io.py 34.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import multiprocessing
P
peizhilin 已提交
16
import os
17
import sys
Y
yuyang18 已提交
18
import threading
D
dzhwinter 已提交
19

Y
yuyang18 已提交
20
from ..data_feeder import DataFeeder
21 22
from .control_flow import BlockGuard
from .layer_function_generator import templatedoc
Y
yuyang18 已提交
23
from .. import core
Y
Refine  
Yu Yang 已提交
24
from ..executor import global_scope
25 26 27 28 29 30 31 32
from ..framework import (
    convert_np_dtype_to_dtype_,
    default_main_program,
    default_startup_program,
    program_guard,
    Program,
    Variable,
)
Y
yuyang18 已提交
33 34
from ..layer_helper import LayerHelper
from ..unique_name import generate as unique_name
35

36
import logging
37
from ..data_feeder import check_dtype, check_type
38
from paddle.fluid.framework import static_only
39 40 41 42 43
from ..framework import (
    _get_paddle_place,
    _current_expected_place,
    _set_expected_place,
)
Y
Yu Yang 已提交
44

Y
Yu Yang 已提交
45
__all__ = [
46 47 48 49 50 51
    'data',
    'read_file',
    'double_buffer',
    'py_reader',
    'create_py_reader_by_data',
    'load',
Y
Yu Yang 已提交
52
]
Y
Yu Yang 已提交
53 54


55
@static_only
56 57 58 59 60 61 62 63 64
def data(
    name,
    shape,
    append_batch_size=True,
    dtype='float32',
    lod_level=0,
    type=core.VarDesc.VarType.LOD_TENSOR,
    stop_gradient=True,
):
Y
Yu Yang 已提交
65
    """
K
kavyasrinet 已提交
66
    **Data Layer**
Y
Yu Yang 已提交
67

G
guofei 已提交
68 69
    This operator creates the global variable. The global variables can be
    accessed by all the following operators in the graph.
Y
Yu Yang 已提交
70

71 72
    Note:
        :code:`paddle.fluid.layers.data` is deprecated as it will be removed in
G
guofei 已提交
73
        a later version. Please use :code:`paddle.fluid.data` .
Y
Yu Yang 已提交
74

75
        This :code:`paddle.fluid.layers.data` set shape and dtype at compile
T
tianshuo78520a 已提交
76
        time but does NOT check the shape or the dtype of fed data, the
77
        :code:`paddle.fluid.data` checks the shape and the dtype of data fed
G
guofei 已提交
78
        by Executor or ParallelExecutor during run time.
79

80 81 82 83 84 85 86 87 88 89
        To feed variable size inputs, users can feed variable size inputs
        directly to this :code:`paddle.fluid.layers.data` and PaddlePaddle will
        fit the size accordingly. Or set -1 on the variable dimension when using
        :code:`paddle.fluid.data` .

        The default :code:`stop_gradient` attribute of the Variable created by
        this API is true, which means the gradient won't be passed backward
        through the data Varaible. Set :code:`var.stop_gradient = False` If
        user would like to pass backward gradient.

K
kavyasrinet 已提交
90
    Args:
G
guofei 已提交
91 92
       name(str): The name/alias of the variable, see :ref:`api_guide_Name`
            for more details.
93
       shape(list|tuple): Tuple declaring the shape. If :code:`append_batch_size` is
94
            True and there is no -1 inside :code:`shape`, it should be
G
guofei 已提交
95
            considered as the shape of the each sample. Otherwise, it should
96
            be considered as the shape of the batched data.
X
Xin Pan 已提交
97 98
       append_batch_size(bool):
          1. If true, it prepends -1 to the shape.
99
            For example if shape=[1], the resulting shape is [-1, 1]. This will
100 101 102 103 104
            be useful to set different batch size at run time.
          2. If shape contains -1, such as shape=[1, -1].
            append_batch_size will be enforced to be be False (ineffective)
            because PaddlePaddle cannot set more than 1 unknown number on the
            shape.
G
guofei 已提交
105 106 107
       dtype(np.dtype|VarType|str): The type of the data. Supported dtype: bool,
            float16, float32, float64, int8, int16, int32, int64, uint8.
       type(VarType): The output type. Supported dtype: VarType.LOD_TENSOR,
108
            VarType.SELECTED_ROWS, VarType.NCCL_ID. Default: VarType.LOD_TENSOR.
K
kavyasrinet 已提交
109
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
G
guofei 已提交
110
            Default: 0.
K
kavyasrinet 已提交
111
       stop_gradient(bool): A boolean that mentions whether gradient should flow.
112
            Default: True.
K
kavyasrinet 已提交
113 114

    Returns:
G
guofei 已提交
115 116 117 118
        The global variable that gives access to the data.

