2519 2520
       variance(list|tuple, optional): The variances to be used in box
           regression deltas. The data type is float32, [0.1, 0.1, 0.2, 0.2] by
W
wangguanzhong 已提交
2521 2522 2523 2524
           default.
       stride(list|tuple, optional): The anchors stride across width and height.
           The data type is float32. e.g. [16.0, 16.0]. None by default.
       offset(float32, optional): Prior boxes center offset. 0.5 by default.
2525 2526 2527
       name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and None
           by default.
2528 2529

    Returns:
W
wangguanzhong 已提交
2530 2531 2532 2533
        Tuple:

        Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4].
        H is the height of input, W is the width of input,
2534
        num_anchors is the box count of each position.
W
wangguanzhong 已提交
2535
        Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
2536

W
wangguanzhong 已提交
2537 2538 2539 2540 2541
        Variances(Variable): The expanded variances of anchors
        with a layout of [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_anchors is the box count of each position.
        Each variance is in (xcenter, ycenter, w, h) format.
2542 2543 2544 2545 2546 2547


    Examples:

        .. code-block:: python

2548
            import paddle.fluid as fluid
2549 2550 2551
            import paddle

            paddle.enable_static()
2552
            conv1 = fluid.data(name='conv1', shape=[None, 48, 16, 16], dtype='float32')
J
jerrywgz 已提交
2553
            anchor, var = fluid.layers.anchor_generator(
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
2565
        return isinstance(data, list) or isinstance(data, tuple)
2566 2567 2568 2569 2570 2571

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
2572 2573 2574 2575
        raise ValueError(
            'stride should be a list or tuple ',
            'with length 2, (stride_width, stride_height).',
        )
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
2586
        'offset': offset,
2587 2588
    }

X
Xin Pan 已提交
2589 2590
    anchor = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
2591 2592 2593
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
2594
        outputs={"Anchors": anchor, "Variances": var},
2595 2596
        attrs=attrs,
    )
2597 2598 2599
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var
2600 2601


2602 2603 2604 2605 2606 2607 2608 2609
def roi_perspective_transform(
    input,
    rois,
    transformed_height,
    transformed_width,
    spatial_scale=1.0,
    name=None,
):
W
whs 已提交
2610
    """
S
SunGaofeng 已提交
2611
    **The** `rois` **of this op should be a LoDTensor.**
W
whs 已提交
2612

2613
    ROI perspective transform op applies perspective transform to map each roi into an
S
SunGaofeng 已提交
2614 2615 2616
    rectangular region. Perspective transform is a type of transformation in linear algebra.

    Parameters:
2617
        input (Variable): 4-D Tensor, input of ROIPerspectiveTransformOp. The format of
W
whs 已提交
2618 2619
                          input tensor is NCHW. Where N is batch size, C is the
                          number of input channels, H is the height of the feature,
S
SunGaofeng 已提交
2620
                          and W is the width of the feature. The data type is float32.
2621 2622 2623 2624 2625
        rois (Variable):  2-D LoDTensor, ROIs (Regions of Interest) to be transformed.
                          It should be a 2-D LoDTensor of shape (num_rois, 8). Given as
                          [[x1, y1, x2, y2, x3, y3, x4, y4], ...], (x1, y1) is the
                          top left coordinates, and (x2, y2) is the top right
                          coordinates, and (x3, y3) is the bottom right coordinates,
S
SunGaofeng 已提交
2626
                          and (x4, y4) is the bottom left coordinates. The data type is the
2627
                          same as `input`
S
SunGaofeng 已提交
2628 2629
        transformed_height (int): The height of transformed output.
        transformed_width (int): The width of transformed output.
W
whs 已提交
2630
        spatial_scale (float): Spatial scale factor to scale ROI coords. Default: 1.0
2631 2632
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
S
SunGaofeng 已提交
2633
                             For more information, please refer to :ref:`api_guide_Name`
W
whs 已提交
2634 2635

    Returns:
S
SunGaofeng 已提交
2636
            A tuple with three Variables. (out, mask, transform_matrix)
2637 2638

            out: The output of ROIPerspectiveTransformOp which is a 4-D tensor with shape
S
SunGaofeng 已提交
2639
            (num_rois, channels, transformed_h, transformed_w). The data type is the same as `input`
2640 2641

            mask: The mask of ROIPerspectiveTransformOp which is a 4-D tensor with shape
S
SunGaofeng 已提交
2642
            (num_rois, 1, transformed_h, transformed_w). The data type is int32
2643 2644

            transform_matrix: The transform matrix of ROIPerspectiveTransformOp which is
S
SunGaofeng 已提交
2645 2646 2647 2648
            a 2-D tensor with shape (num_rois, 9). The data type is the same as `input`

    Return Type:
        tuple
W
whs 已提交
2649 2650 2651 2652

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
2653
            import paddle.fluid as fluid
2654

S
SunGaofeng 已提交
2655 2656
            x = fluid.data(name='x', shape=[100, 256, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 8], lod_level=1, dtype='float32')
2657
            out, mask, transform_matrix = fluid.layers.roi_perspective_transform(x, rois, 7, 7, 1.0)
W
whs 已提交
2658
    """
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
    check_variable_and_dtype(
        input, 'input', ['float32'], 'roi_perspective_transform'
    )
    check_variable_and_dtype(
        rois, 'rois', ['float32'], 'roi_perspective_transform'
    )
    check_type(
        transformed_height,
        'transformed_height',
        int,
        'roi_perspective_transform',
    )
    check_type(
        transformed_width, 'transformed_width', int, 'roi_perspective_transform'
    )
    check_type(
        spatial_scale, 'spatial_scale', float, 'roi_perspective_transform'
    )
2677

W
whs 已提交
2678 2679
    helper = LayerHelper('roi_perspective_transform', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2680
    out = helper.create_variable_for_type_inference(dtype)
2681 2682
    mask = helper.create_variable_for_type_inference(dtype="int32")
    transform_matrix = helper.create_variable_for_type_inference(dtype)
2683 2684
    out2in_idx = helper.create_variable_for_type_inference(dtype="int32")
    out2in_w = helper.create_variable_for_type_inference(dtype)
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
    helper.append_op(
        type="roi_perspective_transform",
        inputs={"X": input, "ROIs": rois},
        outputs={
            "Out": out,
            "Out2InIdx": out2in_idx,
            "Out2InWeights": out2in_w,
            "Mask": mask,
            "TransformMatrix": transform_matrix,
        },
        attrs={
            "transformed_height": transformed_height,
            "transformed_width": transformed_width,
            "spatial_scale": spatial_scale,
        },
    )
2701
    return out, mask, transform_matrix
W
whs 已提交
2702 2703


2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
def generate_proposal_labels(
    rpn_rois,
    gt_classes,
    is_crowd,
    gt_boxes,
    im_info,
    batch_size_per_im=256,
    fg_fraction=0.25,
    fg_thresh=0.25,
    bg_thresh_hi=0.5,
    bg_thresh_lo=0.0,
    bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
    class_nums=None,
    use_random=True,
    is_cls_agnostic=False,
    is_cascade_rcnn=False,
    max_overlap=None,
    return_max_overlap=False,
):
2723
    """
S
swtkiwi 已提交
2724

2725
    **Generate Proposal Labels of Faster-RCNN**
2726

B
buxingyuan 已提交
2727
    This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
B
buxingyuan 已提交
2728
    to sample foreground boxes and background boxes, and compute loss target.
B
buxingyuan 已提交
2729 2730 2731

    RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes
    were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction,
B
buxingyuan 已提交
2732
    If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample.
B
buxingyuan 已提交
2733 2734
    If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi,
    then it was considered as a background sample.
B
buxingyuan 已提交
2735
    After all foreground and background boxes are chosen (so called Rois),
B
buxingyuan 已提交
2736
    then we apply random sampling to make sure
B
buxingyuan 已提交
2737
    the number of foreground boxes is no more than batch_size_per_im * fg_fraction.
B
buxingyuan 已提交
2738 2739 2740 2741 2742

    For each box in Rois, we assign the classification (class label) and regression targets (box label) to it.
    Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss.

