io.py 34.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16
import multiprocessing
P
peizhilin 已提交
17
import os
M
minqiyang 已提交
18
import six
19
import sys
Y
yuyang18 已提交
20
import threading
D
dzhwinter 已提交
21

Y
yuyang18 已提交
22
from ..data_feeder import DataFeeder
23 24
from .control_flow import BlockGuard
from .layer_function_generator import templatedoc
Y
yuyang18 已提交
25
from .. import core
Y
Refine  
Yu Yang 已提交
26
from ..executor import global_scope
Y
yuyang18 已提交
27
from ..framework import convert_np_dtype_to_dtype_, default_main_program, \
28
    default_startup_program, program_guard, Program, Variable
Y
yuyang18 已提交
29 30
from ..layer_helper import LayerHelper
from ..unique_name import generate as unique_name
1
123malin 已提交
31
from ..transpiler.distribute_transpiler import DistributedMode
32
import logging
33
from ..data_feeder import check_dtype, check_type
Y
Yu Yang 已提交
34

Y
Yu Yang 已提交
35
__all__ = [
36 37
    'data', 'read_file', 'double_buffer', 'py_reader',
    'create_py_reader_by_data', 'load'
Y
Yu Yang 已提交
38
]
Y
Yu Yang 已提交
39 40 41 42 43 44 45 46 47 48


def data(name,
         shape,
         append_batch_size=True,
         dtype='float32',
         lod_level=0,
         type=core.VarDesc.VarType.LOD_TENSOR,
         stop_gradient=True):
    """
K
kavyasrinet 已提交
49
    **Data Layer**
Y
Yu Yang 已提交
50

G
guofei 已提交
51 52
    This operator creates the global variable. The global variables can be
    accessed by all the following operators in the graph.
Y
Yu Yang 已提交
53

G
guofei 已提交
54 55 56
    Note: 
        :code:`paddle.fluid.layers.data` is deprecated as it will be removed in 
        a later version. Please use :code:`paddle.fluid.data` .
Y
Yu Yang 已提交
57

58
        This :code:`paddle.fluid.layers.data` set shape and dtype at compile
T
tianshuo78520a 已提交
59 60
        time but does NOT check the shape or the dtype of fed data, the
        :code:`paddle.fluid.data` checks the shape and the dtype of data fed 
G
guofei 已提交
61
        by Executor or ParallelExecutor during run time.
62

63 64 65 66 67 68 69 70 71 72
        To feed variable size inputs, users can feed variable size inputs
        directly to this :code:`paddle.fluid.layers.data` and PaddlePaddle will
        fit the size accordingly. Or set -1 on the variable dimension when using
        :code:`paddle.fluid.data` .

        The default :code:`stop_gradient` attribute of the Variable created by
        this API is true, which means the gradient won't be passed backward
        through the data Varaible. Set :code:`var.stop_gradient = False` If
        user would like to pass backward gradient.

K
kavyasrinet 已提交
73
    Args:
G
guofei 已提交
74 75
       name(str): The name/alias of the variable, see :ref:`api_guide_Name`
            for more details.
76
       shape(list|tuple): Tuple declaring the shape. If :code:`append_batch_size` is
G
guofei 已提交
77 78 79
            True and there is no -1 inside :code:`shape`, it should be 
            considered as the shape of the each sample. Otherwise, it should
            be considered as the shape of the batched data.  
X
Xin Pan 已提交
80 81
       append_batch_size(bool):
          1. If true, it prepends -1 to the shape.
82 83 84 85 86 87
            For example if shape=[1], the resulting shape is [-1, 1]. This will 
            be useful to set different batch size at run time.
          2. If shape contains -1, such as shape=[1, -1].
            append_batch_size will be enforced to be be False (ineffective)
            because PaddlePaddle cannot set more than 1 unknown number on the
            shape.
G
guofei 已提交
88 89 90 91
       dtype(np.dtype|VarType|str): The type of the data. Supported dtype: bool,
            float16, float32, float64, int8, int16, int32, int64, uint8.
       type(VarType): The output type. Supported dtype: VarType.LOD_TENSOR,
            VarType.SELECTED_ROWS, VarType.NCCL_ID. Default: VarType.LOD_TENSOR. 
K
kavyasrinet 已提交
92
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
G
guofei 已提交
93
            Default: 0.
K
kavyasrinet 已提交
94
       stop_gradient(bool): A boolean that mentions whether gradient should flow.
G
guofei 已提交
95
            Default: True. 
K
kavyasrinet 已提交
96 97

    Returns:
G
guofei 已提交
98 99 100 101
        The global variable that gives access to the data.