    Return Type:
        Variable
K
kavyasrinet 已提交
119 120 121 122

    Examples:
        .. code-block:: python

123
          import paddle.fluid as fluid
K
kavyasrinet 已提交
124
          data = fluid.layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
125 126
    """
    helper = LayerHelper('data', **locals())
127

128
    check_type(name, 'name', (bytes, str), 'data')
129 130
    check_type(shape, 'shape', (list, tuple), 'data')

Y
Yu Yang 已提交
131
    shape = list(shape)
132
    for i in range(len(shape)):
Y
Yu Yang 已提交
133 134 135 136 137 138 139 140 141
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1

142 143 144 145 146 147 148 149 150
    data_var = helper.create_global_variable(
        name=name,
        shape=shape,
        dtype=dtype,
        type=type,
        stop_gradient=stop_gradient,
        lod_level=lod_level,
        is_data=True,
    )
Y
Yu Yang 已提交
151
    return data_var
T
typhoonzero 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176


class BlockGuardServ(BlockGuard):
    """
    BlockGuardServ class.

    BlockGuardServ class is used to create an op with a block in a program.
    """

    def __init__(self, server):
        if not (isinstance(server, ListenAndServ)):
            raise TypeError("BlockGuardServ takes a ListenAndServ")
        super(BlockGuardServ, self).__init__(server.helper.main_program)
        self.server = server

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False

        self.server.complete_op()
        return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)


class ListenAndServ(object):
    """
Y
yi.wu 已提交
177
    **ListenAndServ Layer**
T
typhoonzero 已提交
178

Y
yi.wu 已提交
179 180 181 182 183 184 185 186 187
    ListenAndServ is used to create a rpc server bind and listen
    on specific TCP port, this server will run the sub-block when
    received variables from clients.

    Args:
        endpoint(string): IP:port string which the server will listen on.
        inputs(list): a list of variables that the server will get from clients.
        fan_in(int): how many client are expected to report to this server, default: 1.
        optimizer_mode(bool): whether to run the server as a parameter server, default: True.
Y
update  
yi.wu 已提交
188

Y
yi.wu 已提交
189 190 191
    Examples:
        .. code-block:: python

192
            import paddle.fluid as fluid
Y
yi.wu 已提交
193 194 195 196 197 198 199 200 201 202 203 204
            with fluid.program_guard(main):
                serv = layers.ListenAndServ(
                    "127.0.0.1:6170", ["X"], optimizer_mode=False)
                with serv.do():
                    x = layers.data(
                        shape=[32, 32],
                        dtype='float32',
                        name="X",
                        append_batch_size=False)
                    fluid.initializer.Constant(value=1.0)(x, main.global_block())
                    layers.scale(x=x, scale=10.0, out=out_var)

Y
yi.wu 已提交
205 206
            exe = fluid.Executor(place)
            exe.run(main)
T
typhoonzero 已提交
207 208
    """

Y
Yancey1989 已提交
209
    def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True):
210
        self.helper = LayerHelper("listen_and_serv")
Y
Yancey1989 已提交
211
        self.inputs = inputs
T
typhoonzero 已提交
212 213 214
        self.outputs = []
        self.endpoint = endpoint
        self.fan_in = fan_in
T
typhoonzero 已提交
215 216
        # FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
        # general.
T
WIP  
typhoonzero 已提交
217
        self.optimizer_mode = optimizer_mode
T
typhoonzero 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230

    def do(self):
        return BlockGuardServ(self)

    def get_params_and_grads(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
        # params and grads in the same order.
        params = list()
        grads = list()
        for op in current_block.ops:
            # FIXME(typhoonzero): op.inputs is None if it's cloned.
T
WIP  
typhoonzero 已提交
231 232 233 234 235 236 237 238
            if self.optimizer_mode:
                if "Grad" in op.inputs and "Param" in op.inputs:
                    params.append(op.inputs["Param"].name)
                    grads.append(op.inputs["Grad"].name)
            else:
                # simple recv mode, recv operators inputs.
                for iname in op.input_names:
                    for in_var_name in op.input(iname):
T
typhoonzero 已提交
239 240
                        params.append(parent_block.var(in_var_name))
                        grads.append(parent_block.var(in_var_name))
T
typhoonzero 已提交
241 242 243

        return params, grads

T
typhoonzero 已提交
244 245 246 247 248 249 250
    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

T
typhoonzero 已提交
251
    def complete_op(self):
252 253
        from ..incubate.fleet.parameter_server.mode import DistributedMode

