perf_counter.c 115.9 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3
/*
 * Performance counter core code
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 9
 *
 *  For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18
#include <linux/poll.h>
#include <linux/sysfs.h>
19
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
20
#include <linux/percpu.h>
21
#include <linux/ptrace.h>
22 23 24
#include <linux/vmstat.h>
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
25 26 27
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
28
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
29 30
#include <linux/perf_counter.h>

31 32
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
33 34 35 36 37
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

38
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
39 40 41
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

42
static atomic_t nr_counters __read_mostly;
P
Peter Zijlstra 已提交
43 44
static atomic_t nr_mmap_counters __read_mostly;
static atomic_t nr_comm_counters __read_mostly;
P
Peter Zijlstra 已提交
45
static atomic_t nr_task_counters __read_mostly;
46

47
/*
48
 * perf counter paranoia level:
49 50 51 52
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
 *   1 - disallow cpu counters for unpriv
 *   2 - disallow kernel profiling for unpriv
53
 */
54
int sysctl_perf_counter_paranoid __read_mostly = 1;
55

56 57 58 59 60
static inline bool perf_paranoid_tracepoint_raw(void)
{
	return sysctl_perf_counter_paranoid > -1;
}

61 62 63 64 65 66 67 68 69 70
static inline bool perf_paranoid_cpu(void)
{
	return sysctl_perf_counter_paranoid > 0;
}

static inline bool perf_paranoid_kernel(void)
{
	return sysctl_perf_counter_paranoid > 1;
}

71
int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
72 73 74 75 76

/*
 * max perf counter sample rate
 */
int sysctl_perf_counter_sample_rate __read_mostly = 100000;
77

78 79
static atomic64_t perf_counter_id;

T
Thomas Gleixner 已提交
80
/*
81
 * Lock for (sysadmin-configurable) counter reservations:
T
Thomas Gleixner 已提交
82
 */
83
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
84 85 86 87

/*
 * Architecture provided APIs - weak aliases:
 */
88
extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
89
{
90
	return NULL;
T
Thomas Gleixner 已提交
91 92
}

93 94 95
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

96
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
97
void __weak hw_perf_counter_setup_online(int cpu)	{ barrier(); }
98 99 100

int __weak
hw_perf_group_sched_in(struct perf_counter *group_leader,
101 102 103 104 105
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
106

107 108
void __weak perf_counter_print_debug(void)	{ }

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
static DEFINE_PER_CPU(int, disable_count);

void __perf_disable(void)
{
	__get_cpu_var(disable_count)++;
}

bool __perf_enable(void)
{
	return !--__get_cpu_var(disable_count);
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

133 134
static void get_ctx(struct perf_counter_context *ctx)
{
135
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
136 137
}

138 139 140 141 142 143 144 145
static void free_ctx(struct rcu_head *head)
{
	struct perf_counter_context *ctx;

	ctx = container_of(head, struct perf_counter_context, rcu_head);
	kfree(ctx);
}

146 147
static void put_ctx(struct perf_counter_context *ctx)
{
148 149 150
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
151 152 153
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
154
	}
155 156
}

157 158 159 160 161 162 163 164
static void unclone_ctx(struct perf_counter_context *ctx)
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178
/*
 * If we inherit counters we want to return the parent counter id
 * to userspace.
 */
static u64 primary_counter_id(struct perf_counter *counter)
{
	u64 id = counter->id;

	if (counter->parent)
		id = counter->parent->id;

	return id;
}

179 180 181 182 183
/*
 * Get the perf_counter_context for a task and lock it.
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
184 185
static struct perf_counter_context *
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
{
	struct perf_counter_context *ctx;

	rcu_read_lock();
 retry:
	ctx = rcu_dereference(task->perf_counter_ctxp);
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
		 * perf_counter_task_sched_out, though the
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
		spin_lock_irqsave(&ctx->lock, *flags);
		if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
			spin_unlock_irqrestore(&ctx->lock, *flags);
			goto retry;
		}
208 209 210 211 212

		if (!atomic_inc_not_zero(&ctx->refcount)) {
			spin_unlock_irqrestore(&ctx->lock, *flags);
			ctx = NULL;
		}
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
{
	struct perf_counter_context *ctx;
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
		spin_unlock_irqrestore(&ctx->lock, flags);
	}
	return ctx;
}

static void perf_unpin_context(struct perf_counter_context *ctx)
{
	unsigned long flags;

	spin_lock_irqsave(&ctx->lock, flags);
	--ctx->pin_count;
	spin_unlock_irqrestore(&ctx->lock, flags);
	put_ctx(ctx);
}

246 247 248 249
/*
 * Add a counter from the lists for its context.
 * Must be called with ctx->mutex and ctx->lock held.
 */
250 251 252 253 254 255 256 257 258 259
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
P
Peter Zijlstra 已提交
260
	if (group_leader == counter)
261
		list_add_tail(&counter->list_entry, &ctx->counter_list);
P
Peter Zijlstra 已提交
262
	else {
263
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
264 265
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
266 267

	list_add_rcu(&counter->event_entry, &ctx->event_list);
268
	ctx->nr_counters++;
269 270
	if (counter->attr.inherit_stat)
		ctx->nr_stat++;
271 272
}

273 274
/*
 * Remove a counter from the lists for its context.
275
 * Must be called with ctx->mutex and ctx->lock held.
276
 */
277 278 279 280 281
static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

282 283
	if (list_empty(&counter->list_entry))
		return;
284
	ctx->nr_counters--;
285 286
	if (counter->attr.inherit_stat)
		ctx->nr_stat--;
287

288
	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
289
	list_del_rcu(&counter->event_entry);
290

P
Peter Zijlstra 已提交
291 292 293
	if (counter->group_leader != counter)
		counter->group_leader->nr_siblings--;

294 295 296 297 298 299 300 301
	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

302
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
303 304 305 306
		sibling->group_leader = sibling;
	}
}

307 308 309 310 311 312 313 314 315
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
316 317 318 319
	if (counter->pending_disable) {
		counter->pending_disable = 0;
		counter->state = PERF_COUNTER_STATE_OFF;
	}
320
	counter->tstamp_stopped = ctx->time;
321
	counter->pmu->disable(counter);
322 323 324 325 326
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
327
	if (counter->attr.exclusive || !cpuctx->active_oncpu)
328 329 330
		cpuctx->exclusive = 0;
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

349
	if (group_counter->attr.exclusive)
350 351 352
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
353 354 355 356 357 358
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
359
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
360 361 362 363 364 365 366 367 368 369
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
370
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
371 372
		return;

373
	spin_lock(&ctx->lock);
374 375 376 377 378
	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level.
	 */
	perf_disable();
T
Thomas Gleixner 已提交
379

380 381
	counter_sched_out(counter, cpuctx, ctx);

382
	list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
383 384 385 386 387 388 389 390 391 392 393

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

394
	perf_enable();
395
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
396 397 398 399 400 401
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
402
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
403 404 405
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
406 407 408 409 410 411 412
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
 * When called from perf_counter_exit_task, it's OK because the
 * context has been detached from its task.
T
Thomas Gleixner 已提交
413
 */
414
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
415 416 417 418 419 420 421 422 423 424
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
425
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
426 427 428 429 430
					 counter, 1);
		return;
	}

retry:
431
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
432 433 434 435 436 437
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
438
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
439 440 441 442 443 444
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
445
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
446 447
	 * succeed.
	 */
448 449
	if (!list_empty(&counter->list_entry)) {
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
450 451 452 453
	}
	spin_unlock_irq(&ctx->lock);
}

454
static inline u64 perf_clock(void)
455
{
456
	return cpu_clock(smp_processor_id());
457 458 459 460 461
}

/*
 * Update the record of the current time in a context.
 */
462
static void update_context_time(struct perf_counter_context *ctx)
463
{
464 465 466 467
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
468 469 470 471 472 473 474 475 476 477
}

/*
 * Update the total_time_enabled and total_time_running fields for a counter.
 */
static void update_counter_times(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	u64 run_end;

478 479
	if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
	    counter->group_leader->state < PERF_COUNTER_STATE_INACTIVE)
480 481 482 483 484 485 486 487 488 489
		return;

	counter->total_time_enabled = ctx->time - counter->tstamp_enabled;

	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		run_end = counter->tstamp_stopped;
	else
		run_end = ctx->time;

	counter->total_time_running = run_end - counter->tstamp_running;
490 491 492 493 494 495 496 497 498 499 500 501 502 503
}

/*
 * Update total_time_enabled and total_time_running for all counters in a group.
 */
static void update_group_times(struct perf_counter *leader)
{
	struct perf_counter *counter;

	update_counter_times(leader);
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		update_counter_times(counter);
}

504 505 506 507 508 509 510 511 512 513 514 515 516
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
517
	if (ctx->task && cpuctx->task_ctx != ctx)
518 519
		return;

520
	spin_lock(&ctx->lock);
521 522 523 524 525 526

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
527
		update_context_time(ctx);
528
		update_group_times(counter);
529 530 531 532 533 534 535
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

536
	spin_unlock(&ctx->lock);
537 538 539 540
}

/*
 * Disable a counter.
541 542 543 544 545 546 547 548 549 550
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This condition is satisifed when called through
 * perf_counter_for_each_child or perf_counter_for_each because they
 * hold the top-level counter's child_mutex, so any descendant that
 * goes to exit will block in sync_child_counter.
 * When called from perf_pending_counter it's OK because counter->ctx
 * is the current context on this CPU and preemption is disabled,
 * hence we can't get into perf_counter_task_sched_out for this context.
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
582
	if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
583
		update_group_times(counter);
584
		counter->state = PERF_COUNTER_STATE_OFF;
585
	}
586 587 588 589

	spin_unlock_irq(&ctx->lock);
}

590 591 592 593 594 595
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
596
	if (counter->state <= PERF_COUNTER_STATE_OFF)
597 598 599 600 601 602 603 604 605
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

606
	if (counter->pmu->enable(counter)) {
607 608 609 610 611
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

612
	counter->tstamp_running += ctx->time - counter->tstamp_stopped;
613

614 615
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
616 617
	ctx->nr_active++;

618
	if (counter->attr.exclusive)
619 620
		cpuctx->exclusive = 1;

621 622 623
	return 0;
}

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
static int
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
	struct perf_counter *counter, *partial_group;
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;

	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
	}
	counter_sched_out(group_counter, cpuctx, ctx);

	return -EAGAIN;
}

670 671 672 673 674 675 676 677 678 679
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
P
Peter Zijlstra 已提交
680

681 682 683
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
P
Peter Zijlstra 已提交
684

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
710
	if (counter->attr.exclusive && cpuctx->active_oncpu)
711 712 713 714 715 716 717 718
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

719 720 721 722
static void add_counter_to_ctx(struct perf_counter *counter,
			       struct perf_counter_context *ctx)
{
	list_add_counter(counter, ctx);
723 724 725
	counter->tstamp_enabled = ctx->time;
	counter->tstamp_running = ctx->time;
	counter->tstamp_stopped = ctx->time;
726 727
}

T
Thomas Gleixner 已提交
728
/*
729
 * Cross CPU call to install and enable a performance counter
730 731
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
732 733 734 735 736 737
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
738
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
739
	int cpu = smp_processor_id();
740
	int err;
T
Thomas Gleixner 已提交
741 742 743 744 745

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
746 747
	 * Or possibly this is the right context but it isn't
	 * on this cpu because it had no counters.
T
Thomas Gleixner 已提交
748
	 */
749
	if (ctx->task && cpuctx->task_ctx != ctx) {
750
		if (cpuctx->task_ctx || ctx->task != current)
751 752 753
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
754

755
	spin_lock(&ctx->lock);
756
	ctx->is_active = 1;
757
	update_context_time(ctx);
T
Thomas Gleixner 已提交
758 759 760 761 762

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
763
	perf_disable();
T
Thomas Gleixner 已提交
764

765
	add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
766

767 768 769 770 771 772 773 774
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

775 776 777 778 779
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
780
	if (!group_can_go_on(counter, cpuctx, 1))
781 782 783 784
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

785 786 787 788 789 790 791 792
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
793
		if (leader->attr.pinned) {
794
			update_group_times(leader);
795
			leader->state = PERF_COUNTER_STATE_ERROR;
796
		}
797
	}
T
Thomas Gleixner 已提交
798

799
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
800 801
		cpuctx->max_pertask--;

802
 unlock:
803
	perf_enable();
804

805
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
806 807 808 809 810 811 812 813 814 815 816
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
817 818
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
845
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
846 847 848 849 850 851 852 853 854
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
855 856
	if (list_empty(&counter->list_entry))
		add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
857 858 859
	spin_unlock_irq(&ctx->lock);
}