    Args:
2743 2744 2745
        rpn_rois(Variable): A 2-D LoDTensor with shape [N, 4]. N is the number of the GenerateProposalOp's output, each element is a bounding box with [xmin, ymin, xmax, ymax] format. The data type can be float32 or float64.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a class label of groundtruth. The data type must be int32.
        is_crowd(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a flag indicates whether a groundtruth is crowd. The data type must be int32.
B
buxingyuan 已提交
2746 2747 2748
        gt_boxes(Variable): A 2-D LoDTensor with shape [M, 4]. M is the number of groundtruth, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        im_info(Variable): A 2-D LoDTensor with shape [B, 3]. B is the number of input images, each element consists of im_height, im_width, im_scale.

2749 2750 2751 2752 2753 2754 2755
        batch_size_per_im(int): Batch size of rois per images. The data type must be int32.
        fg_fraction(float): Foreground fraction in total batch_size_per_im. The data type must be float32.
        fg_thresh(float): Overlap threshold which is used to chose foreground sample. The data type must be float32.
        bg_thresh_hi(float): Overlap threshold upper bound which is used to chose background sample. The data type must be float32.
        bg_thresh_lo(float): Overlap threshold lower bound which is used to chose background sample. The data type must be float32.
        bbox_reg_weights(list|tuple): Box regression weights. The data type must be float32.
        class_nums(int): Class number. The data type must be int32.
B
buxingyuan 已提交
2756
        use_random(bool): Use random sampling to choose foreground and background boxes.
2757 2758
        is_cls_agnostic(bool): bbox regression use class agnostic simply which only represent fg and bg boxes.
        is_cascade_rcnn(bool): it will filter some bbox crossing the image's boundary when setting True.
2759 2760
        max_overlap(Variable): Maximum overlap between each proposal box and ground-truth.
        return_max_overlap(bool): Whether return the maximum overlap between each sampled RoI and ground-truth.
B
Bai Yifan 已提交
2761

2762 2763
    Returns:
        tuple:
2764
        A tuple with format``(rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights, max_overlap)``.
2765 2766 2767 2768 2769 2770

        - **rois**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4]``. The data type is the same as ``rpn_rois``.
        - **labels_int32**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 1]``. The data type must be int32.
        - **bbox_targets**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The regression targets of all RoIs. The data type is the same as ``rpn_rois``.
        - **bbox_inside_weights**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The weights of foreground boxes' regression loss. The data type is the same as ``rpn_rois``.
        - **bbox_outside_weights**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The weights of regression loss. The data type is the same as ``rpn_rois``.
2771
        - **max_overlap**: 1-D LoDTensor with shape ``[P]``. P is the number of output ``rois``. The maximum overlap between each sampled RoI and ground-truth.
2772

B
Bai Yifan 已提交
2773 2774 2775
    Examples:
        .. code-block:: python

2776
            import paddle
B
Bai Yifan 已提交
2777
            import paddle.fluid as fluid
2778
            paddle.enable_static()
2779
            rpn_rois = fluid.data(name='rpn_rois', shape=[None, 4], dtype='float32')
2780 2781
            gt_classes = fluid.data(name='gt_classes', shape=[None, 1], dtype='int32')
            is_crowd = fluid.data(name='is_crowd', shape=[None, 1], dtype='int32')
2782 2783
            gt_boxes = fluid.data(name='gt_boxes', shape=[None, 4], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[None, 3], dtype='float32')
2784
            rois, labels, bbox, inside_weights, outside_weights = fluid.layers.generate_proposal_labels(
B
Bai Yifan 已提交
2785 2786 2787
                           rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
                           class_nums=10)

2788 2789 2790 2791
    """

    helper = LayerHelper('generate_proposal_labels', **locals())

2792 2793 2794 2795 2796 2797 2798 2799 2800
    check_variable_and_dtype(
        rpn_rois, 'rpn_rois', ['float32', 'float64'], 'generate_proposal_labels'
    )
    check_variable_and_dtype(
        gt_classes, 'gt_classes', ['int32'], 'generate_proposal_labels'
    )
    check_variable_and_dtype(
        is_crowd, 'is_crowd', ['int32'], 'generate_proposal_labels'
    )
2801
    if is_cascade_rcnn:
2802 2803 2804
        assert (
            max_overlap is not None
        ), "Input max_overlap of generate_proposal_labels should not be None if is_cascade_rcnn is True"
2805

X
Xin Pan 已提交
2806 2807
    rois = helper.create_variable_for_type_inference(dtype=rpn_rois.dtype)
    labels_int32 = helper.create_variable_for_type_inference(
2808 2809
        dtype=gt_classes.dtype
    )
X
Xin Pan 已提交
2810
    bbox_targets = helper.create_variable_for_type_inference(
2811 2812
        dtype=rpn_rois.dtype
    )
X
Xin Pan 已提交
2813
    bbox_inside_weights = helper.create_variable_for_type_inference(
2814 2815
        dtype=rpn_rois.dtype
    )
X
Xin Pan 已提交
2816
    bbox_outside_weights = helper.create_variable_for_type_inference(
2817 2818
        dtype=rpn_rois.dtype
    )
2819
    max_overlap_with_gt = helper.create_variable_for_type_inference(
2820 2821
        dtype=rpn_rois.dtype
    )
2822

2823 2824 2825 2826 2827 2828 2829 2830 2831
    inputs = {
        'RpnRois': rpn_rois,
        'GtClasses': gt_classes,
        'IsCrowd': is_crowd,
        'GtBoxes': gt_boxes,
        'ImInfo': im_info,
    }
    if max_overlap is not None:
        inputs['MaxOverlap'] = max_overlap
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
    helper.append_op(
        type="generate_proposal_labels",
        inputs=inputs,
        outputs={
            'Rois': rois,
            'LabelsInt32': labels_int32,
            'BboxTargets': bbox_targets,
            'BboxInsideWeights': bbox_inside_weights,
            'BboxOutsideWeights': bbox_outside_weights,
            'MaxOverlapWithGT': max_overlap_with_gt,
        },
        attrs={
            'batch_size_per_im': batch_size_per_im,
            'fg_fraction': fg_fraction,
            'fg_thresh': fg_thresh,
            'bg_thresh_hi': bg_thresh_hi,
            'bg_thresh_lo': bg_thresh_lo,
            'bbox_reg_weights': bbox_reg_weights,
            'class_nums': class_nums,
            'use_random': use_random,
            'is_cls_agnostic': is_cls_agnostic,
            'is_cascade_rcnn': is_cascade_rcnn,
        },
    )
2856 2857 2858 2859 2860 2861

    rois.stop_gradient = True
    labels_int32.stop_gradient = True
    bbox_targets.stop_gradient = True
    bbox_inside_weights.stop_gradient = True
    bbox_outside_weights.stop_gradient = True
2862
    max_overlap_with_gt.stop_gradient = True
2863

2864
    if return_max_overlap:
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
        return (
            rois,
            labels_int32,
            bbox_targets,
            bbox_inside_weights,
            bbox_outside_weights,
            max_overlap_with_gt,
        )
    return (
        rois,
        labels_int32,
        bbox_targets,
        bbox_inside_weights,
        bbox_outside_weights,
    )
2880 2881


2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
def generate_mask_labels(
    im_info,
    gt_classes,
    is_crowd,
    gt_segms,
    rois,
    labels_int32,
    num_classes,
    resolution,
):
2892
    r"""
S
swtkiwi 已提交
2893

Q
qingqing01 已提交
2894
    **Generate Mask Labels for Mask-RCNN**
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922

    This operator can be, for given the RoIs and corresponding labels,
    to sample foreground RoIs. This mask branch also has
    a :math: `K \\times M^{2}` dimensional output targets for each foreground
    RoI, which encodes K binary masks of resolution M x M, one for each of the
    K classes. This mask targets are used to compute loss of mask branch.