T
typhoonzero 已提交
254 255 256 257 258
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        parent_block.append_op(
259
            type='listen_and_serv',
Y
Yancey1989 已提交
260
            inputs={"X": self.inputs},
T
typhoonzero 已提交
261 262 263 264
            outputs={},
            attrs={
                'endpoint': self.endpoint,
                'Fanin': self.fan_in,
265 266 267 268 269 270 271
                'optimize_blocks': [
                    current_block
                ],  # did not support multiple optimize blocks in layers
                'distributed_mode': DistributedMode.SYNC,  # did not support async now in layers
                'grad_to_block_id': [""],
            },
        )
T
typhoonzero 已提交
272 273


274
def Send(endpoints, send_vars, dummy_output=None, sync=True):
T
typhoonzero 已提交
275
    """
Y
yi.wu 已提交
276 277
    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
T
typhoonzero 已提交
278 279

    Args:
T
tianshuo78520a 已提交
280
        endpoints (str): comma separated IP:PORT pairs in the order
T
typhoonzero 已提交
281
                   of send_vars to send
Y
yi.wu 已提交
282 283
        send_vars (list): variables to send to server
        sync (bool): whether to wait the request finish
T
typhoonzero 已提交
284 285

    """
286
    assert type(send_vars) == list
T
typhoonzero 已提交
287

288 289 290 291 292
    if dummy_output is None:
        dummy_output = []
    elif isinstance(dummy_output, Variable):
        dummy_output = [dummy_output]

293
    assert type(dummy_output) == list
294

T
typhoonzero 已提交
295
    epmap = endpoints.split(",")
T
typhoonzero 已提交
296
    endpoints = list(set(epmap))
T
typhoonzero 已提交
297 298

    helper = LayerHelper("Send", **locals())
Y
Yancey1989 已提交
299
    rpc_op_role_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
Y
Yancey1989 已提交
300

301 302 303 304 305 306 307 308 309 310
    helper.append_op(
        type="send",
        inputs={"X": send_vars},
        outputs={"Out": dummy_output},
        attrs={
            "endpoints": endpoints,
            "epmap": epmap,
            rpc_op_role_name: core.op_proto_and_checker_maker.OpRole.RPC,
        },
    )
Y
yi.wu 已提交
311
    if sync:
312 313 314 315 316 317
        helper.append_op(
            type="send_barrier",
            inputs={"X": dummy_output},
            outputs={"Out": []},
            attrs={"endpoints": endpoints},
        )
318 319


320
def Recv(endpoints, get_vars, dummy_input=None, sync=True):
321
    """
Y
yi.wu 已提交
322
    Receive variables from server side
323 324

    Args:
T
tianshuo78520a 已提交
325
        endpoints (str): comma separated IP:PORT pairs in the order
326
                   of send_vars to send
Y
yi.wu 已提交
327 328
        get_vars (list): vars to get from server after send completes.
        sync (bool): whether to wait the request finish
329

Y
yi.wu 已提交
330 331
    Returns:
        list: list of received variables
332
    """
333
    assert type(get_vars) == list
334

335 336 337 338 339
    if dummy_input is None:
        dummy_input = []
    elif isinstance(dummy_input, Variable):
        dummy_input = [dummy_input]

340
    assert type(dummy_input) == list
341

342 343 344 345
    epmap = endpoints.split(",")
    endpoints = list(set(epmap))

    helper = LayerHelper("Recv", **locals())
346 347 348 349 350 351
    helper.append_op(
        type="recv",
        inputs={"X": dummy_input},
        outputs={"Out": get_vars},
        attrs={"endpoints": endpoints, "epmap": epmap},
    )
Y
yi.wu 已提交
352
    if sync:
353 354 355 356 357
        helper.append_op(
            type="fetch_barrier",
            outputs={"Out": get_vars},
            attrs={"endpoints": endpoints},
        )
Y
yi.wu 已提交
358
    return get_vars
Y
Yu Yang 已提交
359 360


Y
Refine  
Yu Yang 已提交
361 362 363 364 365 366 367 368 369 370
def monkey_patch_reader_methods(reader):
    def __get_reader__():
        scope = global_scope()
        var = scope.find_var(reader.name)
        return var.get_reader()

    def reset():
        return __get_reader__().reset()

    reader.reset = reset
Y
Yu Yang 已提交
371 372
    reader.stop_gradient = True
    reader.persistable = True
Y
Refine  
Yu Yang 已提交
373 374 375
    return reader


