io.py 34.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16
import multiprocessing
P
peizhilin 已提交
17
import os
M
minqiyang 已提交
18
import six
19
import sys
Y
yuyang18 已提交
20
import threading
D
dzhwinter 已提交
21

Y
yuyang18 已提交
22
from ..data_feeder import DataFeeder
23 24
from .control_flow import BlockGuard
from .layer_function_generator import templatedoc
Y
yuyang18 已提交
25
from .. import core
Y
Refine  
Yu Yang 已提交
26
from ..executor import global_scope
Y
yuyang18 已提交
27
from ..framework import convert_np_dtype_to_dtype_, default_main_program, \
28
    default_startup_program, program_guard, Program, Variable
Y
yuyang18 已提交
29 30
from ..layer_helper import LayerHelper
from ..unique_name import generate as unique_name
31

32
import logging
33
from ..data_feeder import check_dtype, check_type
34
from paddle.fluid.framework import static_only
35
from ..framework import _get_paddle_place
Y
Yu Yang 已提交
36

Y
Yu Yang 已提交
37
__all__ = [
38 39
    'data', 'read_file', 'double_buffer', 'py_reader',
    'create_py_reader_by_data', 'load'
Y
Yu Yang 已提交
40
]
Y
Yu Yang 已提交
41 42


43
@static_only
Y
Yu Yang 已提交
44 45 46 47 48 49 50 51
def data(name,
         shape,
         append_batch_size=True,
         dtype='float32',
         lod_level=0,
         type=core.VarDesc.VarType.LOD_TENSOR,
         stop_gradient=True):
    """
K
kavyasrinet 已提交
52
    **Data Layer**
Y
Yu Yang 已提交
53

G
guofei 已提交
54 55
    This operator creates the global variable. The global variables can be
    accessed by all the following operators in the graph.
Y
Yu Yang 已提交
56

G
guofei 已提交
57 58 59
    Note: 
        :code:`paddle.fluid.layers.data` is deprecated as it will be removed in 
        a later version. Please use :code:`paddle.fluid.data` .
Y
Yu Yang 已提交
60

61
        This :code:`paddle.fluid.layers.data` set shape and dtype at compile
T
tianshuo78520a 已提交
62 63
        time but does NOT check the shape or the dtype of fed data, the
        :code:`paddle.fluid.data` checks the shape and the dtype of data fed 
G
guofei 已提交
64
        by Executor or ParallelExecutor during run time.
65

66 67 68 69 70 71 72 73 74 75
        To feed variable size inputs, users can feed variable size inputs
        directly to this :code:`paddle.fluid.layers.data` and PaddlePaddle will
        fit the size accordingly. Or set -1 on the variable dimension when using
        :code:`paddle.fluid.data` .

        The default :code:`stop_gradient` attribute of the Variable created by
        this API is true, which means the gradient won't be passed backward
        through the data Varaible. Set :code:`var.stop_gradient = False` If
        user would like to pass backward gradient.

K
kavyasrinet 已提交
76
    Args:
G
guofei 已提交
77 78
       name(str): The name/alias of the variable, see :ref:`api_guide_Name`
            for more details.
79
       shape(list|tuple): Tuple declaring the shape. If :code:`append_batch_size` is
G
guofei 已提交
80 81 82
            True and there is no -1 inside :code:`shape`, it should be 
            considered as the shape of the each sample. Otherwise, it should
            be considered as the shape of the batched data.  
X
Xin Pan 已提交
83 84
       append_batch_size(bool):
          1. If true, it prepends -1 to the shape.
85 86 87 88 89 90
            For example if shape=[1], the resulting shape is [-1, 1]. This will 
            be useful to set different batch size at run time.
          2. If shape contains -1, such as shape=[1, -1].
            append_batch_size will be enforced to be be False (ineffective)
            because PaddlePaddle cannot set more than 1 unknown number on the
            shape.
G
guofei 已提交
91 92 93 94
       dtype(np.dtype|VarType|str): The type of the data. Supported dtype: bool,
            float16, float32, float64, int8, int16, int32, int64, uint8.
       type(VarType): The output type. Supported dtype: VarType.LOD_TENSOR,
            VarType.SELECTED_ROWS, VarType.NCCL_ID. Default: VarType.LOD_TENSOR. 
K
kavyasrinet 已提交
95
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
G
guofei 已提交
96
            Default: 0.
K
kavyasrinet 已提交
97
       stop_gradient(bool): A boolean that mentions whether gradient should flow.
G
guofei 已提交
98
            Default: True. 
K
kavyasrinet 已提交
99 100

    Returns:
G
guofei 已提交
101 102 103 104
        The global variable that gives access to the data.

