io.py 34.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16
import multiprocessing
P
peizhilin 已提交
17
import os
M
minqiyang 已提交
18
import six
19
import sys
Y
yuyang18 已提交
20
import threading
D
dzhwinter 已提交
21

Y
yuyang18 已提交
22
from ..data_feeder import DataFeeder
23 24
from .control_flow import BlockGuard
from .layer_function_generator import templatedoc
Y
yuyang18 已提交
25
from .. import core
Y
Refine  
Yu Yang 已提交
26
from ..executor import global_scope
Y
yuyang18 已提交
27
from ..framework import convert_np_dtype_to_dtype_, default_main_program, \
28
    default_startup_program, program_guard, Program, Variable
Y
yuyang18 已提交
29 30
from ..layer_helper import LayerHelper
from ..unique_name import generate as unique_name
31

32
import logging
33
from ..data_feeder import check_dtype, check_type
34
from paddle.fluid.framework import static_only
Y
Yu Yang 已提交
35

Y
Yu Yang 已提交
36
__all__ = [
37 38
    'data', 'read_file', 'double_buffer', 'py_reader',
    'create_py_reader_by_data', 'load'
Y
Yu Yang 已提交
39
]
Y
Yu Yang 已提交
40 41


42
@static_only
Y
Yu Yang 已提交
43 44 45 46 47 48 49 50
def data(name,
         shape,
         append_batch_size=True,
         dtype='float32',
         lod_level=0,
         type=core.VarDesc.VarType.LOD_TENSOR,
         stop_gradient=True):
    """
K
kavyasrinet 已提交
51
    **Data Layer**
Y
Yu Yang 已提交
52

G
guofei 已提交
53 54
    This operator creates the global variable. The global variables can be
    accessed by all the following operators in the graph.
Y
Yu Yang 已提交
55

G
guofei 已提交
56 57 58
    Note: 
        :code:`paddle.fluid.layers.data` is deprecated as it will be removed in 
        a later version. Please use :code:`paddle.fluid.data` .
Y
Yu Yang 已提交
59

60
        This :code:`paddle.fluid.layers.data` set shape and dtype at compile
T
tianshuo78520a 已提交
61 62
        time but does NOT check the shape or the dtype of fed data, the
        :code:`paddle.fluid.data` checks the shape and the dtype of data fed 
G
guofei 已提交
63
        by Executor or ParallelExecutor during run time.
64

65 66 67 68 69 70 71 72 73 74
        To feed variable size inputs, users can feed variable size inputs
        directly to this :code:`paddle.fluid.layers.data` and PaddlePaddle will
        fit the size accordingly. Or set -1 on the variable dimension when using
        :code:`paddle.fluid.data` .

        The default :code:`stop_gradient` attribute of the Variable created by
        this API is true, which means the gradient won't be passed backward
        through the data Varaible. Set :code:`var.stop_gradient = False` If
        user would like to pass backward gradient.

K
kavyasrinet 已提交
75
    Args:
G
guofei 已提交
76 77
       name(str): The name/alias of the variable, see :ref:`api_guide_Name`
            for more details.
78
       shape(list|tuple): Tuple declaring the shape. If :code:`append_batch_size` is
G
guofei 已提交
79 80 81
            True and there is no -1 inside :code:`shape`, it should be 
            considered as the shape of the each sample. Otherwise, it should
            be considered as the shape of the batched data.  
X
Xin Pan 已提交
82 83
       append_batch_size(bool):
          1. If true, it prepends -1 to the shape.
84 85 86 87 88 89
            For example if shape=[1], the resulting shape is [-1, 1]. This will 
            be useful to set different batch size at run time.
          2. If shape contains -1, such as shape=[1, -1].
            append_batch_size will be enforced to be be False (ineffective)
            because PaddlePaddle cannot set more than 1 unknown number on the
            shape.
G
guofei 已提交
90 91 92 93
       dtype(np.dtype|VarType|str): The type of the data. Supported dtype: bool,
            float16, float32, float64, int8, int16, int32, int64, uint8.
       type(VarType): The output type. Supported dtype: VarType.LOD_TENSOR,
            VarType.SELECTED_ROWS, VarType.NCCL_ID. Default: VarType.LOD_TENSOR. 
K
kavyasrinet 已提交
94
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
G
guofei 已提交
95
            Default: 0.
K
kavyasrinet 已提交
96
       stop_gradient(bool): A boolean that mentions whether gradient should flow.
G
guofei 已提交
97
            Default: True. 
K
kavyasrinet 已提交
98 99

    Returns:
G
guofei 已提交
100 101 102 103
        The global variable that gives access to the data.