    Return Type:
        Variable
K
kavyasrinet 已提交
102 103 104 105

    Examples:
        .. code-block:: python

106
          import paddle.fluid as fluid
K
kavyasrinet 已提交
107
          data = fluid.layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
108 109
    """
    helper = LayerHelper('data', **locals())
110 111 112 113

    check_type(name, 'name', (six.binary_type, six.text_type), 'data')
    check_type(shape, 'shape', (list, tuple), 'data')

Y
Yu Yang 已提交
114
    shape = list(shape)
M
minqiyang 已提交
115
    for i in six.moves.range(len(shape)):
Y
Yu Yang 已提交
116 117 118 119 120 121 122 123 124
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1

Y
Yu Yang 已提交
125
    data_var = helper.create_global_variable(
Y
Yu Yang 已提交
126 127 128 129 130
        name=name,
        shape=shape,
        dtype=dtype,
        type=type,
        stop_gradient=stop_gradient,
F
fengjiayi 已提交
131 132
        lod_level=lod_level,
        is_data=True)
Y
Yu Yang 已提交
133
    return data_var
T
typhoonzero 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158


class BlockGuardServ(BlockGuard):
    """
    BlockGuardServ class.

    BlockGuardServ class is used to create an op with a block in a program.
    """

    def __init__(self, server):
        if not (isinstance(server, ListenAndServ)):
            raise TypeError("BlockGuardServ takes a ListenAndServ")
        super(BlockGuardServ, self).__init__(server.helper.main_program)
        self.server = server

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False

        self.server.complete_op()
        return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)


class ListenAndServ(object):
    """
Y
yi.wu 已提交
159
    **ListenAndServ Layer**
T
typhoonzero 已提交
160

Y
yi.wu 已提交
161 162 163 164 165 166 167 168 169
    ListenAndServ is used to create a rpc server bind and listen
    on specific TCP port, this server will run the sub-block when
    received variables from clients.

    Args:
        endpoint(string): IP:port string which the server will listen on.
        inputs(list): a list of variables that the server will get from clients.
        fan_in(int): how many client are expected to report to this server, default: 1.
        optimizer_mode(bool): whether to run the server as a parameter server, default: True.
Y
update  
yi.wu 已提交
170

Y
yi.wu 已提交
171 172 173
    Examples:
        .. code-block:: python

174
            import paddle.fluid as fluid
Y
yi.wu 已提交
175 176 177 178 179 180 181 182 183 184 185 186
            with fluid.program_guard(main):
                serv = layers.ListenAndServ(
                    "127.0.0.1:6170", ["X"], optimizer_mode=False)
                with serv.do():
                    x = layers.data(
                        shape=[32, 32],
                        dtype='float32',
                        name="X",
                        append_batch_size=False)
                    fluid.initializer.Constant(value=1.0)(x, main.global_block())
                    layers.scale(x=x, scale=10.0, out=out_var)

Y
yi.wu 已提交
187 188
            exe = fluid.Executor(place)
            exe.run(main)
T
typhoonzero 已提交
189 190
    """

Y
Yancey1989 已提交
191
    def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True):
192
        self.helper = LayerHelper("listen_and_serv")
Y
Yancey1989 已提交
193
        self.inputs = inputs
T
typhoonzero 已提交
194 195 196
        self.outputs = []
        self.endpoint = endpoint
        self.fan_in = fan_in
T
typhoonzero 已提交
197 198
        # FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
        # general.
T
WIP  
typhoonzero 已提交
199
        self.optimizer_mode = optimizer_mode
T
typhoonzero 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212

    def do(self):
        return BlockGuardServ(self)

    def get_params_and_grads(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
        # params and grads in the same order.
        params = list()
        grads = list()
        for op in current_block.ops:
            # FIXME(typhoonzero): op.inputs is None if it's cloned.
T
WIP  
typhoonzero 已提交
213 214 215 216 217 218 219 220
            if self.optimizer_mode:
                if "Grad" in op.inputs and "Param" in op.inputs:
                    params.append(op.inputs["Param"].name)
                    grads.append(op.inputs["Grad"].name)
            else:
                # simple recv mode, recv operators inputs.
                for iname in op.input_names:
                    for in_var_name in op.input(iname):
T
typhoonzero 已提交
221 222
                        params.append(parent_block.var(in_var_name))
                        grads.append(parent_block.var(in_var_name))
T
typhoonzero 已提交
223 224 225

        return params, grads

T
typhoonzero 已提交
226 227 228 229 230 231 232
    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