    Please note, the data format of groud-truth segmentation, assumed the
    segmentations are as follows. The first instance has two gt objects.
    The second instance has one gt object, this object has two gt segmentations.

        .. code-block:: python

            #[
            #  [[[229.14, 370.9, 229.14, 370.9, ...]],
            #   [[343.7, 139.85, 349.01, 138.46, ...]]], # 0-th instance
            #  [[[500.0, 390.62, ...],[115.48, 187.86, ...]]] # 1-th instance
            #]

            batch_masks = []
            for semgs in batch_semgs:
                gt_masks = []
                for semg in semgs:
                    gt_segm = []
                    for polys in semg:
                        gt_segm.append(np.array(polys).reshape(-1, 2))
                    gt_masks.append(gt_segm)
                batch_masks.append(gt_masks)
2923 2924


2925 2926 2927 2928 2929
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(place=place, feed_list=feeds)
            feeder.feed(batch_masks)

    Args:
Q
qingqing01 已提交
2930 2931 2932 2933 2934 2935
        im_info (Variable): A 2-D Tensor with shape [N, 3] and float32
            data type. N is the batch size, each element is
            [height, width, scale] of image. Image scale is
            target_size / original_size, target_size is the size after resize,
            original_size is the original image size.
        gt_classes (Variable): A 2-D LoDTensor with shape [M, 1]. Data type
T
tianshuo78520a 已提交
2936
            should be int. M is the total number of ground-truth, each
Q
qingqing01 已提交
2937 2938 2939 2940 2941 2942 2943
            element is a class label.
        is_crowd (Variable): A 2-D LoDTensor with same shape and same data type
            as gt_classes, each element is a flag indicating whether a
            groundtruth is crowd.
        gt_segms (Variable): This input is a 2D LoDTensor with shape [S, 2] and
            float32 data type, it's LoD level is 3.
            Usually users do not needs to understand LoD,
2944
            The users should return correct data format in reader.
Q
qingqing01 已提交
2945
            The LoD[0] represents the ground-truth objects number of
2946 2947 2948 2949
            each instance. LoD[1] represents the segmentation counts of each
            objects. LoD[2] represents the polygons number of each segmentation.
            S the total number of polygons coordinate points. Each element is
            (x, y) coordinate points.
Q
qingqing01 已提交
2950 2951 2952 2953
        rois (Variable): A 2-D LoDTensor with shape [R, 4] and float32 data type
            float32. R is the total number of RoIs, each element is a bounding
            box with (xmin, ymin, xmax, ymax) format in the range of original image.
        labels_int32 (Variable): A 2-D LoDTensor in shape of [R, 1] with type
T
tianshuo78520a 已提交
2954
            of int32. R is the same as it in `rois`. Each element represents
2955
            a class label of a RoI.
Q
qingqing01 已提交
2956 2957
        num_classes (int): Class number.
        resolution (int): Resolution of mask predictions.
2958 2959

    Returns:
Q
qingqing01 已提交
2960 2961 2962
        mask_rois (Variable):  A 2D LoDTensor with shape [P, 4] and same data
        type as `rois`. P is the total number of sampled RoIs. Each element
        is a bounding box with [xmin, ymin, xmax, ymax] format in range of
T
tianshuo78520a 已提交
2963
        original image size.
Q
qingqing01 已提交
2964 2965

        mask_rois_has_mask_int32 (Variable): A 2D LoDTensor with shape [P, 1]
T
tianshuo78520a 已提交
2966
        and int data type, each element represents the output mask RoI
Q
qingqing01 已提交
2967 2968 2969 2970
        index with regard to input RoIs.

        mask_int32 (Variable): A 2D LoDTensor with shape [P, K * M * M] and int
        data type, K is the classes number and M is the resolution of mask
T
tianshuo78520a 已提交
2971
        predictions. Each element represents the binary mask targets.
2972 2973 2974 2975

    Examples:
        .. code-block:: python

2976 2977
          import paddle.fluid as fluid

Q
qingqing01 已提交
2978
          im_info = fluid.data(name="im_info", shape=[None, 3],
2979
              dtype="float32")
Q
qingqing01 已提交
2980
          gt_classes = fluid.data(name="gt_classes", shape=[None, 1],
2981
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2982
          is_crowd = fluid.data(name="is_crowd", shape=[None, 1],
2983
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2984
          gt_masks = fluid.data(name="gt_masks", shape=[None, 2],
2985
              dtype="float32", lod_level=3)
2986
          # rois, roi_labels can be the output of
2987
          # fluid.layers.generate_proposal_labels.
Q
qingqing01 已提交
2988
          rois = fluid.data(name="rois", shape=[None, 4],
2989
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2990
          roi_labels = fluid.data(name="roi_labels", shape=[None, 1],
2991
              dtype="int32", lod_level=1)
2992 2993 2994 2995 2996 2997
          mask_rois, mask_index, mask_int32 = fluid.layers.generate_mask_labels(
              im_info=im_info,
              gt_classes=gt_classes,
              is_crowd=is_crowd,
              gt_segms=gt_masks,
              rois=rois,
2998
              labels_int32=roi_labels,
2999 3000 3001 3002 3003 3004 3005 3006
              num_classes=81,
              resolution=14)
    """

    helper = LayerHelper('generate_mask_labels', **locals())

    mask_rois = helper.create_variable_for_type_inference(dtype=rois.dtype)
    roi_has_mask_int32 = helper.create_variable_for_type_inference(
3007 3008
        dtype=gt_classes.dtype
    )
3009
    mask_int32 = helper.create_variable_for_type_inference(
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
        dtype=gt_classes.dtype
    )

    helper.append_op(
        type="generate_mask_labels",
        inputs={
            'ImInfo': im_info,
            'GtClasses': gt_classes,
            'IsCrowd': is_crowd,
            'GtSegms': gt_segms,
            'Rois': rois,
            'LabelsInt32': labels_int32,
        },
        outputs={
            'MaskRois': mask_rois,
            'RoiHasMaskInt32': roi_has_mask_int32,
            'MaskInt32': mask_int32,
        },
        attrs={'num_classes': num_classes, 'resolution': resolution},
    )
3030 3031 3032 3033 3034 3035 3036 3037

    mask_rois.stop_gradient = True
    roi_has_mask_int32.stop_gradient = True
    mask_int32.stop_gradient = True

    return mask_rois, roi_has_mask_int32, mask_int32


3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
def generate_proposals(
    scores,
    bbox_deltas,
    im_info,
    anchors,
    variances,
    pre_nms_top_n=6000,
    post_nms_top_n=1000,
    nms_thresh=0.5,
    min_size=0.1,
    eta=1.0,
    return_rois_num=False,
    name=None,
):
3052
    """
S
swtkiwi 已提交
3053

H
haowang101779990 已提交
3054 3055
    **Generate proposal Faster-RCNN**

3056
    This operation proposes RoIs according to each box with their
3057
    probability to be a foreground object and
3058 3059
    the box can be calculated by anchors. Bbox_deltais and scores
    to be an object are the output of RPN. Final proposals
H
haowang101779990 已提交
3060 3061 3062 3063
    could be used to train detection net.

    For generating proposals, this operation performs following steps:

3064 3065
    1. Transposes and resizes scores and bbox_deltas in size of
       (H*W*A, 1) and (H*W*A, 4)
3066
    2. Calculate box locations as proposals candidates.
H
haowang101779990 已提交
3067
    3. Clip boxes to image
3068
    4. Remove predicted boxes with small area.
H
haowang101779990 已提交
3069 3070 3071
    5. Apply NMS to get final proposals as output.