    Return Type:
        Variable
K
kavyasrinet 已提交
104 105 106 107

    Examples:
        .. code-block:: python

108
          import paddle.fluid as fluid
K
kavyasrinet 已提交
109
          data = fluid.layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
110 111
    """
    helper = LayerHelper('data', **locals())
112 113 114 115

    check_type(name, 'name', (six.binary_type, six.text_type), 'data')
    check_type(shape, 'shape', (list, tuple), 'data')

Y
Yu Yang 已提交
116
    shape = list(shape)
M
minqiyang 已提交
117
    for i in six.moves.range(len(shape)):
Y
Yu Yang 已提交
118 119 120 121 122 123 124 125 126
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1

Y
Yu Yang 已提交
127
    data_var = helper.create_global_variable(
Y
Yu Yang 已提交
128 129 130 131 132
        name=name,
        shape=shape,
        dtype=dtype,
        type=type,
        stop_gradient=stop_gradient,
F
fengjiayi 已提交
133 134
        lod_level=lod_level,
        is_data=True)
Y
Yu Yang 已提交
135
    return data_var
T
typhoonzero 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160


class BlockGuardServ(BlockGuard):
    """
    BlockGuardServ class.

    BlockGuardServ class is used to create an op with a block in a program.
    """

    def __init__(self, server):
        if not (isinstance(server, ListenAndServ)):
            raise TypeError("BlockGuardServ takes a ListenAndServ")
        super(BlockGuardServ, self).__init__(server.helper.main_program)
        self.server = server

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False

        self.server.complete_op()
        return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)


class ListenAndServ(object):
    """
Y
yi.wu 已提交
161
    **ListenAndServ Layer**
T
typhoonzero 已提交
162

Y
yi.wu 已提交
163 164 165 166 167 168 169 170 171
    ListenAndServ is used to create a rpc server bind and listen
    on specific TCP port, this server will run the sub-block when
    received variables from clients.

    Args:
        endpoint(string): IP:port string which the server will listen on.
        inputs(list): a list of variables that the server will get from clients.
        fan_in(int): how many client are expected to report to this server, default: 1.
        optimizer_mode(bool): whether to run the server as a parameter server, default: True.
Y
update  
yi.wu 已提交
172

Y
yi.wu 已提交
173 174 175
    Examples:
        .. code-block:: python

176
            import paddle.fluid as fluid
Y
yi.wu 已提交
177 178 179 180 181 182 183 184 185 186 187 188
            with fluid.program_guard(main):
                serv = layers.ListenAndServ(
                    "127.0.0.1:6170", ["X"], optimizer_mode=False)
                with serv.do():
                    x = layers.data(
                        shape=[32, 32],
                        dtype='float32',
                        name="X",
                        append_batch_size=False)
                    fluid.initializer.Constant(value=1.0)(x, main.global_block())
                    layers.scale(x=x, scale=10.0, out=out_var)

Y
yi.wu 已提交
189 190
            exe = fluid.Executor(place)
            exe.run(main)
T
typhoonzero 已提交
191 192
    """

Y
Yancey1989 已提交
193
    def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True):
194
        self.helper = LayerHelper("listen_and_serv")
Y
Yancey1989 已提交
195
        self.inputs = inputs
T
typhoonzero 已提交
196 197 198
        self.outputs = []
        self.endpoint = endpoint
        self.fan_in = fan_in
T
typhoonzero 已提交
199 200
        # FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
        # general.
T
WIP  
typhoonzero 已提交
201
        self.optimizer_mode = optimizer_mode
T
typhoonzero 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214

    def do(self):
        return BlockGuardServ(self)

    def get_params_and_grads(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
        # params and grads in the same order.
        params = list()
        grads = list()
        for op in current_block.ops:
            # FIXME(typhoonzero): op.inputs is None if it's cloned.
T
WIP  
typhoonzero 已提交
215 216 217 218 219 220 221 222
            if self.optimizer_mode:
                if "Grad" in op.inputs and "Param" in op.inputs:
                    params.append(op.inputs["Param"].name)
                    grads.append(op.inputs["Grad"].name)
            else:
                # simple recv mode, recv operators inputs.
                for iname in op.input_names:
                    for in_var_name in op.input(iname):
T
typhoonzero 已提交
223 224
                        params.append(parent_block.var(in_var_name))
                        grads.append(parent_block.var(in_var_name))
T
typhoonzero 已提交
225 226 227

        return params, grads

T
typhoonzero 已提交
228 229 230 231 232 233 234
    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

T
typhoonzero 已提交
235
    def complete_op(self):
236 237
        from ..incubate.fleet.parameter_server.mode import DistributedMode