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
/*
 * Put a counter into inactive state and update time fields.
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
static void __perf_counter_mark_enabled(struct perf_counter *counter,
					struct perf_counter_context *ctx)
{
	struct perf_counter *sub;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
	counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
	list_for_each_entry(sub, &counter->sibling_list, list_entry)
		if (sub->state >= PERF_COUNTER_STATE_INACTIVE)
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

881 882 883 884
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
885
{
886 887 888 889 890
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	int err;
891

892 893 894 895
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
896
	if (ctx->task && cpuctx->task_ctx != ctx) {
897
		if (cpuctx->task_ctx || ctx->task != current)
898 899 900
			return;
		cpuctx->task_ctx = ctx;
	}
901

902
	spin_lock(&ctx->lock);
903
	ctx->is_active = 1;
904
	update_context_time(ctx);
905 906 907

	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
908
	__perf_counter_mark_enabled(counter, ctx);
909 910

	/*
911 912
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
913
	 */
914 915
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
916

917
	if (!group_can_go_on(counter, cpuctx, 1)) {
918
		err = -EEXIST;
919
	} else {
920
		perf_disable();
921 922 923 924 925 926
		if (counter == leader)
			err = group_sched_in(counter, cpuctx, ctx,
					     smp_processor_id());
		else
			err = counter_sched_in(counter, cpuctx, ctx,
					       smp_processor_id());
927
		perf_enable();
928
	}
929 930 931 932 933 934 935 936

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
937
		if (leader->attr.pinned) {
938
			update_group_times(leader);
939
			leader->state = PERF_COUNTER_STATE_ERROR;
940
		}
941 942 943
	}

 unlock:
944
	spin_unlock(&ctx->lock);
945 946 947 948
}

/*
 * Enable a counter.
949 950 951 952 953 954
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This condition is satisfied when called through
 * perf_counter_for_each_child or perf_counter_for_each as described
 * for perf_counter_disable.
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1001 1002 1003
	if (counter->state == PERF_COUNTER_STATE_OFF)
		__perf_counter_mark_enabled(counter, ctx);

1004 1005 1006 1007
 out:
	spin_unlock_irq(&ctx->lock);
}

1008
static int perf_counter_refresh(struct perf_counter *counter, int refresh)
1009
{
1010 1011 1012
	/*
	 * not supported on inherited counters
	 */
1013
	if (counter->attr.inherit)
1014 1015
		return -EINVAL;

1016 1017
	atomic_add(refresh, &counter->event_limit);
	perf_counter_enable(counter);
1018 1019

	return 0;
1020 1021
}

1022 1023 1024 1025 1026
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;

1027 1028
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
1029
	if (likely(!ctx->nr_counters))
1030
		goto out;
1031
	update_context_time(ctx);
1032

1033
	perf_disable();
1034
	if (ctx->nr_active) {
1035 1036 1037 1038 1039 1040
		list_for_each_entry(counter, &ctx->counter_list, list_entry) {
			if (counter != counter->group_leader)
				counter_sched_out(counter, cpuctx, ctx);
			else
				group_sched_out(counter, cpuctx, ctx);
		}
1041
	}
1042
	perf_enable();
1043
 out:
1044 1045 1046
	spin_unlock(&ctx->lock);
}

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
 * and they both have the same number of enabled counters.
 * If the number of enabled counters is the same, then the set
 * of enabled counters should be the same, because these are both
 * inherited contexts, therefore we can't access individual counters
 * in them directly with an fd; we can only enable/disable all
 * counters via prctl, or enable/disable all counters in a family
 * via ioctl, which will have the same effect on both contexts.
 */
static int context_equiv(struct perf_counter_context *ctx1,
			 struct perf_counter_context *ctx2)
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1062
		&& ctx1->parent_gen == ctx2->parent_gen
1063
		&& !ctx1->pin_count && !ctx2->pin_count;
1064 1065
}

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
static void __perf_counter_read(void *counter);

static void __perf_counter_sync_stat(struct perf_counter *counter,
				     struct perf_counter *next_counter)
{
	u64 value;

	if (!counter->attr.inherit_stat)
		return;

	/*
	 * Update the counter value, we cannot use perf_counter_read()
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
	 * we know the counter must be on the current CPU, therefore we
	 * don't need to use it.
	 */
	switch (counter->state) {
	case PERF_COUNTER_STATE_ACTIVE:
		__perf_counter_read(counter);
		break;

	case PERF_COUNTER_STATE_INACTIVE:
		update_counter_times(counter);
		break;

	default:
		break;
	}

	/*
	 * In order to keep per-task stats reliable we need to flip the counter
	 * values when we flip the contexts.
	 */
	value = atomic64_read(&next_counter->count);
	value = atomic64_xchg(&counter->count, value);
	atomic64_set(&next_counter->count, value);

1104 1105 1106
	swap(counter->total_time_enabled, next_counter->total_time_enabled);
	swap(counter->total_time_running, next_counter->total_time_running);

1107
	/*
1108
	 * Since we swizzled the values, update the user visible data too.
1109
	 */
1110 1111
	perf_counter_update_userpage(counter);
	perf_counter_update_userpage(next_counter);
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

static void perf_counter_sync_stat(struct perf_counter_context *ctx,
				   struct perf_counter_context *next_ctx)
{
	struct perf_counter *counter, *next_counter;

	if (!ctx->nr_stat)
		return;

	counter = list_first_entry(&ctx->event_list,
				   struct perf_counter, event_entry);

	next_counter = list_first_entry(&next_ctx->event_list,
					struct perf_counter, event_entry);

	while (&counter->event_entry != &ctx->event_list &&
	       &next_counter->event_entry != &next_ctx->event_list) {

		__perf_counter_sync_stat(counter, next_counter);

		counter = list_next_entry(counter, event_entry);
1137
		next_counter = list_next_entry(next_counter, event_entry);
1138 1139 1140
	}
}

T
Thomas Gleixner 已提交
1141 1142 1143 1144 1145 1146
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
1147
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
1148 1149 1150 1151
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
1152 1153
void perf_counter_task_sched_out(struct task_struct *task,
				 struct task_struct *next, int cpu)
T
Thomas Gleixner 已提交
1154 1155
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1156
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
1157
	struct perf_counter_context *next_ctx;
1158
	struct perf_counter_context *parent;
1159
	struct pt_regs *regs;
1160
	int do_switch = 1;
T
Thomas Gleixner 已提交
1161

1162
	regs = task_pt_regs(task);
1163
	perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1164

1165
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1166 1167
		return;

1168
	update_context_time(ctx);
1169 1170 1171

	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1172
	next_ctx = next->perf_counter_ctxp;
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
		spin_lock(&ctx->lock);
		spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
		if (context_equiv(ctx, next_ctx)) {
1187 1188 1189 1190
			/*
			 * XXX do we need a memory barrier of sorts
			 * wrt to rcu_dereference() of perf_counter_ctxp
			 */
1191 1192 1193 1194 1195
			task->perf_counter_ctxp = next_ctx;
			next->perf_counter_ctxp = ctx;
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1196 1197

			perf_counter_sync_stat(ctx, next_ctx);
1198 1199 1200
		}
		spin_unlock(&next_ctx->lock);
		spin_unlock(&ctx->lock);
1201
	}
1202
	rcu_read_unlock();
1203

1204 1205 1206 1207
	if (do_switch) {
		__perf_counter_sched_out(ctx, cpuctx);
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1208 1209
}

1210 1211 1212
/*
 * Called with IRQs disabled
 */
1213 1214 1215 1216
static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1217 1218
	if (!cpuctx->task_ctx)
		return;
1219 1220 1221 1222

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1223 1224 1225 1226
	__perf_counter_sched_out(ctx, cpuctx);
	cpuctx->task_ctx = NULL;
}

1227 1228 1229
/*
 * Called with IRQs disabled
 */
1230
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1231
{
1232
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1233 1234
}

1235 1236 1237
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
1238 1239
{
	struct perf_counter *counter;
1240
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
1241

1242 1243
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
1244
	if (likely(!ctx->nr_counters))
1245
		goto out;
T
Thomas Gleixner 已提交
1246

1247
	ctx->timestamp = perf_clock();
1248

1249
	perf_disable();
1250 1251 1252 1253 1254 1255 1256

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
1257
		    !counter->attr.pinned)
1258 1259 1260 1261
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

1262 1263 1264 1265 1266 1267
		if (counter != counter->group_leader)
			counter_sched_in(counter, cpuctx, ctx, cpu);
		else {
			if (group_can_go_on(counter, cpuctx, 1))
				group_sched_in(counter, cpuctx, ctx, cpu);
		}
1268 1269 1270 1271 1272

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1273 1274
		if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
			update_group_times(counter);
1275
			counter->state = PERF_COUNTER_STATE_ERROR;
1276
		}
1277 1278
	}

1279
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1280 1281 1282 1283 1284
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
1285
		    counter->attr.pinned)
1286 1287
			continue;

1288 1289 1290 1291
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
1292 1293 1294
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

1295 1296
		if (counter != counter->group_leader) {
			if (counter_sched_in(counter, cpuctx, ctx, cpu))
1297
				can_add_hw = 0;
1298 1299 1300 1301 1302
		} else {
			if (group_can_go_on(counter, cpuctx, can_add_hw)) {
				if (group_sched_in(counter, cpuctx, ctx, cpu))
					can_add_hw = 0;
			}
1303
		}
T
Thomas Gleixner 已提交
1304
	}
1305
	perf_enable();
1306
 out:
T
Thomas Gleixner 已提交
1307
	spin_unlock(&ctx->lock);
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1324
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
1325

1326 1327
	if (likely(!ctx))
		return;
1328 1329
	if (cpuctx->task_ctx == ctx)
		return;
1330
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
1331 1332 1333
	cpuctx->task_ctx = ctx;
}

1334 1335 1336 1337 1338 1339 1340
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

1341 1342 1343
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_counter *counter, int enable);
1344

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
static void perf_adjust_period(struct perf_counter *counter, u64 events)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 period, sample_period;
	s64 delta;

	events *= hwc->sample_period;
	period = div64_u64(events, counter->attr.sample_freq);

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
}

static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
1366 1367
{
	struct perf_counter *counter;
1368
	struct hw_perf_counter *hwc;
1369
	u64 interrupts, freq;
1370 1371 1372 1373 1374 1375

	spin_lock(&ctx->lock);
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state != PERF_COUNTER_STATE_ACTIVE)
			continue;

1376 1377 1378 1379
		hwc = &counter->hw;

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1380

1381 1382 1383
		/*
		 * unthrottle counters on the tick
		 */
1384 1385 1386
		if (interrupts == MAX_INTERRUPTS) {
			perf_log_throttle(counter, 1);
			counter->pmu->unthrottle(counter);
1387
			interrupts = 2*sysctl_perf_counter_sample_rate/HZ;
1388 1389
		}

1390
		if (!counter->attr.freq || !counter->attr.sample_freq)
1391 1392
			continue;

1393 1394 1395
		/*
		 * if the specified freq < HZ then we need to skip ticks
		 */
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
		if (counter->attr.sample_freq < HZ) {
			freq = counter->attr.sample_freq;

			hwc->freq_count += freq;
			hwc->freq_interrupts += interrupts;

			if (hwc->freq_count < HZ)
				continue;

			interrupts = hwc->freq_interrupts;
			hwc->freq_interrupts = 0;
			hwc->freq_count -= HZ;
		} else
			freq = HZ;

1411
		perf_adjust_period(counter, freq * interrupts);
1412

1413 1414 1415 1416 1417 1418 1419 1420
		/*
		 * In order to avoid being stalled by an (accidental) huge
		 * sample period, force reset the sample period if we didn't
		 * get any events in this freq period.
		 */
		if (!interrupts) {
			perf_disable();
			counter->pmu->disable(counter);
1421
			atomic64_set(&hwc->period_left, 0);
1422 1423 1424
			counter->pmu->enable(counter);
			perf_enable();
		}
1425 1426 1427 1428
	}
	spin_unlock(&ctx->lock);
}

1429 1430 1431 1432
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
1433 1434 1435
{
	struct perf_counter *counter;

1436
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
1437 1438 1439 1440
		return;

	spin_lock(&ctx->lock);
	/*
1441
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
1442
	 */
1443
	perf_disable();
1444
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1445
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
1446 1447
		break;
	}
1448
	perf_enable();
T
Thomas Gleixner 已提交
1449 1450

	spin_unlock(&ctx->lock);
1451 1452 1453 1454
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
1455 1456 1457 1458 1459 1460 1461
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;

	if (!atomic_read(&nr_counters))
		return;

	cpuctx = &per_cpu(perf_cpu_context, cpu);
1462
	ctx = curr->perf_counter_ctxp;
1463

