io.py 31.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
17
import multiprocessing
P
peizhilin 已提交
18
import os
M
minqiyang 已提交
19
import six
20
import sys
Y
yuyang18 已提交
21
import threading
D
dzhwinter 已提交
22

Y
yuyang18 已提交
23
from ..data_feeder import DataFeeder
24 25
from .control_flow import BlockGuard
from .layer_function_generator import templatedoc
Y
yuyang18 已提交
26
from .. import core
Y
Refine  
Yu Yang 已提交
27
from ..executor import global_scope
Y
yuyang18 已提交
28
from ..framework import convert_np_dtype_to_dtype_, default_main_program, \
29
    default_startup_program, program_guard, Program, Variable
Y
yuyang18 已提交
30 31
from ..layer_helper import LayerHelper
from ..unique_name import generate as unique_name
32
import logging
Y
Yu Yang 已提交
33

Y
Yu Yang 已提交
34
__all__ = [
35 36
    'data', 'read_file', 'double_buffer', 'py_reader',
    'create_py_reader_by_data', 'load'
Y
Yu Yang 已提交
37
]
Y
Yu Yang 已提交
38 39 40 41 42 43 44 45 46 47


def data(name,
         shape,
         append_batch_size=True,
         dtype='float32',
         lod_level=0,
         type=core.VarDesc.VarType.LOD_TENSOR,
         stop_gradient=True):
    """
K
kavyasrinet 已提交
48
    **Data Layer**
Y
Yu Yang 已提交
49

K
kavyasrinet 已提交
50
    This function takes in the input and based on whether data has
C
caoying03 已提交
51
    to be returned back as a minibatch, it creates the global variable by using
Y
Yu Yang 已提交
52
    the helper functions. The global variables can be accessed by all the
C
caoying03 已提交
53
    following operators in the graph.
Y
Yu Yang 已提交
54 55 56 57

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

58 59 60 61 62
    Notice that paddle would only use :code:`shape` to infer the shapes of 
    following variables in the network during compile-time. During run-time, 
    paddle would not check whether the shape of the feeded data matches the 
    :code:`shape` settings in this function. 

K
kavyasrinet 已提交
63 64
    Args:
       name(str): The name/alias of the function
S
sneaxiy 已提交
65 66 67 68
       shape(list): Tuple declaring the shape. If :code:`append_batch_size` is 
                    True and there is no -1 inside :code:`shape`, it should be 
                    considered as the shape of the each sample. Otherwise, it
                    should be considered as the shape of the batched data.  
X
Xin Pan 已提交
69 70
       append_batch_size(bool):
          1. If true, it prepends -1 to the shape.
71 72 73 74 75 76
            For example if shape=[1], the resulting shape is [-1, 1]. This will 
            be useful to set different batch size at run time.
          2. If shape contains -1, such as shape=[1, -1].
            append_batch_size will be enforced to be be False (ineffective)
            because PaddlePaddle cannot set more than 1 unknown number on the
            shape.
77
       dtype(np.dtype|VarType|str): The type of data : float32, float16, int etc
K
kavyasrinet 已提交
78 79 80 81 82 83 84 85 86 87
       type(VarType): The output type. By default it is LOD_TENSOR.
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
       stop_gradient(bool): A boolean that mentions whether gradient should flow.

    Returns:
        Variable: The global variable that gives access to the data.

    Examples:
        .. code-block:: python

88
          import paddle.fluid as fluid
K
kavyasrinet 已提交
89
          data = fluid.layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
90 91 92
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
M
minqiyang 已提交
93
    for i in six.moves.range(len(shape)):
Y
Yu Yang 已提交
94 95 96 97 98 99 100 101 102
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1

Y
Yu Yang 已提交
103
    data_var = helper.create_global_variable(
Y
Yu Yang 已提交
104 105 106 107 108
        name=name,
        shape=shape,
        dtype=dtype,
        type=type,
        stop_gradient=stop_gradient,
F
fengjiayi 已提交
109 110
        lod_level=lod_level,
        is_data=True)
Y
Yu Yang 已提交
111
    return data_var
T
typhoonzero 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136


class BlockGuardServ(BlockGuard):
    """
    BlockGuardServ class.