T
typhoonzero 已提交
233 234 235 236 237 238
    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        parent_block.append_op(
239
            type='listen_and_serv',
Y
Yancey1989 已提交
240
            inputs={"X": self.inputs},
T
typhoonzero 已提交
241 242 243 244
            outputs={},
            attrs={
                'endpoint': self.endpoint,
                'Fanin': self.fan_in,
Y
Yancey1989 已提交
245 246 247
                'optimize_blocks': [
                    current_block
                ],  # did not support multiple optimize blocks in layers
1
123malin 已提交
248 249
                'distributed_mode':
                DistributedMode.SYNC,  # did not support async now in layers
Q
qiaolongfei 已提交
250
                'grad_to_block_id': [""]
T
typhoonzero 已提交
251 252 253
            })


254
def Send(endpoints, send_vars, dummy_output=None, sync=True):
T
typhoonzero 已提交
255
    """
Y
yi.wu 已提交
256 257
    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
T
typhoonzero 已提交
258 259

    Args:
T
tianshuo78520a 已提交
260
        endpoints (str): comma separated IP:PORT pairs in the order
T
typhoonzero 已提交
261
                   of send_vars to send
Y
yi.wu 已提交
262 263
        send_vars (list): variables to send to server
        sync (bool): whether to wait the request finish
T
typhoonzero 已提交
264 265 266 267

    """
    assert (type(send_vars) == list)

268 269 270 271 272 273 274
    if dummy_output is None:
        dummy_output = []
    elif isinstance(dummy_output, Variable):
        dummy_output = [dummy_output]

    assert (type(dummy_output) == list)

T
typhoonzero 已提交
275
    epmap = endpoints.split(",")
T
typhoonzero 已提交
276
    endpoints = list(set(epmap))
T
typhoonzero 已提交
277 278

    helper = LayerHelper("Send", **locals())
Y
Yancey1989 已提交
279
    rpc_op_role_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
Y
Yancey1989 已提交
280

T
typhoonzero 已提交
281 282 283
    helper.append_op(
        type="send",
        inputs={"X": send_vars},
284
        outputs={"Out": dummy_output},
Y
Yancey1989 已提交
285 286 287 288 289
        attrs={
            "endpoints": endpoints,
            "epmap": epmap,
            rpc_op_role_name: core.op_proto_and_checker_maker.OpRole.RPC
        })
Y
yi.wu 已提交
290
    if sync:
W
Wu Yi 已提交
291 292 293 294 295
        helper.append_op(
            type="send_barrier",
            inputs={"X": dummy_output},
            outputs={"Out": []},
            attrs={"endpoints": endpoints})
296 297


298
def Recv(endpoints, get_vars, dummy_input=None, sync=True):
299
    """
Y
yi.wu 已提交
300
    Receive variables from server side
301 302

    Args:
T
tianshuo78520a 已提交
303
        endpoints (str): comma separated IP:PORT pairs in the order
304
                   of send_vars to send
Y
yi.wu 已提交
305 306
        get_vars (list): vars to get from server after send completes.
        sync (bool): whether to wait the request finish
307

Y
yi.wu 已提交
308 309
    Returns:
        list: list of received variables
310 311 312
    """
    assert (type(get_vars) == list)

313 314 315 316 317 318 319
    if dummy_input is None:
        dummy_input = []
    elif isinstance(dummy_input, Variable):
        dummy_input = [dummy_input]

    assert (type(dummy_input) == list)

320 321 322 323 324 325
    epmap = endpoints.split(",")
    endpoints = list(set(epmap))

    helper = LayerHelper("Recv", **locals())
    helper.append_op(
        type="recv",
326
        inputs={"X": dummy_input},
327 328 329
        outputs={"Out": get_vars},
        attrs={"endpoints": endpoints,
               "epmap": epmap})
Y
yi.wu 已提交
330
    if sync:
W
Wu Yi 已提交
331 332 333 334
        helper.append_op(
            type="fetch_barrier",
            outputs={"Out": get_vars},
            attrs={"endpoints": endpoints})
Y
yi.wu 已提交
335
    return get_vars
Y
Yu Yang 已提交
336 337


Y
Refine  
Yu Yang 已提交
338 339 340 341 342 343 344 345 346 347
def monkey_patch_reader_methods(reader):
    def __get_reader__():
        scope = global_scope()
        var = scope.find_var(reader.name)
        return var.get_reader()

    def reset():
        return __get_reader__().reset()

    reader.reset = reset
Y
Yu Yang 已提交
348 349
    reader.stop_gradient = True
    reader.persistable = True
Y
Refine  
Yu Yang 已提交
350 351 352
    return reader