T
typhoonzero 已提交
238 239 240 241 242
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        parent_block.append_op(
243
            type='listen_and_serv',
Y
Yancey1989 已提交
244
            inputs={"X": self.inputs},
T
typhoonzero 已提交
245 246 247 248
            outputs={},
            attrs={
                'endpoint': self.endpoint,
                'Fanin': self.fan_in,
Y
Yancey1989 已提交
249 250 251
                'optimize_blocks': [
                    current_block
                ],  # did not support multiple optimize blocks in layers
1
123malin 已提交
252 253
                'distributed_mode':
                DistributedMode.SYNC,  # did not support async now in layers
Q
qiaolongfei 已提交
254
                'grad_to_block_id': [""]
T
typhoonzero 已提交
255 256 257
            })


258
def Send(endpoints, send_vars, dummy_output=None, sync=True):
T
typhoonzero 已提交
259
    """
Y
yi.wu 已提交
260 261
    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
T
typhoonzero 已提交
262 263

    Args:
T
tianshuo78520a 已提交
264
        endpoints (str): comma separated IP:PORT pairs in the order
T
typhoonzero 已提交
265
                   of send_vars to send
Y
yi.wu 已提交
266 267
        send_vars (list): variables to send to server
        sync (bool): whether to wait the request finish
T
typhoonzero 已提交
268 269 270 271

    """
    assert (type(send_vars) == list)

272 273 274 275 276 277 278
    if dummy_output is None:
        dummy_output = []
    elif isinstance(dummy_output, Variable):
        dummy_output = [dummy_output]

    assert (type(dummy_output) == list)

T
typhoonzero 已提交
279
    epmap = endpoints.split(",")
T
typhoonzero 已提交
280
    endpoints = list(set(epmap))
T
typhoonzero 已提交
281 282

    helper = LayerHelper("Send", **locals())
Y
Yancey1989 已提交
283
    rpc_op_role_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
Y
Yancey1989 已提交
284

T
typhoonzero 已提交
285 286 287
    helper.append_op(
        type="send",
        inputs={"X": send_vars},
288
        outputs={"Out": dummy_output},
Y
Yancey1989 已提交
289 290 291 292 293
        attrs={
            "endpoints": endpoints,
            "epmap": epmap,
            rpc_op_role_name: core.op_proto_and_checker_maker.OpRole.RPC
        })
Y
yi.wu 已提交
294
    if sync:
W
Wu Yi 已提交
295 296 297 298 299
        helper.append_op(
            type="send_barrier",
            inputs={"X": dummy_output},
            outputs={"Out": []},
            attrs={"endpoints": endpoints})
300 301


302
def Recv(endpoints, get_vars, dummy_input=None, sync=True):
303
    """
Y
yi.wu 已提交
304
    Receive variables from server side
305 306

    Args:
T
tianshuo78520a 已提交
307
        endpoints (str): comma separated IP:PORT pairs in the order
308
                   of send_vars to send
Y
yi.wu 已提交
309 310
        get_vars (list): vars to get from server after send completes.
        sync (bool): whether to wait the request finish
311

Y
yi.wu 已提交
312 313
    Returns:
        list: list of received variables
314 315 316
    """
    assert (type(get_vars) == list)

317 318 319 320 321 322 323
    if dummy_input is None:
        dummy_input = []
    elif isinstance(dummy_input, Variable):
        dummy_input = [dummy_input]

    assert (type(dummy_input) == list)

324 325 326 327 328 329
    epmap = endpoints.split(",")
    endpoints = list(set(epmap))

    helper = LayerHelper("Recv", **locals())
    helper.append_op(
        type="recv",
330
        inputs={"X": dummy_input},
331 332 333
        outputs={"Out": get_vars},
        attrs={"endpoints": endpoints,
               "epmap": epmap})
Y
yi.wu 已提交
334
    if sync:
W
Wu Yi 已提交
335 336 337 338
        helper.append_op(
            type="fetch_barrier",
            outputs={"Out": get_vars},
            attrs={"endpoints": endpoints})
Y
yi.wu 已提交
339
    return get_vars
Y
Yu Yang 已提交
340 341


Y
Refine  
Yu Yang 已提交
342 343 344 345 346 347 348 349 350 351
def monkey_patch_reader_methods(reader):
    def __get_reader__():
        scope = global_scope()
        var = scope.find_var(reader.name)
        return var.get_reader()

    def reset():
        return __get_reader__().reset()

    reader.reset = reset
Y
Yu Yang 已提交
352 353
    reader.stop_gradient = True
    reader.persistable = True
Y
Refine  
Yu Yang 已提交
354 355 356
    return reader