    BlockGuardServ class is used to create an op with a block in a program.
    """

    def __init__(self, server):
        if not (isinstance(server, ListenAndServ)):
            raise TypeError("BlockGuardServ takes a ListenAndServ")
        super(BlockGuardServ, self).__init__(server.helper.main_program)
        self.server = server

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False

        self.server.complete_op()
        return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)


class ListenAndServ(object):
    """
Y
yi.wu 已提交
137
    **ListenAndServ Layer**
T
typhoonzero 已提交
138

Y
yi.wu 已提交
139 140 141 142 143 144 145 146 147
    ListenAndServ is used to create a rpc server bind and listen
    on specific TCP port, this server will run the sub-block when
    received variables from clients.

    Args:
        endpoint(string): IP:port string which the server will listen on.
        inputs(list): a list of variables that the server will get from clients.
        fan_in(int): how many client are expected to report to this server, default: 1.
        optimizer_mode(bool): whether to run the server as a parameter server, default: True.
Y
update  
yi.wu 已提交
148

Y
yi.wu 已提交
149 150 151
    Examples:
        .. code-block:: python

152
            import paddle.fluid as fluid
Y
yi.wu 已提交
153 154 155 156 157 158 159 160 161 162 163 164
            with fluid.program_guard(main):
                serv = layers.ListenAndServ(
                    "127.0.0.1:6170", ["X"], optimizer_mode=False)
                with serv.do():
                    x = layers.data(
                        shape=[32, 32],
                        dtype='float32',
                        name="X",
                        append_batch_size=False)
                    fluid.initializer.Constant(value=1.0)(x, main.global_block())
                    layers.scale(x=x, scale=10.0, out=out_var)

Y
yi.wu 已提交
165 166
            exe = fluid.Executor(place)
            exe.run(main)
T
typhoonzero 已提交
167 168
    """

Y
Yancey1989 已提交
169
    def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True):
170
        self.helper = LayerHelper("listen_and_serv")
Y
Yancey1989 已提交
171
        self.inputs = inputs
T
typhoonzero 已提交
172 173 174
        self.outputs = []
        self.endpoint = endpoint
        self.fan_in = fan_in
T
typhoonzero 已提交
175 176
        # FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
        # general.
T
WIP  
typhoonzero 已提交
177
        self.optimizer_mode = optimizer_mode
T
typhoonzero 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190

    def do(self):
        return BlockGuardServ(self)

    def get_params_and_grads(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
        # params and grads in the same order.
        params = list()
        grads = list()
        for op in current_block.ops:
            # FIXME(typhoonzero): op.inputs is None if it's cloned.
T
WIP  
typhoonzero 已提交
191 192 193 194 195 196 197 198
            if self.optimizer_mode:
                if "Grad" in op.inputs and "Param" in op.inputs:
                    params.append(op.inputs["Param"].name)
                    grads.append(op.inputs["Grad"].name)
            else:
                # simple recv mode, recv operators inputs.
                for iname in op.input_names:
                    for in_var_name in op.input(iname):
T
typhoonzero 已提交
199 200
                        params.append(parent_block.var(in_var_name))
                        grads.append(parent_block.var(in_var_name))
T
typhoonzero 已提交
201 202 203

        return params, grads

T
typhoonzero 已提交
204 205 206 207 208 209 210
    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

T
typhoonzero 已提交
211 212 213 214 215 216
    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        parent_block.append_op(
217
            type='listen_and_serv',
Y
Yancey1989 已提交
218
            inputs={"X": self.inputs},
T
typhoonzero 已提交
219 220 221 222
            outputs={},
            attrs={
                'endpoint': self.endpoint,
                'Fanin': self.fan_in,
Y
Yancey1989 已提交
223 224 225
                'optimize_blocks': [
                    current_block
                ],  # did not support multiple optimize blocks in layers
226
                'sync_mode': True,  # did not support async now in layers
Q
qiaolongfei 已提交
227
                'grad_to_block_id': [""]
T
typhoonzero 已提交
228 229 230
            })


231
def Send(endpoints, send_vars, dummy_output=None, sync=True):
T
typhoonzero 已提交
232
    """
Y
yi.wu 已提交
233 234
    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
T
typhoonzero 已提交
235 236

