io.py 34.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import multiprocessing
P
peizhilin 已提交
16
import os
17
import sys
Y
yuyang18 已提交
18
import threading
D
dzhwinter 已提交
19

Y
yuyang18 已提交
20
from ..data_feeder import DataFeeder
21
from .control_flow import BlockGuard
Y
yuyang18 已提交
22
from .. import core
Y
Refine  
Yu Yang 已提交
23
from ..executor import global_scope
24 25 26 27 28 29 30 31
from ..framework import (
    convert_np_dtype_to_dtype_,
    default_main_program,
    default_startup_program,
    program_guard,
    Program,
    Variable,
)
Y
yuyang18 已提交
32 33
from ..layer_helper import LayerHelper
from ..unique_name import generate as unique_name
34

35
import logging
36
from ..data_feeder import check_dtype, check_type
37
from paddle.fluid.framework import static_only
38 39 40 41 42
from ..framework import (
    _get_paddle_place,
    _current_expected_place,
    _set_expected_place,
)
Y
Yu Yang 已提交
43

Y
Yu Yang 已提交
44
__all__ = [
45 46 47 48 49 50
    'data',
    'read_file',
    'double_buffer',
    'py_reader',
    'create_py_reader_by_data',
    'load',
Y
Yu Yang 已提交
51
]
Y
Yu Yang 已提交
52 53


54
@static_only
55 56 57 58 59 60 61 62 63
def data(
    name,
    shape,
    append_batch_size=True,
    dtype='float32',
    lod_level=0,
    type=core.VarDesc.VarType.LOD_TENSOR,
    stop_gradient=True,
):
Y
Yu Yang 已提交
64
    """
K
kavyasrinet 已提交
65
    **Data Layer**
Y
Yu Yang 已提交
66

G
guofei 已提交
67 68
    This operator creates the global variable. The global variables can be
    accessed by all the following operators in the graph.
Y
Yu Yang 已提交
69

70 71
    Note:
        :code:`paddle.fluid.layers.data` is deprecated as it will be removed in
G
guofei 已提交
72
        a later version. Please use :code:`paddle.fluid.data` .
Y
Yu Yang 已提交
73

74
        This :code:`paddle.fluid.layers.data` set shape and dtype at compile
T
tianshuo78520a 已提交
75
        time but does NOT check the shape or the dtype of fed data, the
76
        :code:`paddle.fluid.data` checks the shape and the dtype of data fed
G
guofei 已提交
77
        by Executor or ParallelExecutor during run time.
78

79 80 81 82 83 84 85 86 87 88
        To feed variable size inputs, users can feed variable size inputs
        directly to this :code:`paddle.fluid.layers.data` and PaddlePaddle will
        fit the size accordingly. Or set -1 on the variable dimension when using
        :code:`paddle.fluid.data` .

        The default :code:`stop_gradient` attribute of the Variable created by
        this API is true, which means the gradient won't be passed backward
        through the data Varaible. Set :code:`var.stop_gradient = False` If
        user would like to pass backward gradient.

K
kavyasrinet 已提交
89
    Args:
G
guofei 已提交
90 91
       name(str): The name/alias of the variable, see :ref:`api_guide_Name`
            for more details.
92
       shape(list|tuple): Tuple declaring the shape. If :code:`append_batch_size` is
93
            True and there is no -1 inside :code:`shape`, it should be
G
guofei 已提交
94
            considered as the shape of the each sample. Otherwise, it should
95
            be considered as the shape of the batched data.
X
Xin Pan 已提交
96 97
       append_batch_size(bool):
          1. If true, it prepends -1 to the shape.
98
            For example if shape=[1], the resulting shape is [-1, 1]. This will
99 100 101 102 103
            be useful to set different batch size at run time.
          2. If shape contains -1, such as shape=[1, -1].
            append_batch_size will be enforced to be be False (ineffective)
            because PaddlePaddle cannot set more than 1 unknown number on the
            shape.
G
guofei 已提交
104 105 106
       dtype(np.dtype|VarType|str): The type of the data. Supported dtype: bool,
            float16, float32, float64, int8, int16, int32, int64, uint8.
       type(VarType): The output type. Supported dtype: VarType.LOD_TENSOR,
107
            VarType.SELECTED_ROWS, VarType.NCCL_ID. Default: VarType.LOD_TENSOR.
K
kavyasrinet 已提交
108
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
G
guofei 已提交
109
            Default: 0.
K
kavyasrinet 已提交
110
       stop_gradient(bool): A boolean that mentions whether gradient should flow.
111
            Default: True.
K
kavyasrinet 已提交
112 113

    Returns:
G
guofei 已提交
114 115 116 117
        The global variable that gives access to the data.