Y
Yu Yang 已提交
376 377 378 379
def _copy_reader_var_(block, var):
    new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
    new_var.desc.set_shapes(var.desc.shapes())
    new_var.desc.set_dtypes(var.desc.dtypes())
S
sneaxiy 已提交
380
    new_var.desc.set_lod_levels(var.desc.lod_levels())
Y
Yu Yang 已提交
381
    new_var.persistable = True
F
fengjiayi 已提交
382 383 384 385
    return new_var


def _copy_reader_create_op_(block, op):
F
fengjiayi 已提交
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
    input_param_names = op.input_names
    new_input_map = {}
    for param_name in input_param_names:
        new_input_map[param_name] = []
        arg_names = op.input(param_name)
        for arg_name in arg_names:
            new_input_map[param_name].append(block.var(arg_name))

    output_param_names = op.output_names
    new_output_map = {}
    for param_name in output_param_names:
        new_output_map[param_name] = []
        arg_names = op.output(param_name)
        for arg_name in arg_names:
            new_output_map[param_name].append(block.var(arg_name))

402 403 404 405 406 407
    new_op = block.append_op(
        type=op.type,
        inputs=new_input_map,
        outputs=new_output_map,
        attrs=op.all_attrs(),
    )
F
fengjiayi 已提交
408
    return new_op
Y
Yu Yang 已提交
409 410


411 412 413 414 415 416 417 418 419
def _py_reader(
    capacity,
    shapes,
    dtypes,
    lod_levels=None,
    name=None,
    use_double_buffer=True,
    feed_list=None,
):
Q
Qiao Longfei 已提交
420 421
    if feed_list is not None:
        if not isinstance(feed_list, list):
422 423 424 425
            raise TypeError(
                "feed_list should be a list of Variable"
                " instead of " + str(type(feed_list))
            )
Q
Qiao Longfei 已提交
426 427 428 429 430
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []
431
        need_check_feed = []
Q
Qiao Longfei 已提交
432

Q
Qiao Longfei 已提交
433 434 435 436 437 438
        for feed_data in feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
439
            need_check_feed.append(int(feed_data.desc.need_check_feed()))
Q
Qiao Longfei 已提交
440 441
    else:
        dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
442
        need_check_feed = [0 for dt in dtypes]
Q
Qiao Longfei 已提交
443 444 445 446 447 448 449 450 451
        shape_concat = []
        ranks = []

        for shape in shapes:
            shape_concat.extend(shape)
            ranks.append(len(shape))

        if lod_levels is None:
            lod_levels = [0] * len(shapes)
452
    dtype_int = [int(t) for t in dtypes]
Q
Qiao Longfei 已提交
453 454 455 456 457 458 459 460 461 462
    if name is None:
        queue_name = unique_name('lod_tensor_blocking_queue')
        reader_name = unique_name('create_py_reader')
        double_buffer_name = unique_name('double_buffer')
    else:
        queue_name = "_".join([name, "queue"])
        reader_name = "_".join([name, "reader"])
        double_buffer_name = "_".join([name, "double_buffer"])

    var = global_scope().var(queue_name)
463
    feed_queue = core.init_lod_tensor_blocking_queue(var, capacity, False)
Q
Qiao Longfei 已提交
464 465 466

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=reader_name)
467 468 469 470 471 472 473 474 475 476 477 478
    startup_blk.append_op(
        type='create_py_reader',
        inputs={'blocking_queue': [queue_name]},
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'dtypes': dtype_int,
            'need_check_feed': need_check_feed,
            'ranks': ranks,
        },
    )
Q
Qiao Longfei 已提交
479 480 481 482

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True

483 484 485
    main_prog_var = _copy_reader_var_(
        default_main_program().current_block(), startup_var
    )
Q
Qiao Longfei 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502

    reader = monkey_patch_reader_methods(main_prog_var)
    if use_double_buffer:
        double_buffer_reader = double_buffer(reader, name=double_buffer_name)
        # we return a double buffer reader. However, the reset method comes from
        # py_reader.
        double_buffer_reader.reset = reader.reset
        reader = double_buffer_reader

    # monkey patch py_reader special methods
    reader.queue = feed_queue
    current_reset_method = reader.reset
    reader.thread = None
    reader.tensor_provider = None
    reader.exited = False

    def start_provide_thread(func):
503
        def __provider_thread__(legacy_expected_place):
S
sneaxiy 已提交
504
            try:
505
                # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
L
Leo Chen 已提交
506

507 508
                _set_expected_place(legacy_expected_place)

S
sneaxiy 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
                for tensors in func():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if reader.exited:
                        break
                    feed_queue.push(array)
                    if reader.exited:
                        break
                feed_queue.close()
525
            except Exception as e:
Z
Zeng Jinle 已提交
526
                feed_queue.kill()
527
                logging.warn('Your decorated reader has raised an exception!')
528
                raise e
Q
Qiao Longfei 已提交
529