1464
	perf_ctx_adjust_freq(&cpuctx->ctx);
1465
	if (ctx)
1466
		perf_ctx_adjust_freq(ctx);
1467

1468
	perf_counter_cpu_sched_out(cpuctx);
1469 1470
	if (ctx)
		__perf_counter_task_sched_out(ctx);
T
Thomas Gleixner 已提交
1471

1472
	rotate_ctx(&cpuctx->ctx);
1473 1474
	if (ctx)
		rotate_ctx(ctx);
1475

1476
	perf_counter_cpu_sched_in(cpuctx, cpu);
1477 1478
	if (ctx)
		perf_counter_task_sched_in(curr, cpu);
T
Thomas Gleixner 已提交
1479 1480
}

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
/*
 * Enable all of a task's counters that have been marked enable-on-exec.
 * This expects task == current.
 */
static void perf_counter_enable_on_exec(struct task_struct *task)
{
	struct perf_counter_context *ctx;
	struct perf_counter *counter;
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
	ctx = task->perf_counter_ctxp;
	if (!ctx || !ctx->nr_counters)
		goto out;

	__perf_counter_task_sched_out(ctx);

	spin_lock(&ctx->lock);

	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (!counter->attr.enable_on_exec)
			continue;
		counter->attr.enable_on_exec = 0;
		if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
			continue;
1507
		__perf_counter_mark_enabled(counter, ctx);
1508 1509 1510 1511 1512 1513
		enabled = 1;
	}

	/*
	 * Unclone this context if we enabled any counter.
	 */
1514 1515
	if (enabled)
		unclone_ctx(ctx);
1516 1517 1518 1519 1520 1521 1522 1523

	spin_unlock(&ctx->lock);

	perf_counter_task_sched_in(task, smp_processor_id());
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1524 1525 1526
/*
 * Cross CPU call to read the hardware counter
 */
1527
static void __perf_counter_read(void *info)
T
Thomas Gleixner 已提交
1528
{
1529
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
I
Ingo Molnar 已提交
1530
	struct perf_counter *counter = info;
1531
	struct perf_counter_context *ctx = counter->ctx;
I
Ingo Molnar 已提交
1532
	unsigned long flags;
I
Ingo Molnar 已提交
1533

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
	 * counter->count would have been updated to a recent sample
	 * when the counter was scheduled out.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1544
	local_irq_save(flags);
1545
	if (ctx->is_active)
1546
		update_context_time(ctx);
1547
	counter->pmu->read(counter);
1548
	update_counter_times(counter);
1549
	local_irq_restore(flags);
T
Thomas Gleixner 已提交
1550 1551
}

1552
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1553 1554 1555 1556 1557
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1558
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1559
		smp_call_function_single(counter->oncpu,
1560
					 __perf_counter_read, counter, 1);
1561 1562
	} else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
T
Thomas Gleixner 已提交
1563 1564
	}

1565
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1566 1567
}

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
	mutex_init(&ctx->mutex);
	INIT_LIST_HEAD(&ctx->counter_list);
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

T
Thomas Gleixner 已提交
1584 1585
static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
1586 1587
	struct perf_counter_context *ctx;
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1588
	struct task_struct *task;
1589
	unsigned long flags;
1590
	int err;
T
Thomas Gleixner 已提交
1591 1592 1593 1594 1595 1596

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
1597
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1613
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1630 1631 1632 1633 1634 1635 1636
	/*
	 * Can't attach counters to a dying task.
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1637
	/* Reuse ptrace permission checks for now. */
1638 1639 1640 1641 1642
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1643
	ctx = perf_lock_task_context(task, &flags);
1644
	if (ctx) {
1645
		unclone_ctx(ctx);
1646
		spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1647 1648
	}

1649 1650
	if (!ctx) {
		ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1651 1652 1653
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1654
		__perf_counter_init_context(ctx, task);
1655 1656
		get_ctx(ctx);
		if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1657 1658 1659 1660 1661
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1662
			goto retry;
1663
		}
1664
		get_task_struct(task);
1665 1666
	}

1667
	put_task_struct(task);
T
Thomas Gleixner 已提交
1668
	return ctx;
1669 1670 1671 1672

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1673 1674
}

P
Peter Zijlstra 已提交
1675 1676 1677 1678 1679
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
1680 1681
	if (counter->ns)
		put_pid_ns(counter->ns);
P
Peter Zijlstra 已提交
1682 1683 1684
	kfree(counter);
}

1685 1686
static void perf_pending_sync(struct perf_counter *counter);

1687 1688
static void free_counter(struct perf_counter *counter)
{
1689 1690
	perf_pending_sync(counter);

1691 1692 1693 1694 1695 1696
	if (!counter->parent) {
		atomic_dec(&nr_counters);
		if (counter->attr.mmap)
			atomic_dec(&nr_mmap_counters);
		if (counter->attr.comm)
			atomic_dec(&nr_comm_counters);
P
Peter Zijlstra 已提交
1697 1698
		if (counter->attr.task)
			atomic_dec(&nr_task_counters);
1699
	}
1700

1701 1702 1703 1704 1705
	if (counter->output) {
		fput(counter->output->filp);
		counter->output = NULL;
	}

1706 1707 1708
	if (counter->destroy)
		counter->destroy(counter);

1709
	put_ctx(counter->ctx);
1710 1711 1712
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1723
	WARN_ON_ONCE(ctx->parent_ctx);
1724
	mutex_lock(&ctx->mutex);
1725
	perf_counter_remove_from_context(counter);
1726
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1727

1728 1729 1730 1731 1732
	mutex_lock(&counter->owner->perf_counter_mutex);
	list_del_init(&counter->owner_entry);
	mutex_unlock(&counter->owner->perf_counter_mutex);
	put_task_struct(counter->owner);

1733
	free_counter(counter);
T
Thomas Gleixner 已提交
1734 1735 1736 1737

	return 0;
}

1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
static int perf_counter_read_size(struct perf_counter *counter)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (counter->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (counter->attr.read_format & PERF_FORMAT_GROUP) {
		nr += counter->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

static u64 perf_counter_read_value(struct perf_counter *counter)
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
{
	struct perf_counter *child;
	u64 total = 0;

	total += perf_counter_read(counter);
	list_for_each_entry(child, &counter->child_list, child_list)
		total += perf_counter_read(child);

	return total;
}

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
static int perf_counter_read_entry(struct perf_counter *counter,
				   u64 read_format, char __user *buf)
{
	int n = 0, count = 0;
	u64 values[2];

	values[n++] = perf_counter_read_value(counter);
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_counter_id(counter);

	count = n * sizeof(u64);

	if (copy_to_user(buf, values, count))
		return -EFAULT;

	return count;
}

static int perf_counter_read_group(struct perf_counter *counter,
				   u64 read_format, char __user *buf)
{
	struct perf_counter *leader = counter->group_leader, *sub;
	int n = 0, size = 0, err = -EFAULT;
	u64 values[3];

	values[n++] = 1 + leader->nr_siblings;
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] = leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] = leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
		return -EFAULT;

	err = perf_counter_read_entry(leader, read_format, buf + size);
	if (err < 0)
		return err;

	size += err;

	list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1822
		err = perf_counter_read_entry(sub, read_format,
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
				buf + size);
		if (err < 0)
			return err;

		size += err;
	}

	return size;
}

static int perf_counter_read_one(struct perf_counter *counter,
				 u64 read_format, char __user *buf)
{
	u64 values[4];
	int n = 0;

	values[n++] = perf_counter_read_value(counter);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);
	}
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_counter_id(counter);

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
1857 1858 1859 1860 1861 1862
/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
1863 1864
	u64 read_format = counter->attr.read_format;
	int ret;
T
Thomas Gleixner 已提交
1865

1866 1867 1868 1869 1870 1871 1872 1873
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

1874 1875 1876
	if (count < perf_counter_read_size(counter))
		return -ENOSPC;

1877
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1878
	mutex_lock(&counter->child_mutex);
1879 1880 1881 1882
	if (read_format & PERF_FORMAT_GROUP)
		ret = perf_counter_read_group(counter, read_format, buf);
	else
		ret = perf_counter_read_one(counter, read_format, buf);
1883
	mutex_unlock(&counter->child_mutex);
T
Thomas Gleixner 已提交
1884

1885
	return ret;
T
Thomas Gleixner 已提交
1886 1887 1888 1889 1890 1891 1892
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

1893
	return perf_read_hw(counter, buf, count);
T
Thomas Gleixner 已提交
1894 1895 1896 1897 1898
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1899
	struct perf_mmap_data *data;
1900
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1901 1902 1903 1904

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
1905
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1906
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1907 1908 1909 1910 1911 1912

	poll_wait(file, &counter->waitq, wait);

	return events;
}

1913 1914
static void perf_counter_reset(struct perf_counter *counter)
{
P
Peter Zijlstra 已提交
1915
	(void)perf_counter_read(counter);
1916
	atomic64_set(&counter->count, 0);
P
Peter Zijlstra 已提交
1917 1918 1919
	perf_counter_update_userpage(counter);
}

1920 1921 1922 1923 1924 1925
/*
 * Holding the top-level counter's child_mutex means that any
 * descendant process that has inherited this counter will block
 * in sync_child_counter if it goes to exit, thus satisfying the
 * task existence requirements of perf_counter_enable/disable.
 */
P
Peter Zijlstra 已提交
1926 1927 1928 1929 1930
static void perf_counter_for_each_child(struct perf_counter *counter,
					void (*func)(struct perf_counter *))
{
	struct perf_counter *child;

1931
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1932
	mutex_lock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1933 1934 1935
	func(counter);
	list_for_each_entry(child, &counter->child_list, child_list)
		func(child);
1936
	mutex_unlock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1937 1938 1939 1940 1941
}

static void perf_counter_for_each(struct perf_counter *counter,
				  void (*func)(struct perf_counter *))
{
1942 1943
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *sibling;
P
Peter Zijlstra 已提交
1944

1945 1946 1947 1948 1949 1950 1951 1952 1953
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	counter = counter->group_leader;

	perf_counter_for_each_child(counter, func);
	func(counter);
	list_for_each_entry(sibling, &counter->sibling_list, list_entry)
		perf_counter_for_each_child(counter, func);
	mutex_unlock(&ctx->mutex);
1954 1955
}

1956 1957 1958 1959 1960 1961 1962
static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
{
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long size;
	int ret = 0;
	u64 value;

1963
	if (!counter->attr.sample_period)
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	spin_lock_irq(&ctx->lock);
1974
	if (counter->attr.freq) {
1975
		if (value > sysctl_perf_counter_sample_rate) {
1976 1977 1978 1979
			ret = -EINVAL;
			goto unlock;
		}

1980
		counter->attr.sample_freq = value;
1981
	} else {
1982
		counter->attr.sample_period = value;
1983 1984 1985 1986 1987 1988 1989 1990
		counter->hw.sample_period = value;
	}
unlock:
	spin_unlock_irq(&ctx->lock);

	return ret;
}

1991 1992
int perf_counter_set_output(struct perf_counter *counter, int output_fd);

1993 1994 1995
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1996 1997
	void (*func)(struct perf_counter *);
	u32 flags = arg;
1998 1999 2000

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
P
Peter Zijlstra 已提交
2001
		func = perf_counter_enable;
2002 2003
		break;
	case PERF_COUNTER_IOC_DISABLE:
P
Peter Zijlstra 已提交
2004
		func = perf_counter_disable;
2005
		break;
2006
	case PERF_COUNTER_IOC_RESET:
P
Peter Zijlstra 已提交
2007
		func = perf_counter_reset;
2008
		break;
P
Peter Zijlstra 已提交
2009 2010 2011

	case PERF_COUNTER_IOC_REFRESH:
		return perf_counter_refresh(counter, arg);
2012 2013 2014 2015

	case PERF_COUNTER_IOC_PERIOD:
		return perf_counter_period(counter, (u64 __user *)arg);

2016 2017 2018
	case PERF_COUNTER_IOC_SET_OUTPUT:
		return perf_counter_set_output(counter, arg);