    Return Type:
        Variable
K
kavyasrinet 已提交
118 119 120 121

    Examples:
        .. code-block:: python

122
          import paddle.fluid as fluid
K
kavyasrinet 已提交
123
          data = fluid.layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
124 125
    """
    helper = LayerHelper('data', **locals())
126

127
    check_type(name, 'name', (bytes, str), 'data')
128 129
    check_type(shape, 'shape', (list, tuple), 'data')

Y
Yu Yang 已提交
130
    shape = list(shape)
131
    for i in range(len(shape)):
Y
Yu Yang 已提交
132 133 134 135 136 137 138 139 140
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1

141 142 143 144 145 146 147 148 149
    data_var = helper.create_global_variable(
        name=name,
        shape=shape,
        dtype=dtype,
        type=type,
        stop_gradient=stop_gradient,
        lod_level=lod_level,
        is_data=True,
    )
Y
Yu Yang 已提交
150
    return data_var
T
typhoonzero 已提交
151 152 153 154 155 156 157 158 159 160 161 162


class BlockGuardServ(BlockGuard):
    """
    BlockGuardServ class.

    BlockGuardServ class is used to create an op with a block in a program.
    """

    def __init__(self, server):
        if not (isinstance(server, ListenAndServ)):
            raise TypeError("BlockGuardServ takes a ListenAndServ")
163
        super().__init__(server.helper.main_program)
T
typhoonzero 已提交
164 165 166 167 168 169 170
        self.server = server

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False

        self.server.complete_op()
171
        return super().__exit__(exc_type, exc_val, exc_tb)
T
typhoonzero 已提交
172 173


174
class ListenAndServ:
T
typhoonzero 已提交
175
    """
Y
yi.wu 已提交
176
    **ListenAndServ Layer**
T
typhoonzero 已提交
177

Y
yi.wu 已提交
178 179 180 181 182 183 184 185 186
    ListenAndServ is used to create a rpc server bind and listen
    on specific TCP port, this server will run the sub-block when
    received variables from clients.

    Args:
        endpoint(string): IP:port string which the server will listen on.
        inputs(list): a list of variables that the server will get from clients.
        fan_in(int): how many client are expected to report to this server, default: 1.
        optimizer_mode(bool): whether to run the server as a parameter server, default: True.
Y
update  
yi.wu 已提交
187

Y
yi.wu 已提交
188 189 190
    Examples:
        .. code-block:: python

191
            import paddle.fluid as fluid
Y
yi.wu 已提交
192 193 194 195 196 197 198 199 200 201 202 203
            with fluid.program_guard(main):
                serv = layers.ListenAndServ(
                    "127.0.0.1:6170", ["X"], optimizer_mode=False)
                with serv.do():
                    x = layers.data(
                        shape=[32, 32],
                        dtype='float32',
                        name="X",
                        append_batch_size=False)
                    fluid.initializer.Constant(value=1.0)(x, main.global_block())
                    layers.scale(x=x, scale=10.0, out=out_var)

Y
yi.wu 已提交
204 205
            exe = fluid.Executor(place)
            exe.run(main)
T
typhoonzero 已提交
206 207
    """

Y
Yancey1989 已提交
208
    def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True):
209
        self.helper = LayerHelper("listen_and_serv")
Y
Yancey1989 已提交
210
        self.inputs = inputs
T
typhoonzero 已提交
211 212 213
        self.outputs = []
        self.endpoint = endpoint
        self.fan_in = fan_in
T
typhoonzero 已提交
214 215
        # FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
        # general.
T
WIP  
typhoonzero 已提交
216
        self.optimizer_mode = optimizer_mode
T
typhoonzero 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229

    def do(self):
        return BlockGuardServ(self)

    def get_params_and_grads(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
        # params and grads in the same order.
        params = list()
        grads = list()
        for op in current_block.ops:
            # FIXME(typhoonzero): op.inputs is None if it's cloned.
T
WIP  
typhoonzero 已提交
230 231 232 233 234 235 236 237
            if self.optimizer_mode:
                if "Grad" in op.inputs and "Param" in op.inputs:
                    params.append(op.inputs["Param"].name)
                    grads.append(op.inputs["Grad"].name)
            else:
                # simple recv mode, recv operators inputs.
                for iname in op.input_names:
                    for in_var_name in op.input(iname):
T
typhoonzero 已提交
238 239
                        params.append(parent_block.var(in_var_name))
                        grads.append(parent_block.var(in_var_name))
T
typhoonzero 已提交
240 241 242

        return params, grads

T
typhoonzero 已提交
243 244 245 246 247 248 249
    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

T
typhoonzero 已提交
250
    def complete_op(self):
251 252
        from ..incubate.fleet.parameter_server.mode import DistributedMode