    Return Type:
        Variable
K
kavyasrinet 已提交
105 106 107 108

    Examples:
        .. code-block:: python

109
          import paddle.fluid as fluid
K
kavyasrinet 已提交
110
          data = fluid.layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
111 112
    """
    helper = LayerHelper('data', **locals())
113 114 115 116

    check_type(name, 'name', (six.binary_type, six.text_type), 'data')
    check_type(shape, 'shape', (list, tuple), 'data')

Y
Yu Yang 已提交
117
    shape = list(shape)
M
minqiyang 已提交
118
    for i in six.moves.range(len(shape)):
Y
Yu Yang 已提交
119 120 121 122 123 124 125 126 127
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1

Y
Yu Yang 已提交
128
    data_var = helper.create_global_variable(
Y
Yu Yang 已提交
129 130 131 132 133
        name=name,
        shape=shape,
        dtype=dtype,
        type=type,
        stop_gradient=stop_gradient,
F
fengjiayi 已提交
134 135
        lod_level=lod_level,
        is_data=True)
Y
Yu Yang 已提交
136
    return data_var
T
typhoonzero 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161


class BlockGuardServ(BlockGuard):
    """
    BlockGuardServ class.

    BlockGuardServ class is used to create an op with a block in a program.
    """

    def __init__(self, server):
        if not (isinstance(server, ListenAndServ)):
            raise TypeError("BlockGuardServ takes a ListenAndServ")
        super(BlockGuardServ, self).__init__(server.helper.main_program)
        self.server = server

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False

        self.server.complete_op()
        return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)


class ListenAndServ(object):
    """
Y
yi.wu 已提交
162
    **ListenAndServ Layer**
T
typhoonzero 已提交
163

Y
yi.wu 已提交
164 165 166 167 168 169 170 171 172
    ListenAndServ is used to create a rpc server bind and listen
    on specific TCP port, this server will run the sub-block when
    received variables from clients.

    Args:
        endpoint(string): IP:port string which the server will listen on.
        inputs(list): a list of variables that the server will get from clients.
        fan_in(int): how many client are expected to report to this server, default: 1.
        optimizer_mode(bool): whether to run the server as a parameter server, default: True.
Y
update  
yi.wu 已提交
173

Y
yi.wu 已提交
174 175 176
    Examples:
        .. code-block:: python

177
            import paddle.fluid as fluid
Y
yi.wu 已提交
178 179 180 181 182 183 184 185 186 187 188 189
            with fluid.program_guard(main):
                serv = layers.ListenAndServ(
                    "127.0.0.1:6170", ["X"], optimizer_mode=False)
                with serv.do():
                    x = layers.data(
                        shape=[32, 32],
                        dtype='float32',
                        name="X",
                        append_batch_size=False)
                    fluid.initializer.Constant(value=1.0)(x, main.global_block())
                    layers.scale(x=x, scale=10.0, out=out_var)

Y
yi.wu 已提交
190 191
            exe = fluid.Executor(place)
            exe.run(main)
T
typhoonzero 已提交
192 193
    """

Y
Yancey1989 已提交
194
    def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True):
195
        self.helper = LayerHelper("listen_and_serv")
Y
Yancey1989 已提交
196
        self.inputs = inputs
T
typhoonzero 已提交
197 198 199
        self.outputs = []
        self.endpoint = endpoint
        self.fan_in = fan_in
T
typhoonzero 已提交
200 201
        # FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
        # general.
T
WIP  
typhoonzero 已提交
202
        self.optimizer_mode = optimizer_mode
T
typhoonzero 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215

    def do(self):
        return BlockGuardServ(self)

    def get_params_and_grads(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
        # params and grads in the same order.
        params = list()
        grads = list()
        for op in current_block.ops:
            # FIXME(typhoonzero): op.inputs is None if it's cloned.
T
WIP  
typhoonzero 已提交
216 217 218 219 220 221 222 223
            if self.optimizer_mode:
                if "Grad" in op.inputs and "Param" in op.inputs:
                    params.append(op.inputs["Param"].name)
                    grads.append(op.inputs["Grad"].name)
            else:
                # simple recv mode, recv operators inputs.
                for iname in op.input_names:
                    for in_var_name in op.input(iname):
T
typhoonzero 已提交
224 225
                        params.append(parent_block.var(in_var_name))
                        grads.append(parent_block.var(in_var_name))
T
typhoonzero 已提交
226 227 228

        return params, grads

T
typhoonzero 已提交
229 230 231 232 233 234 235
    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

T
typhoonzero 已提交
236
    def complete_op(self):
237 238
        from ..incubate.fleet.parameter_server.mode import DistributedMode