2019
	default:
P
Peter Zijlstra 已提交
2020
		return -ENOTTY;
2021
	}
P
Peter Zijlstra 已提交
2022 2023 2024 2025 2026 2027 2028

	if (flags & PERF_IOC_FLAG_GROUP)
		perf_counter_for_each(counter, func);
	else
		perf_counter_for_each_child(counter, func);

	return 0;
2029 2030
}

2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
int perf_counter_task_enable(void)
{
	struct perf_counter *counter;

	mutex_lock(&current->perf_counter_mutex);
	list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
		perf_counter_for_each_child(counter, perf_counter_enable);
	mutex_unlock(&current->perf_counter_mutex);

	return 0;
}

int perf_counter_task_disable(void)
{
	struct perf_counter *counter;

	mutex_lock(&current->perf_counter_mutex);
	list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
		perf_counter_for_each_child(counter, perf_counter_disable);
	mutex_unlock(&current->perf_counter_mutex);

	return 0;
}

I
Ingo Molnar 已提交
2055 2056 2057 2058
#ifndef PERF_COUNTER_INDEX_OFFSET
# define PERF_COUNTER_INDEX_OFFSET 0
#endif

2059 2060 2061 2062 2063 2064 2065 2066
static int perf_counter_index(struct perf_counter *counter)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return 0;

	return counter->hw.idx + 1 - PERF_COUNTER_INDEX_OFFSET;
}

2067 2068 2069 2070 2071 2072
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
void perf_counter_update_userpage(struct perf_counter *counter)
2073
{
2074
	struct perf_counter_mmap_page *userpg;
2075
	struct perf_mmap_data *data;
2076 2077 2078 2079 2080 2081 2082

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	userpg = data->user_page;
2083

2084 2085 2086 2087 2088
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2089
	++userpg->lock;
2090
	barrier();
2091
	userpg->index = perf_counter_index(counter);
2092 2093 2094
	userpg->offset = atomic64_read(&counter->count);
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&counter->hw.prev_count);
2095

2096 2097 2098 2099 2100 2101
	userpg->time_enabled = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);

	userpg->time_running = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);

2102
	barrier();
2103
	++userpg->lock;
2104
	preempt_enable();
2105
unlock:
2106
	rcu_read_unlock();
2107 2108 2109 2110 2111
}

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_counter *counter = vma->vm_file->private_data;
2112 2113 2114
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

2115 2116 2117 2118 2119 2120
	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

2121 2122 2123 2124 2125 2126 2127 2128 2129
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff == 0) {
		vmf->page = virt_to_page(data->user_page);
	} else {
		int nr = vmf->pgoff - 1;
2130

2131 2132
		if ((unsigned)nr > data->nr_pages)
			goto unlock;
2133

2134 2135 2136
		if (vmf->flags & FAULT_FLAG_WRITE)
			goto unlock;

2137 2138
		vmf->page = virt_to_page(data->data_pages[nr]);
	}
2139

2140
	get_page(vmf->page);
2141 2142 2143
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	WARN_ON(atomic_read(&counter->mmap_count));

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;
2177
	atomic_set(&data->lock, -1);
2178 2179 2180

	rcu_assign_pointer(counter->data, data);

2181
	return 0;
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
	return -ENOMEM;
}

2196 2197
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2198
	struct page *page = virt_to_page((void *)addr);
2199 2200 2201 2202 2203

	page->mapping = NULL;
	__free_page(page);
}

2204 2205
static void __perf_mmap_data_free(struct rcu_head *rcu_head)
{
2206
	struct perf_mmap_data *data;
2207 2208
	int i;

2209 2210
	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);

2211
	perf_mmap_free_page((unsigned long)data->user_page);
2212
	for (i = 0; i < data->nr_pages; i++)
2213 2214
		perf_mmap_free_page((unsigned long)data->data_pages[i]);

2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
	kfree(data);
}

static void perf_mmap_data_free(struct perf_counter *counter)
{
	struct perf_mmap_data *data = counter->data;

	WARN_ON(atomic_read(&counter->mmap_count));

	rcu_assign_pointer(counter->data, NULL);
	call_rcu(&data->rcu_head, __perf_mmap_data_free);
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	atomic_inc(&counter->mmap_count);
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

2239
	WARN_ON_ONCE(counter->ctx->parent_ctx);
2240
	if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
2241 2242 2243
		struct user_struct *user = current_user();

		atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
2244
		vma->vm_mm->locked_vm -= counter->data->nr_locked;
2245 2246 2247
		perf_mmap_data_free(counter);
		mutex_unlock(&counter->mmap_mutex);
	}
2248 2249 2250
}

static struct vm_operations_struct perf_mmap_vmops = {
2251 2252 2253 2254
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2255 2256 2257 2258 2259
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct perf_counter *counter = file->private_data;
2260
	unsigned long user_locked, user_lock_limit;
2261
	struct user_struct *user = current_user();
2262
	unsigned long locked, lock_limit;
2263 2264
	unsigned long vma_size;
	unsigned long nr_pages;
2265
	long user_extra, extra;
2266
	int ret = 0;
2267

2268
	if (!(vma->vm_flags & VM_SHARED))
2269
		return -EINVAL;
2270 2271 2272 2273

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2274 2275 2276 2277 2278
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2279 2280
		return -EINVAL;

2281
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2282 2283
		return -EINVAL;

2284 2285
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2286

2287
	WARN_ON_ONCE(counter->ctx->parent_ctx);
2288
	mutex_lock(&counter->mmap_mutex);
2289 2290 2291 2292 2293
	if (counter->output) {
		ret = -EINVAL;
		goto unlock;
	}

2294 2295 2296 2297 2298 2299
	if (atomic_inc_not_zero(&counter->mmap_count)) {
		if (nr_pages != counter->data->nr_pages)
			ret = -EINVAL;
		goto unlock;
	}

2300 2301
	user_extra = nr_pages + 1;
	user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2302 2303 2304 2305 2306 2307

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2308
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2309

2310 2311 2312
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2313 2314 2315

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
2316
	locked = vma->vm_mm->locked_vm + extra;
2317

2318 2319 2320 2321
	if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
		ret = -EPERM;
		goto unlock;
	}
2322 2323 2324

	WARN_ON(counter->data);
	ret = perf_mmap_data_alloc(counter, nr_pages);
2325 2326 2327 2328
	if (ret)
		goto unlock;

	atomic_set(&counter->mmap_count, 1);
2329
	atomic_long_add(user_extra, &user->locked_vm);
2330 2331
	vma->vm_mm->locked_vm += extra;
	counter->data->nr_locked = extra;
2332 2333 2334
	if (vma->vm_flags & VM_WRITE)
		counter->data->writable = 1;

2335
unlock:
2336
	mutex_unlock(&counter->mmap_mutex);
2337 2338 2339

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2340 2341

	return ret;
2342 2343
}

P
Peter Zijlstra 已提交
2344 2345 2346
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2347
	struct perf_counter *counter = filp->private_data;
P
Peter Zijlstra 已提交
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
	int retval;

	mutex_lock(&inode->i_mutex);
	retval = fasync_helper(fd, filp, on, &counter->fasync);
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2360 2361 2362 2363
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2364 2365
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2366
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2367
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2368 2369
};

2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
/*
 * Perf counter wakeup
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

void perf_counter_wakeup(struct perf_counter *counter)
{
	wake_up_all(&counter->waitq);
2380 2381 2382 2383 2384

	if (counter->pending_kill) {
		kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
		counter->pending_kill = 0;
	}
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2396 2397 2398 2399 2400 2401 2402
static void perf_pending_counter(struct perf_pending_entry *entry)
{
	struct perf_counter *counter = container_of(entry,
			struct perf_counter, pending);

	if (counter->pending_disable) {
		counter->pending_disable = 0;
2403
		__perf_counter_disable(counter);
2404 2405 2406 2407 2408 2409 2410 2411
	}

	if (counter->pending_wakeup) {
		counter->pending_wakeup = 0;
		perf_counter_wakeup(counter);
	}
}

2412
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2413

2414
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2415 2416 2417
	PENDING_TAIL,
};

2418 2419
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2420
{
2421
	struct perf_pending_entry **head;
2422

2423
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2424 2425
		return;

2426 2427 2428
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2429 2430

	do {
2431 2432
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2433 2434 2435

	set_perf_counter_pending();

2436
	put_cpu_var(perf_pending_head);
2437 2438 2439 2440
}

static int __perf_pending_run(void)
{
2441
	struct perf_pending_entry *list;
2442 2443
	int nr = 0;

2444
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2445
	while (list != PENDING_TAIL) {
2446 2447
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2448 2449 2450

		list = list->next;

2451 2452
		func = entry->func;
		entry->next = NULL;
2453 2454 2455 2456 2457 2458 2459
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2460
		func(entry);
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
		nr++;
	}

	return nr;
}

static inline int perf_not_pending(struct perf_counter *counter)
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2482
	return counter->pending.next == NULL;
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
}

static void perf_pending_sync(struct perf_counter *counter)
{
	wait_event(counter->waitq, perf_not_pending(counter));
}

void perf_counter_do_pending(void)
{
	__perf_pending_run();
}

2495 2496 2497 2498
/*
 * Callchain support -- arch specific
 */

2499
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2500 2501 2502 2503
{
	return NULL;
}

2504 2505 2506 2507
/*
 * Output
 */

2508 2509 2510
struct perf_output_handle {
	struct perf_counter	*counter;
	struct perf_mmap_data	*data;
2511 2512
	unsigned long		head;
	unsigned long		offset;
2513
	int			nmi;
2514
	int			sample;
2515 2516
	int			locked;
	unsigned long		flags;
2517 2518
};

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
static bool perf_output_space(struct perf_mmap_data *data,
			      unsigned int offset, unsigned int head)
{
	unsigned long tail;
	unsigned long mask;

	if (!data->writable)
		return true;

	mask = (data->nr_pages << PAGE_SHIFT) - 1;
	/*
	 * Userspace could choose to issue a mb() before updating the tail
	 * pointer. So that all reads will be completed before the write is
	 * issued.
	 */
	tail = ACCESS_ONCE(data->user_page->data_tail);
	smp_rmb();

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2546
static void perf_output_wakeup(struct perf_output_handle *handle)
2547
{
2548 2549
	atomic_set(&handle->data->poll, POLL_IN);

2550
	if (handle->nmi) {
2551
		handle->counter->pending_wakeup = 1;
2552
		perf_pending_queue(&handle->counter->pending,
2553
				   perf_pending_counter);
2554
	} else
2555 2556 2557
		perf_counter_wakeup(handle->counter);
}

2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
/*
 * Curious locking construct.
 *
 * We need to ensure a later event doesn't publish a head when a former
 * event isn't done writing. However since we need to deal with NMIs we
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
 * event completes.
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
	int cpu;

	handle->locked = 0;

	local_irq_save(handle->flags);
	cpu = smp_processor_id();

	if (in_nmi() && atomic_read(&data->lock) == cpu)
		return;

2584
	while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2585 2586 2587 2588 2589 2590 2591 2592
		cpu_relax();

	handle->locked = 1;
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2593 2594
	unsigned long head;
	int cpu;
2595

2596
	data->done_head = data->head;
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2607
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2608 2609 2610
		data->user_page->data_head = head;

	/*
2611
	 * NMI can happen here, which means we can miss a done_head update.
2612 2613
	 */

2614
	cpu = atomic_xchg(&data->lock, -1);
2615 2616 2617 2618 2619
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2620
	if (unlikely(atomic_long_read(&data->done_head))) {
2621 2622 2623
		/*
		 * Since we had it locked, we can lock it again.
		 */
2624
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2625 2626 2627 2628 2629
			cpu_relax();

		goto again;
	}

2630
	if (atomic_xchg(&data->wakeup, 0))
2631 2632 2633 2634 2635
		perf_output_wakeup(handle);
out:
	local_irq_restore(handle->flags);
}

2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
static void perf_output_copy(struct perf_output_handle *handle,
			     const void *buf, unsigned int len)
{
	unsigned int pages_mask;
	unsigned int offset;
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
		unsigned int page_offset;
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
		page_offset = offset & (PAGE_SIZE - 1);
		size	    = min_t(unsigned int, PAGE_SIZE - page_offset, len);

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

#define perf_output_put(handle, x) \
	perf_output_copy((handle), &(x), sizeof(x))

2675
static int perf_output_begin(struct perf_output_handle *handle,
2676
			     struct perf_counter *counter, unsigned int size,
2677
			     int nmi, int sample)
2678
{
2679
	struct perf_counter *output_counter;
2680
	struct perf_mmap_data *data;
2681
	unsigned int offset, head;
2682 2683 2684 2685 2686 2687
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
2688

2689
	rcu_read_lock();
2690 2691 2692 2693 2694 2695
	/*
	 * For inherited counters we send all the output towards the parent.
	 */
	if (counter->parent)
		counter = counter->parent;

2696 2697 2698 2699
	output_counter = rcu_dereference(counter->output);
	if (output_counter)
		counter = output_counter;

2700 2701 2702 2703
	data = rcu_dereference(counter->data);
	if (!data)
		goto out;

2704 2705 2706 2707
	handle->data	= data;
	handle->counter	= counter;
	handle->nmi	= nmi;
	handle->sample	= sample;
2708