T
typhoonzero 已提交
253 254 255 256 257
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        parent_block.append_op(
258
            type='listen_and_serv',
Y
Yancey1989 已提交
259
            inputs={"X": self.inputs},
T
typhoonzero 已提交
260 261 262 263
            outputs={},
            attrs={
                'endpoint': self.endpoint,
                'Fanin': self.fan_in,
264 265 266 267 268 269 270
                'optimize_blocks': [
                    current_block
                ],  # did not support multiple optimize blocks in layers
                'distributed_mode': DistributedMode.SYNC,  # did not support async now in layers
                'grad_to_block_id': [""],
            },
        )
T
typhoonzero 已提交
271 272


273
def Send(endpoints, send_vars, dummy_output=None, sync=True):
T
typhoonzero 已提交
274
    """
Y
yi.wu 已提交
275 276
    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
T
typhoonzero 已提交
277 278

    Args:
T
tianshuo78520a 已提交
279
        endpoints (str): comma separated IP:PORT pairs in the order
T
typhoonzero 已提交
280
                   of send_vars to send
Y
yi.wu 已提交
281 282
        send_vars (list): variables to send to server
        sync (bool): whether to wait the request finish
T
typhoonzero 已提交
283 284

    """
285
    assert type(send_vars) == list
T
typhoonzero 已提交
286

287 288 289 290 291
    if dummy_output is None:
        dummy_output = []
    elif isinstance(dummy_output, Variable):
        dummy_output = [dummy_output]

292
    assert type(dummy_output) == list
293

T
typhoonzero 已提交
294
    epmap = endpoints.split(",")
T
typhoonzero 已提交
295
    endpoints = list(set(epmap))
T
typhoonzero 已提交
296 297

    helper = LayerHelper("Send", **locals())
Y
Yancey1989 已提交
298
    rpc_op_role_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
Y
Yancey1989 已提交
299

300 301 302 303 304 305 306 307 308 309
    helper.append_op(
        type="send",
        inputs={"X": send_vars},
        outputs={"Out": dummy_output},
        attrs={
            "endpoints": endpoints,
            "epmap": epmap,
            rpc_op_role_name: core.op_proto_and_checker_maker.OpRole.RPC,
        },
    )
Y
yi.wu 已提交
310
    if sync:
311 312 313 314 315 316
        helper.append_op(
            type="send_barrier",
            inputs={"X": dummy_output},
            outputs={"Out": []},
            attrs={"endpoints": endpoints},
        )
317 318


319
def Recv(endpoints, get_vars, dummy_input=None, sync=True):
320
    """
Y
yi.wu 已提交
321
    Receive variables from server side
322 323

    Args:
T
tianshuo78520a 已提交
324
        endpoints (str): comma separated IP:PORT pairs in the order
325
                   of send_vars to send
Y
yi.wu 已提交
326 327
        get_vars (list): vars to get from server after send completes.
        sync (bool): whether to wait the request finish
328

Y
yi.wu 已提交
329 330
    Returns:
        list: list of received variables
331
    """
332
    assert type(get_vars) == list
333

334 335 336 337 338
    if dummy_input is None:
        dummy_input = []
    elif isinstance(dummy_input, Variable):
        dummy_input = [dummy_input]

339
    assert type(dummy_input) == list
340

341 342 343 344
    epmap = endpoints.split(",")
    endpoints = list(set(epmap))

    helper = LayerHelper("Recv", **locals())
345 346 347 348 349 350
    helper.append_op(
        type="recv",
        inputs={"X": dummy_input},
        outputs={"Out": get_vars},
        attrs={"endpoints": endpoints, "epmap": epmap},
    )
Y
yi.wu 已提交
351
    if sync:
352 353 354 355 356
        helper.append_op(
            type="fetch_barrier",
            outputs={"Out": get_vars},
            attrs={"endpoints": endpoints},
        )
Y
yi.wu 已提交
357
    return get_vars
Y
Yu Yang 已提交
358 359


Y
Refine  
Yu Yang 已提交
360 361 362 363 364 365 366 367 368 369
def monkey_patch_reader_methods(reader):
    def __get_reader__():
        scope = global_scope()
        var = scope.find_var(reader.name)
        return var.get_reader()

    def reset():
        return __get_reader__().reset()

    reader.reset = reset
Y
Yu Yang 已提交
370 371
    reader.stop_gradient = True
    reader.persistable = True
Y
Refine  
Yu Yang 已提交
372 373 374
    return reader