530 531 532
        reader.thread = threading.Thread(
            target=__provider_thread__, args=(_current_expected_place(),)
        )
Q
Qiao Longfei 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
        reader.thread.daemon = True
        reader.thread.start()

    def __set_tensor_provider__(func):
        reader.tensor_provider = func

    def __set_paddle_reader__(paddle_reader):
        with program_guard(Program(), Program()):
            actual_feed_list = feed_list
            if actual_feed_list is None:
                actual_feed_list = []
                counter = 0
                for dtype, shape, lod_level in zip(dtypes, shapes, lod_levels):
                    name = str(counter)
                    actual_feed_list.append(
548 549 550 551 552 553 554
                        data(
                            name=name,
                            dtype=dtype,
                            shape=shape,
                            lod_level=lod_level,
                        )
                    )
Q
Qiao Longfei 已提交
555 556
                    counter += 1

Q
Qiao Longfei 已提交
557
            data_names = [feed_data.name for feed_data in actual_feed_list]
558 559 560 561 562 563
            feeder = DataFeeder(
                feed_list=actual_feed_list, place=core.CPUPlace()
            )
            paddle_reader = feeder.decorate_reader(
                paddle_reader, multi_devices=False
            )
Q
Qiao Longfei 已提交
564 565 566

        def __tensor_provider__():
            for slots in paddle_reader():
Q
Qiao Longfei 已提交
567
                yield [slots[data_name] for data_name in data_names]
Q
Qiao Longfei 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583

        __set_tensor_provider__(__tensor_provider__)

    def __reset__():
        current_reset_method()
        if reader.thread is not None and reader.tensor_provider is not None:
            reader.exited = True
            reader.thread.join()
            reader.exited = False

    def __start__():
        start_provide_thread(reader.tensor_provider)

    reader.reset = __reset__
    reader.decorate_tensor_provider = __set_tensor_provider__
    reader.decorate_paddle_reader = __set_paddle_reader__
S
sneaxiy 已提交
584 585 586

    reader.decorate_batch_generator = __set_tensor_provider__
    reader.decorate_sample_list_generator = __set_paddle_reader__
Q
Qiao Longfei 已提交
587 588 589 590 591
    reader.start = __start__

    return reader


592 593 594
def py_reader(
    capacity, shapes, dtypes, lod_levels=None, name=None, use_double_buffer=True
):
S
sneaxiy 已提交
595
    """
596
        :api_attr: Static Graph
S
swtkiwi 已提交
597

598
    Create a Python reader for data feeding in Python
F
fengjiayi 已提交
599

G
guofei 已提交
600
    This operator returns a Reader Variable.
601 602
    The Reader provides :code:`decorate_paddle_reader()` and
    :code:`decorate_tensor_provider()` to set a Python generator as the data
603 604
    source and feed the data from the data source to the Reader Variable.
    When :code:`Executor::Run()` is invoked in C++ side, the data from the
G
guofei 已提交
605
    generator would be read automatically. Unlike :code:`DataFeeder.feed()`,
606
    the data reading process and :code:`Executor::Run()` process can run in
G
guofei 已提交
607
    parallel using :code:`py_reader`. The :code:`start()` method of the Reader
608
    should be called when each pass begins, while the :code:`reset()` method
G
guofei 已提交
609 610 611
    should be called when the pass ends and :code:`fluid.core.EOFException` raises.

    Note:
612
       :code:`Program.clone()` method cannot clone :code:`py_reader`. You can
G
guofei 已提交
613
       refer to :ref:`api_fluid_Program` for more details.
614

G
guofei 已提交
615 616
       The :code:`read_file` call needs to be in the program block of :code:`py_reader`.
       You can refer to :ref:`api_fluid_layers_read_file` for more details.
S
sneaxiy 已提交
617 618

    Args:
619
       capacity(int): The buffer capacity maintained by :code:`py_reader`.
620
       shapes(list|tuple): List of tuples which declaring data shapes. shapes[i]
G
guofei 已提交
621 622 623
            represents the i-th data shape.
       dtypes(list|tuple): List of strings which declaring data type. Supported dtype:
            bool, float16, float32, float64, int8, int16, int32, int64, uint8.
Y
yuyang18 已提交
624
       lod_levels(list|tuple): List of ints which declaring data lod_level.
G
guofei 已提交
625 626 627
       name(basestring): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
628 629
       use_double_buffer(bool): Whether use double buffer or not. The double buffer is
            for pre-reading the data of the next batch and copy the data asynchronously
G
guofei 已提交
630
            from CPU to GPU. Default is True.
S
sneaxiy 已提交
631 632

    Returns:
G
guofei 已提交
633 634 635 636
       A Reader from which we can get feeding data.