    Args:
3072 3073 3074
        scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents
            the probability for each box to be an object.
            N is batch size, A is number of anchors, H and W are height and
3075
            width of the feature map. The data type must be float32.
3076
        bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W]
T
tianshuo78520a 已提交
3077
            represents the difference between predicted box location and
3078
            anchor location. The data type must be float32.
3079
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin
3080 3081
            image information for N batch. Height and width are the input sizes
            and scale is the ratio of network input size and original size.
3082
            The data type can be float32 or float64.
3083 3084 3085
        anchors(Variable):   A 4-D Tensor represents the anchors with a layout
            of [H, W, A, 4]. H and W are height and width of the feature map,
            num_anchors is the box count of each position. Each anchor is
3086 3087
            in (xmin, ymin, xmax, ymax) format an unnormalized. The data type must be float32.
        variances(Variable): A 4-D Tensor. The expanded variances of anchors with a layout of
3088
            [H, W, num_priors, 4]. Each variance is in
3089
            (xcenter, ycenter, w, h) format. The data type must be float32.
3090
        pre_nms_top_n(float): Number of total bboxes to be kept per
3091
            image before NMS. The data type must be float32. `6000` by default.
3092
        post_nms_top_n(float): Number of total bboxes to be kept per
3093 3094
            image after NMS. The data type must be float32. `1000` by default.
        nms_thresh(float): Threshold in NMS. The data type must be float32. `0.5` by default.
3095
        min_size(float): Remove predicted boxes with either height or
3096 3097 3098
            width < min_size. The data type must be float32. `0.1` by default.
        eta(float): Apply in adaptive NMS, if adaptive `threshold > 0.5`,
            `adaptive_threshold = adaptive_threshold * eta` in each iteration.
3099
        return_rois_num(bool): When setting True, it will return a 1D Tensor with shape [N, ] that includes Rois's
F
FDInSky 已提交
3100
            num of each image in one batch. The N is the image's num. For example, the tensor has values [4,5] that represents
3101 3102 3103 3104 3105
            the first image has 4 Rois, the second image has 5 Rois. It only used in rcnn model.
            'False' by default.
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.
3106

3107 3108 3109 3110 3111 3112
    Returns:
        tuple:
        A tuple with format ``(rpn_rois, rpn_roi_probs)``.

        - **rpn_rois**: The generated RoIs. 2-D Tensor with shape ``[N, 4]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
        - **rpn_roi_probs**: The scores of generated RoIs. 2-D Tensor with shape ``[N, 1]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
B
Bai Yifan 已提交
3113 3114 3115

    Examples:
        .. code-block:: python
3116

B
Bai Yifan 已提交
3117
            import paddle.fluid as fluid
3118 3119
            import paddle
            paddle.enable_static()
3120 3121 3122 3123 3124
            scores = fluid.data(name='scores', shape=[None, 4, 5, 5], dtype='float32')
            bbox_deltas = fluid.data(name='bbox_deltas', shape=[None, 16, 5, 5], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[None, 3], dtype='float32')
            anchors = fluid.data(name='anchors', shape=[None, 5, 4, 4], dtype='float32')
            variances = fluid.data(name='variances', shape=[None, 5, 10, 4], dtype='float32')
B
Bai Yifan 已提交
3125 3126 3127
            rois, roi_probs = fluid.layers.generate_proposals(scores, bbox_deltas,
                         im_info, anchors, variances)

3128
    """
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
    return paddle.vision.ops.generate_proposals(
        scores=scores,
        bbox_deltas=bbox_deltas,
        img_size=im_info[:2],
        anchors=anchors,
        variances=variances,
        pre_nms_top_n=pre_nms_top_n,
        post_nms_top_n=post_nms_top_n,
        nms_thresh=nms_thresh,
        min_size=min_size,
        eta=eta,
        return_rois_num=return_rois_num,
        name=name,
    )
J
jerrywgz 已提交
3143 3144


J
jerrywgz 已提交
3145
def box_clip(input, im_info, name=None):
J
jerrywgz 已提交
3146
    """
3147

J
jerrywgz 已提交
3148
    Clip the box into the size given by im_info
J
jerrywgz 已提交
3149
    For each input box, The formula is given as follows:
3150

3151 3152
    .. code-block:: text

J
jerrywgz 已提交
3153
        xmin = max(min(xmin, im_w - 1), 0)
3154
        ymin = max(min(ymin, im_h - 1), 0)
J
jerrywgz 已提交
3155 3156
        xmax = max(min(xmax, im_w - 1), 0)
        ymax = max(min(ymax, im_h - 1), 0)
3157

J
jerrywgz 已提交
3158
    where im_w and im_h are computed from im_info:
3159

J
jerrywgz 已提交
3160 3161 3162 3163
    .. code-block:: text

        im_h = round(height / scale)
        im_w = round(weight / scale)
J
jerrywgz 已提交
3164 3165

    Args:
W
wangguanzhong 已提交
3166 3167
        input(Variable): The input Tensor with shape :math:`[N_1, N_2, ..., N_k, 4]`,
            the last dimension is 4 and data type is float32 or float64.
3168 3169
        im_info(Variable): The 2-D Tensor with shape [N, 3] with layout
            (height, width, scale) representing the information of image.
3170
            Height and width are the input sizes and scale is the ratio of network input
W
wangguanzhong 已提交
3171
            size and original size. The data type is float32 or float64.
3172 3173 3174 3175
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.

J
jerrywgz 已提交
3176
    Returns:
W
wangguanzhong 已提交
3177 3178
        Variable:

3179
        output(Variable): The clipped tensor with data type float32 or float64.
W
wangguanzhong 已提交
3180 3181
        The shape is same as input.

3182

J
jerrywgz 已提交
3183 3184
    Examples:
        .. code-block:: python
3185

3186
            import paddle.fluid as fluid
3187 3188
            import paddle
            paddle.enable_static()
3189 3190 3191
            boxes = fluid.data(
                name='boxes', shape=[None, 8, 4], dtype='float32', lod_level=1)
            im_info = fluid.data(name='im_info', shape=[-1 ,3])
J
jerrywgz 已提交
3192
            out = fluid.layers.box_clip(
J
jerrywgz 已提交
3193
                input=boxes, im_info=im_info)
J
jerrywgz 已提交
3194 3195
    """

3196
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'box_clip')
3197 3198 3199
    check_variable_and_dtype(
        im_info, 'im_info', ['float32', 'float64'], 'box_clip'
    )
3200

J
jerrywgz 已提交
3201
    helper = LayerHelper("box_clip", **locals())
J
jerrywgz 已提交
3202
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
3203
    inputs = {"Input": input, "ImInfo": im_info}
J
jerrywgz 已提交
3204
    helper.append_op(type="box_clip", inputs=inputs, outputs={"Output": output})
J
jerrywgz 已提交
3205

3206 3207
    return output

J
jerrywgz 已提交
3208

3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
def retinanet_detection_output(
    bboxes,
    scores,
    anchors,
    im_info,
    score_threshold=0.05,
    nms_top_k=1000,
    keep_top_k=100,
    nms_threshold=0.3,
    nms_eta=1.0,
):
3220
    """
3221
    **Detection Output Layer for the detector RetinaNet.**
3222

3223
    In the detector `RetinaNet <https://arxiv.org/abs/1708.02002>`_ , many
3224 3225 3226
    `FPN <https://arxiv.org/abs/1612.03144>`_ levels output the category
    and location predictions, this OP is to get the detection results by
    performing following steps:
3227

3228 3229 3230
    1. For each FPN level, decode box predictions according to the anchor
       boxes from at most :attr:`nms_top_k` top-scoring predictions after
       thresholding detector confidence at :attr:`score_threshold`.
3231
    2. Merge top predictions from all levels and apply multi-class non
3232 3233 3234
       maximum suppression (NMS) on them to get the final detections.