Y
Yu Yang 已提交
357 358 359 360
def _copy_reader_var_(block, var):
    new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
    new_var.desc.set_shapes(var.desc.shapes())
    new_var.desc.set_dtypes(var.desc.dtypes())
S
sneaxiy 已提交
361
    new_var.desc.set_lod_levels(var.desc.lod_levels())
Y
Yu Yang 已提交
362
    new_var.persistable = True
F
fengjiayi 已提交
363 364 365 366
    return new_var


def _copy_reader_create_op_(block, op):
F
fengjiayi 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
    input_param_names = op.input_names
    new_input_map = {}
    for param_name in input_param_names:
        new_input_map[param_name] = []
        arg_names = op.input(param_name)
        for arg_name in arg_names:
            new_input_map[param_name].append(block.var(arg_name))

    output_param_names = op.output_names
    new_output_map = {}
    for param_name in output_param_names:
        new_output_map[param_name] = []
        arg_names = op.output(param_name)
        for arg_name in arg_names:
            new_output_map[param_name].append(block.var(arg_name))

F
fengjiayi 已提交
383
    new_op = block.append_op(
F
fengjiayi 已提交
384 385 386
        type=op.type,
        inputs=new_input_map,
        outputs=new_output_map,
J
JiayiFeng 已提交
387
        attrs=op.all_attrs())
F
fengjiayi 已提交
388
    return new_op
Y
Yu Yang 已提交
389 390


Q
Qiao Longfei 已提交
391 392 393 394 395 396
def _py_reader(capacity,
               shapes,
               dtypes,
               lod_levels=None,
               name=None,
               use_double_buffer=True,
S
sneaxiy 已提交
397
               feed_list=None):
Q
Qiao Longfei 已提交
398 399 400 401 402 403 404 405 406
    if feed_list is not None:
        if not isinstance(feed_list, list):
            raise TypeError("feed_list should be a list of Variable"
                            " instead of " + str(type(feed_list)))
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []
407
        need_check_feed = []
Q
Qiao Longfei 已提交
408

Q
Qiao Longfei 已提交
409 410 411 412 413 414
        for feed_data in feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
415
            need_check_feed.append(int(feed_data.desc.need_check_feed()))
Q
Qiao Longfei 已提交
416 417
    else:
        dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
418
        need_check_feed = [0 for dt in dtypes]
Q
Qiao Longfei 已提交
419 420 421 422 423 424 425 426 427
        shape_concat = []
        ranks = []

        for shape in shapes:
            shape_concat.extend(shape)
            ranks.append(len(shape))

        if lod_levels is None:
            lod_levels = [0] * len(shapes)
428
    dtype_int = [int(t) for t in dtypes]
Q
Qiao Longfei 已提交
429 430 431 432 433 434 435 436 437 438
    if name is None:
        queue_name = unique_name('lod_tensor_blocking_queue')
        reader_name = unique_name('create_py_reader')
        double_buffer_name = unique_name('double_buffer')
    else:
        queue_name = "_".join([name, "queue"])
        reader_name = "_".join([name, "reader"])
        double_buffer_name = "_".join([name, "double_buffer"])

    var = global_scope().var(queue_name)
439
    feed_queue = core.init_lod_tensor_blocking_queue(var, capacity, False)
Q
Qiao Longfei 已提交
440 441 442 443

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=reader_name)
    startup_blk.append_op(
S
add doc  
sneaxiy 已提交
444
        type='create_py_reader',
Q
Qiao Longfei 已提交
445 446 447 448 449
        inputs={'blocking_queue': [queue_name]},
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
450 451
            'dtypes': dtype_int,
            'need_check_feed': need_check_feed,
Q
Qiao Longfei 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True

    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

    reader = monkey_patch_reader_methods(main_prog_var)
    if use_double_buffer:
        double_buffer_reader = double_buffer(reader, name=double_buffer_name)
        # we return a double buffer reader. However, the reset method comes from
        # py_reader.
        double_buffer_reader.reset = reader.reset
        reader = double_buffer_reader

    # monkey patch py_reader special methods
    reader.queue = feed_queue
    current_reset_method = reader.reset
    reader.thread = None
    reader.tensor_provider = None
    reader.exited = False

    def start_provide_thread(func):
        def __provider_thread__():
S
sneaxiy 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
            try:
                for tensors in func():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if reader.exited:
                        break
                    feed_queue.push(array)
                    if reader.exited:
                        break
                feed_queue.close()
            except Exception as ex:
Z
Zeng Jinle 已提交
496
                feed_queue.kill()
497
                logging.warn('Your decorated reader has raised an exception!')
498
                six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522

        reader.thread = threading.Thread(target=__provider_thread__)
        reader.thread.daemon = True
        reader.thread.start()

    def __set_tensor_provider__(func):
        reader.tensor_provider = func

    def __set_paddle_reader__(paddle_reader):
        with program_guard(Program(), Program()):
            actual_feed_list = feed_list
            if actual_feed_list is None:
                actual_feed_list = []
                counter = 0
                for dtype, shape, lod_level in zip(dtypes, shapes, lod_levels):
                    name = str(counter)
                    actual_feed_list.append(
                        data(
                            name=name,
                            dtype=dtype,
                            shape=shape,
                            lod_level=lod_level))
                    counter += 1