2709
	if (!data->nr_pages)
2710
		goto fail;
2711

2712 2713 2714 2715
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

2716 2717
	perf_output_lock(handle);

2718
	do {
2719
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
2720
		head += size;
2721 2722
		if (unlikely(!perf_output_space(data, offset, head)))
			goto fail;
2723
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2724

2725
	handle->offset	= offset;
2726
	handle->head	= head;
2727 2728 2729

	if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
		atomic_set(&data->wakeup, 1);
2730

2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
	if (have_lost) {
		lost_event.header.type = PERF_EVENT_LOST;
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
		lost_event.id          = counter->id;
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

2741
	return 0;
2742

2743
fail:
2744 2745
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
2746 2747
out:
	rcu_read_unlock();
2748

2749 2750
	return -ENOSPC;
}
2751

2752
static void perf_output_end(struct perf_output_handle *handle)
2753
{
2754 2755 2756
	struct perf_counter *counter = handle->counter;
	struct perf_mmap_data *data = handle->data;

2757
	int wakeup_events = counter->attr.wakeup_events;
P
Peter Zijlstra 已提交
2758

2759
	if (handle->sample && wakeup_events) {
2760
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2761
		if (events >= wakeup_events) {
2762
			atomic_sub(wakeup_events, &data->events);
2763
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2764
		}
2765 2766 2767
	}

	perf_output_unlock(handle);
2768
	rcu_read_unlock();
2769 2770
}

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
{
	/*
	 * only top level counters have the pid namespace they were created in
	 */
	if (counter->parent)
		counter = counter->parent;

	return task_tgid_nr_ns(p, counter->ns);
}

static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
{
	/*
	 * only top level counters have the pid namespace they were created in
	 */
	if (counter->parent)
		counter = counter->parent;

	return task_pid_nr_ns(p, counter->ns);
}

2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
static void perf_output_read_one(struct perf_output_handle *handle,
				 struct perf_counter *counter)
{
	u64 read_format = counter->attr.read_format;
	u64 values[4];
	int n = 0;

	values[n++] = atomic64_read(&counter->count);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);
	}
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_counter_id(counter);

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
 * XXX PERF_FORMAT_GROUP vs inherited counters seems difficult.
 */
static void perf_output_read_group(struct perf_output_handle *handle,
			    struct perf_counter *counter)
{
	struct perf_counter *leader = counter->group_leader, *sub;
	u64 read_format = counter->attr.read_format;
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

	if (leader != counter)
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_counter_id(leader);

	perf_output_copy(handle, values, n * sizeof(u64));

	list_for_each_entry(sub, &leader->sibling_list, list_entry) {
		n = 0;

		if (sub != counter)
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_counter_id(sub);

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
			     struct perf_counter *counter)
{
	if (counter->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, counter);
	else
		perf_output_read_one(handle, counter);
}

2866
void perf_counter_output(struct perf_counter *counter, int nmi,
2867
				struct perf_sample_data *data)
2868
{
2869
	int ret;
2870
	u64 sample_type = counter->attr.sample_type;
2871 2872 2873
	struct perf_output_handle handle;
	struct perf_event_header header;
	u64 ip;
P
Peter Zijlstra 已提交
2874
	struct {
2875
		u32 pid, tid;
2876
	} tid_entry;
2877 2878
	struct perf_callchain_entry *callchain = NULL;
	int callchain_size = 0;
P
Peter Zijlstra 已提交
2879
	u64 time;
2880 2881 2882
	struct {
		u32 cpu, reserved;
	} cpu_entry;
2883

2884
	header.type = PERF_EVENT_SAMPLE;
2885
	header.size = sizeof(header);
2886

2887
	header.misc = 0;
2888
	header.misc |= perf_misc_flags(data->regs);
2889

2890
	if (sample_type & PERF_SAMPLE_IP) {
2891
		ip = perf_instruction_pointer(data->regs);
2892 2893
		header.size += sizeof(ip);
	}
2894

2895
	if (sample_type & PERF_SAMPLE_TID) {
2896
		/* namespace issues */
2897 2898
		tid_entry.pid = perf_counter_pid(counter, current);
		tid_entry.tid = perf_counter_tid(counter, current);
2899 2900 2901 2902

		header.size += sizeof(tid_entry);
	}

2903
	if (sample_type & PERF_SAMPLE_TIME) {
2904 2905 2906 2907 2908 2909 2910 2911
		/*
		 * Maybe do better on x86 and provide cpu_clock_nmi()
		 */
		time = sched_clock();

		header.size += sizeof(u64);
	}

2912
	if (sample_type & PERF_SAMPLE_ADDR)
2913 2914
		header.size += sizeof(u64);

2915
	if (sample_type & PERF_SAMPLE_ID)
2916 2917
		header.size += sizeof(u64);

2918 2919 2920
	if (sample_type & PERF_SAMPLE_STREAM_ID)
		header.size += sizeof(u64);

2921
	if (sample_type & PERF_SAMPLE_CPU) {
2922 2923 2924
		header.size += sizeof(cpu_entry);

		cpu_entry.cpu = raw_smp_processor_id();
A
Arjan van de Ven 已提交
2925
		cpu_entry.reserved = 0;
2926 2927
	}

2928
	if (sample_type & PERF_SAMPLE_PERIOD)
2929 2930
		header.size += sizeof(u64);

2931 2932
	if (sample_type & PERF_SAMPLE_READ)
		header.size += perf_counter_read_size(counter);
2933

2934
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2935
		callchain = perf_callchain(data->regs);
2936 2937

		if (callchain) {
2938
			callchain_size = (1 + callchain->nr) * sizeof(u64);
2939
			header.size += callchain_size;
2940 2941
		} else
			header.size += sizeof(u64);
2942 2943
	}

2944
	if (sample_type & PERF_SAMPLE_RAW) {
2945 2946 2947 2948 2949 2950 2951 2952 2953
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
		header.size += size;
2954 2955
	}

2956
	ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2957 2958
	if (ret)
		return;
2959

2960
	perf_output_put(&handle, header);
P
Peter Zijlstra 已提交
2961

2962
	if (sample_type & PERF_SAMPLE_IP)
2963
		perf_output_put(&handle, ip);
P
Peter Zijlstra 已提交
2964

2965
	if (sample_type & PERF_SAMPLE_TID)
2966
		perf_output_put(&handle, tid_entry);
P
Peter Zijlstra 已提交
2967

2968
	if (sample_type & PERF_SAMPLE_TIME)
2969 2970
		perf_output_put(&handle, time);

2971
	if (sample_type & PERF_SAMPLE_ADDR)
2972
		perf_output_put(&handle, data->addr);
2973

2974 2975 2976 2977 2978 2979 2980
	if (sample_type & PERF_SAMPLE_ID) {
		u64 id = primary_counter_id(counter);

		perf_output_put(&handle, id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID)
2981
		perf_output_put(&handle, counter->id);
2982

2983
	if (sample_type & PERF_SAMPLE_CPU)
2984 2985
		perf_output_put(&handle, cpu_entry);

2986
	if (sample_type & PERF_SAMPLE_PERIOD)
2987
		perf_output_put(&handle, data->period);
2988

2989 2990
	if (sample_type & PERF_SAMPLE_READ)
		perf_output_read(&handle, counter);
P
Peter Zijlstra 已提交
2991

2992 2993 2994 2995 2996 2997 2998 2999
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (callchain)
			perf_output_copy(&handle, callchain, callchain_size);
		else {
			u64 nr = 0;
			perf_output_put(&handle, nr);
		}
	}
3000

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(&handle, data->raw->size);
			perf_output_copy(&handle, data->raw->data, data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(&handle, raw);
		}
	}
3016

3017
	perf_output_end(&handle);
3018 3019
}

3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
/*
 * read event
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
perf_counter_read_event(struct perf_counter *counter,
			struct task_struct *task)
{
	struct perf_output_handle handle;
	struct perf_read_event event = {
		.header = {
			.type = PERF_EVENT_READ,
			.misc = 0,
3040
			.size = sizeof(event) + perf_counter_read_size(counter),
3041 3042 3043 3044
		},
		.pid = perf_counter_pid(counter, task),
		.tid = perf_counter_tid(counter, task),
	};
3045
	int ret;
3046 3047 3048 3049 3050

	ret = perf_output_begin(&handle, counter, event.header.size, 0, 0);
	if (ret)
		return;

3051 3052 3053
	perf_output_put(&handle, event);
	perf_output_read(&handle, counter);

3054 3055 3056
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3057
/*
P
Peter Zijlstra 已提交
3058 3059 3060
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
3061 3062
 */

P
Peter Zijlstra 已提交
3063
struct perf_task_event {
3064 3065
	struct task_struct		*task;
	struct perf_counter_context	*task_ctx;
P
Peter Zijlstra 已提交
3066 3067 3068 3069 3070 3071

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3072 3073
		u32				tid;
		u32				ptid;
P
Peter Zijlstra 已提交
3074 3075 3076
	} event;
};

P
Peter Zijlstra 已提交
3077 3078
static void perf_counter_task_output(struct perf_counter *counter,
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3079 3080
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
3081 3082
	int size = task_event->event.header.size;
	struct task_struct *task = task_event->task;
P
Peter Zijlstra 已提交
3083 3084 3085 3086 3087
	int ret = perf_output_begin(&handle, counter, size, 0, 0);

	if (ret)
		return;

P
Peter Zijlstra 已提交
3088
	task_event->event.pid = perf_counter_pid(counter, task);
3089
	task_event->event.ppid = perf_counter_pid(counter, current);
P
Peter Zijlstra 已提交
3090

P
Peter Zijlstra 已提交
3091
	task_event->event.tid = perf_counter_tid(counter, task);
3092
	task_event->event.ptid = perf_counter_tid(counter, current);
P
Peter Zijlstra 已提交
3093 3094

	perf_output_put(&handle, task_event->event);
P
Peter Zijlstra 已提交
3095 3096 3097
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3098
static int perf_counter_task_match(struct perf_counter *counter)
P
Peter Zijlstra 已提交
3099
{
P
Peter Zijlstra 已提交
3100
	if (counter->attr.comm || counter->attr.mmap || counter->attr.task)
P
Peter Zijlstra 已提交
3101 3102 3103 3104 3105
		return 1;

	return 0;
}

P
Peter Zijlstra 已提交
3106 3107
static void perf_counter_task_ctx(struct perf_counter_context *ctx,
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3108 3109 3110 3111 3112 3113 3114 3115
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
P
Peter Zijlstra 已提交
3116 3117
		if (perf_counter_task_match(counter))
			perf_counter_task_output(counter, task_event);
P
Peter Zijlstra 已提交
3118 3119 3120 3121
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
3122
static void perf_counter_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3123 3124
{
	struct perf_cpu_context *cpuctx;
3125
	struct perf_counter_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3126 3127

	cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3128
	perf_counter_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
3129 3130 3131
	put_cpu_var(perf_cpu_context);

	rcu_read_lock();
3132 3133
	if (!ctx)
		ctx = rcu_dereference(task_event->task->perf_counter_ctxp);
P
Peter Zijlstra 已提交
3134
	if (ctx)
P
Peter Zijlstra 已提交
3135
		perf_counter_task_ctx(ctx, task_event);
P
Peter Zijlstra 已提交
3136 3137 3138
	rcu_read_unlock();
}

3139 3140 3141
static void perf_counter_task(struct task_struct *task,
			      struct perf_counter_context *task_ctx,
			      int new)
P
Peter Zijlstra 已提交
3142
{
P
Peter Zijlstra 已提交
3143
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3144 3145

	if (!atomic_read(&nr_comm_counters) &&
P
Peter Zijlstra 已提交
3146 3147
	    !atomic_read(&nr_mmap_counters) &&
	    !atomic_read(&nr_task_counters))
P
Peter Zijlstra 已提交
3148 3149
		return;

P
Peter Zijlstra 已提交
3150
	task_event = (struct perf_task_event){
3151 3152 3153
		.task	  = task,
		.task_ctx = task_ctx,
		.event    = {
P
Peter Zijlstra 已提交
3154
			.header = {
P
Peter Zijlstra 已提交
3155
				.type = new ? PERF_EVENT_FORK : PERF_EVENT_EXIT,
3156
				.misc = 0,
P
Peter Zijlstra 已提交
3157
				.size = sizeof(task_event.event),
P
Peter Zijlstra 已提交
3158
			},
3159 3160
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3161 3162
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3163 3164 3165
		},
	};

P
Peter Zijlstra 已提交
3166 3167 3168 3169 3170
	perf_counter_task_event(&task_event);
}

void perf_counter_fork(struct task_struct *task)
{
3171
	perf_counter_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3172 3173
}