    Args:
Y
yi.wu 已提交
237
        endpoints (str): comma seperated IP:PORT pairs in the order
T
typhoonzero 已提交
238
                   of send_vars to send
Y
yi.wu 已提交
239 240
        send_vars (list): variables to send to server
        sync (bool): whether to wait the request finish
T
typhoonzero 已提交
241 242 243 244

    """
    assert (type(send_vars) == list)

245 246 247 248 249 250 251
    if dummy_output is None:
        dummy_output = []
    elif isinstance(dummy_output, Variable):
        dummy_output = [dummy_output]

    assert (type(dummy_output) == list)

T
typhoonzero 已提交
252
    epmap = endpoints.split(",")
T
typhoonzero 已提交
253
    endpoints = list(set(epmap))
T
typhoonzero 已提交
254 255

    helper = LayerHelper("Send", **locals())
Y
Yancey1989 已提交
256
    rpc_op_role_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
Y
Yancey1989 已提交
257

T
typhoonzero 已提交
258 259 260
    helper.append_op(
        type="send",
        inputs={"X": send_vars},
261
        outputs={"Out": dummy_output},
Y
Yancey1989 已提交
262 263 264 265 266
        attrs={
            "endpoints": endpoints,
            "epmap": epmap,
            rpc_op_role_name: core.op_proto_and_checker_maker.OpRole.RPC
        })
Y
yi.wu 已提交
267
    if sync:
W
Wu Yi 已提交
268 269 270 271 272
        helper.append_op(
            type="send_barrier",
            inputs={"X": dummy_output},
            outputs={"Out": []},
            attrs={"endpoints": endpoints})
273 274


275
def Recv(endpoints, get_vars, dummy_input=None, sync=True):
276
    """
Y
yi.wu 已提交
277
    Receive variables from server side
278 279

    Args:
Y
yi.wu 已提交
280
        endpoints (str): comma seperated IP:PORT pairs in the order
281
                   of send_vars to send
Y
yi.wu 已提交
282 283
        get_vars (list): vars to get from server after send completes.
        sync (bool): whether to wait the request finish
284

Y
yi.wu 已提交
285 286
    Returns:
        list: list of received variables
287 288 289
    """
    assert (type(get_vars) == list)

290 291 292 293 294 295 296
    if dummy_input is None:
        dummy_input = []
    elif isinstance(dummy_input, Variable):
        dummy_input = [dummy_input]

    assert (type(dummy_input) == list)

297 298 299 300 301 302
    epmap = endpoints.split(",")
    endpoints = list(set(epmap))

    helper = LayerHelper("Recv", **locals())
    helper.append_op(
        type="recv",
303
        inputs={"X": dummy_input},
304 305 306
        outputs={"Out": get_vars},
        attrs={"endpoints": endpoints,
               "epmap": epmap})
Y
yi.wu 已提交
307
    if sync:
W
Wu Yi 已提交
308 309 310 311
        helper.append_op(
            type="fetch_barrier",
            outputs={"Out": get_vars},
            attrs={"endpoints": endpoints})
Y
yi.wu 已提交
312
    return get_vars
Y
Yu Yang 已提交
313 314


Y
Refine  
Yu Yang 已提交
315 316 317 318 319 320 321 322 323 324
def monkey_patch_reader_methods(reader):
    def __get_reader__():
        scope = global_scope()
        var = scope.find_var(reader.name)
        return var.get_reader()

    def reset():
        return __get_reader__().reset()

    reader.reset = reset
Y
Yu Yang 已提交
325 326
    reader.stop_gradient = True
    reader.persistable = True
Y
Refine  
Yu Yang 已提交
327 328 329
    return reader


Y
Yu Yang 已提交
330 331 332 333
def _copy_reader_var_(block, var):
    new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
    new_var.desc.set_shapes(var.desc.shapes())
    new_var.desc.set_dtypes(var.desc.dtypes())
S
sneaxiy 已提交
334
    new_var.desc.set_lod_levels(var.desc.lod_levels())
Y
Yu Yang 已提交
335
    new_var.persistable = True
F
fengjiayi 已提交
336 337 338 339
    return new_var


def _copy_reader_create_op_(block, op):
F
fengjiayi 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
    input_param_names = op.input_names
    new_input_map = {}
    for param_name in input_param_names:
        new_input_map[param_name] = []
        arg_names = op.input(param_name)
        for arg_name in arg_names:
            new_input_map[param_name].append(block.var(arg_name))

    output_param_names = op.output_names
    new_output_map = {}
    for param_name in output_param_names:
        new_output_map[param_name] = []
        arg_names = op.output(param_name)
        for arg_name in arg_names:
            new_output_map[param_name].append(block.var(arg_name))