T
typhoonzero 已提交
239 240 241 242 243
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        parent_block.append_op(
244
            type='listen_and_serv',
Y
Yancey1989 已提交
245
            inputs={"X": self.inputs},
T
typhoonzero 已提交
246 247 248 249
            outputs={},
            attrs={
                'endpoint': self.endpoint,
                'Fanin': self.fan_in,
Y
Yancey1989 已提交
250 251 252
                'optimize_blocks': [
                    current_block
                ],  # did not support multiple optimize blocks in layers
1
123malin 已提交
253 254
                'distributed_mode':
                DistributedMode.SYNC,  # did not support async now in layers
Q
qiaolongfei 已提交
255
                'grad_to_block_id': [""]
T
typhoonzero 已提交
256 257 258
            })


259
def Send(endpoints, send_vars, dummy_output=None, sync=True):
T
typhoonzero 已提交
260
    """
Y
yi.wu 已提交
261 262
    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
T
typhoonzero 已提交
263 264

    Args:
T
tianshuo78520a 已提交
265
        endpoints (str): comma separated IP:PORT pairs in the order
T
typhoonzero 已提交
266
                   of send_vars to send
Y
yi.wu 已提交
267 268
        send_vars (list): variables to send to server
        sync (bool): whether to wait the request finish
T
typhoonzero 已提交
269 270 271 272

    """
    assert (type(send_vars) == list)

273 274 275 276 277 278 279
    if dummy_output is None:
        dummy_output = []
    elif isinstance(dummy_output, Variable):
        dummy_output = [dummy_output]

    assert (type(dummy_output) == list)

T
typhoonzero 已提交
280
    epmap = endpoints.split(",")
T
typhoonzero 已提交
281
    endpoints = list(set(epmap))
T
typhoonzero 已提交
282 283

    helper = LayerHelper("Send", **locals())
Y
Yancey1989 已提交
284
    rpc_op_role_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
Y
Yancey1989 已提交
285

T
typhoonzero 已提交
286 287 288
    helper.append_op(
        type="send",
        inputs={"X": send_vars},
289
        outputs={"Out": dummy_output},
Y
Yancey1989 已提交
290 291 292 293 294
        attrs={
            "endpoints": endpoints,
            "epmap": epmap,
            rpc_op_role_name: core.op_proto_and_checker_maker.OpRole.RPC
        })
Y
yi.wu 已提交
295
    if sync:
W
Wu Yi 已提交
296 297 298 299 300
        helper.append_op(
            type="send_barrier",
            inputs={"X": dummy_output},
            outputs={"Out": []},
            attrs={"endpoints": endpoints})
301 302


303
def Recv(endpoints, get_vars, dummy_input=None, sync=True):
304
    """
Y
yi.wu 已提交
305
    Receive variables from server side
306 307

    Args:
T
tianshuo78520a 已提交
308
        endpoints (str): comma separated IP:PORT pairs in the order
309
                   of send_vars to send
Y
yi.wu 已提交
310 311
        get_vars (list): vars to get from server after send completes.
        sync (bool): whether to wait the request finish
312

Y
yi.wu 已提交
313 314
    Returns:
        list: list of received variables
315 316 317
    """
    assert (type(get_vars) == list)

318 319 320 321 322 323 324
    if dummy_input is None:
        dummy_input = []
    elif isinstance(dummy_input, Variable):
        dummy_input = [dummy_input]

    assert (type(dummy_input) == list)

325 326 327 328 329 330
    epmap = endpoints.split(",")
    endpoints = list(set(epmap))

    helper = LayerHelper("Recv", **locals())
    helper.append_op(
        type="recv",
331
        inputs={"X": dummy_input},
332 333 334
        outputs={"Out": get_vars},
        attrs={"endpoints": endpoints,
               "epmap": epmap})
Y
yi.wu 已提交
335
    if sync:
W
Wu Yi 已提交
336 337 338 339
        helper.append_op(
            type="fetch_barrier",
            outputs={"Out": get_vars},
            attrs={"endpoints": endpoints})
Y
yi.wu 已提交
340
    return get_vars
Y
Yu Yang 已提交
341 342


Y
Refine  
Yu Yang 已提交
343 344 345 346 347 348 349 350 351 352
def monkey_patch_reader_methods(reader):
    def __get_reader__():
        scope = global_scope()
        var = scope.find_var(reader.name)
        return var.get_reader()

    def reset():
        return __get_reader__().reset()

    reader.reset = reset
Y
Yu Yang 已提交
353 354
    reader.stop_gradient = True
    reader.persistable = True
Y
Refine  
Yu Yang 已提交
355 356 357
    return reader