Q
Qiao Longfei 已提交
523
            data_names = [feed_data.name for feed_data in actual_feed_list]
Q
Qiao Longfei 已提交
524 525 526 527 528 529 530
            feeder = DataFeeder(
                feed_list=actual_feed_list, place=core.CPUPlace())
            paddle_reader = feeder.decorate_reader(
                paddle_reader, multi_devices=False)

        def __tensor_provider__():
            for slots in paddle_reader():
Q
Qiao Longfei 已提交
531
                yield [slots[data_name] for data_name in data_names]
Q
Qiao Longfei 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547

        __set_tensor_provider__(__tensor_provider__)

    def __reset__():
        current_reset_method()
        if reader.thread is not None and reader.tensor_provider is not None:
            reader.exited = True
            reader.thread.join()
            reader.exited = False

    def __start__():
        start_provide_thread(reader.tensor_provider)

    reader.reset = __reset__
    reader.decorate_tensor_provider = __set_tensor_provider__
    reader.decorate_paddle_reader = __set_paddle_reader__
S
sneaxiy 已提交
548 549 550

    reader.decorate_batch_generator = __set_tensor_provider__
    reader.decorate_sample_list_generator = __set_paddle_reader__
Q
Qiao Longfei 已提交
551 552 553 554 555
    reader.start = __start__

    return reader


Y
yuyang18 已提交
556 557 558 559 560
def py_reader(capacity,
              shapes,
              dtypes,
              lod_levels=None,
              name=None,
S
sneaxiy 已提交
561
              use_double_buffer=True):
S
sneaxiy 已提交
562
    """
563
	:api_attr: Static Graph
S
swtkiwi 已提交
564

565
    Create a Python reader for data feeding in Python
F
fengjiayi 已提交
566

G
guofei 已提交
567
    This operator returns a Reader Variable.
568 569
    The Reader provides :code:`decorate_paddle_reader()` and
    :code:`decorate_tensor_provider()` to set a Python generator as the data
G
guofei 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582 583
    source and feed the data from the data source to the Reader Variable. 
    When :code:`Executor::Run()` is invoked in C++ side, the data from the 
    generator would be read automatically. Unlike :code:`DataFeeder.feed()`,
    the data reading process and :code:`Executor::Run()` process can run in 
    parallel using :code:`py_reader`. The :code:`start()` method of the Reader
    should be called when each pass begins, while the :code:`reset()` method 
    should be called when the pass ends and :code:`fluid.core.EOFException` raises.

    Note:
       :code:`Program.clone()` method cannot clone :code:`py_reader`. You can 
       refer to :ref:`api_fluid_Program` for more details.
       
       The :code:`read_file` call needs to be in the program block of :code:`py_reader`.
       You can refer to :ref:`api_fluid_layers_read_file` for more details.
S
sneaxiy 已提交
584 585

    Args:
586
       capacity(int): The buffer capacity maintained by :code:`py_reader`.
G
guofei 已提交
587 588 589 590
       shapes(list|tuple): List of tuples which declaring data shapes. shapes[i] 
            represents the i-th data shape.
       dtypes(list|tuple): List of strings which declaring data type. Supported dtype:
            bool, float16, float32, float64, int8, int16, int32, int64, uint8.
Y
yuyang18 已提交
591
       lod_levels(list|tuple): List of ints which declaring data lod_level.
G
guofei 已提交
592 593 594 595 596 597
       name(basestring): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
       use_double_buffer(bool): Whether use double buffer or not. The double buffer is 
            for pre-reading the data of the next batch and copy the data asynchronously 
            from CPU to GPU. Default is True.
S
sneaxiy 已提交
598 599

    Returns:
G
guofei 已提交
600 601 602 603
       A Reader from which we can get feeding data.