Y
Yu Yang 已提交
375 376 377 378
def _copy_reader_var_(block, var):
    new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
    new_var.desc.set_shapes(var.desc.shapes())
    new_var.desc.set_dtypes(var.desc.dtypes())
S
sneaxiy 已提交
379
    new_var.desc.set_lod_levels(var.desc.lod_levels())
Y
Yu Yang 已提交
380
    new_var.persistable = True
F
fengjiayi 已提交
381 382 383 384
    return new_var


def _copy_reader_create_op_(block, op):
F
fengjiayi 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
    input_param_names = op.input_names
    new_input_map = {}
    for param_name in input_param_names:
        new_input_map[param_name] = []
        arg_names = op.input(param_name)
        for arg_name in arg_names:
            new_input_map[param_name].append(block.var(arg_name))

    output_param_names = op.output_names
    new_output_map = {}
    for param_name in output_param_names:
        new_output_map[param_name] = []
        arg_names = op.output(param_name)
        for arg_name in arg_names:
            new_output_map[param_name].append(block.var(arg_name))

401 402 403 404 405 406
    new_op = block.append_op(
        type=op.type,
        inputs=new_input_map,
        outputs=new_output_map,
        attrs=op.all_attrs(),
    )
F
fengjiayi 已提交
407
    return new_op
Y
Yu Yang 已提交
408 409


410 411 412 413 414 415 416 417 418
def _py_reader(
    capacity,
    shapes,
    dtypes,
    lod_levels=None,
    name=None,
    use_double_buffer=True,
    feed_list=None,
):
Q
Qiao Longfei 已提交
419 420
    if feed_list is not None:
        if not isinstance(feed_list, list):
421 422 423 424
            raise TypeError(
                "feed_list should be a list of Variable"
                " instead of " + str(type(feed_list))
            )
Q
Qiao Longfei 已提交
425 426 427 428 429
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []
430
        need_check_feed = []
Q
Qiao Longfei 已提交
431

Q
Qiao Longfei 已提交
432 433 434 435 436 437
        for feed_data in feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
438
            need_check_feed.append(int(feed_data.desc.need_check_feed()))
Q
Qiao Longfei 已提交
439 440
    else:
        dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
441
        need_check_feed = [0 for dt in dtypes]
Q
Qiao Longfei 已提交
442 443 444 445 446 447 448 449 450
        shape_concat = []
        ranks = []

        for shape in shapes:
            shape_concat.extend(shape)
            ranks.append(len(shape))

        if lod_levels is None:
            lod_levels = [0] * len(shapes)
451
    dtype_int = [int(t) for t in dtypes]
Q
Qiao Longfei 已提交
452 453 454 455 456 457 458 459 460 461
    if name is None:
        queue_name = unique_name('lod_tensor_blocking_queue')
        reader_name = unique_name('create_py_reader')
        double_buffer_name = unique_name('double_buffer')
    else:
        queue_name = "_".join([name, "queue"])
        reader_name = "_".join([name, "reader"])
        double_buffer_name = "_".join([name, "double_buffer"])

    var = global_scope().var(queue_name)
462
    feed_queue = core.init_lod_tensor_blocking_queue(var, capacity, False)
Q
Qiao Longfei 已提交
463 464 465

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=reader_name)
466 467 468 469 470 471 472 473 474 475 476 477
    startup_blk.append_op(
        type='create_py_reader',
        inputs={'blocking_queue': [queue_name]},
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'dtypes': dtype_int,
            'need_check_feed': need_check_feed,
            'ranks': ranks,
        },
    )
Q
Qiao Longfei 已提交
478 479 480 481

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True

482 483 484
    main_prog_var = _copy_reader_var_(
        default_main_program().current_block(), startup_var
    )
Q
Qiao Longfei 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501

    reader = monkey_patch_reader_methods(main_prog_var)
    if use_double_buffer:
        double_buffer_reader = double_buffer(reader, name=double_buffer_name)
        # we return a double buffer reader. However, the reset method comes from
        # py_reader.
        double_buffer_reader.reset = reader.reset
        reader = double_buffer_reader

    # monkey patch py_reader special methods
    reader.queue = feed_queue
    current_reset_method = reader.reset
    reader.thread = None
    reader.tensor_provider = None
    reader.exited = False

    def start_provide_thread(func):
502
        def __provider_thread__(legacy_expected_place):
S
sneaxiy 已提交
503
            try:
504
                # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
L
Leo Chen 已提交
505

506 507
                _set_expected_place(legacy_expected_place)

S
sneaxiy 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
                for tensors in func():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if reader.exited:
                        break
                    feed_queue.push(array)
                    if reader.exited:
                        break
                feed_queue.close()
524
            except Exception as e:
Z
Zeng Jinle 已提交
525
                feed_queue.kill()
526
                logging.warn('Your decorated reader has raised an exception!')
527
                raise e
Q
Qiao Longfei 已提交
528