F
fengjiayi 已提交
356
    new_op = block.append_op(
F
fengjiayi 已提交
357 358 359
        type=op.type,
        inputs=new_input_map,
        outputs=new_output_map,
J
JiayiFeng 已提交
360
        attrs=op.all_attrs())
F
fengjiayi 已提交
361
    return new_op
Y
Yu Yang 已提交
362 363


Q
Qiao Longfei 已提交
364 365 366 367 368 369
def _py_reader(capacity,
               shapes,
               dtypes,
               lod_levels=None,
               name=None,
               use_double_buffer=True,
S
sneaxiy 已提交
370
               feed_list=None):
371

Q
Qiao Longfei 已提交
372 373 374 375 376 377 378 379 380 381
    if feed_list is not None:
        if not isinstance(feed_list, list):
            raise TypeError("feed_list should be a list of Variable"
                            " instead of " + str(type(feed_list)))
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []

Q
Qiao Longfei 已提交
382 383 384 385 386 387
        for feed_data in feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
Q
Qiao Longfei 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
    else:
        dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
        shape_concat = []
        ranks = []

        for shape in shapes:
            shape_concat.extend(shape)
            ranks.append(len(shape))

        if lod_levels is None:
            lod_levels = [0] * len(shapes)

    if name is None:
        queue_name = unique_name('lod_tensor_blocking_queue')
        reader_name = unique_name('create_py_reader')
        double_buffer_name = unique_name('double_buffer')
    else:
        queue_name = "_".join([name, "queue"])
        reader_name = "_".join([name, "reader"])
        double_buffer_name = "_".join([name, "double_buffer"])

    var = global_scope().var(queue_name)
S
sneaxiy 已提交
410
    feed_queue = core.init_lod_tensor_blocking_queue(var, capacity)
Q
Qiao Longfei 已提交
411 412 413 414

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=reader_name)
    startup_blk.append_op(
S
add doc  
sneaxiy 已提交
415
        type='create_py_reader',
Q
Qiao Longfei 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
        inputs={'blocking_queue': [queue_name]},
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True

    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

    reader = monkey_patch_reader_methods(main_prog_var)
    if use_double_buffer:
        double_buffer_reader = double_buffer(reader, name=double_buffer_name)
        # we return a double buffer reader. However, the reset method comes from
        # py_reader.
        double_buffer_reader.reset = reader.reset
        reader = double_buffer_reader

    # monkey patch py_reader special methods
    reader.queue = feed_queue
    current_reset_method = reader.reset
    reader.thread = None
    reader.tensor_provider = None
    reader.exited = False

    def start_provide_thread(func):
        def __provider_thread__():
S
sneaxiy 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
            try:
                for tensors in func():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if reader.exited:
                        break
                    feed_queue.push(array)
                    if reader.exited:
                        break
                feed_queue.close()
            except Exception as ex:
                feed_queue.close()
466
                logging.warn('Your decorated reader has raised an exception!')
467
                six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491

        reader.thread = threading.Thread(target=__provider_thread__)
        reader.thread.daemon = True
        reader.thread.start()

    def __set_tensor_provider__(func):
        reader.tensor_provider = func

    def __set_paddle_reader__(paddle_reader):
        with program_guard(Program(), Program()):
            actual_feed_list = feed_list
            if actual_feed_list is None:
                actual_feed_list = []
                counter = 0
                for dtype, shape, lod_level in zip(dtypes, shapes, lod_levels):
                    name = str(counter)
                    actual_feed_list.append(
                        data(
                            name=name,
                            dtype=dtype,
                            shape=shape,
                            lod_level=lod_level))
                    counter += 1