Y
Yu Yang 已提交
353 354 355 356
def _copy_reader_var_(block, var):
    new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
    new_var.desc.set_shapes(var.desc.shapes())
    new_var.desc.set_dtypes(var.desc.dtypes())
S
sneaxiy 已提交
357
    new_var.desc.set_lod_levels(var.desc.lod_levels())
Y
Yu Yang 已提交
358
    new_var.persistable = True
F
fengjiayi 已提交
359 360 361 362
    return new_var


def _copy_reader_create_op_(block, op):
F
fengjiayi 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
    input_param_names = op.input_names
    new_input_map = {}
    for param_name in input_param_names:
        new_input_map[param_name] = []
        arg_names = op.input(param_name)
        for arg_name in arg_names:
            new_input_map[param_name].append(block.var(arg_name))

    output_param_names = op.output_names
    new_output_map = {}
    for param_name in output_param_names:
        new_output_map[param_name] = []
        arg_names = op.output(param_name)
        for arg_name in arg_names:
            new_output_map[param_name].append(block.var(arg_name))

F
fengjiayi 已提交
379
    new_op = block.append_op(
F
fengjiayi 已提交
380 381 382
        type=op.type,
        inputs=new_input_map,
        outputs=new_output_map,
J
JiayiFeng 已提交
383
        attrs=op.all_attrs())
F
fengjiayi 已提交
384
    return new_op
Y
Yu Yang 已提交
385 386


Q
Qiao Longfei 已提交
387 388 389 390 391 392
def _py_reader(capacity,
               shapes,
               dtypes,
               lod_levels=None,
               name=None,
               use_double_buffer=True,
S
sneaxiy 已提交
393
               feed_list=None):
394

Q
Qiao Longfei 已提交
395 396 397 398 399 400 401 402 403
    if feed_list is not None:
        if not isinstance(feed_list, list):
            raise TypeError("feed_list should be a list of Variable"
                            " instead of " + str(type(feed_list)))
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []
404
        need_check_feed = []
Q
Qiao Longfei 已提交
405

Q
Qiao Longfei 已提交
406 407 408 409 410 411
        for feed_data in feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
412
            need_check_feed.append(int(feed_data.desc.need_check_feed()))
Q
Qiao Longfei 已提交
413 414
    else:
        dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
415
        need_check_feed = [0 for dt in dtypes]
Q
Qiao Longfei 已提交
416 417 418 419 420 421 422 423 424
        shape_concat = []
        ranks = []

        for shape in shapes:
            shape_concat.extend(shape)
            ranks.append(len(shape))

        if lod_levels is None:
            lod_levels = [0] * len(shapes)
425
    dtype_int = [int(t) for t in dtypes]
Q
Qiao Longfei 已提交
426 427 428 429 430 431 432 433 434 435
    if name is None:
        queue_name = unique_name('lod_tensor_blocking_queue')
        reader_name = unique_name('create_py_reader')
        double_buffer_name = unique_name('double_buffer')
    else:
        queue_name = "_".join([name, "queue"])
        reader_name = "_".join([name, "reader"])
        double_buffer_name = "_".join([name, "double_buffer"])

    var = global_scope().var(queue_name)
436
    feed_queue = core.init_lod_tensor_blocking_queue(var, capacity, False)
Q
Qiao Longfei 已提交
437 438 439 440

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=reader_name)
    startup_blk.append_op(
S
add doc  
sneaxiy 已提交
441
        type='create_py_reader',
Q
Qiao Longfei 已提交
442 443 444 445 446
        inputs={'blocking_queue': [queue_name]},
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
447 448
            'dtypes': dtype_int,
            'need_check_feed': need_check_feed,
Q
Qiao Longfei 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True

    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

    reader = monkey_patch_reader_methods(main_prog_var)
    if use_double_buffer:
        double_buffer_reader = double_buffer(reader, name=double_buffer_name)
        # we return a double buffer reader. However, the reset method comes from
        # py_reader.
        double_buffer_reader.reset = reader.reset
        reader = double_buffer_reader

    # monkey patch py_reader special methods
    reader.queue = feed_queue
    current_reset_method = reader.reset
    reader.thread = None
    reader.tensor_provider = None
    reader.exited = False

    def start_provide_thread(func):
        def __provider_thread__():
S
sneaxiy 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
            try:
                for tensors in func():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if reader.exited:
                        break
                    feed_queue.push(array)
                    if reader.exited:
                        break
                feed_queue.close()
            except Exception as ex:
Z
Zeng Jinle 已提交
493
                feed_queue.kill()
494
                logging.warn('Your decorated reader has raised an exception!')
495
                six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519

        reader.thread = threading.Thread(target=__provider_thread__)
        reader.thread.daemon = True
        reader.thread.start()

    def __set_tensor_provider__(func):
        reader.tensor_provider = func

    def __set_paddle_reader__(paddle_reader):
        with program_guard(Program(), Program()):
            actual_feed_list = feed_list
            if actual_feed_list is None:
                actual_feed_list = []
                counter = 0
                for dtype, shape, lod_level in zip(dtypes, shapes, lod_levels):
                    name = str(counter)
                    actual_feed_list.append(
                        data(
                            name=name,
                            dtype=dtype,
                            shape=shape,
                            lod_level=lod_level))
                    counter += 1