Y
Yu Yang 已提交
358 359 360 361
def _copy_reader_var_(block, var):
    new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
    new_var.desc.set_shapes(var.desc.shapes())
    new_var.desc.set_dtypes(var.desc.dtypes())
S
sneaxiy 已提交
362
    new_var.desc.set_lod_levels(var.desc.lod_levels())
Y
Yu Yang 已提交
363
    new_var.persistable = True
F
fengjiayi 已提交
364 365 366 367
    return new_var


def _copy_reader_create_op_(block, op):
F
fengjiayi 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
    input_param_names = op.input_names
    new_input_map = {}
    for param_name in input_param_names:
        new_input_map[param_name] = []
        arg_names = op.input(param_name)
        for arg_name in arg_names:
            new_input_map[param_name].append(block.var(arg_name))

    output_param_names = op.output_names
    new_output_map = {}
    for param_name in output_param_names:
        new_output_map[param_name] = []
        arg_names = op.output(param_name)
        for arg_name in arg_names:
            new_output_map[param_name].append(block.var(arg_name))

F
fengjiayi 已提交
384
    new_op = block.append_op(
F
fengjiayi 已提交
385 386 387
        type=op.type,
        inputs=new_input_map,
        outputs=new_output_map,
J
JiayiFeng 已提交
388
        attrs=op.all_attrs())
F
fengjiayi 已提交
389
    return new_op
Y
Yu Yang 已提交
390 391


Q
Qiao Longfei 已提交
392 393 394 395 396 397
def _py_reader(capacity,
               shapes,
               dtypes,
               lod_levels=None,
               name=None,
               use_double_buffer=True,
S
sneaxiy 已提交
398
               feed_list=None):
Q
Qiao Longfei 已提交
399 400 401 402 403 404 405 406 407
    if feed_list is not None:
        if not isinstance(feed_list, list):
            raise TypeError("feed_list should be a list of Variable"
                            " instead of " + str(type(feed_list)))
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []
408
        need_check_feed = []
Q
Qiao Longfei 已提交
409

Q
Qiao Longfei 已提交
410 411 412 413 414 415
        for feed_data in feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
416
            need_check_feed.append(int(feed_data.desc.need_check_feed()))
Q
Qiao Longfei 已提交
417 418
    else:
        dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
419
        need_check_feed = [0 for dt in dtypes]
Q
Qiao Longfei 已提交
420 421 422 423 424 425 426 427 428
        shape_concat = []
        ranks = []

        for shape in shapes:
            shape_concat.extend(shape)
            ranks.append(len(shape))

        if lod_levels is None:
            lod_levels = [0] * len(shapes)
429
    dtype_int = [int(t) for t in dtypes]
Q
Qiao Longfei 已提交
430 431 432 433 434 435 436 437 438 439
    if name is None:
        queue_name = unique_name('lod_tensor_blocking_queue')
        reader_name = unique_name('create_py_reader')
        double_buffer_name = unique_name('double_buffer')
    else:
        queue_name = "_".join([name, "queue"])
        reader_name = "_".join([name, "reader"])
        double_buffer_name = "_".join([name, "double_buffer"])

    var = global_scope().var(queue_name)
440
    feed_queue = core.init_lod_tensor_blocking_queue(var, capacity, False)
Q
Qiao Longfei 已提交
441 442 443 444

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=reader_name)
    startup_blk.append_op(
S
add doc  
sneaxiy 已提交
445
        type='create_py_reader',
Q
Qiao Longfei 已提交
446 447 448 449 450
        inputs={'blocking_queue': [queue_name]},
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
451 452
            'dtypes': dtype_int,
            'need_check_feed': need_check_feed,
Q
Qiao Longfei 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True

    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

    reader = monkey_patch_reader_methods(main_prog_var)
    if use_double_buffer:
        double_buffer_reader = double_buffer(reader, name=double_buffer_name)
        # we return a double buffer reader. However, the reset method comes from
        # py_reader.
        double_buffer_reader.reset = reader.reset
        reader = double_buffer_reader

    # monkey patch py_reader special methods
    reader.queue = feed_queue
    current_reset_method = reader.reset
    reader.thread = None
    reader.tensor_provider = None
    reader.exited = False

    def start_provide_thread(func):
        def __provider_thread__():
S
sneaxiy 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
            try:
                for tensors in func():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if reader.exited:
                        break
                    feed_queue.push(array)
                    if reader.exited:
                        break
                feed_queue.close()
            except Exception as ex:
Z
Zeng Jinle 已提交
497
                feed_queue.kill()
498
                logging.warn('Your decorated reader has raised an exception!')
499
                six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

        reader.thread = threading.Thread(target=__provider_thread__)
        reader.thread.daemon = True
        reader.thread.start()

    def __set_tensor_provider__(func):
        reader.tensor_provider = func

    def __set_paddle_reader__(paddle_reader):
        with program_guard(Program(), Program()):
            actual_feed_list = feed_list
            if actual_feed_list is None:
                actual_feed_list = []
                counter = 0
                for dtype, shape, lod_level in zip(dtypes, shapes, lod_levels):
                    name = str(counter)
                    actual_feed_list.append(
                        data(
                            name=name,
                            dtype=dtype,
                            shape=shape,
                            lod_level=lod_level))
                    counter += 1