    Return Type:
       Variable
S
sneaxiy 已提交
637 638

    Examples:
639
       1. The basic usage of :code:`py_reader` is as follows:
640

641
       .. code-block:: python
642

643 644 645 646 647
         import paddle
         import paddle.fluid as fluid
         import paddle.dataset.mnist as mnist

         def network(image, label):
T
tianshuo78520a 已提交
648
             # user defined network, here a softmax regession example
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
             predict = fluid.layers.fc(input=image, size=10, act='softmax')
             return fluid.layers.cross_entropy(input=predict, label=label)

         reader = fluid.layers.py_reader(capacity=64,
                                         shapes=[(-1, 1, 28, 28), (-1, 1)],
                                         dtypes=['float32', 'int64'])
         reader.decorate_paddle_reader(
             paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
                                   buf_size=1000))

         img, label = fluid.layers.read_file(reader)
         loss = network(img, label)

         fluid.Executor(fluid.CUDAPlace(0)).run(fluid.default_startup_program())
         exe = fluid.ParallelExecutor(use_cuda=True)
         for epoch_id in range(10):
             reader.start()
H
Huihuang Zheng 已提交
666 667 668 669 670
             try:
                 while True:
                     exe.run(fetch_list=[loss.name])
             except fluid.core.EOFException:
                 reader.reset()
671 672 673 674 675 676 677 678

         fluid.io.save_inference_model(dirname='./model',
                                       feeded_var_names=[img.name, label.name],
                                       target_vars=[loss],
                                       executor=fluid.Executor(fluid.CUDAPlace(0)))

       2. When training and testing are both performed, two different
       :code:`py_reader` should be created with different names, e.g.:
S
sneaxiy 已提交
679

680
       .. code-block:: python
681

682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
         import paddle
         import paddle.fluid as fluid
         import paddle.dataset.mnist as mnist

         def network(reader):
             img, label = fluid.layers.read_file(reader)
             # User defined network. Here a simple regression as example
             predict = fluid.layers.fc(input=img, size=10, act='softmax')
             loss = fluid.layers.cross_entropy(input=predict, label=label)
             return fluid.layers.mean(loss)

         # Create train_main_prog and train_startup_prog
         train_main_prog = fluid.Program()
         train_startup_prog = fluid.Program()
         with fluid.program_guard(train_main_prog, train_startup_prog):
             # Use fluid.unique_name.guard() to share parameters with test program
             with fluid.unique_name.guard():
                 train_reader = fluid.layers.py_reader(capacity=64,
                                                       shapes=[(-1, 1, 28, 28),
                                                               (-1, 1)],
                                                       dtypes=['float32', 'int64'],
                                                       name='train_reader')
                 train_reader.decorate_paddle_reader(
H
Huihuang Zheng 已提交
705 706
                     paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
                                           buf_size=500))
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
                 train_loss = network(train_reader)  # some network definition
                 adam = fluid.optimizer.Adam(learning_rate=0.01)
                 adam.minimize(train_loss)

         # Create test_main_prog and test_startup_prog
         test_main_prog = fluid.Program()
         test_startup_prog = fluid.Program()
         with fluid.program_guard(test_main_prog, test_startup_prog):
             # Use fluid.unique_name.guard() to share parameters with train program
             with fluid.unique_name.guard():
                 test_reader = fluid.layers.py_reader(capacity=32,
                                                      shapes=[(-1, 1, 28, 28), (-1, 1)],
                                                      dtypes=['float32', 'int64'],
                                                      name='test_reader')
                 test_reader.decorate_paddle_reader(paddle.batch(mnist.test(), 512))
                 test_loss = network(test_reader)

         fluid.Executor(fluid.CUDAPlace(0)).run(train_startup_prog)
         fluid.Executor(fluid.CUDAPlace(0)).run(test_startup_prog)

         train_exe = fluid.ParallelExecutor(use_cuda=True,
                                            loss_name=train_loss.name,
                                            main_program=train_main_prog)
         test_exe = fluid.ParallelExecutor(use_cuda=True,
                                           loss_name=test_loss.name,
                                           main_program=test_main_prog)
         for epoch_id in range(10):
             train_reader.start()
             try:
                 while True:
                    train_exe.run(fetch_list=[train_loss.name])
             except fluid.core.EOFException:
                 train_reader.reset()

         test_reader.start()
         try:
             while True:
                 test_exe.run(fetch_list=[test_loss.name])
         except fluid.core.EOFException:
             test_reader.reset()
S
sneaxiy 已提交
747
    """
748 749
    logging.warn(
        'paddle.fluid.layers.py_reader() may be deprecated in the near future. '
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
        'Please use paddle.fluid.io.DataLoader.from_generator() instead.'
    )
    return _py_reader(
        capacity=capacity,
        shapes=shapes,
        dtypes=dtypes,
        lod_levels=lod_levels,
        name=name,
        use_double_buffer=use_double_buffer,
    )


def create_py_reader_by_data(
    capacity, feed_list, name=None, use_double_buffer=True
):
Q
Qiao Longfei 已提交
765
    """
766
        :api_attr: Static Graph
S
swtkiwi 已提交
767

768 769 770 771 772 773 774 775 776 777 778 779 780
    The OP creates a Python reader for data feeding in Python, it is similar
    to :ref:`api_fluid_layers_py_reader` except that it can read data from
    the list of feed variables.