Q
Qiao Longfei 已提交
520
            data_names = [feed_data.name for feed_data in actual_feed_list]
Q
Qiao Longfei 已提交
521 522 523 524 525 526 527
            feeder = DataFeeder(
                feed_list=actual_feed_list, place=core.CPUPlace())
            paddle_reader = feeder.decorate_reader(
                paddle_reader, multi_devices=False)

        def __tensor_provider__():
            for slots in paddle_reader():
Q
Qiao Longfei 已提交
528
                yield [slots[data_name] for data_name in data_names]
Q
Qiao Longfei 已提交
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544

        __set_tensor_provider__(__tensor_provider__)

    def __reset__():
        current_reset_method()
        if reader.thread is not None and reader.tensor_provider is not None:
            reader.exited = True
            reader.thread.join()
            reader.exited = False

    def __start__():
        start_provide_thread(reader.tensor_provider)

    reader.reset = __reset__
    reader.decorate_tensor_provider = __set_tensor_provider__
    reader.decorate_paddle_reader = __set_paddle_reader__
S
sneaxiy 已提交
545 546 547

    reader.decorate_batch_generator = __set_tensor_provider__
    reader.decorate_sample_list_generator = __set_paddle_reader__
Q
Qiao Longfei 已提交
548 549 550 551 552
    reader.start = __start__

    return reader


Y
yuyang18 已提交
553 554 555 556 557
def py_reader(capacity,
              shapes,
              dtypes,
              lod_levels=None,
              name=None,
S
sneaxiy 已提交
558
              use_double_buffer=True):
S
sneaxiy 已提交
559
    """
560
    Create a Python reader for data feeding in Python
F
fengjiayi 已提交
561

G
guofei 已提交
562
    This operator returns a Reader Variable.
563 564
    The Reader provides :code:`decorate_paddle_reader()` and
    :code:`decorate_tensor_provider()` to set a Python generator as the data
G
guofei 已提交
565 566 567 568 569 570 571 572 573 574 575 576 577 578
    source and feed the data from the data source to the Reader Variable. 
    When :code:`Executor::Run()` is invoked in C++ side, the data from the 
    generator would be read automatically. Unlike :code:`DataFeeder.feed()`,
    the data reading process and :code:`Executor::Run()` process can run in 
    parallel using :code:`py_reader`. The :code:`start()` method of the Reader
    should be called when each pass begins, while the :code:`reset()` method 
    should be called when the pass ends and :code:`fluid.core.EOFException` raises.

    Note:
       :code:`Program.clone()` method cannot clone :code:`py_reader`. You can 
       refer to :ref:`api_fluid_Program` for more details.
       
       The :code:`read_file` call needs to be in the program block of :code:`py_reader`.
       You can refer to :ref:`api_fluid_layers_read_file` for more details.
S
sneaxiy 已提交
579 580

    Args:
581
       capacity(int): The buffer capacity maintained by :code:`py_reader`.
G
guofei 已提交
582 583 584 585
       shapes(list|tuple): List of tuples which declaring data shapes. shapes[i] 
            represents the i-th data shape.
       dtypes(list|tuple): List of strings which declaring data type. Supported dtype:
            bool, float16, float32, float64, int8, int16, int32, int64, uint8.
Y
yuyang18 已提交
586
       lod_levels(list|tuple): List of ints which declaring data lod_level.
G
guofei 已提交
587 588 589 590 591 592
       name(basestring): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
       use_double_buffer(bool): Whether use double buffer or not. The double buffer is 
            for pre-reading the data of the next batch and copy the data asynchronously 
            from CPU to GPU. Default is True.
S
sneaxiy 已提交
593 594

    Returns:
G
guofei 已提交
595 596 597 598
       A Reader from which we can get feeding data.