Q
Qiao Longfei 已提交
524
            data_names = [feed_data.name for feed_data in actual_feed_list]
Q
Qiao Longfei 已提交
525 526 527 528 529 530 531
            feeder = DataFeeder(
                feed_list=actual_feed_list, place=core.CPUPlace())
            paddle_reader = feeder.decorate_reader(
                paddle_reader, multi_devices=False)

        def __tensor_provider__():
            for slots in paddle_reader():
Q
Qiao Longfei 已提交
532
                yield [slots[data_name] for data_name in data_names]
Q
Qiao Longfei 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548

        __set_tensor_provider__(__tensor_provider__)

    def __reset__():
        current_reset_method()
        if reader.thread is not None and reader.tensor_provider is not None:
            reader.exited = True
            reader.thread.join()
            reader.exited = False

    def __start__():
        start_provide_thread(reader.tensor_provider)

    reader.reset = __reset__
    reader.decorate_tensor_provider = __set_tensor_provider__
    reader.decorate_paddle_reader = __set_paddle_reader__
S
sneaxiy 已提交
549 550 551

    reader.decorate_batch_generator = __set_tensor_provider__
    reader.decorate_sample_list_generator = __set_paddle_reader__
Q
Qiao Longfei 已提交
552 553 554 555 556
    reader.start = __start__

    return reader


Y
yuyang18 已提交
557 558 559 560 561
def py_reader(capacity,
              shapes,
              dtypes,
              lod_levels=None,
              name=None,
S
sneaxiy 已提交
562
              use_double_buffer=True):
S
sneaxiy 已提交
563
    """
564
	:api_attr: Static Graph
S
swtkiwi 已提交
565

566
    Create a Python reader for data feeding in Python
F
fengjiayi 已提交
567

G
guofei 已提交
568
    This operator returns a Reader Variable.
569 570
    The Reader provides :code:`decorate_paddle_reader()` and
    :code:`decorate_tensor_provider()` to set a Python generator as the data
G
guofei 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584
    source and feed the data from the data source to the Reader Variable. 
    When :code:`Executor::Run()` is invoked in C++ side, the data from the 
    generator would be read automatically. Unlike :code:`DataFeeder.feed()`,
    the data reading process and :code:`Executor::Run()` process can run in 
    parallel using :code:`py_reader`. The :code:`start()` method of the Reader
    should be called when each pass begins, while the :code:`reset()` method 
    should be called when the pass ends and :code:`fluid.core.EOFException` raises.

    Note:
       :code:`Program.clone()` method cannot clone :code:`py_reader`. You can 
       refer to :ref:`api_fluid_Program` for more details.
       
       The :code:`read_file` call needs to be in the program block of :code:`py_reader`.
       You can refer to :ref:`api_fluid_layers_read_file` for more details.
S
sneaxiy 已提交
585 586

    Args:
587
       capacity(int): The buffer capacity maintained by :code:`py_reader`.
G
guofei 已提交
588 589 590 591
       shapes(list|tuple): List of tuples which declaring data shapes. shapes[i] 
            represents the i-th data shape.
       dtypes(list|tuple): List of strings which declaring data type. Supported dtype:
            bool, float16, float32, float64, int8, int16, int32, int64, uint8.
Y
yuyang18 已提交
592
       lod_levels(list|tuple): List of ints which declaring data lod_level.
G
guofei 已提交
593 594 595 596 597 598
       name(basestring): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
       use_double_buffer(bool): Whether use double buffer or not. The double buffer is 
            for pre-reading the data of the next batch and copy the data asynchronously 
            from CPU to GPU. Default is True.
S
sneaxiy 已提交
599 600

    Returns:
G
guofei 已提交
601 602 603 604
       A Reader from which we can get feeding data.