Q
Qiao Longfei 已提交
492
            data_names = [feed_data.name for feed_data in actual_feed_list]
Q
Qiao Longfei 已提交
493 494 495 496 497 498 499
            feeder = DataFeeder(
                feed_list=actual_feed_list, place=core.CPUPlace())
            paddle_reader = feeder.decorate_reader(
                paddle_reader, multi_devices=False)

        def __tensor_provider__():
            for slots in paddle_reader():
Q
Qiao Longfei 已提交
500
                yield [slots[data_name] for data_name in data_names]
Q
Qiao Longfei 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516

        __set_tensor_provider__(__tensor_provider__)

    def __reset__():
        current_reset_method()
        if reader.thread is not None and reader.tensor_provider is not None:
            reader.exited = True
            reader.thread.join()
            reader.exited = False

    def __start__():
        start_provide_thread(reader.tensor_provider)

    reader.reset = __reset__
    reader.decorate_tensor_provider = __set_tensor_provider__
    reader.decorate_paddle_reader = __set_paddle_reader__
S
sneaxiy 已提交
517 518 519

    reader.decorate_batch_generator = __set_tensor_provider__
    reader.decorate_sample_list_generator = __set_paddle_reader__
Q
Qiao Longfei 已提交
520 521 522 523 524
    reader.start = __start__

    return reader


Y
yuyang18 已提交
525 526 527 528 529
def py_reader(capacity,
              shapes,
              dtypes,
              lod_levels=None,
              name=None,
S
sneaxiy 已提交
530
              use_double_buffer=True):
S
sneaxiy 已提交
531
    """
532
    Create a Python reader for data feeding in Python
F
fengjiayi 已提交
533

534
    This layer returns a Reader Variable.
535 536
    The Reader provides :code:`decorate_paddle_reader()` and
    :code:`decorate_tensor_provider()` to set a Python generator as the data
537 538 539 540 541
    source. More details :ref:`user_guide_use_py_reader_en` .  When
    :code:`Executor::Run()` is invoked in C++ side, the data from the generator
    would be read automatically. Unlike :code:`DataFeeder.feed()`, the data
    reading process and :code:`Executor::Run()` process can run in parallel
    using :code:`py_reader`. The :code:`start()` method of the Reader should be
542 543 544
    called when each pass begins, while the :code:`reset()` method should be
    called when the pass ends and :code:`fluid.core.EOFException` raises.
    Note that :code:`Program.clone()` method cannot clone :code:`py_reader`.
S
sneaxiy 已提交
545 546

    Args:
547
       capacity(int): The buffer capacity maintained by :code:`py_reader`.
Y
yuyang18 已提交
548 549 550 551 552
       shapes(list|tuple): List of tuples which declaring data shapes.
       dtypes(list|tuple): List of strs which declaring data type.
       lod_levels(list|tuple): List of ints which declaring data lod_level.
       name(basestring): The prefix Python queue name and Reader name. None will
            be generated automatically.
553
       use_double_buffer(bool): Whether use double buffer or not.
S
sneaxiy 已提交
554 555

    Returns:
556
       Variable: A Reader from which we can get feeding data.
S
sneaxiy 已提交
557 558

    Examples:
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
       1. The basic usage of :code:`py_reader` is as follows:
       
       .. code-block:: python
    
         import paddle
         import paddle.fluid as fluid
         import paddle.dataset.mnist as mnist

         def network(image, label):
             # user defined network, here a softmax regresssion example
             predict = fluid.layers.fc(input=image, size=10, act='softmax')
             return fluid.layers.cross_entropy(input=predict, label=label)

         reader = fluid.layers.py_reader(capacity=64,
                                         shapes=[(-1, 1, 28, 28), (-1, 1)],
                                         dtypes=['float32', 'int64'])
         reader.decorate_paddle_reader(
             paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
                                   buf_size=1000))

         img, label = fluid.layers.read_file(reader)
         loss = network(img, label)

         fluid.Executor(fluid.CUDAPlace(0)).run(fluid.default_startup_program())
         exe = fluid.ParallelExecutor(use_cuda=True)
         for epoch_id in range(10):
             reader.start()
H
Huihuang Zheng 已提交
586 587 588 589 590
             try:
                 while True:
                     exe.run(fetch_list=[loss.name])
             except fluid.core.EOFException:
                 reader.reset()
591 592 593 594 595 596 597 598

         fluid.io.save_inference_model(dirname='./model',
                                       feeded_var_names=[img.name, label.name],
                                       target_vars=[loss],
                                       executor=fluid.Executor(fluid.CUDAPlace(0)))