3174 3175 3176 3177 3178
/*
 * comm tracking
 */

struct perf_comm_event {
3179 3180
	struct task_struct	*task;
	char			*comm;
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
	} event;
};

static void perf_counter_comm_output(struct perf_counter *counter,
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
	int size = comm_event->event.header.size;
	int ret = perf_output_begin(&handle, counter, size, 0, 0);

	if (ret)
		return;

3201 3202 3203
	comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
	comm_event->event.tid = perf_counter_tid(counter, comm_event->task);

3204 3205 3206 3207 3208 3209
	perf_output_put(&handle, comm_event->event);
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3210
static int perf_counter_comm_match(struct perf_counter *counter)
3211
{
P
Peter Zijlstra 已提交
3212
	if (counter->attr.comm)
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
		return 1;

	return 0;
}

static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
				  struct perf_comm_event *comm_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
P
Peter Zijlstra 已提交
3228
		if (perf_counter_comm_match(counter))
3229 3230 3231 3232 3233 3234 3235 3236
			perf_counter_comm_output(counter, comm_event);
	}
	rcu_read_unlock();
}

static void perf_counter_comm_event(struct perf_comm_event *comm_event)
{
	struct perf_cpu_context *cpuctx;
3237
	struct perf_counter_context *ctx;
3238
	unsigned int size;
3239
	char comm[TASK_COMM_LEN];
3240

3241 3242
	memset(comm, 0, sizeof(comm));
	strncpy(comm, comm_event->task->comm, sizeof(comm));
3243
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3244 3245 3246 3247 3248 3249 3250 3251 3252

	comm_event->comm = comm;
	comm_event->comm_size = size;

	comm_event->event.header.size = sizeof(comm_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
	put_cpu_var(perf_cpu_context);
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262

	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
		perf_counter_comm_ctx(ctx, comm_event);
	rcu_read_unlock();
3263 3264 3265 3266
}

void perf_counter_comm(struct task_struct *task)
{
3267 3268
	struct perf_comm_event comm_event;

3269 3270 3271
	if (task->perf_counter_ctxp)
		perf_counter_enable_on_exec(task);

P
Peter Zijlstra 已提交
3272
	if (!atomic_read(&nr_comm_counters))
3273
		return;
3274

3275
	comm_event = (struct perf_comm_event){
3276
		.task	= task,
3277 3278
		/* .comm      */
		/* .comm_size */
3279
		.event  = {
3280 3281 3282 3283 3284 3285 3286
			.header = {
				.type = PERF_EVENT_COMM,
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3287 3288 3289 3290 3291 3292
		},
	};

	perf_counter_comm_event(&comm_event);
}

3293 3294 3295 3296 3297
/*
 * mmap tracking
 */

struct perf_mmap_event {
3298 3299 3300 3301
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
	} event;
};

static void perf_counter_mmap_output(struct perf_counter *counter,
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
	int size = mmap_event->event.header.size;
3319
	int ret = perf_output_begin(&handle, counter, size, 0, 0);
3320 3321 3322 3323

	if (ret)
		return;

3324 3325 3326
	mmap_event->event.pid = perf_counter_pid(counter, current);
	mmap_event->event.tid = perf_counter_tid(counter, current);

3327 3328 3329
	perf_output_put(&handle, mmap_event->event);
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3330
	perf_output_end(&handle);
3331 3332 3333 3334 3335
}

static int perf_counter_mmap_match(struct perf_counter *counter,
				   struct perf_mmap_event *mmap_event)
{
3336
	if (counter->attr.mmap)
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
		return 1;

	return 0;
}

static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
				  struct perf_mmap_event *mmap_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_mmap_match(counter, mmap_event))
			perf_counter_mmap_output(counter, mmap_event);
	}
	rcu_read_unlock();
}

static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
{
	struct perf_cpu_context *cpuctx;
3361
	struct perf_counter_context *ctx;
3362 3363
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3364 3365 3366
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3367
	const char *name;
3368

3369 3370
	memset(tmp, 0, sizeof(tmp));

3371
	if (file) {
3372 3373 3374 3375 3376 3377
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3378 3379 3380 3381
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3382
		name = d_path(&file->f_path, buf, PATH_MAX);
3383 3384 3385 3386 3387
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3388 3389 3390
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3391
			goto got_name;
3392
		}
3393 3394 3395 3396 3397 3398

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3399 3400 3401 3402 3403
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3404
	size = ALIGN(strlen(name)+1, sizeof(u64));
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414

	mmap_event->file_name = name;
	mmap_event->file_size = size;

	mmap_event->event.header.size = sizeof(mmap_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
	put_cpu_var(perf_cpu_context);

3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
		perf_counter_mmap_ctx(ctx, mmap_event);
	rcu_read_unlock();

3425 3426 3427
	kfree(buf);
}

3428
void __perf_counter_mmap(struct vm_area_struct *vma)
3429
{
3430 3431
	struct perf_mmap_event mmap_event;

P
Peter Zijlstra 已提交
3432
	if (!atomic_read(&nr_mmap_counters))
3433 3434 3435
		return;

	mmap_event = (struct perf_mmap_event){
3436
		.vma	= vma,
3437 3438
		/* .file_name */
		/* .file_size */
3439
		.event  = {
3440 3441 3442 3443 3444 3445 3446
			.header = {
				.type = PERF_EVENT_MMAP,
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3447 3448 3449
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
			.pgoff  = vma->vm_pgoff,
3450 3451 3452 3453 3454 3455
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
/*
 * IRQ throttle logging
 */

static void perf_log_throttle(struct perf_counter *counter, int enable)
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3468
		u64				id;
3469
		u64				stream_id;
3470 3471
	} throttle_event = {
		.header = {
3472
			.type = PERF_EVENT_THROTTLE,
3473 3474 3475
			.misc = 0,
			.size = sizeof(throttle_event),
		},
3476 3477 3478
		.time		= sched_clock(),
		.id		= primary_counter_id(counter),
		.stream_id	= counter->id,
3479 3480
	};

3481 3482 3483
	if (enable)
		throttle_event.header.type = PERF_EVENT_UNTHROTTLE;

I
Ingo Molnar 已提交
3484
	ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
3485 3486 3487 3488 3489 3490 3491
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3492
/*
3493
 * Generic counter overflow handling, sampling.
3494 3495
 */

3496 3497
int perf_counter_overflow(struct perf_counter *counter, int nmi,
			  struct perf_sample_data *data)
3498
{
3499
	int events = atomic_read(&counter->event_limit);
3500
	int throttle = counter->pmu->unthrottle != NULL;
3501
	struct hw_perf_counter *hwc = &counter->hw;
3502 3503
	int ret = 0;

3504
	if (!throttle) {
3505
		hwc->interrupts++;
3506
	} else {
3507 3508
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3509 3510
			if (HZ * hwc->interrupts >
					(u64)sysctl_perf_counter_sample_rate) {
3511
				hwc->interrupts = MAX_INTERRUPTS;
3512 3513 3514 3515 3516 3517 3518 3519 3520
				perf_log_throttle(counter, 0);
				ret = 1;
			}
		} else {
			/*
			 * Keep re-disabling counters even though on the previous
			 * pass we disabled it - just in case we raced with a
			 * sched-in and the counter got enabled again:
			 */
3521 3522 3523
			ret = 1;
		}
	}
3524

3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
	if (counter->attr.freq) {
		u64 now = sched_clock();
		s64 delta = now - hwc->freq_stamp;

		hwc->freq_stamp = now;

		if (delta > 0 && delta < TICK_NSEC)
			perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
	}

3535 3536 3537 3538 3539
	/*
	 * XXX event_limit might not quite work as expected on inherited
	 * counters
	 */

3540
	counter->pending_kill = POLL_IN;
3541 3542
	if (events && atomic_dec_and_test(&counter->event_limit)) {
		ret = 1;
3543
		counter->pending_kill = POLL_HUP;
3544 3545 3546 3547 3548 3549 3550 3551
		if (nmi) {
			counter->pending_disable = 1;
			perf_pending_queue(&counter->pending,
					   perf_pending_counter);
		} else
			perf_counter_disable(counter);
	}

3552
	perf_counter_output(counter, nmi, data);
3553
	return ret;
3554 3555
}

3556 3557 3558 3559
/*
 * Generic software counter infrastructure
 */

3560 3561 3562 3563 3564 3565 3566 3567
/*
 * We directly increment counter->count and keep a second value in
 * counter->hw.period_left to count intervals. This period counter
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

static u64 perf_swcounter_set_period(struct perf_counter *counter)
3568 3569
{
	struct hw_perf_counter *hwc = &counter->hw;
3570 3571 3572 3573 3574
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
3575 3576

again:
3577 3578 3579
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
3580

3581 3582 3583 3584 3585
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
3586

3587
	return nr;
3588 3589
}

3590 3591
static void perf_swcounter_overflow(struct perf_counter *counter,
				    int nmi, struct perf_sample_data *data)
3592 3593
{
	struct hw_perf_counter *hwc = &counter->hw;
3594
	u64 overflow;
3595

3596 3597
	data->period = counter->hw.last_period;
	overflow = perf_swcounter_set_period(counter);
3598

3599 3600
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
3601

3602 3603 3604 3605 3606 3607 3608 3609 3610
	for (; overflow; overflow--) {
		if (perf_counter_overflow(counter, nmi, data)) {
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
	}
3611 3612
}

3613
static void perf_swcounter_unthrottle(struct perf_counter *counter)
3614 3615
{
	/*
3616
	 * Nothing to do, we already reset hwc->interrupts.
3617
	 */
3618
}
3619

3620 3621 3622 3623
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
			       int nmi, struct perf_sample_data *data)
{
	struct hw_perf_counter *hwc = &counter->hw;
3624

3625
	atomic64_add(nr, &counter->count);
3626

3627 3628
	if (!hwc->sample_period)
		return;
3629

3630 3631
	if (!data->regs)
		return;
3632

3633 3634
	if (!atomic64_add_negative(nr, &hwc->period_left))
		perf_swcounter_overflow(counter, nmi, data);
3635 3636
}

3637 3638
static int perf_swcounter_is_counting(struct perf_counter *counter)
{
3639 3640 3641
	/*
	 * The counter is active, we're good!
	 */
3642 3643 3644
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		return 1;

3645 3646 3647
	/*
	 * The counter is off/error, not counting.
	 */
3648 3649 3650 3651
	if (counter->state != PERF_COUNTER_STATE_INACTIVE)
		return 0;

	/*
3652 3653 3654
	 * The counter is inactive, if the context is active
	 * we're part of a group that didn't make it on the 'pmu',
	 * not counting.
3655
	 */
3656 3657 3658 3659 3660 3661 3662 3663 3664
	if (counter->ctx->is_active)
		return 0;

	/*
	 * We're inactive and the context is too, this means the
	 * task is scheduled out, we're counting events that happen
	 * to us, like migration events.
	 */
	return 1;
3665 3666
}

3667
static int perf_swcounter_match(struct perf_counter *counter,
P
Peter Zijlstra 已提交
3668
				enum perf_type_id type,
3669
				u32 event, struct pt_regs *regs)
3670
{
3671
	if (!perf_swcounter_is_counting(counter))
3672 3673
		return 0;

3674 3675 3676
	if (counter->attr.type != type)
		return 0;
	if (counter->attr.config != event)
3677 3678
		return 0;

3679
	if (regs) {
3680
		if (counter->attr.exclude_user && user_mode(regs))
3681
			return 0;
3682

3683
		if (counter->attr.exclude_kernel && !user_mode(regs))
3684 3685
			return 0;
	}
3686 3687 3688 3689 3690

	return 1;
}

static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3691 3692 3693
				     enum perf_type_id type,
				     u32 event, u64 nr, int nmi,
				     struct perf_sample_data *data)
3694 3695 3696
{
	struct perf_counter *counter;

3697
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3698 3699
		return;

P
Peter Zijlstra 已提交
3700 3701
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3702 3703
		if (perf_swcounter_match(counter, type, event, data->regs))
			perf_swcounter_add(counter, nr, nmi, data);
3704
	}
P
Peter Zijlstra 已提交
3705
	rcu_read_unlock();
3706 3707
}

P
Peter Zijlstra 已提交
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

3722 3723 3724
static void do_perf_swcounter_event(enum perf_type_id type, u32 event,
				    u64 nr, int nmi,
				    struct perf_sample_data *data)
3725 3726
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3727
	int *recursion = perf_swcounter_recursion_context(cpuctx);
3728
	struct perf_counter_context *ctx;
P
Peter Zijlstra 已提交
3729 3730 3731 3732 3733 3734