    Return Type:
       Variable
S
sneaxiy 已提交
605 606

    Examples:
607 608 609 610 611 612 613 614 615
       1. The basic usage of :code:`py_reader` is as follows:
       
       .. code-block:: python
    
         import paddle
         import paddle.fluid as fluid
         import paddle.dataset.mnist as mnist

         def network(image, label):
T
tianshuo78520a 已提交
616
             # user defined network, here a softmax regession example
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
             predict = fluid.layers.fc(input=image, size=10, act='softmax')
             return fluid.layers.cross_entropy(input=predict, label=label)

         reader = fluid.layers.py_reader(capacity=64,
                                         shapes=[(-1, 1, 28, 28), (-1, 1)],
                                         dtypes=['float32', 'int64'])
         reader.decorate_paddle_reader(
             paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
                                   buf_size=1000))

         img, label = fluid.layers.read_file(reader)
         loss = network(img, label)

         fluid.Executor(fluid.CUDAPlace(0)).run(fluid.default_startup_program())
         exe = fluid.ParallelExecutor(use_cuda=True)
         for epoch_id in range(10):
             reader.start()
H
Huihuang Zheng 已提交
634 635 636 637 638
             try:
                 while True:
                     exe.run(fetch_list=[loss.name])
             except fluid.core.EOFException:
                 reader.reset()
639 640 641 642 643 644 645 646

         fluid.io.save_inference_model(dirname='./model',
                                       feeded_var_names=[img.name, label.name],
                                       target_vars=[loss],
                                       executor=fluid.Executor(fluid.CUDAPlace(0)))

       2. When training and testing are both performed, two different
       :code:`py_reader` should be created with different names, e.g.:
S
sneaxiy 已提交
647

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
       .. code-block:: python
    
         import paddle
         import paddle.fluid as fluid
         import paddle.dataset.mnist as mnist

         def network(reader):
             img, label = fluid.layers.read_file(reader)
             # User defined network. Here a simple regression as example
             predict = fluid.layers.fc(input=img, size=10, act='softmax')
             loss = fluid.layers.cross_entropy(input=predict, label=label)
             return fluid.layers.mean(loss)

         # Create train_main_prog and train_startup_prog
         train_main_prog = fluid.Program()
         train_startup_prog = fluid.Program()
         with fluid.program_guard(train_main_prog, train_startup_prog):
             # Use fluid.unique_name.guard() to share parameters with test program
             with fluid.unique_name.guard():
                 train_reader = fluid.layers.py_reader(capacity=64,
                                                       shapes=[(-1, 1, 28, 28),
                                                               (-1, 1)],
                                                       dtypes=['float32', 'int64'],
                                                       name='train_reader')
                 train_reader.decorate_paddle_reader(
H
Huihuang Zheng 已提交
673 674
                     paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
                                           buf_size=500))
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
                 train_loss = network(train_reader)  # some network definition
                 adam = fluid.optimizer.Adam(learning_rate=0.01)
                 adam.minimize(train_loss)

         # Create test_main_prog and test_startup_prog
         test_main_prog = fluid.Program()
         test_startup_prog = fluid.Program()
         with fluid.program_guard(test_main_prog, test_startup_prog):
             # Use fluid.unique_name.guard() to share parameters with train program
             with fluid.unique_name.guard():
                 test_reader = fluid.layers.py_reader(capacity=32,
                                                      shapes=[(-1, 1, 28, 28), (-1, 1)],
                                                      dtypes=['float32', 'int64'],
                                                      name='test_reader')
                 test_reader.decorate_paddle_reader(paddle.batch(mnist.test(), 512))
                 test_loss = network(test_reader)

         fluid.Executor(fluid.CUDAPlace(0)).run(train_startup_prog)
         fluid.Executor(fluid.CUDAPlace(0)).run(test_startup_prog)

         train_exe = fluid.ParallelExecutor(use_cuda=True,
                                            loss_name=train_loss.name,
                                            main_program=train_main_prog)
         test_exe = fluid.ParallelExecutor(use_cuda=True,
                                           loss_name=test_loss.name,
                                           main_program=test_main_prog)
         for epoch_id in range(10):
             train_reader.start()
             try:
                 while True:
                    train_exe.run(fetch_list=[train_loss.name])
             except fluid.core.EOFException:
                 train_reader.reset()

         test_reader.start()
         try:
             while True:
                 test_exe.run(fetch_list=[test_loss.name])
         except fluid.core.EOFException:
             test_reader.reset()
S
sneaxiy 已提交
715
    """
716 717
    logging.warn(
        'paddle.fluid.layers.py_reader() may be deprecated in the near future. '
718
        'Please use paddle.fluid.io.DataLoader.from_generator() instead.')
Q
Qiao Longfei 已提交
719 720 721 722 723 724
    return _py_reader(
        capacity=capacity,
        shapes=shapes,
        dtypes=dtypes,
        lod_levels=lod_levels,
        name=name,
S
sneaxiy 已提交
725
        use_double_buffer=use_double_buffer)
Q
Qiao Longfei 已提交
726 727


Q
Qiao Longfei 已提交
728 729 730 731 732
def create_py_reader_by_data(capacity,
                             feed_list,
                             name=None,
                             use_double_buffer=True):
    """
733
	:api_attr: Static Graph
S
swtkiwi 已提交
734

735 736 737 738 739 740 741 742 743 744 745 746 747
    The OP creates a Python reader for data feeding in Python, it is similar
    to :ref:`api_fluid_layers_py_reader` except that it can read data from
    the list of feed variables.