       2. When training and testing are both performed, two different
       :code:`py_reader` should be created with different names, e.g.:
S
sneaxiy 已提交
599

600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
       .. code-block:: python
    
         import paddle
         import paddle.fluid as fluid
         import paddle.dataset.mnist as mnist

         def network(reader):
             img, label = fluid.layers.read_file(reader)
             # User defined network. Here a simple regression as example
             predict = fluid.layers.fc(input=img, size=10, act='softmax')
             loss = fluid.layers.cross_entropy(input=predict, label=label)
             return fluid.layers.mean(loss)

         # Create train_main_prog and train_startup_prog
         train_main_prog = fluid.Program()
         train_startup_prog = fluid.Program()
         with fluid.program_guard(train_main_prog, train_startup_prog):
             # Use fluid.unique_name.guard() to share parameters with test program
             with fluid.unique_name.guard():
                 train_reader = fluid.layers.py_reader(capacity=64,
                                                       shapes=[(-1, 1, 28, 28),
                                                               (-1, 1)],
                                                       dtypes=['float32', 'int64'],
                                                       name='train_reader')
                 train_reader.decorate_paddle_reader(
H
Huihuang Zheng 已提交
625 626
                     paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
                                           buf_size=500))
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
                 train_loss = network(train_reader)  # some network definition
                 adam = fluid.optimizer.Adam(learning_rate=0.01)
                 adam.minimize(train_loss)

         # Create test_main_prog and test_startup_prog
         test_main_prog = fluid.Program()
         test_startup_prog = fluid.Program()
         with fluid.program_guard(test_main_prog, test_startup_prog):
             # Use fluid.unique_name.guard() to share parameters with train program
             with fluid.unique_name.guard():
                 test_reader = fluid.layers.py_reader(capacity=32,
                                                      shapes=[(-1, 1, 28, 28), (-1, 1)],
                                                      dtypes=['float32', 'int64'],
                                                      name='test_reader')
                 test_reader.decorate_paddle_reader(paddle.batch(mnist.test(), 512))
                 test_loss = network(test_reader)

         fluid.Executor(fluid.CUDAPlace(0)).run(train_startup_prog)
         fluid.Executor(fluid.CUDAPlace(0)).run(test_startup_prog)

         train_exe = fluid.ParallelExecutor(use_cuda=True,
                                            loss_name=train_loss.name,
                                            main_program=train_main_prog)
         test_exe = fluid.ParallelExecutor(use_cuda=True,
                                           loss_name=test_loss.name,
                                           main_program=test_main_prog)
         for epoch_id in range(10):
             train_reader.start()
             try:
                 while True:
                    train_exe.run(fetch_list=[train_loss.name])
             except fluid.core.EOFException:
                 train_reader.reset()

         test_reader.start()
         try:
             while True:
                 test_exe.run(fetch_list=[test_loss.name])
         except fluid.core.EOFException:
             test_reader.reset()
S
sneaxiy 已提交
667
    """
668 669
    logging.warn(
        'paddle.fluid.layers.py_reader() may be deprecated in the near future. '
670
        'Please use paddle.fluid.io.DataLoader.from_generator() instead.')
Q
Qiao Longfei 已提交
671 672 673 674 675 676
    return _py_reader(
        capacity=capacity,
        shapes=shapes,
        dtypes=dtypes,
        lod_levels=lod_levels,
        name=name,
S
sneaxiy 已提交
677
        use_double_buffer=use_double_buffer)
Q
Qiao Longfei 已提交
678 679


Q
Qiao Longfei 已提交
680 681 682 683 684 685
def create_py_reader_by_data(capacity,
                             feed_list,
                             name=None,
                             use_double_buffer=True):
    """
    Create a Python reader for data feeding in Python
Q
Qiao Longfei 已提交
686

Q
Qiao Longfei 已提交
687
    This layer returns a Reader Variable.
Q
Qiao Longfei 已提交
688

Q
Qiao Longfei 已提交
689 690
    Works much like py_reader except that it's input is feed_list
    instead of shapes, dtypes and lod_levels
Q
Qiao Longfei 已提交
691