    Return Type:
       Variable
S
sneaxiy 已提交
599 600

    Examples:
601 602 603 604 605 606 607 608 609
       1. The basic usage of :code:`py_reader` is as follows:
       
       .. code-block:: python
    
         import paddle
         import paddle.fluid as fluid
         import paddle.dataset.mnist as mnist

         def network(image, label):
T
tianshuo78520a 已提交
610
             # user defined network, here a softmax regession example
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
             predict = fluid.layers.fc(input=image, size=10, act='softmax')
             return fluid.layers.cross_entropy(input=predict, label=label)

         reader = fluid.layers.py_reader(capacity=64,
                                         shapes=[(-1, 1, 28, 28), (-1, 1)],
                                         dtypes=['float32', 'int64'])
         reader.decorate_paddle_reader(
             paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
                                   buf_size=1000))

         img, label = fluid.layers.read_file(reader)
         loss = network(img, label)

         fluid.Executor(fluid.CUDAPlace(0)).run(fluid.default_startup_program())
         exe = fluid.ParallelExecutor(use_cuda=True)
         for epoch_id in range(10):
             reader.start()
H
Huihuang Zheng 已提交
628 629 630 631 632
             try:
                 while True:
                     exe.run(fetch_list=[loss.name])
             except fluid.core.EOFException:
                 reader.reset()
633 634 635 636 637 638 639 640

         fluid.io.save_inference_model(dirname='./model',
                                       feeded_var_names=[img.name, label.name],
                                       target_vars=[loss],
                                       executor=fluid.Executor(fluid.CUDAPlace(0)))

       2. When training and testing are both performed, two different
       :code:`py_reader` should be created with different names, e.g.:
S
sneaxiy 已提交
641

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
       .. code-block:: python
    
         import paddle
         import paddle.fluid as fluid
         import paddle.dataset.mnist as mnist

         def network(reader):
             img, label = fluid.layers.read_file(reader)
             # User defined network. Here a simple regression as example
             predict = fluid.layers.fc(input=img, size=10, act='softmax')
             loss = fluid.layers.cross_entropy(input=predict, label=label)
             return fluid.layers.mean(loss)

         # Create train_main_prog and train_startup_prog
         train_main_prog = fluid.Program()
         train_startup_prog = fluid.Program()
         with fluid.program_guard(train_main_prog, train_startup_prog):
             # Use fluid.unique_name.guard() to share parameters with test program
             with fluid.unique_name.guard():
                 train_reader = fluid.layers.py_reader(capacity=64,
                                                       shapes=[(-1, 1, 28, 28),
                                                               (-1, 1)],
                                                       dtypes=['float32', 'int64'],
                                                       name='train_reader')
                 train_reader.decorate_paddle_reader(
H
Huihuang Zheng 已提交
667 668
                     paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
                                           buf_size=500))
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
                 train_loss = network(train_reader)  # some network definition
                 adam = fluid.optimizer.Adam(learning_rate=0.01)
                 adam.minimize(train_loss)

         # Create test_main_prog and test_startup_prog
         test_main_prog = fluid.Program()
         test_startup_prog = fluid.Program()
         with fluid.program_guard(test_main_prog, test_startup_prog):
             # Use fluid.unique_name.guard() to share parameters with train program
             with fluid.unique_name.guard():
                 test_reader = fluid.layers.py_reader(capacity=32,
                                                      shapes=[(-1, 1, 28, 28), (-1, 1)],
                                                      dtypes=['float32', 'int64'],
                                                      name='test_reader')
                 test_reader.decorate_paddle_reader(paddle.batch(mnist.test(), 512))
                 test_loss = network(test_reader)

         fluid.Executor(fluid.CUDAPlace(0)).run(train_startup_prog)
         fluid.Executor(fluid.CUDAPlace(0)).run(test_startup_prog)

         train_exe = fluid.ParallelExecutor(use_cuda=True,
                                            loss_name=train_loss.name,
                                            main_program=train_main_prog)
         test_exe = fluid.ParallelExecutor(use_cuda=True,
                                           loss_name=test_loss.name,
                                           main_program=test_main_prog)
         for epoch_id in range(10):
             train_reader.start()
             try:
                 while True:
                    train_exe.run(fetch_list=[train_loss.name])
             except fluid.core.EOFException:
                 train_reader.reset()

         test_reader.start()
         try:
             while True:
                 test_exe.run(fetch_list=[test_loss.name])
         except fluid.core.EOFException:
             test_reader.reset()
S
sneaxiy 已提交
709
    """
710 711
    logging.warn(
        'paddle.fluid.layers.py_reader() may be deprecated in the near future. '
712
        'Please use paddle.fluid.io.DataLoader.from_generator() instead.')
Q
Qiao Longfei 已提交
713 714 715 716 717 718
    return _py_reader(
        capacity=capacity,
        shapes=shapes,
        dtypes=dtypes,
        lod_levels=lod_levels,
        name=name,
S
sneaxiy 已提交
719
        use_double_buffer=use_double_buffer)
Q
Qiao Longfei 已提交
720 721


Q
Qiao Longfei 已提交
722 723 724 725 726
def create_py_reader_by_data(capacity,
                             feed_list,
                             name=None,
                             use_double_buffer=True):
    """
727 728 729 730 731 732 733 734 735 736 737 738 739
    The OP creates a Python reader for data feeding in Python, it is similar
    to :ref:`api_fluid_layers_py_reader` except that it can read data from
    the list of feed variables.