    Parameters:
        capacity (int): The buffer capacity maintained by :code:`py_reader`. Its unit
            is batch number. Set larger :attr:`capacity` if the reader is fast.
        feed_list (list(Variable)): The feed variables, are usually created by
            :code:`fluid.data()`.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`. Default: None.
        use_double_buffer (bool, optional): Whether use double buffer. If it's True,
            the OP would prefetch next batch data asynchronously. Default: True.
Q
Qiao Longfei 已提交
748

Q
Qiao Longfei 已提交
749
    Returns:
750
        Reader: A Reader for data feeding. The data types of read data are the same as the data types of variables of :attr:`feed_list`.
Q
Qiao Longfei 已提交
751

Q
Qiao Longfei 已提交
752
    Examples:
753
        .. code-block:: python
754

755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
          import paddle
          import paddle.fluid as fluid
          import paddle.dataset.mnist as mnist

          def network(img, label):
              # User defined network. Here a simple regression as example
              predict = fluid.layers.fc(input=img, size=10, act='softmax')
              loss = fluid.layers.cross_entropy(input=predict, label=label)
              return fluid.layers.mean(loss)

          MEMORY_OPT = False
          USE_CUDA = False

          image = fluid.data(name='image', shape=[None, 1, 28, 28], dtype='float32')
          label = fluid.data(name='label', shape=[None, 1], dtype='int64')
          reader = fluid.layers.create_py_reader_by_data(capacity=64,
                                                         feed_list=[image, label])
          reader.decorate_paddle_reader(
              paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5), buf_size=500))
          img, label = fluid.layers.read_file(reader)
T
tianshuo78520a 已提交
775
          loss = network(img, label) # The definition of custom network and the loss function
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796

          place = fluid.CUDAPlace(0) if USE_CUDA else fluid.CPUPlace()
          exe = fluid.Executor(place)
          exe.run(fluid.default_startup_program())

          build_strategy = fluid.BuildStrategy()
          build_strategy.memory_optimize = True if MEMORY_OPT else False
          exec_strategy = fluid.ExecutionStrategy()
          compiled_prog = fluid.compiler.CompiledProgram(
          fluid.default_main_program()).with_data_parallel(
              loss_name=loss.name,
              build_strategy=build_strategy,
              exec_strategy=exec_strategy)

          for epoch_id in range(2):
          reader.start()
          try:
              while True:
                  exe.run(compiled_prog, fetch_list=[loss.name])
          except fluid.core.EOFException:
              reader.reset()
Q
Qiao Longfei 已提交
797
    """
798 799 800
    logging.warn(
        'paddle.fluid.layers.create_py_reader_by_data() may be deprecated in the near future. '
        'Please use paddle.fluid.io.DataLoader.from_generator() instead.')
Q
Qiao Longfei 已提交
801 802 803 804 805 806 807 808
    return _py_reader(
        capacity=capacity,
        shapes=None,
        dtypes=None,
        lod_levels=None,
        name=name,
        use_double_buffer=use_double_buffer,
        feed_list=feed_list)
S
sneaxiy 已提交
809 810


J
JiayiFeng 已提交
811
def __create_shared_decorated_reader__(op_type, reader, attrs):
Y
Yu Yang 已提交
812 813 814
    var_name = unique_name(op_type)
    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
F
fengjiayi 已提交
815
    startop_op = startup_blk.append_op(
Y
Yu Yang 已提交
816 817 818 819 820
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [startup_var]},
        attrs=attrs)
    startup_var.persistable = True
F
fengjiayi 已提交
821 822 823 824
    main_prog_block = default_main_program().current_block()
    main_prog_var = _copy_reader_var_(main_prog_block, startup_var)
    _copy_reader_create_op_(main_prog_block, startop_op)
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
825 826


827 828
def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
    new_reader_name = name if name is not None else unique_name(op_type)
829 830 831 832 833 834 835 836 837 838
    main_blk = default_main_program().current_block()
    new_reader = main_blk.create_var(name=new_reader_name)
    main_blk.append_op(
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [new_reader]},
        attrs=attrs)
    return monkey_patch_reader_methods(new_reader)


839
def double_buffer(reader, place=None, name=None):
Y
yuyang18 已提交
840
    """
L
liu zhengxi 已提交
841
    Wrap a double buffer reader. The class Reader contains DecoratedReader and FileReader. Moreover, the DecoratedReader is inherited by CustomReader and BufferedReader. This function is related to BufferedReader. The data will copy to target place with a double buffer queue. If the target place is None, the place that executor perform on will be used.
Y
yuyang18 已提交
842 843