    Parameters:
        capacity (int): The buffer capacity maintained by :code:`py_reader`. Its unit
            is batch number. Set larger :attr:`capacity` if the reader is fast.
        feed_list (list(Variable)): The feed variables, are usually created by
            :code:`fluid.data()`.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`. Default: None.
        use_double_buffer (bool, optional): Whether use double buffer. If it's True,
            the OP would prefetch next batch data asynchronously. Default: True.
Q
Qiao Longfei 已提交
781

Q
Qiao Longfei 已提交
782
    Returns:
783
        Reader: A Reader for data feeding. The data types of read data are the same as the data types of variables of :attr:`feed_list`.
Q
Qiao Longfei 已提交
784

Q
Qiao Longfei 已提交
785
    Examples:
786
        .. code-block:: python
787

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
          import paddle
          import paddle.fluid as fluid
          import paddle.dataset.mnist as mnist

          def network(img, label):
              # User defined network. Here a simple regression as example
              predict = fluid.layers.fc(input=img, size=10, act='softmax')
              loss = fluid.layers.cross_entropy(input=predict, label=label)
              return fluid.layers.mean(loss)

          MEMORY_OPT = False
          USE_CUDA = False

          image = fluid.data(name='image', shape=[None, 1, 28, 28], dtype='float32')
          label = fluid.data(name='label', shape=[None, 1], dtype='int64')
          reader = fluid.layers.create_py_reader_by_data(capacity=64,
                                                         feed_list=[image, label])
          reader.decorate_paddle_reader(
              paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5), buf_size=500))
          img, label = fluid.layers.read_file(reader)
T
tianshuo78520a 已提交
808
          loss = network(img, label) # The definition of custom network and the loss function
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829

          place = fluid.CUDAPlace(0) if USE_CUDA else fluid.CPUPlace()
          exe = fluid.Executor(place)
          exe.run(fluid.default_startup_program())

          build_strategy = fluid.BuildStrategy()
          build_strategy.memory_optimize = True if MEMORY_OPT else False
          exec_strategy = fluid.ExecutionStrategy()
          compiled_prog = fluid.compiler.CompiledProgram(
          fluid.default_main_program()).with_data_parallel(
              loss_name=loss.name,
              build_strategy=build_strategy,
              exec_strategy=exec_strategy)

          for epoch_id in range(2):
          reader.start()
          try:
              while True:
                  exe.run(compiled_prog, fetch_list=[loss.name])
          except fluid.core.EOFException:
              reader.reset()
Q
Qiao Longfei 已提交
830
    """
831 832
    logging.warn(
        'paddle.fluid.layers.create_py_reader_by_data() may be deprecated in the near future. '
833 834 835 836 837 838 839 840 841 842 843
        'Please use paddle.fluid.io.DataLoader.from_generator() instead.'
    )
    return _py_reader(
        capacity=capacity,
        shapes=None,
        dtypes=None,
        lod_levels=None,
        name=name,
        use_double_buffer=use_double_buffer,
        feed_list=feed_list,
    )
S
sneaxiy 已提交
844 845


J
JiayiFeng 已提交
846
def __create_shared_decorated_reader__(op_type, reader, attrs):
Y
Yu Yang 已提交
847 848 849
    var_name = unique_name(op_type)
    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
850 851 852 853 854 855
    startop_op = startup_blk.append_op(
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [startup_var]},
        attrs=attrs,
    )
Y
Yu Yang 已提交
856
    startup_var.persistable = True
F
fengjiayi 已提交
857 858 859 860
    main_prog_block = default_main_program().current_block()
    main_prog_var = _copy_reader_var_(main_prog_block, startup_var)
    _copy_reader_create_op_(main_prog_block, startop_op)
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
861 862


863 864
def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
    new_reader_name = name if name is not None else unique_name(op_type)
865 866
    main_blk = default_main_program().current_block()
    new_reader = main_blk.create_var(name=new_reader_name)
867 868 869 870 871 872
    main_blk.append_op(
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [new_reader]},
        attrs=attrs,
    )
873 874 875
    return monkey_patch_reader_methods(new_reader)


876
def double_buffer(reader, place=None, name=None):
Y
yuyang18 已提交
877
    """
L
liu zhengxi 已提交
878
    Wrap a double buffer reader. The class Reader contains DecoratedReader and FileReader. Moreover, the DecoratedReader is inherited by CustomReader and BufferedReader. This function is related to BufferedReader. The data will copy to target place with a double buffer queue. If the target place is None, the place that executor perform on will be used.
Y
yuyang18 已提交
879 880