529 530 531
        reader.thread = threading.Thread(
            target=__provider_thread__, args=(_current_expected_place(),)
        )
Q
Qiao Longfei 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
        reader.thread.daemon = True
        reader.thread.start()

    def __set_tensor_provider__(func):
        reader.tensor_provider = func

    def __set_paddle_reader__(paddle_reader):
        with program_guard(Program(), Program()):
            actual_feed_list = feed_list
            if actual_feed_list is None:
                actual_feed_list = []
                counter = 0
                for dtype, shape, lod_level in zip(dtypes, shapes, lod_levels):
                    name = str(counter)
                    actual_feed_list.append(
547 548 549 550 551 552 553
                        data(
                            name=name,
                            dtype=dtype,
                            shape=shape,
                            lod_level=lod_level,
                        )
                    )
Q
Qiao Longfei 已提交
554 555
                    counter += 1

Q
Qiao Longfei 已提交
556
            data_names = [feed_data.name for feed_data in actual_feed_list]
557 558 559 560 561 562
            feeder = DataFeeder(
                feed_list=actual_feed_list, place=core.CPUPlace()
            )
            paddle_reader = feeder.decorate_reader(
                paddle_reader, multi_devices=False
            )
Q
Qiao Longfei 已提交
563 564 565

        def __tensor_provider__():
            for slots in paddle_reader():
Q
Qiao Longfei 已提交
566
                yield [slots[data_name] for data_name in data_names]
Q
Qiao Longfei 已提交
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582

        __set_tensor_provider__(__tensor_provider__)

    def __reset__():
        current_reset_method()
        if reader.thread is not None and reader.tensor_provider is not None:
            reader.exited = True
            reader.thread.join()
            reader.exited = False

    def __start__():
        start_provide_thread(reader.tensor_provider)

    reader.reset = __reset__
    reader.decorate_tensor_provider = __set_tensor_provider__
    reader.decorate_paddle_reader = __set_paddle_reader__
S
sneaxiy 已提交
583 584 585

    reader.decorate_batch_generator = __set_tensor_provider__
    reader.decorate_sample_list_generator = __set_paddle_reader__
Q
Qiao Longfei 已提交
586 587 588 589 590
    reader.start = __start__

    return reader


591 592 593
def py_reader(
    capacity, shapes, dtypes, lod_levels=None, name=None, use_double_buffer=True
):
S
sneaxiy 已提交
594
    """
595
        :api_attr: Static Graph
S
swtkiwi 已提交
596

597
    Create a Python reader for data feeding in Python
F
fengjiayi 已提交
598

G
guofei 已提交
599
    This operator returns a Reader Variable.
600 601
    The Reader provides :code:`decorate_paddle_reader()` and
    :code:`decorate_tensor_provider()` to set a Python generator as the data
602 603
    source and feed the data from the data source to the Reader Variable.
    When :code:`Executor::Run()` is invoked in C++ side, the data from the
G
guofei 已提交
604
    generator would be read automatically. Unlike :code:`DataFeeder.feed()`,
605
    the data reading process and :code:`Executor::Run()` process can run in
G
guofei 已提交
606
    parallel using :code:`py_reader`. The :code:`start()` method of the Reader
607
    should be called when each pass begins, while the :code:`reset()` method
G
guofei 已提交
608 609 610
    should be called when the pass ends and :code:`fluid.core.EOFException` raises.

    Note:
611
       :code:`Program.clone()` method cannot clone :code:`py_reader`. You can
G
guofei 已提交
612
       refer to :ref:`api_fluid_Program` for more details.
613

G
guofei 已提交
614 615
       The :code:`read_file` call needs to be in the program block of :code:`py_reader`.
       You can refer to :ref:`api_fluid_layers_read_file` for more details.
S
sneaxiy 已提交
616 617

    Args:
618
       capacity(int): The buffer capacity maintained by :code:`py_reader`.
619
       shapes(list|tuple): List of tuples which declaring data shapes. shapes[i]
G
guofei 已提交
620 621 622
            represents the i-th data shape.
       dtypes(list|tuple): List of strings which declaring data type. Supported dtype:
            bool, float16, float32, float64, int8, int16, int32, int64, uint8.
Y
yuyang18 已提交
623
       lod_levels(list|tuple): List of ints which declaring data lod_level.
G
guofei 已提交
624 625 626
       name(basestring): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
627 628
       use_double_buffer(bool): Whether use double buffer or not. The double buffer is
            for pre-reading the data of the next batch and copy the data asynchronously
G
guofei 已提交
629
            from CPU to GPU. Default is True.
S
sneaxiy 已提交
630 631

    Returns:
G
guofei 已提交
632 633 634 635
       A Reader from which we can get feeding data.