L
liu zhengxi 已提交
844 845
    Args:
        reader (Variable): The Reader Variable need to be wrapped.
846 847
        place (Place|str, optional): The place of target data, such as CPU, GPU, and if use GPU, it's necessary to point out which card is involved. Default is the sample place of executor perform.
            if ``place`` is string, It can be ``cpu``, ``gpu:x``, where ``x`` is the ndex of the GPUs. 
L
liu zhengxi 已提交
848
        name (str, optional): Variable name. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None. 
Y
yuyang18 已提交
849 850

    Returns:
L
liu zhengxi 已提交
851
        Variable(Reader): wrapped reader with double buffer.
Y
yuyang18 已提交
852 853

    Examples:
L
liu zhengxi 已提交
854
        ..  code-block:: python
855
          
L
liu zhengxi 已提交
856 857 858 859 860 861 862
            import paddle.fluid as fluid
            reader = fluid.layers.py_reader(capacity=64,
                                            shapes=[(-1, 1, 28, 28), (-1, 1)],
                                            dtypes=['float32', 'int64'],
                                            use_double_buffer=False)
            reader = fluid.layers.double_buffer(reader)
            image, label = fluid.layers.read_file(reader)
Y
yuyang18 已提交
863
    """
Y
Yu Yang 已提交
864 865
    attrs = dict()
    if place is not None:
866 867
        attrs['place'] = str(_get_paddle_place(place)).upper()

868 869
    return __create_unshared_decorated_reader__(
        'create_double_buffer_reader', reader, attrs, name=name)
Y
Yu Yang 已提交
870 871


F
fengjiayi 已提交
872
def read_file(reader):
F
fengjiayi 已提交
873
    """
874
	:api_attr: Static Graph
S
swtkiwi 已提交
875

F
fengjiayi 已提交
876
    Execute the given reader and get data via it.
F
fengjiayi 已提交
877

878 879
    A reader is also a Variable. It can be a raw reader generated by
    `fluid.layers.open_files()` or a decorated one generated by
880
    `fluid.layers.double_buffer()` .
F
fengjiayi 已提交
881 882 883

    Args:

F
fengjiayi 已提交
884
        reader(Variable): The reader to execute.
F
fengjiayi 已提交
885 886

    Returns:
887
        Tuple[Variable]: Data read from the given reader.
F
fengjiayi 已提交
888 889 890

    Examples:
        .. code-block:: python
891 892
          
           import paddle.fluid as fluid
893 894 895 896
           reader = fluid.layers.py_reader(capacity=64,
                                           shapes=[(-1, 1, 28, 28), (-1, 1)],
                                           dtypes=['float32', 'int64'])
           image, label = fluid.layers.read_file(reader)
F
fengjiayi 已提交
897
    """
Y
Yu Yang 已提交
898 899
    helper = LayerHelper('read_file')
    out = [
X
Xin Pan 已提交
900
        helper.create_variable_for_type_inference(
Y
Yu Yang 已提交
901
            stop_gradient=True, dtype='float32')
F
fengjiayi 已提交
902
        for _ in range(len(reader.desc.shapes()))
Y
Yu Yang 已提交
903 904
    ]
    helper.append_op(
F
fengjiayi 已提交
905
        type='read', inputs={'Reader': [reader]}, outputs={'Out': out})
Y
Yu Yang 已提交
906 907 908 909
    if len(out) == 1:
        return out[0]
    else:
        return out
F
fengjiayi 已提交
910 911


Y
yuyang18 已提交
912 913
def load(out, file_path, load_as_fp16=None):
    """
914
    Load operator will load a LoDTensor / SelectedRows variable from disk file.
Y
yuyang18 已提交
915 916

    Args:
917
        out(Variable): The LoDTensor / SelectedRows need to be loaded..
Y
yuyang18 已提交
918

919
        file_path(STRING): Variable will be loaded from "file_path".
Y
yuyang18 已提交
920

921
        load_as_fp16(BOOLEAN): If true, the tensor will be first loaded and then converted to float16 data type. Otherwise, the tensor will be directly loaded without data type conversion. Default is false..
Y
yuyang18 已提交
922 923
    Returns:
        None
924 925 926 927 928 929 930

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            tmp_tensor = fluid.layers.create_tensor(dtype='float32')
            fluid.layers.load(tmp_tensor, "./tmp_tensor.bin")
Y
yuyang18 已提交
931 932 933 934 935
    """
    helper = LayerHelper("load", **locals())
    attrs = {"file_path": file_path}
    if load_as_fp16 is not None:
        attrs['load_as_fp16'] = load_as_fp16
936
    helper.append_op(type="load", inputs={}, outputs={"Out": out}, attrs=attrs)