L
liu zhengxi 已提交
881 882
    Args:
        reader (Variable): The Reader Variable need to be wrapped.
883
        place (Place|str, optional): The place of target data, such as CPU, GPU, and if use GPU, it's necessary to point out which card is involved. Default is the sample place of executor perform.
884 885
            if ``place`` is string, It can be ``cpu``, ``gpu:x``, where ``x`` is the ndex of the GPUs.
        name (str, optional): Variable name. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.
Y
yuyang18 已提交
886 887

    Returns:
L
liu zhengxi 已提交
888
        Variable(Reader): wrapped reader with double buffer.
Y
yuyang18 已提交
889 890

    Examples:
L
liu zhengxi 已提交
891
        ..  code-block:: python
892

L
liu zhengxi 已提交
893 894 895 896 897 898 899
            import paddle.fluid as fluid
            reader = fluid.layers.py_reader(capacity=64,
                                            shapes=[(-1, 1, 28, 28), (-1, 1)],
                                            dtypes=['float32', 'int64'],
                                            use_double_buffer=False)
            reader = fluid.layers.double_buffer(reader)
            image, label = fluid.layers.read_file(reader)
Y
yuyang18 已提交
900
    """
Y
Yu Yang 已提交
901 902
    attrs = dict()
    if place is not None:
903 904
        attrs['place'] = str(_get_paddle_place(place)).upper()

905 906 907
    return __create_unshared_decorated_reader__(
        'create_double_buffer_reader', reader, attrs, name=name
    )
Y
Yu Yang 已提交
908 909


F
fengjiayi 已提交
910
def read_file(reader):
F
fengjiayi 已提交
911
    """
912
        :api_attr: Static Graph
S
swtkiwi 已提交
913

F
fengjiayi 已提交
914
    Execute the given reader and get data via it.
F
fengjiayi 已提交
915

916 917
    A reader is also a Variable. It can be a raw reader generated by
    `fluid.layers.open_files()` or a decorated one generated by
918
    `fluid.layers.double_buffer()` .
F
fengjiayi 已提交
919 920 921

    Args:

F
fengjiayi 已提交
922
        reader(Variable): The reader to execute.
F
fengjiayi 已提交
923 924

    Returns:
925
        Tuple[Variable]: Data read from the given reader.
F
fengjiayi 已提交
926 927 928

    Examples:
        .. code-block:: python
929

930
           import paddle.fluid as fluid
931 932 933 934
           reader = fluid.layers.py_reader(capacity=64,
                                           shapes=[(-1, 1, 28, 28), (-1, 1)],
                                           dtypes=['float32', 'int64'])
           image, label = fluid.layers.read_file(reader)
F
fengjiayi 已提交
935
    """
Y
Yu Yang 已提交
936 937
    helper = LayerHelper('read_file')
    out = [
938 939 940
        helper.create_variable_for_type_inference(
            stop_gradient=True, dtype='float32'
        )
F
fengjiayi 已提交
941
        for _ in range(len(reader.desc.shapes()))
Y
Yu Yang 已提交
942
    ]
943 944 945
    helper.append_op(
        type='read', inputs={'Reader': [reader]}, outputs={'Out': out}
    )
Y
Yu Yang 已提交
946 947 948 949
    if len(out) == 1:
        return out[0]
    else:
        return out
F
fengjiayi 已提交
950 951


Y
yuyang18 已提交
952 953
def load(out, file_path, load_as_fp16=None):
    """
954
    Load operator will load a LoDTensor / SelectedRows variable from disk file.
Y
yuyang18 已提交
955 956

    Args:
957
        out(Variable): The LoDTensor / SelectedRows need to be loaded..
Y
yuyang18 已提交
958

959
        file_path(STRING): Variable will be loaded from "file_path".
Y
yuyang18 已提交
960

961
        load_as_fp16(BOOLEAN): If true, the tensor will be first loaded and then converted to float16 data type. Otherwise, the tensor will be directly loaded without data type conversion. Default is false..
Y
yuyang18 已提交
962 963
    Returns:
        None
964 965 966 967 968 969 970

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            tmp_tensor = fluid.layers.create_tensor(dtype='float32')
            fluid.layers.load(tmp_tensor, "./tmp_tensor.bin")
Y
yuyang18 已提交
971 972 973 974 975
    """
    helper = LayerHelper("load", **locals())
    attrs = {"file_path": file_path}
    if load_as_fp16 is not None:
        attrs['load_as_fp16'] = load_as_fp16
976
    helper.append_op(type="load", inputs={}, outputs={"Out": out}, attrs=attrs)