    Args:
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
        bboxes(List): A list of Tensors from multiple FPN levels represents
            the location prediction for all anchor boxes. Each element is
            a 3-D Tensor with shape :math:`[N, Mi, 4]`, :math:`N` is the
            batch size, :math:`Mi` is the number of bounding boxes from
            :math:`i`-th FPN level and each bounding box has four coordinate
            values and the layout is [xmin, ymin, xmax, ymax]. The data type
            of each element is float32 or float64.
        scores(List): A list of Tensors from multiple FPN levels represents
            the category prediction for all anchor boxes. Each element is a
            3-D Tensor with shape :math:`[N, Mi, C]`,  :math:`N` is the batch
            size, :math:`C` is the class number (**excluding background**),
            :math:`Mi` is the number of bounding boxes from :math:`i`-th FPN
            level. The data type of each element is float32 or float64.
        anchors(List): A list of Tensors from multiple FPN levels represents
            the locations of all anchor boxes. Each element is a 2-D Tensor
            with shape :math:`[Mi, 4]`, :math:`Mi` is the number of bounding
            boxes from :math:`i`-th FPN level, and each bounding box has four
3252
            coordinate values and the layout is [xmin, ymin, xmax, ymax].
3253 3254 3255
            The data type of each element is float32 or float64.
        im_info(Variable): A 2-D Tensor with shape :math:`[N, 3]` represents the size
            information of input images. :math:`N` is the batch size, the size
T
tianshuo78520a 已提交
3256
            information of each image is a 3-vector which are the height and width
3257 3258
            of the network input along with the factor scaling the origin image to
            the network input. The data type of :attr:`im_info` is float32.
3259
        score_threshold(float): Threshold to filter out bounding boxes
3260
            with a confidence score before NMS, default value is set to 0.05.
3261
        nms_top_k(int): Maximum number of detections per FPN layer to be
3262 3263
            kept according to the confidences before NMS, default value is set to
            1000.
3264
        keep_top_k(int): Number of total bounding boxes to be kept per image after
3265 3266
            NMS step. Default value is set to 100, -1 means keeping all bounding
            boxes after NMS step.
3267
        nms_threshold(float): The Intersection-over-Union(IoU) threshold used to
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
            filter out boxes in NMS.
        nms_eta(float): The parameter for adjusting :attr:`nms_threshold` in NMS.
            Default value is set to 1., which represents the value of
            :attr:`nms_threshold` keep the same in NMS. If :attr:`nms_eta` is set
            to be lower than 1. and the value of :attr:`nms_threshold` is set to
            be higher than 0.5, everytime a bounding box is filtered out,
            the adjustment for :attr:`nms_threshold` like :attr:`nms_threshold`
            = :attr:`nms_threshold` * :attr:`nms_eta`  will not be stopped until
            the actual value of :attr:`nms_threshold` is lower than or equal to
            0.5.

    **Notice**: In some cases where the image sizes are very small, it's possible
    that there is no detection if :attr:`score_threshold` are used at all
    levels. Hence, this OP do not filter out anchors from the highest FPN level
    before NMS. And the last element in :attr:`bboxes`:, :attr:`scores` and
T
tianshuo78520a 已提交
3283
    :attr:`anchors` is required to be from the highest FPN level.
3284 3285

    Returns:
3286 3287
        Variable(The data type is float32 or float64):
            The detection output is a 1-level LoDTensor with shape :math:`[No, 6]`.
3288
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
3289 3290 3291
            :math:`No` is the total number of detections in this mini-batch.
            The :math:`i`-th image has `LoD[i + 1] - LoD[i]` detected
            results, if `LoD[i + 1] - LoD[i]` is 0, the :math:`i`-th image
3292 3293 3294 3295 3296 3297
            has no detected results. If all images have no detected results,
            LoD will be set to 0, and the output tensor is empty (None).

    Examples:
        .. code-block:: python

3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
           import paddle.fluid as fluid

           bboxes_low = fluid.data(
               name='bboxes_low', shape=[1, 44, 4], dtype='float32')
           bboxes_high = fluid.data(
               name='bboxes_high', shape=[1, 11, 4], dtype='float32')
           scores_low = fluid.data(
               name='scores_low', shape=[1, 44, 10], dtype='float32')
           scores_high = fluid.data(
               name='scores_high', shape=[1, 11, 10], dtype='float32')
           anchors_low = fluid.data(
               name='anchors_low', shape=[44, 4], dtype='float32')
           anchors_high = fluid.data(
               name='anchors_high', shape=[11, 4], dtype='float32')
           im_info = fluid.data(
               name="im_info", shape=[1, 3], dtype='float32')
           nmsed_outs = fluid.layers.retinanet_detection_output(
3315 3316 3317 3318 3319 3320 3321 3322 3323
               bboxes=[bboxes_low, bboxes_high],
               scores=[scores_low, scores_high],
               anchors=[anchors_low, anchors_high],
               im_info=im_info,
               score_threshold=0.05,
               nms_top_k=1000,
               keep_top_k=100,
               nms_threshold=0.45,
               nms_eta=1.0)
3324 3325
    """

3326 3327
    check_type(bboxes, 'bboxes', (list), 'retinanet_detection_output')
    for i, bbox in enumerate(bboxes):
3328 3329 3330 3331 3332 3333
        check_variable_and_dtype(
            bbox,
            'bbox{}'.format(i),
            ['float32', 'float64'],
            'retinanet_detection_output',
        )
3334 3335
    check_type(scores, 'scores', (list), 'retinanet_detection_output')
    for i, score in enumerate(scores):
3336 3337 3338 3339 3340 3341
        check_variable_and_dtype(
            score,
            'score{}'.format(i),
            ['float32', 'float64'],
            'retinanet_detection_output',
        )
3342 3343
    check_type(anchors, 'anchors', (list), 'retinanet_detection_output')
    for i, anchor in enumerate(anchors):
3344 3345 3346 3347 3348 3349 3350 3351 3352
        check_variable_and_dtype(
            anchor,
            'anchor{}'.format(i),
            ['float32', 'float64'],
            'retinanet_detection_output',
        )
    check_variable_and_dtype(
        im_info, 'im_info', ['float32', 'float64'], 'retinanet_detection_output'
    )
3353

3354 3355
    helper = LayerHelper('retinanet_detection_output', **locals())
    output = helper.create_variable_for_type_inference(
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
        dtype=helper.input_dtype('scores')
    )
    helper.append_op(
        type="retinanet_detection_output",
        inputs={
            'BBoxes': bboxes,
            'Scores': scores,
            'Anchors': anchors,
            'ImInfo': im_info,
        },
        attrs={
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'keep_top_k': keep_top_k,
            'nms_eta': 1.0,
        },
        outputs={'Out': output},
    )
3375 3376 3377 3378
    output.stop_gradient = True
    return output


3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
def multiclass_nms(
    bboxes,
    scores,
    score_threshold,
    nms_top_k,
    keep_top_k,
    nms_threshold=0.3,
    normalized=True,
    nms_eta=1.0,
    background_label=0,
    name=None,
):
J
jerrywgz 已提交
3391
    """
S
swtkiwi 已提交
3392

3393
    **Multiclass NMS**
3394

3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.