    Return Type:
       Variable
S
sneaxiy 已提交
636 637

    Examples:
638
       1. The basic usage of :code:`py_reader` is as follows:
639

640
       .. code-block:: python
641

642 643 644 645 646
         import paddle
         import paddle.fluid as fluid
         import paddle.dataset.mnist as mnist

         def network(image, label):
T
tianshuo78520a 已提交
647
             # user defined network, here a softmax regession example
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
             predict = fluid.layers.fc(input=image, size=10, act='softmax')
             return fluid.layers.cross_entropy(input=predict, label=label)

         reader = fluid.layers.py_reader(capacity=64,
                                         shapes=[(-1, 1, 28, 28), (-1, 1)],
                                         dtypes=['float32', 'int64'])
         reader.decorate_paddle_reader(
             paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
                                   buf_size=1000))

         img, label = fluid.layers.read_file(reader)
         loss = network(img, label)

         fluid.Executor(fluid.CUDAPlace(0)).run(fluid.default_startup_program())
         exe = fluid.ParallelExecutor(use_cuda=True)
         for epoch_id in range(10):
             reader.start()
H
Huihuang Zheng 已提交
665 666 667 668 669
             try:
                 while True:
                     exe.run(fetch_list=[loss.name])
             except fluid.core.EOFException:
                 reader.reset()
670 671 672 673 674 675 676 677

         fluid.io.save_inference_model(dirname='./model',
                                       feeded_var_names=[img.name, label.name],
                                       target_vars=[loss],
                                       executor=fluid.Executor(fluid.CUDAPlace(0)))

       2. When training and testing are both performed, two different
       :code:`py_reader` should be created with different names, e.g.:
S
sneaxiy 已提交
678

679
       .. code-block:: python
680

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
         import paddle
         import paddle.fluid as fluid
         import paddle.dataset.mnist as mnist

         def network(reader):
             img, label = fluid.layers.read_file(reader)
             # User defined network. Here a simple regression as example
             predict = fluid.layers.fc(input=img, size=10, act='softmax')
             loss = fluid.layers.cross_entropy(input=predict, label=label)
             return fluid.layers.mean(loss)

         # Create train_main_prog and train_startup_prog
         train_main_prog = fluid.Program()
         train_startup_prog = fluid.Program()
         with fluid.program_guard(train_main_prog, train_startup_prog):
             # Use fluid.unique_name.guard() to share parameters with test program
             with fluid.unique_name.guard():
                 train_reader = fluid.layers.py_reader(capacity=64,
                                                       shapes=[(-1, 1, 28, 28),
                                                               (-1, 1)],
                                                       dtypes=['float32', 'int64'],
                                                       name='train_reader')
                 train_reader.decorate_paddle_reader(
H
Huihuang Zheng 已提交
704 705
                     paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
                                           buf_size=500))
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
                 train_loss = network(train_reader)  # some network definition
                 adam = fluid.optimizer.Adam(learning_rate=0.01)
                 adam.minimize(train_loss)

         # Create test_main_prog and test_startup_prog
         test_main_prog = fluid.Program()
         test_startup_prog = fluid.Program()
         with fluid.program_guard(test_main_prog, test_startup_prog):
             # Use fluid.unique_name.guard() to share parameters with train program
             with fluid.unique_name.guard():
                 test_reader = fluid.layers.py_reader(capacity=32,
                                                      shapes=[(-1, 1, 28, 28), (-1, 1)],
                                                      dtypes=['float32', 'int64'],
                                                      name='test_reader')
                 test_reader.decorate_paddle_reader(paddle.batch(mnist.test(), 512))
                 test_loss = network(test_reader)

         fluid.Executor(fluid.CUDAPlace(0)).run(train_startup_prog)
         fluid.Executor(fluid.CUDAPlace(0)).run(test_startup_prog)

         train_exe = fluid.ParallelExecutor(use_cuda=True,
                                            loss_name=train_loss.name,
                                            main_program=train_main_prog)
         test_exe = fluid.ParallelExecutor(use_cuda=True,
                                           loss_name=test_loss.name,
                                           main_program=test_main_prog)
         for epoch_id in range(10):
             train_reader.start()
             try:
                 while True:
                    train_exe.run(fetch_list=[train_loss.name])
             except fluid.core.EOFException:
                 train_reader.reset()

         test_reader.start()
         try:
             while True:
                 test_exe.run(fetch_list=[test_loss.name])
         except fluid.core.EOFException:
             test_reader.reset()
S
sneaxiy 已提交
746
    """
747 748
    logging.warn(
        'paddle.fluid.layers.py_reader() may be deprecated in the near future. '
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
        'Please use paddle.fluid.io.DataLoader.from_generator() instead.'
    )
    return _py_reader(
        capacity=capacity,
        shapes=shapes,
        dtypes=dtypes,
        lod_levels=lod_levels,
        name=name,
        use_double_buffer=use_double_buffer,
    )


def create_py_reader_by_data(
    capacity, feed_list, name=None, use_double_buffer=True
):
Q
Qiao Longfei 已提交
764
    """
765
        :api_attr: Static Graph
S
swtkiwi 已提交
766

767 768 769 770 771 772 773 774 775 776 777 778 779
    The OP creates a Python reader for data feeding in Python, it is similar
    to :ref:`api_fluid_layers_py_reader` except that it can read data from
    the list of feed variables.