Q
Qiao Longfei 已提交
692 693 694 695 696 697
    Args:
       capacity(int): The buffer capacity maintained by :code:`py_reader`.
       feed_list(list(Variable)): The data feed list.
       name(basestring): The prefix Python queue name and Reader name. None will
            be generated automatically.
       use_double_buffer(bool): Whether use double buffer or not.
Q
Qiao Longfei 已提交
698

Q
Qiao Longfei 已提交
699 700
    Returns:
       Variable: A Reader from which we can get feeding data.
Q
Qiao Longfei 已提交
701

Q
Qiao Longfei 已提交
702
    Examples:
703
       .. code-block:: python
Q
Qiao Longfei 已提交
704

705 706 707
         import paddle
         import paddle.fluid as fluid
         import paddle.dataset.mnist as mnist
708
         import paddle.fluid.compiler as compiler
709 710 711 712 713 714 715

         def network(img, label):
             # User defined network. Here a simple regression as example
             predict = fluid.layers.fc(input=img, size=10, act='softmax')
             loss = fluid.layers.cross_entropy(input=predict, label=label)
             return fluid.layers.mean(loss)

716 717 718
         MEMORY_OPT = False
         USE_CUDA = False

719 720 721 722 723 724 725 726 727 728 729
         image = fluid.layers.data(name='image', shape=[1, 28, 28], dtype='float32')
         label = fluid.layers.data(name='label', shape=[1], dtype='int64')
         reader = fluid.layers.create_py_reader_by_data(capacity=64,
                                                        feed_list=[image, label])
         reader.decorate_paddle_reader(
             paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
                                   buf_size=500))

         img, label = fluid.layers.read_file(reader)
         loss = network(img, label)  # some network definition

730 731 732
         place = fluid.CUDAPlace(0) if USE_CUDA else fluid.CPUPlace()
         exe = fluid.Executor(place)
         exe.run(fluid.default_startup_program())
733

734 735 736 737 738 739 740 741 742
         build_strategy = fluid.BuildStrategy()
         build_strategy.memory_optimize = True if MEMORY_OPT else False
         compiled_prog = compiler.CompiledProgram(
             fluid.default_main_program()).with_data_parallel(
                 loss_name=loss.name,
                 build_strategy=build_strategy,
                 exec_strategy=exec_strategy)

         for epoch_id in range(2):
743 744 745
             reader.start()
             try:
                 while True:
746
                     exe.run(compiled_prog, fetch_list=[loss.name])
747 748
             except fluid.core.EOFException:
                 reader.reset()
Q
Qiao Longfei 已提交
749
    """
750 751 752
    logging.warn(
        'paddle.fluid.layers.create_py_reader_by_data() may be deprecated in the near future. '
        'Please use paddle.fluid.io.DataLoader.from_generator() instead.')
Q
Qiao Longfei 已提交
753 754 755 756 757 758 759 760
    return _py_reader(
        capacity=capacity,
        shapes=None,
        dtypes=None,
        lod_levels=None,
        name=name,
        use_double_buffer=use_double_buffer,
        feed_list=feed_list)
S
sneaxiy 已提交
761 762


J
JiayiFeng 已提交
763
def __create_shared_decorated_reader__(op_type, reader, attrs):
Y
Yu Yang 已提交
764 765 766
    var_name = unique_name(op_type)
    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
F
fengjiayi 已提交
767
    startop_op = startup_blk.append_op(
Y
Yu Yang 已提交
768 769 770 771 772
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [startup_var]},
        attrs=attrs)
    startup_var.persistable = True
F
fengjiayi 已提交
773 774 775 776
    main_prog_block = default_main_program().current_block()
    main_prog_var = _copy_reader_var_(main_prog_block, startup_var)
    _copy_reader_create_op_(main_prog_block, startop_op)
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
777 778


779 780
def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
    new_reader_name = name if name is not None else unique_name(op_type)
781 782 783 784 785 786 787 788 789 790
    main_blk = default_main_program().current_block()
    new_reader = main_blk.create_var(name=new_reader_name)
    main_blk.append_op(
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [new_reader]},
        attrs=attrs)
    return monkey_patch_reader_methods(new_reader)


791
def double_buffer(reader, place=None, name=None):
Y
yuyang18 已提交
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
    """
    Wrap a double buffer reader. The data will copy to target place with a
    double buffer queue. If the target place is None, the place that executor
    perform on will be used.