    Return Type:
       Variable
S
sneaxiy 已提交
604 605

    Examples:
606 607 608 609 610 611 612 613 614
       1. The basic usage of :code:`py_reader` is as follows:
       
       .. code-block:: python
    
         import paddle
         import paddle.fluid as fluid
         import paddle.dataset.mnist as mnist

         def network(image, label):
T
tianshuo78520a 已提交
615
             # user defined network, here a softmax regession example
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
             predict = fluid.layers.fc(input=image, size=10, act='softmax')
             return fluid.layers.cross_entropy(input=predict, label=label)

         reader = fluid.layers.py_reader(capacity=64,
                                         shapes=[(-1, 1, 28, 28), (-1, 1)],
                                         dtypes=['float32', 'int64'])
         reader.decorate_paddle_reader(
             paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
                                   buf_size=1000))

         img, label = fluid.layers.read_file(reader)
         loss = network(img, label)

         fluid.Executor(fluid.CUDAPlace(0)).run(fluid.default_startup_program())
         exe = fluid.ParallelExecutor(use_cuda=True)
         for epoch_id in range(10):
             reader.start()
H
Huihuang Zheng 已提交
633 634 635 636 637
             try:
                 while True:
                     exe.run(fetch_list=[loss.name])
             except fluid.core.EOFException:
                 reader.reset()
638 639 640 641 642 643 644 645

         fluid.io.save_inference_model(dirname='./model',
                                       feeded_var_names=[img.name, label.name],
                                       target_vars=[loss],
                                       executor=fluid.Executor(fluid.CUDAPlace(0)))

       2. When training and testing are both performed, two different
       :code:`py_reader` should be created with different names, e.g.:
S
sneaxiy 已提交
646

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
       .. code-block:: python
    
         import paddle
         import paddle.fluid as fluid
         import paddle.dataset.mnist as mnist

         def network(reader):
             img, label = fluid.layers.read_file(reader)
             # User defined network. Here a simple regression as example
             predict = fluid.layers.fc(input=img, size=10, act='softmax')
             loss = fluid.layers.cross_entropy(input=predict, label=label)
             return fluid.layers.mean(loss)

         # Create train_main_prog and train_startup_prog
         train_main_prog = fluid.Program()
         train_startup_prog = fluid.Program()
         with fluid.program_guard(train_main_prog, train_startup_prog):
             # Use fluid.unique_name.guard() to share parameters with test program
             with fluid.unique_name.guard():
                 train_reader = fluid.layers.py_reader(capacity=64,
                                                       shapes=[(-1, 1, 28, 28),
                                                               (-1, 1)],
                                                       dtypes=['float32', 'int64'],
                                                       name='train_reader')
                 train_reader.decorate_paddle_reader(
H
Huihuang Zheng 已提交
672 673
                     paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
                                           buf_size=500))
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
                 train_loss = network(train_reader)  # some network definition
                 adam = fluid.optimizer.Adam(learning_rate=0.01)
                 adam.minimize(train_loss)

         # Create test_main_prog and test_startup_prog
         test_main_prog = fluid.Program()
         test_startup_prog = fluid.Program()
         with fluid.program_guard(test_main_prog, test_startup_prog):
             # Use fluid.unique_name.guard() to share parameters with train program
             with fluid.unique_name.guard():
                 test_reader = fluid.layers.py_reader(capacity=32,
                                                      shapes=[(-1, 1, 28, 28), (-1, 1)],
                                                      dtypes=['float32', 'int64'],
                                                      name='test_reader')
                 test_reader.decorate_paddle_reader(paddle.batch(mnist.test(), 512))
                 test_loss = network(test_reader)

         fluid.Executor(fluid.CUDAPlace(0)).run(train_startup_prog)
         fluid.Executor(fluid.CUDAPlace(0)).run(test_startup_prog)

         train_exe = fluid.ParallelExecutor(use_cuda=True,
                                            loss_name=train_loss.name,
                                            main_program=train_main_prog)
         test_exe = fluid.ParallelExecutor(use_cuda=True,
                                           loss_name=test_loss.name,
                                           main_program=test_main_prog)
         for epoch_id in range(10):
             train_reader.start()
             try:
                 while True:
                    train_exe.run(fetch_list=[train_loss.name])
             except fluid.core.EOFException:
                 train_reader.reset()

         test_reader.start()
         try:
             while True:
                 test_exe.run(fetch_list=[test_loss.name])
         except fluid.core.EOFException:
             test_reader.reset()
S
sneaxiy 已提交
714
    """
715 716
    logging.warn(
        'paddle.fluid.layers.py_reader() may be deprecated in the near future. '
717
        'Please use paddle.fluid.io.DataLoader.from_generator() instead.')
Q
Qiao Longfei 已提交
718 719 720 721 722 723
    return _py_reader(
        capacity=capacity,
        shapes=shapes,
        dtypes=dtypes,
        lod_levels=lod_levels,
        name=name,
S
sneaxiy 已提交
724
        use_double_buffer=use_double_buffer)
Q
Qiao Longfei 已提交
725 726


Q
Qiao Longfei 已提交
727 728 729 730 731
def create_py_reader_by_data(capacity,
                             feed_list,
                             name=None,
                             use_double_buffer=True):
    """
732
	:api_attr: Static Graph
S
swtkiwi 已提交
733

734 735 736 737 738 739 740 741 742 743 744 745 746
    The OP creates a Python reader for data feeding in Python, it is similar
    to :ref:`api_fluid_layers_py_reader` except that it can read data from
    the list of feed variables.