    Parameters:
        capacity (int): The buffer capacity maintained by :code:`py_reader`. Its unit
            is batch number. Set larger :attr:`capacity` if the reader is fast.
        feed_list (list(Variable)): The feed variables, are usually created by
            :code:`fluid.data()`.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`. Default: None.
        use_double_buffer (bool, optional): Whether use double buffer. If it's True,
            the OP would prefetch next batch data asynchronously. Default: True.
Q
Qiao Longfei 已提交
780

Q
Qiao Longfei 已提交
781
    Returns:
782
        Reader: A Reader for data feeding. The data types of read data are the same as the data types of variables of :attr:`feed_list`.
Q
Qiao Longfei 已提交
783

Q
Qiao Longfei 已提交
784
    Examples:
785
        .. code-block:: python
786

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
          import paddle
          import paddle.fluid as fluid
          import paddle.dataset.mnist as mnist

          def network(img, label):
              # User defined network. Here a simple regression as example
              predict = fluid.layers.fc(input=img, size=10, act='softmax')
              loss = fluid.layers.cross_entropy(input=predict, label=label)
              return fluid.layers.mean(loss)

          MEMORY_OPT = False
          USE_CUDA = False

          image = fluid.data(name='image', shape=[None, 1, 28, 28], dtype='float32')
          label = fluid.data(name='label', shape=[None, 1], dtype='int64')
          reader = fluid.layers.create_py_reader_by_data(capacity=64,
                                                         feed_list=[image, label])
          reader.decorate_paddle_reader(
              paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5), buf_size=500))
          img, label = fluid.layers.read_file(reader)
T
tianshuo78520a 已提交
807
          loss = network(img, label) # The definition of custom network and the loss function
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828

          place = fluid.CUDAPlace(0) if USE_CUDA else fluid.CPUPlace()
          exe = fluid.Executor(place)
          exe.run(fluid.default_startup_program())

          build_strategy = fluid.BuildStrategy()
          build_strategy.memory_optimize = True if MEMORY_OPT else False
          exec_strategy = fluid.ExecutionStrategy()
          compiled_prog = fluid.compiler.CompiledProgram(
          fluid.default_main_program()).with_data_parallel(
              loss_name=loss.name,
              build_strategy=build_strategy,
              exec_strategy=exec_strategy)

          for epoch_id in range(2):
          reader.start()
          try:
              while True:
                  exe.run(compiled_prog, fetch_list=[loss.name])
          except fluid.core.EOFException:
              reader.reset()
Q
Qiao Longfei 已提交
829
    """
830 831
    logging.warn(
        'paddle.fluid.layers.create_py_reader_by_data() may be deprecated in the near future. '
832 833 834 835 836 837 838 839 840 841 842
        'Please use paddle.fluid.io.DataLoader.from_generator() instead.'
    )
    return _py_reader(
        capacity=capacity,
        shapes=None,
        dtypes=None,
        lod_levels=None,
        name=name,
        use_double_buffer=use_double_buffer,
        feed_list=feed_list,
    )
S
sneaxiy 已提交
843 844


J
JiayiFeng 已提交
845
def __create_shared_decorated_reader__(op_type, reader, attrs):
Y
Yu Yang 已提交
846 847 848
    var_name = unique_name(op_type)
    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
849 850 851 852 853 854
    startop_op = startup_blk.append_op(
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [startup_var]},
        attrs=attrs,
    )
Y
Yu Yang 已提交
855
    startup_var.persistable = True
F
fengjiayi 已提交
856 857 858 859
    main_prog_block = default_main_program().current_block()
    main_prog_var = _copy_reader_var_(main_prog_block, startup_var)
    _copy_reader_create_op_(main_prog_block, startop_op)
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
860 861


862 863
def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
    new_reader_name = name if name is not None else unique_name(op_type)
864 865
    main_blk = default_main_program().current_block()
    new_reader = main_blk.create_var(name=new_reader_name)
866 867 868 869 870 871
    main_blk.append_op(
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [new_reader]},
        attrs=attrs,
    )
872 873 874
    return monkey_patch_reader_methods(new_reader)


875
def double_buffer(reader, place=None, name=None):
Y
yuyang18 已提交
876
    """
L
liu zhengxi 已提交
877
    Wrap a double buffer reader. The class Reader contains DecoratedReader and FileReader. Moreover, the DecoratedReader is inherited by CustomReader and BufferedReader. This function is related to BufferedReader. The data will copy to target place with a double buffer queue. If the target place is None, the place that executor perform on will be used.
Y
yuyang18 已提交
878 879