    Args:
        reader(Variable): the reader variable need to be wrapped.
        place(Place): the place of target data. Default is the sample place of
            executor perform.

        name(str): Variable name. None if the user does not care.

    Returns:
        wrapped reader with double buffer.

    Examples:
808 809 810 811 812 813 814 815 816
        .. code-block:: python
          
           import paddle.fluid as fluid
           reader = fluid.layers.py_reader(capacity=64,
                                           shapes=[(-1, 1, 28, 28), (-1, 1)],
                                           dtypes=['float32', 'int64'],
                                           use_double_buffer=False)
           reader = fluid.layers.double_buffer(reader)
           image, label = fluid.layers.read_file(reader)
Y
yuyang18 已提交
817
    """
Y
Yu Yang 已提交
818 819 820
    attrs = dict()
    if place is not None:
        attrs['place'] = str(place).upper()
821 822
    return __create_unshared_decorated_reader__(
        'create_double_buffer_reader', reader, attrs, name=name)
Y
Yu Yang 已提交
823 824


F
fengjiayi 已提交
825
def read_file(reader):
F
fengjiayi 已提交
826
    """
F
fengjiayi 已提交
827
    Execute the given reader and get data via it.
F
fengjiayi 已提交
828

829 830
    A reader is also a Variable. It can be a raw reader generated by
    `fluid.layers.open_files()` or a decorated one generated by
F
fengjiayi 已提交
831 832 833 834
    `fluid.layers.double_buffer()` and so on.

    Args:

F
fengjiayi 已提交
835
        reader(Variable): The reader to execute.
F
fengjiayi 已提交
836 837

    Returns:
F
fengjiayi 已提交
838
        Tuple[Variable]: Data read via the given reader.
F
fengjiayi 已提交
839 840 841

    Examples:
        .. code-block:: python
842 843
          
           import paddle.fluid as fluid
844 845 846 847
           reader = fluid.layers.py_reader(capacity=64,
                                           shapes=[(-1, 1, 28, 28), (-1, 1)],
                                           dtypes=['float32', 'int64'])
           image, label = fluid.layers.read_file(reader)
F
fengjiayi 已提交
848
    """
Y
Yu Yang 已提交
849 850
    helper = LayerHelper('read_file')
    out = [
X
Xin Pan 已提交
851
        helper.create_variable_for_type_inference(
Y
Yu Yang 已提交
852
            stop_gradient=True, dtype='float32')
F
fengjiayi 已提交
853
        for _ in range(len(reader.desc.shapes()))
Y
Yu Yang 已提交
854 855
    ]
    helper.append_op(
F
fengjiayi 已提交
856
        type='read', inputs={'Reader': [reader]}, outputs={'Out': out})
Y
Yu Yang 已提交
857 858 859 860
    if len(out) == 1:
        return out[0]
    else:
        return out
F
fengjiayi 已提交
861 862


Y
yuyang18 已提交
863 864
def load(out, file_path, load_as_fp16=None):
    """
865
    Load operator will load a LoDTensor / SelectedRows variable from disk file.
Y
yuyang18 已提交
866 867

    Args:
868
        out(Variable): The LoDTensor / SelectedRows need to be loaded..
Y
yuyang18 已提交
869

870
        file_path(STRING): Variable will be loaded from "file_path".
Y
yuyang18 已提交
871

872
        load_as_fp16(BOOLEAN): If true, the tensor will be first loaded and then converted to float16 data type. Otherwise, the tensor will be directly loaded without data type conversion. Default is false..
Y
yuyang18 已提交
873 874
    Returns:
        None
875 876 877 878 879 880 881

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            tmp_tensor = fluid.layers.create_tensor(dtype='float32')
            fluid.layers.load(tmp_tensor, "./tmp_tensor.bin")
Y
yuyang18 已提交
882 883 884 885 886
    """
    helper = LayerHelper("load", **locals())
    attrs = {"file_path": file_path}
    if load_as_fp16 is not None:
        attrs['load_as_fp16'] = load_as_fp16
887
    helper.append_op(type="load", inputs={}, output={"Out": out}, attrs=attrs)