    Parameters:
        capacity (int): The buffer capacity maintained by :code:`py_reader`. Its unit
            is batch number. Set larger :attr:`capacity` if the reader is fast.
        feed_list (list(Variable)): The feed variables, are usually created by
            :code:`fluid.data()`.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`. Default: None.
        use_double_buffer (bool, optional): Whether use double buffer. If it's True,
            the OP would prefetch next batch data asynchronously. Default: True.
Q
Qiao Longfei 已提交
740

Q
Qiao Longfei 已提交
741
    Returns:
742
        Reader: A Reader for data feeding. The data types of read data are the same as the data types of variables of :attr:`feed_list`.
Q
Qiao Longfei 已提交
743

Q
Qiao Longfei 已提交
744
    Examples:
745
        .. code-block:: python
746

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
          import paddle
          import paddle.fluid as fluid
          import paddle.dataset.mnist as mnist

          def network(img, label):
              # User defined network. Here a simple regression as example
              predict = fluid.layers.fc(input=img, size=10, act='softmax')
              loss = fluid.layers.cross_entropy(input=predict, label=label)
              return fluid.layers.mean(loss)

          MEMORY_OPT = False
          USE_CUDA = False

          image = fluid.data(name='image', shape=[None, 1, 28, 28], dtype='float32')
          label = fluid.data(name='label', shape=[None, 1], dtype='int64')
          reader = fluid.layers.create_py_reader_by_data(capacity=64,
                                                         feed_list=[image, label])
          reader.decorate_paddle_reader(
              paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5), buf_size=500))
          img, label = fluid.layers.read_file(reader)
T
tianshuo78520a 已提交
767
          loss = network(img, label) # The definition of custom network and the loss function
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788

          place = fluid.CUDAPlace(0) if USE_CUDA else fluid.CPUPlace()
          exe = fluid.Executor(place)
          exe.run(fluid.default_startup_program())

          build_strategy = fluid.BuildStrategy()
          build_strategy.memory_optimize = True if MEMORY_OPT else False
          exec_strategy = fluid.ExecutionStrategy()
          compiled_prog = fluid.compiler.CompiledProgram(
          fluid.default_main_program()).with_data_parallel(
              loss_name=loss.name,
              build_strategy=build_strategy,
              exec_strategy=exec_strategy)

          for epoch_id in range(2):
          reader.start()
          try:
              while True:
                  exe.run(compiled_prog, fetch_list=[loss.name])
          except fluid.core.EOFException:
              reader.reset()
Q
Qiao Longfei 已提交
789
    """
790 791 792
    logging.warn(
        'paddle.fluid.layers.create_py_reader_by_data() may be deprecated in the near future. '
        'Please use paddle.fluid.io.DataLoader.from_generator() instead.')
Q
Qiao Longfei 已提交
793 794 795 796 797 798 799 800
    return _py_reader(
        capacity=capacity,
        shapes=None,
        dtypes=None,
        lod_levels=None,
        name=name,
        use_double_buffer=use_double_buffer,
        feed_list=feed_list)
S
sneaxiy 已提交
801 802


J
JiayiFeng 已提交
803
def __create_shared_decorated_reader__(op_type, reader, attrs):
Y
Yu Yang 已提交
804 805 806
    var_name = unique_name(op_type)
    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
F
fengjiayi 已提交
807
    startop_op = startup_blk.append_op(
Y
Yu Yang 已提交
808 809 810 811 812
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [startup_var]},
        attrs=attrs)
    startup_var.persistable = True
F
fengjiayi 已提交
813 814 815 816
    main_prog_block = default_main_program().current_block()
    main_prog_var = _copy_reader_var_(main_prog_block, startup_var)
    _copy_reader_create_op_(main_prog_block, startop_op)
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
817 818


819 820
def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
    new_reader_name = name if name is not None else unique_name(op_type)
821 822 823 824 825 826 827 828 829 830
    main_blk = default_main_program().current_block()
    new_reader = main_blk.create_var(name=new_reader_name)
    main_blk.append_op(
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [new_reader]},
        attrs=attrs)
    return monkey_patch_reader_methods(new_reader)