    Parameters:
        capacity (int): The buffer capacity maintained by :code:`py_reader`. Its unit
            is batch number. Set larger :attr:`capacity` if the reader is fast.
        feed_list (list(Variable)): The feed variables, are usually created by
            :code:`fluid.data()`.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`. Default: None.
        use_double_buffer (bool, optional): Whether use double buffer. If it's True,
            the OP would prefetch next batch data asynchronously. Default: True.
Q
Qiao Longfei 已提交
747

Q
Qiao Longfei 已提交
748
    Returns:
749
        Reader: A Reader for data feeding. The data types of read data are the same as the data types of variables of :attr:`feed_list`.
Q
Qiao Longfei 已提交
750

Q
Qiao Longfei 已提交
751
    Examples:
752
        .. code-block:: python
753

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
          import paddle
          import paddle.fluid as fluid
          import paddle.dataset.mnist as mnist

          def network(img, label):
              # User defined network. Here a simple regression as example
              predict = fluid.layers.fc(input=img, size=10, act='softmax')
              loss = fluid.layers.cross_entropy(input=predict, label=label)
              return fluid.layers.mean(loss)

          MEMORY_OPT = False
          USE_CUDA = False

          image = fluid.data(name='image', shape=[None, 1, 28, 28], dtype='float32')
          label = fluid.data(name='label', shape=[None, 1], dtype='int64')
          reader = fluid.layers.create_py_reader_by_data(capacity=64,
                                                         feed_list=[image, label])
          reader.decorate_paddle_reader(
              paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5), buf_size=500))
          img, label = fluid.layers.read_file(reader)
T
tianshuo78520a 已提交
774
          loss = network(img, label) # The definition of custom network and the loss function
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795

          place = fluid.CUDAPlace(0) if USE_CUDA else fluid.CPUPlace()
          exe = fluid.Executor(place)
          exe.run(fluid.default_startup_program())

          build_strategy = fluid.BuildStrategy()
          build_strategy.memory_optimize = True if MEMORY_OPT else False
          exec_strategy = fluid.ExecutionStrategy()
          compiled_prog = fluid.compiler.CompiledProgram(
          fluid.default_main_program()).with_data_parallel(
              loss_name=loss.name,
              build_strategy=build_strategy,
              exec_strategy=exec_strategy)

          for epoch_id in range(2):
          reader.start()
          try:
              while True:
                  exe.run(compiled_prog, fetch_list=[loss.name])
          except fluid.core.EOFException:
              reader.reset()
Q
Qiao Longfei 已提交
796
    """
797 798 799
    logging.warn(
        'paddle.fluid.layers.create_py_reader_by_data() may be deprecated in the near future. '
        'Please use paddle.fluid.io.DataLoader.from_generator() instead.')
Q
Qiao Longfei 已提交
800 801 802 803 804 805 806 807
    return _py_reader(
        capacity=capacity,
        shapes=None,
        dtypes=None,
        lod_levels=None,
        name=name,
        use_double_buffer=use_double_buffer,
        feed_list=feed_list)
S
sneaxiy 已提交
808 809


J
JiayiFeng 已提交
810
def __create_shared_decorated_reader__(op_type, reader, attrs):
Y
Yu Yang 已提交
811 812 813
    var_name = unique_name(op_type)
    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
F
fengjiayi 已提交
814
    startop_op = startup_blk.append_op(
Y
Yu Yang 已提交
815 816 817 818 819
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [startup_var]},
        attrs=attrs)
    startup_var.persistable = True
F
fengjiayi 已提交
820 821 822 823
    main_prog_block = default_main_program().current_block()
    main_prog_var = _copy_reader_var_(main_prog_block, startup_var)
    _copy_reader_create_op_(main_prog_block, startop_op)
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
824 825


826 827
def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
    new_reader_name = name if name is not None else unique_name(op_type)
828 829 830 831 832 833 834 835 836 837
    main_blk = default_main_program().current_block()
    new_reader = main_blk.create_var(name=new_reader_name)
    main_blk.append_op(
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [new_reader]},
        attrs=attrs)
    return monkey_patch_reader_methods(new_reader)


838
def double_buffer(reader, place=None, name=None):
Y
yuyang18 已提交
839
    """
L
liu zhengxi 已提交
840
    Wrap a double buffer reader. The class Reader contains DecoratedReader and FileReader. Moreover, the DecoratedReader is inherited by CustomReader and BufferedReader. This function is related to BufferedReader. The data will copy to target place with a double buffer queue. If the target place is None, the place that executor perform on will be used.
Y
yuyang18 已提交
841 842