    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
    See below for an example:

    .. code-block:: text

        if:
            box1.data = (2.0, 3.0, 7.0, 5.0) format is (xmin, ymin, xmax, ymax)
            box1.scores = (0.7, 0.2, 0.4)  which is (label0.score=0.7, label1.score=0.2, label2.cores=0.4)

            box2.data = (3.0, 4.0, 8.0, 5.0)
            box2.score = (0.3, 0.3, 0.1)

            nms_threshold = 0.3
            background_label = 0
            score_threshold = 0
3421

3422 3423 3424

        Then:
            iou = 4/11 > 0.3
3425
            out.data = [[1, 0.3, 3.0, 4.0, 8.0, 5.0],
3426
                         [2, 0.4, 2.0, 3.0, 7.0, 5.0]]
3427

3428
            Out format is (label, confidence, xmin, ymin, xmax, ymax)
3429 3430 3431 3432 3433 3434
    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
3435
                           coordinate values and the layout is
3436
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
X
xiaoting 已提交
3437
                           The data type is float32 or float64.
3438
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
3439 3440
                           M is the number of bounding boxes, C is the
                           class number. The data type is float32 or float64.
3441 3442 3443
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
3444 3445
                           N is the batch size, C is the class number, M is
                           number of bounding boxes. For each category there
3446 3447
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
3448
                           of BBoxes.The data type is float32 or float64.
3449 3450 3451
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
3452 3453
                           case with shape [M, C, 4].The data type is float32 or float64.
        background_label (int): The index of background label, the background
3454 3455 3456
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
3457
                                 low confidence score. If not provided,
3458 3459
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
T
tianshuo78520a 已提交
3460
                         the confidences after the filtering detections based
3461 3462 3463 3464 3465 3466 3467 3468 3469
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
X
xiaoting 已提交
3470
        Variable: A 2-D LoDTensor with shape [No, 6] represents the detections.
3471 3472
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
3473 3474
             Each row has 10 values:
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the
3475
             total number of detections. If there is no detected boxes for all
J
jerrywgz 已提交
3476 3477
             images, lod will be set to {1} and Out only contains one value
             which is -1.
3478 3479
             (After version 1.3, when no boxes detected, the lod is changed
             from {0} to {1})
3480

3481

3482 3483 3484
    Examples:
        .. code-block:: python

3485

3486
            import paddle.fluid as fluid
3487 3488
            import paddle
            paddle.enable_static()
X
xiaoting 已提交
3489
            boxes = fluid.data(name='bboxes', shape=[None,81, 4],
3490
                                      dtype='float32', lod_level=1)
X
xiaoting 已提交
3491
            scores = fluid.data(name='scores', shape=[None,81],
3492 3493 3494 3495 3496 3497 3498 3499 3500
                                      dtype='float32', lod_level=1)
            out = fluid.layers.multiclass_nms(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
J
jerrywgz 已提交
3501
    """
3502 3503 3504 3505 3506 3507
    check_variable_and_dtype(
        bboxes, 'BBoxes', ['float32', 'float64'], 'multiclass_nms'
    )
    check_variable_and_dtype(
        scores, 'Scores', ['float32', 'float64'], 'multiclass_nms'
    )
X
xiaoting 已提交
3508 3509 3510 3511 3512 3513 3514 3515
    check_type(score_threshold, 'score_threshold', float, 'multicalss_nms')
    check_type(nms_top_k, 'nums_top_k', int, 'multiclass_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'mutliclass_nms')
    check_type(nms_threshold, 'nms_threshold', float, 'multiclass_nms')
    check_type(normalized, 'normalized', bool, 'multiclass_nms')
    check_type(nms_eta, 'nms_eta', float, 'multiclass_nms')
    check_type(background_label, 'background_label', int, 'multiclass_nms')

J
jerrywgz 已提交
3516 3517
    helper = LayerHelper('multiclass_nms', **locals())
    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
    helper.append_op(
        type="multiclass_nms",
        inputs={'BBoxes': bboxes, 'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'normalized': normalized,
        },
        outputs={'Out': output},
    )
J
jerrywgz 已提交
3532
    output.stop_gradient = True
J
jerrywgz 已提交
3533 3534

    return output
3535 3536


3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
def locality_aware_nms(
    bboxes,
    scores,
    score_threshold,
    nms_top_k,
    keep_top_k,
    nms_threshold=0.3,
    normalized=True,
    nms_eta=1.0,
    background_label=-1,
    name=None,
):
3549 3550
    """
    **Local Aware NMS**
3551

3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
    `Local Aware NMS <https://arxiv.org/abs/1704.03155>`_ is to do locality-aware non maximum
    suppression (LANMS) on boxes and scores.

    Firstly, this operator merge box and score according their IOU
    (intersection over union). In the NMS step, this operator greedily selects a
    subset of detection bounding boxes that have high scores larger than score_threshold,
    if providing this threshold, then selects the largest nms_top_k confidences scores
    if nms_top_k is larger than -1. Then this operator pruns away boxes that have high
    IOU overlap with already selected boxes by adaptive threshold NMS based on parameters
    of nms_threshold and nms_eta.

    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): A 3-D Tensor with shape [N, M, 4 or 8 16 24 32]
                           represents the predicted locations of M bounding
                           bboxes, N is the batch size. Each bounding box
                           has four coordinate values and the layout is
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           The data type is float32 or float64.
        scores (Variable): A 3-D Tensor with shape [N, C, M] represents the
                           predicted confidence predictions. N is the batch
                           size, C is the class number, M is number of bounding
                           boxes. Now only support 1 class. For each category
                           there are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension of
                           BBoxes. The data type is float32 or float64.
        background_label (int): The index of background label, the background
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: -1
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided,
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
T
tianshuo78520a 已提交
3587
                         the confidences after the filtering detections based
3588 3589 3590
                         on score_threshold.
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
3591 3592
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the locality aware nms op, please refer to :ref:`api_guide_Name` .
                          Default: None.

    Returns:
        Variable: A 2-D LoDTensor with shape [No, 6] represents the detections.
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values:
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the
             total number of detections. If there is no detected boxes for all
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed
             from {0} to {1}). The data type is float32 or float64.


    Examples:
        .. code-block:: python


            import paddle.fluid as fluid
            boxes = fluid.data(name='bboxes', shape=[None, 81, 8],
                                      dtype='float32')
            scores = fluid.data(name='scores', shape=[None, 1, 81],
                                      dtype='float32')
            out = fluid.layers.locality_aware_nms(bboxes=boxes,
                                              scores=scores,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
    """
3627 3628 3629 3630 3631 3632
    check_variable_and_dtype(
        bboxes, 'bboxes', ['float32', 'float64'], 'locality_aware_nms'
    )
    check_variable_and_dtype(
        scores, 'scores', ['float32', 'float64'], 'locality_aware_nms'
    )
3633 3634 3635 3636 3637 3638 3639 3640
    check_type(background_label, 'background_label', int, 'locality_aware_nms')
    check_type(score_threshold, 'score_threshold', float, 'locality_aware_nms')
    check_type(nms_top_k, 'nms_top_k', int, 'locality_aware_nms')
    check_type(nms_eta, 'nms_eta', float, 'locality_aware_nms')
    check_type(nms_threshold, 'nms_threshold', float, 'locality_aware_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'locality_aware_nms')
    check_type(normalized, 'normalized', bool, 'locality_aware_nms')

3641 3642
    shape = scores.shape
    assert len(shape) == 3, "dim size of scores must be 3"
3643 3644 3645
    assert (
        shape[1] == 1
    ), "locality_aware_nms only support one class, Tensor score shape must be [N, 1, M]"
3646 3647 3648 3649 3650 3651

    helper = LayerHelper('locality_aware_nms', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    out = {'Out': output}

3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
    helper.append_op(
        type="locality_aware_nms",
        inputs={'BBoxes': bboxes, 'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'nms_eta': nms_eta,
            'normalized': normalized,
        },
        outputs={'Out': output},
    )
3667 3668 3669 3670 3671
    output.stop_gradient = True

    return output


3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
def matrix_nms(
    bboxes,
    scores,
    score_threshold,
    post_threshold,
    nms_top_k,
    keep_top_k,
    use_gaussian=False,
    gaussian_sigma=2.0,
    background_label=0,
    normalized=True,
    return_index=False,
    name=None,
):
Y
Yang Zhang 已提交
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
    """
    **Matrix NMS**

    This operator does matrix non maximum suppression (NMS).