L
liu zhengxi 已提交
880 881
    Args:
        reader (Variable): The Reader Variable need to be wrapped.
882
        place (Place|str, optional): The place of target data, such as CPU, GPU, and if use GPU, it's necessary to point out which card is involved. Default is the sample place of executor perform.
883 884
            if ``place`` is string, It can be ``cpu``, ``gpu:x``, where ``x`` is the ndex of the GPUs.
        name (str, optional): Variable name. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.
Y
yuyang18 已提交
885 886

    Returns:
L
liu zhengxi 已提交
887
        Variable(Reader): wrapped reader with double buffer.
Y
yuyang18 已提交
888 889

    Examples:
L
liu zhengxi 已提交
890
        ..  code-block:: python
891

L
liu zhengxi 已提交
892 893 894 895 896 897 898
            import paddle.fluid as fluid
            reader = fluid.layers.py_reader(capacity=64,
                                            shapes=[(-1, 1, 28, 28), (-1, 1)],
                                            dtypes=['float32', 'int64'],
                                            use_double_buffer=False)
            reader = fluid.layers.double_buffer(reader)
            image, label = fluid.layers.read_file(reader)
Y
yuyang18 已提交
899
    """
Y
Yu Yang 已提交
900 901
    attrs = dict()
    if place is not None:
902 903
        attrs['place'] = str(_get_paddle_place(place)).upper()

904 905 906
    return __create_unshared_decorated_reader__(
        'create_double_buffer_reader', reader, attrs, name=name
    )
Y
Yu Yang 已提交
907 908


F
fengjiayi 已提交
909
def read_file(reader):
F
fengjiayi 已提交
910
    """
911
        :api_attr: Static Graph
S
swtkiwi 已提交
912

F
fengjiayi 已提交
913
    Execute the given reader and get data via it.
F
fengjiayi 已提交
914

915 916
    A reader is also a Variable. It can be a raw reader generated by
    `fluid.layers.open_files()` or a decorated one generated by
917
    `fluid.layers.double_buffer()` .
F
fengjiayi 已提交
918 919 920

    Args:

F
fengjiayi 已提交
921
        reader(Variable): The reader to execute.
F
fengjiayi 已提交
922 923

    Returns:
924
        Tuple[Variable]: Data read from the given reader.
F
fengjiayi 已提交
925 926 927

    Examples:
        .. code-block:: python
928

929
           import paddle.fluid as fluid
930 931 932 933
           reader = fluid.layers.py_reader(capacity=64,
                                           shapes=[(-1, 1, 28, 28), (-1, 1)],
                                           dtypes=['float32', 'int64'])
           image, label = fluid.layers.read_file(reader)
F
fengjiayi 已提交
934
    """
Y
Yu Yang 已提交
935 936
    helper = LayerHelper('read_file')
    out = [
937 938 939
        helper.create_variable_for_type_inference(
            stop_gradient=True, dtype='float32'
        )
F
fengjiayi 已提交
940
        for _ in range(len(reader.desc.shapes()))
Y
Yu Yang 已提交
941
    ]
942 943 944
    helper.append_op(
        type='read', inputs={'Reader': [reader]}, outputs={'Out': out}
    )
Y
Yu Yang 已提交
945 946 947 948
    if len(out) == 1:
        return out[0]
    else:
        return out
F
fengjiayi 已提交
949 950


Y
yuyang18 已提交
951 952
def load(out, file_path, load_as_fp16=None):
    """
953
    Load operator will load a LoDTensor / SelectedRows variable from disk file.
Y
yuyang18 已提交
954 955

    Args:
956
        out(Variable): The LoDTensor / SelectedRows need to be loaded..
Y
yuyang18 已提交
957

958
        file_path(STRING): Variable will be loaded from "file_path".
Y
yuyang18 已提交
959

960
        load_as_fp16(BOOLEAN): If true, the tensor will be first loaded and then converted to float16 data type. Otherwise, the tensor will be directly loaded without data type conversion. Default is false..
Y
yuyang18 已提交
961 962
    Returns:
        None
963 964 965 966 967 968 969

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            tmp_tensor = fluid.layers.create_tensor(dtype='float32')
            fluid.layers.load(tmp_tensor, "./tmp_tensor.bin")
Y
yuyang18 已提交
970 971 972 973 974
    """
    helper = LayerHelper("load", **locals())
    attrs = {"file_path": file_path}
    if load_as_fp16 is not None:
        attrs['load_as_fp16'] = load_as_fp16
975
    helper.append_op(type="load", inputs={}, outputs={"Out": out}, attrs=attrs)