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
3735

3736
	perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3737
				 nr, nmi, data);
3738 3739 3740 3741 3742 3743 3744
	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
3745
		perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data);
3746
	rcu_read_unlock();
3747

P
Peter Zijlstra 已提交
3748 3749 3750 3751
	barrier();
	(*recursion)--;

out:
3752 3753 3754
	put_cpu_var(perf_cpu_context);
}

3755 3756
void __perf_swcounter_event(u32 event, u64 nr, int nmi,
			    struct pt_regs *regs, u64 addr)
3757
{
3758 3759 3760 3761 3762 3763
	struct perf_sample_data data = {
		.regs = regs,
		.addr = addr,
	};

	do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data);
3764 3765
}

3766 3767 3768 3769 3770 3771
static void perf_swcounter_read(struct perf_counter *counter)
{
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
3772 3773 3774 3775 3776 3777
	struct hw_perf_counter *hwc = &counter->hw;

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
		perf_swcounter_set_period(counter);
	}
3778 3779 3780 3781 3782 3783 3784
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
}

3785
static const struct pmu perf_ops_generic = {
3786 3787 3788
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
3789
	.unthrottle	= perf_swcounter_unthrottle,
3790 3791
};

3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
/*
 * hrtimer based swcounter callback
 */

static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct perf_counter *counter;
	u64 period;

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
	counter->pmu->read(counter);

	data.addr = 0;
	data.regs = get_irq_regs();
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
	if ((counter->attr.exclude_kernel || !data.regs) &&
			!counter->attr.exclude_user)
		data.regs = task_pt_regs(current);

	if (data.regs) {
		if (perf_counter_overflow(counter, 0, &data))
			ret = HRTIMER_NORESTART;
	}

	period = max_t(u64, 10000, counter->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

3827 3828 3829 3830
/*
 * Software counter: cpu wall time clock
 */

3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

3843 3844 3845 3846 3847 3848
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3849 3850
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
3851 3852
	if (hwc->sample_period) {
		u64 period = max_t(u64, 10000, hwc->sample_period);
3853
		__hrtimer_start_range_ns(&hwc->hrtimer,
3854
				ns_to_ktime(period), 0,
3855 3856 3857 3858 3859 3860
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

3861 3862
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
3863
	if (counter->hw.sample_period)
3864
		hrtimer_cancel(&counter->hw.hrtimer);
3865
	cpu_clock_perf_counter_update(counter);
3866 3867 3868 3869
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
3870
	cpu_clock_perf_counter_update(counter);
3871 3872
}

3873
static const struct pmu perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
3874 3875 3876
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
3877 3878
};

3879 3880 3881 3882
/*
 * Software counter: task time clock
 */

3883
static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
I
Ingo Molnar 已提交
3884
{
3885
	u64 prev;
I
Ingo Molnar 已提交
3886 3887
	s64 delta;

3888
	prev = atomic64_xchg(&counter->hw.prev_count, now);
I
Ingo Molnar 已提交
3889 3890
	delta = now - prev;
	atomic64_add(delta, &counter->count);
3891 3892
}

3893
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
3894
{
3895
	struct hw_perf_counter *hwc = &counter->hw;
3896 3897 3898
	u64 now;

	now = counter->ctx->time;
3899

3900
	atomic64_set(&hwc->prev_count, now);
3901 3902
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
3903 3904
	if (hwc->sample_period) {
		u64 period = max_t(u64, 10000, hwc->sample_period);
3905
		__hrtimer_start_range_ns(&hwc->hrtimer,
3906
				ns_to_ktime(period), 0,
3907 3908
				HRTIMER_MODE_REL, 0);
	}
3909 3910

	return 0;
I
Ingo Molnar 已提交
3911 3912 3913
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
3914
{
3915
	if (counter->hw.sample_period)
3916
		hrtimer_cancel(&counter->hw.hrtimer);
3917 3918
	task_clock_perf_counter_update(counter, counter->ctx->time);

3919
}
I
Ingo Molnar 已提交
3920

3921 3922
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
	u64 time;

	if (!in_nmi()) {
		update_context_time(counter->ctx);
		time = counter->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - counter->ctx->timestamp;
		time = counter->ctx->time + delta;
	}

	task_clock_perf_counter_update(counter, time);
3935 3936
}

3937
static const struct pmu perf_ops_task_clock = {
I
Ingo Molnar 已提交
3938 3939 3940
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
3941 3942
};

3943
#ifdef CONFIG_EVENT_PROFILE
3944 3945
void perf_tpcounter_event(int event_id, u64 addr, u64 count, void *record,
			  int entry_size)
3946
{
3947
	struct perf_raw_record raw = {
3948
		.size = entry_size,
3949
		.data = record,
3950 3951
	};

3952
	struct perf_sample_data data = {
3953
		.regs = get_irq_regs(),
3954
		.addr = addr,
3955
		.raw = &raw,
3956
	};
3957

3958 3959
	if (!data.regs)
		data.regs = task_pt_regs(current);
3960

3961
	do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, &data);
3962
}
3963
EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3964 3965 3966 3967 3968 3969

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
3970
	ftrace_profile_disable(counter->attr.config);
3971 3972
}

3973
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3974
{
3975 3976 3977 3978 3979
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
	if ((counter->attr.sample_type & PERF_SAMPLE_RAW) &&
3980
			perf_paranoid_tracepoint_raw() &&
3981 3982 3983
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

3984
	if (ftrace_profile_enable(counter->attr.config))
3985 3986 3987 3988 3989 3990 3991
		return NULL;

	counter->destroy = tp_perf_counter_destroy;

	return &perf_ops_generic;
}
#else
3992
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3993 3994 3995 3996 3997
{
	return NULL;
}
#endif

3998 3999 4000 4001 4002 4003
atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX];

static void sw_perf_counter_destroy(struct perf_counter *counter)
{
	u64 event = counter->attr.config;

4004 4005
	WARN_ON(counter->parent);

4006 4007 4008
	atomic_dec(&perf_swcounter_enabled[event]);
}

4009
static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
4010
{
4011
	const struct pmu *pmu = NULL;
4012
	u64 event = counter->attr.config;
4013

4014 4015 4016 4017 4018 4019 4020
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4021
	switch (event) {
4022
	case PERF_COUNT_SW_CPU_CLOCK:
4023
		pmu = &perf_ops_cpu_clock;
4024

4025
		break;
4026
	case PERF_COUNT_SW_TASK_CLOCK:
4027 4028 4029 4030 4031
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
4032
			pmu = &perf_ops_task_clock;
4033
		else
4034
			pmu = &perf_ops_cpu_clock;
4035

4036
		break;
4037 4038 4039 4040 4041
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4042 4043 4044 4045
		if (!counter->parent) {
			atomic_inc(&perf_swcounter_enabled[event]);
			counter->destroy = sw_perf_counter_destroy;
		}
4046
		pmu = &perf_ops_generic;
4047
		break;
4048
	}
4049

4050
	return pmu;
4051 4052
}

T
Thomas Gleixner 已提交
4053 4054 4055 4056
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
4057
perf_counter_alloc(struct perf_counter_attr *attr,
4058
		   int cpu,
4059
		   struct perf_counter_context *ctx,
4060
		   struct perf_counter *group_leader,
4061
		   struct perf_counter *parent_counter,
4062
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4063
{
4064
	const struct pmu *pmu;
I
Ingo Molnar 已提交
4065
	struct perf_counter *counter;
4066
	struct hw_perf_counter *hwc;
4067
	long err;
T
Thomas Gleixner 已提交
4068

4069
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
4070
	if (!counter)
4071
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4072

4073 4074 4075 4076 4077 4078 4079
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

4080 4081 4082
	mutex_init(&counter->child_mutex);
	INIT_LIST_HEAD(&counter->child_list);

4083
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
4084
	INIT_LIST_HEAD(&counter->event_entry);
4085
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
4086 4087
	init_waitqueue_head(&counter->waitq);

4088 4089
	mutex_init(&counter->mmap_mutex);

4090
	counter->cpu		= cpu;
4091
	counter->attr		= *attr;
4092 4093 4094 4095 4096
	counter->group_leader	= group_leader;
	counter->pmu		= NULL;
	counter->ctx		= ctx;
	counter->oncpu		= -1;

4097 4098
	counter->parent		= parent_counter;

4099 4100 4101 4102
	counter->ns		= get_pid_ns(current->nsproxy->pid_ns);
	counter->id		= atomic64_inc_return(&perf_counter_id);

	counter->state		= PERF_COUNTER_STATE_INACTIVE;
4103

4104
	if (attr->disabled)
4105 4106
		counter->state = PERF_COUNTER_STATE_OFF;

4107
	pmu = NULL;
4108

4109
	hwc = &counter->hw;
4110
	hwc->sample_period = attr->sample_period;
4111
	if (attr->freq && attr->sample_freq)
4112
		hwc->sample_period = 1;
4113
	hwc->last_period = hwc->sample_period;
4114 4115

	atomic64_set(&hwc->period_left, hwc->sample_period);
4116

4117
	/*
4118
	 * we currently do not support PERF_FORMAT_GROUP on inherited counters
4119
	 */
4120
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4121 4122
		goto done;

4123
	switch (attr->type) {
4124
	case PERF_TYPE_RAW:
4125
	case PERF_TYPE_HARDWARE:
4126
	case PERF_TYPE_HW_CACHE:
4127
		pmu = hw_perf_counter_init(counter);
4128 4129 4130
		break;

	case PERF_TYPE_SOFTWARE:
4131
		pmu = sw_perf_counter_init(counter);
4132 4133 4134
		break;

	case PERF_TYPE_TRACEPOINT:
4135
		pmu = tp_perf_counter_init(counter);
4136
		break;
4137 4138 4139

	default:
		break;
4140
	}
4141 4142
done:
	err = 0;
4143
	if (!pmu)
4144
		err = -EINVAL;
4145 4146
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4147

4148
	if (err) {
4149 4150
		if (counter->ns)
			put_pid_ns(counter->ns);
I
Ingo Molnar 已提交
4151
		kfree(counter);
4152
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4153
	}
4154

4155
	counter->pmu = pmu;
T
Thomas Gleixner 已提交
4156

4157 4158 4159 4160 4161 4162
	if (!counter->parent) {
		atomic_inc(&nr_counters);
		if (counter->attr.mmap)
			atomic_inc(&nr_mmap_counters);
		if (counter->attr.comm)
			atomic_inc(&nr_comm_counters);
P
Peter Zijlstra 已提交
4163 4164
		if (counter->attr.task)
			atomic_inc(&nr_task_counters);
4165
	}
4166

T
Thomas Gleixner 已提交
4167 4168 4169
	return counter;
}

4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
static int perf_copy_attr(struct perf_counter_attr __user *uattr,
			  struct perf_counter_attr *attr)
{
	int ret;
	u32 size;

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0.
	 */
	if (size > sizeof(*attr)) {
		unsigned long val;
		unsigned long __user *addr;
		unsigned long __user *end;

		addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr),
				sizeof(unsigned long));
		end  = PTR_ALIGN((void __user *)uattr + size,
				sizeof(unsigned long));

		for (; addr < end; addr += sizeof(unsigned long)) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4218
		size = sizeof(*attr);
4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
int perf_counter_set_output(struct perf_counter *counter, int output_fd)
{
	struct perf_counter *output_counter = NULL;
	struct file *output_file = NULL;
	struct perf_counter *old_output;
	int fput_needed = 0;
	int ret = -EINVAL;

	if (!output_fd)
		goto set;

	output_file = fget_light(output_fd, &fput_needed);
	if (!output_file)
		return -EBADF;

	if (output_file->f_op != &perf_fops)
		goto out;

	output_counter = output_file->private_data;

	/* Don't chain output fds */
	if (output_counter->output)
		goto out;

	/* Don't set an output fd when we already have an output channel */
	if (counter->data)
		goto out;

	atomic_long_inc(&output_file->f_count);

set:
	mutex_lock(&counter->mmap_mutex);
	old_output = counter->output;
	rcu_assign_pointer(counter->output, output_counter);
	mutex_unlock(&counter->mmap_mutex);

	if (old_output) {
		/*
		 * we need to make sure no existing perf_output_*()
		 * is still referencing this counter.
		 */
		synchronize_rcu();
		fput(old_output->filp);
	}

	ret = 0;
out:
	fput_light(output_file, fput_needed);
	return ret;
}

T
Thomas Gleixner 已提交
4301
/**
4302
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
4303
 *
4304
 * @attr_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
4305
 * @pid:		target pid
I
Ingo Molnar 已提交
4306 4307
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
4308
 */
4309
SYSCALL_DEFINE5(perf_counter_open,
4310
		struct perf_counter_attr __user *, attr_uptr,
4311
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
4312
{
4313
	struct perf_counter *counter, *group_leader;
4314
	struct perf_counter_attr attr;
4315
	struct perf_counter_context *ctx;
4316
	struct file *counter_file = NULL;
4317 4318
	struct file *group_file = NULL;
	int fput_needed = 0;
4319
	int fput_needed2 = 0;
4320
	int err;
T
Thomas Gleixner 已提交
4321