    First selects a subset of candidate bounding boxes that have higher scores
    than score_threshold (if provided), then the top k candidate is selected if
    nms_top_k is larger than -1. Score of the remaining candidate are then
    decayed according to the Matrix NMS scheme.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): A 3-D Tensor with shape [N, M, 4] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           The data type is float32 or float64.
        scores (Variable): A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is
                           number of bounding boxes. For each category there
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes. The data type is float32 or float64.
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score.
        post_threshold (float): Threshold to filter out bounding boxes with
                                low confidence score AFTER decaying.
        nms_top_k (int): Maximum number of detections to be kept according to
                         the confidences after the filtering detections based
                         on score_threshold.
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        use_gaussian (bool): Use Gaussian as the decay function. Default: False
        gaussian_sigma (float): Sigma for Gaussian decay function. Default: 2.0
        background_label (int): The index of background label, the background
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        normalized (bool): Whether detections are normalized. Default: True
        return_index(bool): Whether return selected index. Default: False
        name(str): Name of the matrix nms op. Default: None.

    Returns:
        A tuple with two Variables: (Out, Index) if return_index is True,
        otherwise, one Variable(Out) is returned.

        Out (Variable): A 2-D LoDTensor with shape [No, 6] containing the
             detection results.
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             (After version 1.3, when no boxes detected, the lod is changed
             from {0} to {1})

        Index (Variable): A 2-D LoDTensor with shape [No, 1] containing the
            selected indices, which are absolute values cross batches.

    Examples:
        .. code-block:: python


            import paddle.fluid as fluid
            boxes = fluid.data(name='bboxes', shape=[None,81, 4],
                                      dtype='float32', lod_level=1)
            scores = fluid.data(name='scores', shape=[None,81],
                                      dtype='float32', lod_level=1)
            out = fluid.layers.matrix_nms(bboxes=boxes,
                                          scores=scores,
                                          background_label=0,
                                          score_threshold=0.5,
                                          post_threshold=0.1,
                                          nms_top_k=400,
                                          keep_top_k=200,
                                          normalized=False)
    """
Z
zhiboniu 已提交
3761
    if in_dygraph_mode():
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
        attrs = (
            score_threshold,
            nms_top_k,
            keep_top_k,
            post_threshold,
            use_gaussian,
            gaussian_sigma,
            background_label,
            normalized,
        )
Z
zhiboniu 已提交
3772

3773
        out, index = _C_ops.matrix_nms(bboxes, scores, *attrs)
Z
zhiboniu 已提交
3774 3775 3776 3777 3778
        if return_index:
            return out, index
        else:
            return out

3779 3780 3781 3782 3783 3784
    check_variable_and_dtype(
        bboxes, 'BBoxes', ['float32', 'float64'], 'matrix_nms'
    )
    check_variable_and_dtype(
        scores, 'Scores', ['float32', 'float64'], 'matrix_nms'
    )
Y
Yang Zhang 已提交
3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
    check_type(score_threshold, 'score_threshold', float, 'matrix_nms')
    check_type(post_threshold, 'post_threshold', float, 'matrix_nms')
    check_type(nms_top_k, 'nums_top_k', int, 'matrix_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'matrix_nms')
    check_type(normalized, 'normalized', bool, 'matrix_nms')
    check_type(use_gaussian, 'use_gaussian', bool, 'matrix_nms')
    check_type(gaussian_sigma, 'gaussian_sigma', float, 'matrix_nms')
    check_type(background_label, 'background_label', int, 'matrix_nms')

    helper = LayerHelper('matrix_nms', **locals())
    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    index = helper.create_variable_for_type_inference(dtype='int')
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
    helper.append_op(
        type="matrix_nms",
        inputs={'BBoxes': bboxes, 'Scores': scores},
        attrs={
            'score_threshold': score_threshold,
            'post_threshold': post_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'use_gaussian': use_gaussian,
            'gaussian_sigma': gaussian_sigma,
            'background_label': background_label,
            'normalized': normalized,
        },
        outputs={'Out': output, 'Index': index},
    )
Y
Yang Zhang 已提交
3812 3813 3814 3815 3816 3817 3818 3819
    output.stop_gradient = True

    if return_index:
        return output, index
    else:
        return output


3820 3821 3822 3823 3824 3825 3826 3827 3828
def distribute_fpn_proposals(
    fpn_rois,
    min_level,
    max_level,
    refer_level,
    refer_scale,
    rois_num=None,
    name=None,
):
3829
    r"""
3830 3831 3832 3833 3834 3835

    **This op only takes LoDTensor as input.** In Feature Pyramid Networks
    (FPN) models, it is needed to distribute all proposals into different FPN
    level, with respect to scale of the proposals, the referring scale and the
    referring level. Besides, to restore the order of proposals, we return an
    array which indicates the original index of rois in current proposals.
W
wangguanzhong 已提交
3836
    To compute FPN level for each roi, the formula is given as follows:
3837

J
jerrywgz 已提交
3838
    .. math::
3839

J
jerrywgz 已提交
3840
        roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
3841

J
jerrywgz 已提交
3842 3843 3844
        level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)

    where BBoxArea is a function to compute the area of each roi.
3845 3846

    Args:
W
wangguanzhong 已提交
3847

3848
        fpn_rois(Variable): 2-D Tensor with shape [N, 4] and data type is
W
wangguanzhong 已提交
3849
            float32 or float64. The input fpn_rois.
3850
        min_level(int32): The lowest level of FPN layer where the proposals come
W
wangguanzhong 已提交
3851 3852 3853 3854 3855
            from.
        max_level(int32): The highest level of FPN layer where the proposals
            come from.
        refer_level(int32): The referring level of FPN layer with specified scale.
        refer_scale(int32): The referring scale of FPN layer with specified level.
3856
        rois_num(Tensor): 1-D Tensor contains the number of RoIs in each image.
3857
            The shape is [B] and data type is int32. B is the number of images.
3858
            If it is not None then return a list of 1-D Tensor. Each element
3859 3860
            is the output RoIs' number of each image on the corresponding level
            and the shape is [B]. None by default.
3861 3862 3863
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.
J
jerrywgz 已提交
3864

3865
    Returns:
W
wangguanzhong 已提交
3866 3867
        Tuple:

3868 3869
        multi_rois(List) : A list of 2-D LoDTensor with shape [M, 4]
        and data type of float32 and float64. The length is
W
wangguanzhong 已提交
3870 3871
        max_level-min_level+1. The proposals in each FPN level.

3872
        restore_ind(Variable): A 2-D Tensor with shape [N, 1], N is
W
wangguanzhong 已提交
3873 3874 3875
        the number of total rois. The data type is int32. It is
        used to restore the order of fpn_rois.

3876 3877
        rois_num_per_level(List): A list of 1-D Tensor and each Tensor is
        the RoIs' number in each image on the corresponding level. The shape
3878 3879
        is [B] and data type of int32. B is the number of images

3880 3881 3882 3883

    Examples:
        .. code-block:: python

3884
            import paddle.fluid as fluid
3885 3886
            import paddle
            paddle.enable_static()
3887 3888
            fpn_rois = fluid.data(
                name='data', shape=[None, 4], dtype='float32', lod_level=1)
3889
            multi_rois, restore_ind = fluid.layers.distribute_fpn_proposals(
3890 3891 3892
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
3893 3894 3895
                refer_level=4,
                refer_scale=224)
    """
3896 3897 3898 3899 3900 3901 3902 3903 3904
    return paddle.vision.ops.distribute_fpn_proposals(
        fpn_rois=fpn_rois,
        min_level=min_level,
        max_level=max_level,
        refer_level=refer_level,
        refer_scale=refer_scale,
        rois_num=rois_num,
        name=name,
    )
3905 3906


3907
@templatedoc()
3908 3909 3910
def box_decoder_and_assign(
    prior_box, prior_box_var, target_box, box_score, box_clip, name=None
):
3911
    """
3912