L
liu zhengxi 已提交
843 844 845 846
    Args:
        reader (Variable): The Reader Variable need to be wrapped.
        place (Place, optional): The place of target data, such as CPU, GPU, and if use GPU, it's necessary to point out which card is involved. Default is the sample place of executor perform.
        name (str, optional): Variable name. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None. 
Y
yuyang18 已提交
847 848

    Returns:
L
liu zhengxi 已提交
849
        Variable(Reader): wrapped reader with double buffer.
Y
yuyang18 已提交
850 851

    Examples:
L
liu zhengxi 已提交
852
        ..  code-block:: python
853
          
L
liu zhengxi 已提交
854 855 856 857 858 859 860
            import paddle.fluid as fluid
            reader = fluid.layers.py_reader(capacity=64,
                                            shapes=[(-1, 1, 28, 28), (-1, 1)],
                                            dtypes=['float32', 'int64'],
                                            use_double_buffer=False)
            reader = fluid.layers.double_buffer(reader)
            image, label = fluid.layers.read_file(reader)
Y
yuyang18 已提交
861
    """
Y
Yu Yang 已提交
862 863 864
    attrs = dict()
    if place is not None:
        attrs['place'] = str(place).upper()
865 866
    return __create_unshared_decorated_reader__(
        'create_double_buffer_reader', reader, attrs, name=name)
Y
Yu Yang 已提交
867 868


F
fengjiayi 已提交
869
def read_file(reader):
F
fengjiayi 已提交
870
    """
871
	:api_attr: Static Graph
S
swtkiwi 已提交
872

F
fengjiayi 已提交
873
    Execute the given reader and get data via it.
F
fengjiayi 已提交
874

875 876
    A reader is also a Variable. It can be a raw reader generated by
    `fluid.layers.open_files()` or a decorated one generated by
877
    `fluid.layers.double_buffer()` .
F
fengjiayi 已提交
878 879 880

    Args:

F
fengjiayi 已提交
881
        reader(Variable): The reader to execute.
F
fengjiayi 已提交
882 883

    Returns:
884
        Tuple[Variable]: Data read from the given reader.
F
fengjiayi 已提交
885 886 887

    Examples:
        .. code-block:: python
888 889
          
           import paddle.fluid as fluid
890 891 892 893
           reader = fluid.layers.py_reader(capacity=64,
                                           shapes=[(-1, 1, 28, 28), (-1, 1)],
                                           dtypes=['float32', 'int64'])
           image, label = fluid.layers.read_file(reader)
F
fengjiayi 已提交
894
    """
Y
Yu Yang 已提交
895 896
    helper = LayerHelper('read_file')
    out = [
X
Xin Pan 已提交
897
        helper.create_variable_for_type_inference(
Y
Yu Yang 已提交
898
            stop_gradient=True, dtype='float32')
F
fengjiayi 已提交
899
        for _ in range(len(reader.desc.shapes()))
Y
Yu Yang 已提交
900 901
    ]
    helper.append_op(
F
fengjiayi 已提交
902
        type='read', inputs={'Reader': [reader]}, outputs={'Out': out})
Y
Yu Yang 已提交
903 904 905 906
    if len(out) == 1:
        return out[0]
    else:
        return out
F
fengjiayi 已提交
907 908


Y
yuyang18 已提交
909 910
def load(out, file_path, load_as_fp16=None):
    """
911
    Load operator will load a LoDTensor / SelectedRows variable from disk file.
Y
yuyang18 已提交
912 913

    Args:
914
        out(Variable): The LoDTensor / SelectedRows need to be loaded..
Y
yuyang18 已提交
915

916
        file_path(STRING): Variable will be loaded from "file_path".
Y
yuyang18 已提交
917

918
        load_as_fp16(BOOLEAN): If true, the tensor will be first loaded and then converted to float16 data type. Otherwise, the tensor will be directly loaded without data type conversion. Default is false..
Y
yuyang18 已提交
919 920
    Returns:
        None
921 922 923 924 925 926 927

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            tmp_tensor = fluid.layers.create_tensor(dtype='float32')
            fluid.layers.load(tmp_tensor, "./tmp_tensor.bin")
Y
yuyang18 已提交
928 929 930 931 932
    """
    helper = LayerHelper("load", **locals())
    attrs = {"file_path": file_path}
    if load_as_fp16 is not None:
        attrs['load_as_fp16'] = load_as_fp16
933
    helper.append_op(type="load", inputs={}, outputs={"Out": out}, attrs=attrs)