4322
	/* for future expandability... */
4323
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4324 4325
		return -EINVAL;

4326 4327 4328
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
4329

4330 4331 4332 4333 4334
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

4335 4336 4337 4338 4339
	if (attr.freq) {
		if (attr.sample_freq > sysctl_perf_counter_sample_rate)
			return -EINVAL;
	}

4340
	/*
I
Ingo Molnar 已提交
4341 4342 4343 4344 4345 4346 4347 4348
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
4349 4350
	 */
	group_leader = NULL;
4351
	if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4352
		err = -EINVAL;
4353 4354
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
4355
			goto err_put_context;
4356
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
4357
			goto err_put_context;
4358 4359 4360

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
4361 4362 4363 4364 4365 4366 4367 4368
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
4369
		 */
I
Ingo Molnar 已提交
4370 4371
		if (group_leader->ctx != ctx)
			goto err_put_context;
4372 4373 4374
		/*
		 * Only a group leader can be exclusive or pinned
		 */
4375
		if (attr.exclusive || attr.pinned)
4376
			goto err_put_context;
4377 4378
	}

4379
	counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
4380
				     NULL, GFP_KERNEL);
4381
	err = PTR_ERR(counter);
4382
	if (IS_ERR(counter))
T
Thomas Gleixner 已提交
4383 4384
		goto err_put_context;

4385 4386
	err = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (err < 0)
4387 4388
		goto err_free_put_context;

4389
	counter_file = fget_light(err, &fput_needed2);
4390 4391 4392
	if (!counter_file)
		goto err_free_put_context;

4393
	if (flags & PERF_FLAG_FD_OUTPUT) {
4394 4395 4396
		err = perf_counter_set_output(counter, group_fd);
		if (err)
			goto err_fput_free_put_context;
4397 4398
	}

4399
	counter->filp = counter_file;
4400
	WARN_ON_ONCE(ctx->parent_ctx);
4401
	mutex_lock(&ctx->mutex);
4402
	perf_install_in_context(ctx, counter, cpu);
4403
	++ctx->generation;
4404
	mutex_unlock(&ctx->mutex);
4405

4406 4407 4408 4409 4410 4411
	counter->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_counter_mutex);
	list_add_tail(&counter->owner_entry, &current->perf_counter_list);
	mutex_unlock(&current->perf_counter_mutex);

4412
err_fput_free_put_context:
4413
	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
4414

4415
err_free_put_context:
4416 4417
	if (err < 0)
		kfree(counter);
T
Thomas Gleixner 已提交
4418 4419

err_put_context:
4420 4421 4422 4423
	if (err < 0)
		put_ctx(ctx);

	fput_light(group_file, fput_needed);
T
Thomas Gleixner 已提交
4424

4425
	return err;
T
Thomas Gleixner 已提交
4426 4427
}

4428 4429 4430
/*
 * inherit a counter from parent task to child task:
 */
4431
static struct perf_counter *
4432 4433 4434 4435
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
4436
	      struct perf_counter *group_leader,
4437 4438 4439 4440
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

4441 4442 4443 4444 4445 4446 4447 4448 4449
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

4450
	child_counter = perf_counter_alloc(&parent_counter->attr,
4451
					   parent_counter->cpu, child_ctx,
4452 4453
					   group_leader, parent_counter,
					   GFP_KERNEL);
4454 4455
	if (IS_ERR(child_counter))
		return child_counter;
4456
	get_ctx(child_ctx);
4457

4458 4459
	/*
	 * Make the child state follow the state of the parent counter,
4460
	 * not its attr.disabled bit.  We hold the parent's mutex,
4461
	 * so we won't race with perf_counter_{en, dis}able_family.
4462 4463 4464 4465 4466 4467
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

4468 4469 4470
	if (parent_counter->attr.freq)
		child_counter->hw.sample_period = parent_counter->hw.sample_period;

4471 4472 4473
	/*
	 * Link it up in the child's context:
	 */
4474
	add_counter_to_ctx(child_counter, child_ctx);
4475 4476 4477 4478 4479 4480 4481 4482 4483

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

4484 4485 4486
	/*
	 * Link this into the parent counter's child list
	 */
4487
	WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4488
	mutex_lock(&parent_counter->child_mutex);
4489
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);
4490
	mutex_unlock(&parent_counter->child_mutex);
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;
4503
	struct perf_counter *child_ctr;
4504 4505 4506

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
4507 4508
	if (IS_ERR(leader))
		return PTR_ERR(leader);
4509
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
4510 4511 4512 4513
		child_ctr = inherit_counter(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
4514
	}
4515 4516 4517
	return 0;
}

4518
static void sync_child_counter(struct perf_counter *child_counter,
4519
			       struct task_struct *child)
4520
{
4521
	struct perf_counter *parent_counter = child_counter->parent;
4522
	u64 child_val;
4523

4524 4525
	if (child_counter->attr.inherit_stat)
		perf_counter_read_event(child_counter, child);
4526

4527 4528 4529 4530 4531 4532
	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);
4533 4534 4535 4536
	atomic64_add(child_counter->total_time_enabled,
		     &parent_counter->child_total_time_enabled);
	atomic64_add(child_counter->total_time_running,
		     &parent_counter->child_total_time_running);
4537 4538 4539 4540

	/*
	 * Remove this counter from the parent's list
	 */
4541
	WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4542
	mutex_lock(&parent_counter->child_mutex);
4543
	list_del_init(&child_counter->child_list);
4544
	mutex_unlock(&parent_counter->child_mutex);
4545 4546 4547 4548 4549 4550 4551 4552

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

4553
static void
4554
__perf_counter_exit_task(struct perf_counter *child_counter,
4555 4556
			 struct perf_counter_context *child_ctx,
			 struct task_struct *child)
4557 4558 4559
{
	struct perf_counter *parent_counter;

4560
	update_counter_times(child_counter);
4561
	perf_counter_remove_from_context(child_counter);
4562

4563 4564 4565 4566 4567 4568
	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
4569
	if (parent_counter) {
4570
		sync_child_counter(child_counter, child);
4571
		free_counter(child_counter);
4572
	}
4573 4574 4575
}

/*
4576
 * When a child task exits, feed back counter values to parent counters.
4577 4578 4579 4580 4581
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;
4582
	unsigned long flags;
4583

P
Peter Zijlstra 已提交
4584
	if (likely(!child->perf_counter_ctxp)) {
4585
		perf_counter_task(child, NULL, 0);
4586
		return;
P
Peter Zijlstra 已提交
4587
	}
4588

4589
	local_irq_save(flags);
4590 4591 4592 4593 4594 4595 4596
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
	child_ctx = child->perf_counter_ctxp;
4597
	__perf_counter_task_sched_out(child_ctx);
4598 4599 4600 4601 4602 4603 4604

	/*
	 * Take the context lock here so that if find_get_context is
	 * reading child->perf_counter_ctxp, we wait until it has
	 * incremented the context's refcount before we do put_ctx below.
	 */
	spin_lock(&child_ctx->lock);
4605
	child->perf_counter_ctxp = NULL;
4606 4607 4608 4609 4610 4611
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
	 * the counters from it.
	 */
	unclone_ctx(child_ctx);
P
Peter Zijlstra 已提交
4612 4613 4614 4615 4616 4617 4618
	spin_unlock_irqrestore(&child_ctx->lock, flags);

	/*
	 * Report the task dead after unscheduling the counters so that we
	 * won't get any samples after PERF_EVENT_EXIT. We can however still
	 * get a few PERF_EVENT_READ events.
	 */
4619
	perf_counter_task(child, child_ctx, 0);
4620

4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
	/*
	 * We can recurse on the same lock type through:
	 *
	 *   __perf_counter_exit_task()
	 *     sync_child_counter()
	 *       fput(parent_counter->filp)
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4633

4634
again:
4635 4636
	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
4637
		__perf_counter_exit_task(child_counter, child_ctx, child);
4638 4639 4640 4641 4642 4643 4644 4645

	/*
	 * If the last counter was a group counter, it will have appended all
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
	if (!list_empty(&child_ctx->counter_list))
		goto again;
4646 4647 4648 4649

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
4650 4651
}

4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
void perf_counter_free_task(struct task_struct *task)
{
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
	struct perf_counter *counter, *tmp;

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
		struct perf_counter *parent = counter->parent;

		if (WARN_ON_ONCE(!parent))
			continue;

		mutex_lock(&parent->child_mutex);
		list_del_init(&counter->child_list);
		mutex_unlock(&parent->child_mutex);

		fput(parent->filp);

		list_del_counter(counter, ctx);
		free_counter(counter);
	}

	if (!list_empty(&ctx->counter_list))
		goto again;

	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

4690 4691 4692
/*
 * Initialize the perf_counter context in task_struct
 */
4693
int perf_counter_init_task(struct task_struct *child)
4694 4695
{
	struct perf_counter_context *child_ctx, *parent_ctx;
4696
	struct perf_counter_context *cloned_ctx;
4697
	struct perf_counter *counter;
4698
	struct task_struct *parent = current;
4699
	int inherited_all = 1;
4700
	int ret = 0;
4701

4702
	child->perf_counter_ctxp = NULL;
4703

4704 4705 4706
	mutex_init(&child->perf_counter_mutex);
	INIT_LIST_HEAD(&child->perf_counter_list);

4707
	if (likely(!parent->perf_counter_ctxp))
4708 4709
		return 0;

4710 4711
	/*
	 * This is executed from the parent task context, so inherit
4712 4713
	 * counters that have been marked for cloning.
	 * First allocate and initialize a context for the child.
4714 4715
	 */

4716 4717
	child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
	if (!child_ctx)
4718
		return -ENOMEM;
4719

4720 4721
	__perf_counter_init_context(child_ctx, child);
	child->perf_counter_ctxp = child_ctx;
4722
	get_task_struct(child);
4723

4724
	/*
4725 4726
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
4727
	 */
4728 4729
	parent_ctx = perf_pin_task_context(parent);

4730 4731 4732 4733 4734 4735 4736
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

4737 4738 4739 4740
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
4741
	mutex_lock(&parent_ctx->mutex);
4742 4743 4744 4745 4746

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
4747 4748 4749 4750
	list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
		if (counter != counter->group_leader)
			continue;

4751
		if (!counter->attr.inherit) {
4752
			inherited_all = 0;
4753
			continue;
4754
		}
4755

4756 4757 4758
		ret = inherit_group(counter, parent, parent_ctx,
					     child, child_ctx);
		if (ret) {
4759
			inherited_all = 0;
4760
			break;
4761 4762 4763 4764 4765 4766 4767
		}
	}

	if (inherited_all) {
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
4768 4769 4770 4771
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
		 * because the list of counters and the generation
		 * count can't have changed since we took the mutex.
4772
		 */
4773 4774 4775
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
4776
			child_ctx->parent_gen = parent_ctx->parent_gen;
4777 4778 4779 4780 4781
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
4782 4783
	}

4784
	mutex_unlock(&parent_ctx->mutex);
4785

4786
	perf_unpin_context(parent_ctx);
4787

4788
	return ret;
4789 4790
}

4791
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
4792
{
4793
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
4794

4795 4796
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
4797

4798
	spin_lock(&perf_resource_lock);
4799
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
4800
	spin_unlock(&perf_resource_lock);
4801

4802
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
4803 4804 4805
}

#ifdef CONFIG_HOTPLUG_CPU
4806
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
4807 4808 4809 4810 4811
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

4812 4813
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
4814
}
4815
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
4816
{
4817 4818 4819 4820
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
4821
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4822
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
4823 4824
}
#else
4825
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4837
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
4838 4839
		break;

4840 4841 4842 4843 4844
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		hw_perf_counter_setup_online(cpu);
		break;

T
Thomas Gleixner 已提交
4845 4846
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
4847
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
4848 4849 4850 4851 4852 4853 4854 4855 4856
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

4857 4858 4859
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
4860 4861
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
4862
	.priority		= 20,
T
Thomas Gleixner 已提交
4863 4864
};

4865
void __init perf_counter_init(void)
T
Thomas Gleixner 已提交
4866 4867 4868
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
4869 4870
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

4894
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4895 4896 4897 4898 4899 4900 4901 4902 4903
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
4904
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

4926
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4927
	perf_overcommit = val;
4928
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);