3913 3914 3915 3916 3917 3918
    ${comment}
    Args:
        prior_box(${prior_box_type}): ${prior_box_comment}
        prior_box_var(${prior_box_var_type}): ${prior_box_var_comment}
        target_box(${target_box_type}): ${target_box_comment}
        box_score(${box_score_type}): ${box_score_comment}
J
jerrywgz 已提交
3919
        box_clip(${box_clip_type}): ${box_clip_comment}
3920 3921 3922
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.
W
wangguanzhong 已提交
3923

3924
    Returns:
W
wangguanzhong 已提交
3925
        Tuple:
J
jerrywgz 已提交
3926

W
wangguanzhong 已提交
3927 3928 3929
        decode_box(${decode_box_type}): ${decode_box_comment}

        output_assign_box(${output_assign_box_type}): ${output_assign_box_comment}
J
jerrywgz 已提交
3930 3931


3932 3933 3934
    Examples:
        .. code-block:: python

3935
            import paddle.fluid as fluid
3936 3937
            import paddle
            paddle.enable_static()
3938 3939 3940 3941 3942 3943 3944 3945
            pb = fluid.data(
                name='prior_box', shape=[None, 4], dtype='float32')
            pbv = fluid.data(
                name='prior_box_var', shape=[4], dtype='float32')
            loc = fluid.data(
                name='target_box', shape=[None, 4*81], dtype='float32')
            scores = fluid.data(
                name='scores', shape=[None, 81], dtype='float32')
J
jerrywgz 已提交
3946
            decoded_box, output_assign_box = fluid.layers.box_decoder_and_assign(
J
jerrywgz 已提交
3947
                pb, pbv, loc, scores, 4.135)
3948 3949

    """
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
    check_variable_and_dtype(
        prior_box, 'prior_box', ['float32', 'float64'], 'box_decoder_and_assign'
    )
    check_variable_and_dtype(
        target_box,
        'target_box',
        ['float32', 'float64'],
        'box_decoder_and_assign',
    )
    check_variable_and_dtype(
        box_score, 'box_score', ['float32', 'float64'], 'box_decoder_and_assign'
    )
3962 3963
    helper = LayerHelper("box_decoder_and_assign", **locals())

J
jerrywgz 已提交
3964
    decoded_box = helper.create_variable_for_type_inference(
3965 3966
        dtype=prior_box.dtype
    )
3967
    output_assign_box = helper.create_variable_for_type_inference(
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
        dtype=prior_box.dtype
    )

    helper.append_op(
        type="box_decoder_and_assign",
        inputs={
            "PriorBox": prior_box,
            "PriorBoxVar": prior_box_var,
            "TargetBox": target_box,
            "BoxScore": box_score,
        },
        attrs={"box_clip": box_clip},
        outputs={
            "DecodeBox": decoded_box,
            "OutputAssignBox": output_assign_box,
        },
    )
J
jerrywgz 已提交
3985
    return decoded_box, output_assign_box
3986 3987


3988 3989 3990 3991 3992 3993 3994 3995 3996
def collect_fpn_proposals(
    multi_rois,
    multi_scores,
    min_level,
    max_level,
    post_nms_top_n,
    rois_num_per_level=None,
    name=None,
):
3997
    """
3998 3999 4000

    **This OP only supports LoDTensor as input**. Concat multi-level RoIs
    (Region of Interest) and select N RoIs with respect to multi_scores.
W
wangguanzhong 已提交
4001
    This operation performs the following steps:
4002 4003 4004 4005 4006 4007 4008 4009

    1. Choose num_level RoIs and scores as input: num_level = max_level - min_level
    2. Concat multi-level RoIs and scores
    3. Sort scores and select post_nms_top_n scores
    4. Gather RoIs by selected indices from scores
    5. Re-sort RoIs by corresponding batch_id

    Args:
4010 4011
        multi_rois(list): List of RoIs to collect. Element in list is 2-D
            LoDTensor with shape [N, 4] and data type is float32 or float64,
W
wangguanzhong 已提交
4012
            N is the number of RoIs.
4013
        multi_scores(list): List of scores of RoIs to collect. Element in list
W
wangguanzhong 已提交
4014 4015
            is 2-D LoDTensor with shape [N, 1] and data type is float32 or
            float64, N is the number of RoIs.
4016 4017 4018
        min_level(int): The lowest level of FPN layer to collect
        max_level(int): The highest level of FPN layer to collect
        post_nms_top_n(int): The number of selected RoIs
4019 4020 4021 4022 4023
        rois_num_per_level(list, optional): The List of RoIs' numbers.
            Each element is 1-D Tensor which contains the RoIs' number of each
            image on each level and the shape is [B] and data type is
            int32, B is the number of images. If it is not None then return
            a 1-D Tensor contains the output RoIs' number of each image and
4024
            the shape is [B]. Default: None
4025 4026 4027
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.
W
wangguanzhong 已提交
4028

4029
    Returns:
W
wangguanzhong 已提交
4030 4031
        Variable:

4032 4033
        fpn_rois(Variable): 2-D LoDTensor with shape [N, 4] and data type is
        float32 or float64. Selected RoIs.
W
wangguanzhong 已提交
4034

4035 4036 4037
        rois_num(Tensor): 1-D Tensor contains the RoIs's number of each
        image. The shape is [B] and data type is int32. B is the number of
        images.
4038 4039 4040

    Examples:
        .. code-block:: python
4041

4042
            import paddle.fluid as fluid
4043 4044
            import paddle
            paddle.enable_static()
4045 4046 4047
            multi_rois = []
            multi_scores = []
            for i in range(4):
4048 4049
                multi_rois.append(fluid.data(
                    name='roi_'+str(i), shape=[None, 4], dtype='float32', lod_level=1))
4050
            for i in range(4):
4051 4052
                multi_scores.append(fluid.data(
                    name='score_'+str(i), shape=[None, 1], dtype='float32', lod_level=1))
4053 4054

            fpn_rois = fluid.layers.collect_fpn_proposals(
4055
                multi_rois=multi_rois,
4056
                multi_scores=multi_scores,
4057 4058
                min_level=2,
                max_level=5,
4059 4060
                post_nms_top_n=2000)
    """
4061 4062 4063 4064
    num_lvl = max_level - min_level + 1
    input_rois = multi_rois[:num_lvl]
    input_scores = multi_scores[:num_lvl]

J
Jiabin Yang 已提交
4065
    if _non_static_mode():
4066 4067 4068
        assert (
            rois_num_per_level is not None
        ), "rois_num_per_level should not be None in dygraph mode."
4069
        attrs = ('post_nms_topN', post_nms_top_n)
4070
        output_rois, rois_num = _legacy_C_ops.collect_fpn_proposals(
4071 4072
            input_rois, input_scores, rois_num_per_level, *attrs
        )
4073

4074 4075
    check_type(multi_rois, 'multi_rois', list, 'collect_fpn_proposals')
    check_type(multi_scores, 'multi_scores', list, 'collect_fpn_proposals')
4076 4077
    helper = LayerHelper('collect_fpn_proposals', **locals())
    dtype = helper.input_dtype('multi_rois')
4078 4079 4080
    check_dtype(
        dtype, 'multi_rois', ['float32', 'float64'], 'collect_fpn_proposals'
    )
4081 4082
    output_rois = helper.create_variable_for_type_inference(dtype)
    output_rois.stop_gradient = True
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093

    inputs = {
        'MultiLevelRois': input_rois,
        'MultiLevelScores': input_scores,
    }
    outputs = {'FpnRois': output_rois}
    if rois_num_per_level is not None:
        inputs['MultiLevelRoIsNum'] = rois_num_per_level
        rois_num = helper.create_variable_for_type_inference(dtype='int32')
        rois_num.stop_gradient = True
        outputs['RoisNum'] = rois_num
4094 4095 4096 4097 4098 4099
    helper.append_op(
        type='collect_fpn_proposals',
        inputs=inputs,
        outputs=outputs,
        attrs={'post_nms_topN': post_nms_top_n},
    )
4100 4101
    if rois_num_per_level is not None:
        return output_rois, rois_num
4102
    return output_rois