831
def double_buffer(reader, place=None, name=None):
Y
yuyang18 已提交
832
    """
L
liu zhengxi 已提交
833
    Wrap a double buffer reader. The class Reader contains DecoratedReader and FileReader. Moreover, the DecoratedReader is inherited by CustomReader and BufferedReader. This function is related to BufferedReader. The data will copy to target place with a double buffer queue. If the target place is None, the place that executor perform on will be used.
Y
yuyang18 已提交
834 835


L
liu zhengxi 已提交
836 837 838 839
    Args:
        reader (Variable): The Reader Variable need to be wrapped.
        place (Place, optional): The place of target data, such as CPU, GPU, and if use GPU, it's necessary to point out which card is involved. Default is the sample place of executor perform.
        name (str, optional): Variable name. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None. 
Y
yuyang18 已提交
840 841

    Returns:
L
liu zhengxi 已提交
842
        Variable(Reader): wrapped reader with double buffer.
Y
yuyang18 已提交
843 844

    Examples:
L
liu zhengxi 已提交
845
        ..  code-block:: python
846
          
L
liu zhengxi 已提交
847 848 849 850 851 852 853
            import paddle.fluid as fluid
            reader = fluid.layers.py_reader(capacity=64,
                                            shapes=[(-1, 1, 28, 28), (-1, 1)],
                                            dtypes=['float32', 'int64'],
                                            use_double_buffer=False)
            reader = fluid.layers.double_buffer(reader)
            image, label = fluid.layers.read_file(reader)
Y
yuyang18 已提交
854
    """
Y
Yu Yang 已提交
855 856 857
    attrs = dict()
    if place is not None:
        attrs['place'] = str(place).upper()
858 859
    return __create_unshared_decorated_reader__(
        'create_double_buffer_reader', reader, attrs, name=name)
Y
Yu Yang 已提交
860 861


F
fengjiayi 已提交
862
def read_file(reader):
F
fengjiayi 已提交
863
    """
F
fengjiayi 已提交
864
    Execute the given reader and get data via it.
F
fengjiayi 已提交
865

866 867
    A reader is also a Variable. It can be a raw reader generated by
    `fluid.layers.open_files()` or a decorated one generated by
868
    `fluid.layers.double_buffer()` .
F
fengjiayi 已提交
869 870 871

    Args:

F
fengjiayi 已提交
872
        reader(Variable): The reader to execute.
F
fengjiayi 已提交
873 874

    Returns:
875
        Tuple[Variable]: Data read from the given reader.
F
fengjiayi 已提交
876 877 878

    Examples:
        .. code-block:: python
879 880
          
           import paddle.fluid as fluid
881 882 883 884
           reader = fluid.layers.py_reader(capacity=64,
                                           shapes=[(-1, 1, 28, 28), (-1, 1)],
                                           dtypes=['float32', 'int64'])
           image, label = fluid.layers.read_file(reader)
F
fengjiayi 已提交
885
    """
Y
Yu Yang 已提交
886 887
    helper = LayerHelper('read_file')
    out = [
X
Xin Pan 已提交
888
        helper.create_variable_for_type_inference(
Y
Yu Yang 已提交
889
            stop_gradient=True, dtype='float32')
F
fengjiayi 已提交
890
        for _ in range(len(reader.desc.shapes()))
Y
Yu Yang 已提交
891 892
    ]
    helper.append_op(
F
fengjiayi 已提交
893
        type='read', inputs={'Reader': [reader]}, outputs={'Out': out})
Y
Yu Yang 已提交
894 895 896 897
    if len(out) == 1:
        return out[0]
    else:
        return out
F
fengjiayi 已提交
898 899


Y
yuyang18 已提交
900 901
def load(out, file_path, load_as_fp16=None):
    """
902
    Load operator will load a LoDTensor / SelectedRows variable from disk file.
Y
yuyang18 已提交
903 904

    Args:
905
        out(Variable): The LoDTensor / SelectedRows need to be loaded..
Y
yuyang18 已提交
906

907
        file_path(STRING): Variable will be loaded from "file_path".
Y
yuyang18 已提交
908

909
        load_as_fp16(BOOLEAN): If true, the tensor will be first loaded and then converted to float16 data type. Otherwise, the tensor will be directly loaded without data type conversion. Default is false..
Y
yuyang18 已提交
910 911
    Returns:
        None
912 913 914 915 916 917 918

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            tmp_tensor = fluid.layers.create_tensor(dtype='float32')
            fluid.layers.load(tmp_tensor, "./tmp_tensor.bin")
Y
yuyang18 已提交
919 920 921 922 923
    """
    helper = LayerHelper("load", **locals())
    attrs = {"file_path": file_path}
    if load_as_fp16 is not None:
        attrs['load_as_fp16'] = load_as_fp16
924
    helper.append_op(type="load", inputs={}, outputs={"Out": out}, attrs=attrs)