perf_counter.c 95.0 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3
/*
 * Performance counter core code
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 9
 *
 *  For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18
#include <linux/poll.h>
#include <linux/sysfs.h>
19
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
20
#include <linux/percpu.h>
21
#include <linux/ptrace.h>
22 23 24
#include <linux/vmstat.h>
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
25 26 27
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
28
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
29 30
#include <linux/perf_counter.h>

31 32
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
33 34 35 36 37
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

38
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
39 40 41
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

42
static atomic_t nr_counters __read_mostly;
43 44 45 46
static atomic_t nr_mmap_tracking __read_mostly;
static atomic_t nr_munmap_tracking __read_mostly;
static atomic_t nr_comm_tracking __read_mostly;

47
int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48
int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49
int sysctl_perf_counter_limit __read_mostly = 100000; /* max NMIs per second */
50

T
Thomas Gleixner 已提交
51
/*
52
 * Lock for (sysadmin-configurable) counter reservations:
T
Thomas Gleixner 已提交
53
 */
54
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
55 56 57 58

/*
 * Architecture provided APIs - weak aliases:
 */
59
extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
60
{
61
	return NULL;
T
Thomas Gleixner 已提交
62 63
}

64 65 66
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

67
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
68 69 70

int __weak
hw_perf_group_sched_in(struct perf_counter *group_leader,
71 72 73 74 75
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
76

77 78
void __weak perf_counter_print_debug(void)	{ }

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
static DEFINE_PER_CPU(int, disable_count);

void __perf_disable(void)
{
	__get_cpu_var(disable_count)++;
}

bool __perf_enable(void)
{
	return !--__get_cpu_var(disable_count);
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

103 104 105 106 107
static void get_ctx(struct perf_counter_context *ctx)
{
	atomic_inc(&ctx->refcount);
}

108 109 110 111 112 113 114 115
static void free_ctx(struct rcu_head *head)
{
	struct perf_counter_context *ctx;

	ctx = container_of(head, struct perf_counter_context, rcu_head);
	kfree(ctx);
}

116 117
static void put_ctx(struct perf_counter_context *ctx)
{
118 119 120
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
121 122 123
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
124
	}
125 126
}

127 128 129 130 131
/*
 * Get the perf_counter_context for a task and lock it.
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
132 133
static struct perf_counter_context *
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
{
	struct perf_counter_context *ctx;

	rcu_read_lock();
 retry:
	ctx = rcu_dereference(task->perf_counter_ctxp);
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
		 * perf_counter_task_sched_out, though the
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
		spin_lock_irqsave(&ctx->lock, *flags);
		if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
			spin_unlock_irqrestore(&ctx->lock, *flags);
			goto retry;
		}
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
{
	struct perf_counter_context *ctx;
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
		get_ctx(ctx);
		spin_unlock_irqrestore(&ctx->lock, flags);
	}
	return ctx;
}

static void perf_unpin_context(struct perf_counter_context *ctx)
{
	unsigned long flags;

	spin_lock_irqsave(&ctx->lock, flags);
	--ctx->pin_count;
	spin_unlock_irqrestore(&ctx->lock, flags);
	put_ctx(ctx);
}

190 191 192 193
/*
 * Add a counter from the lists for its context.
 * Must be called with ctx->mutex and ctx->lock held.
 */
194 195 196 197 198 199 200 201 202 203
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
P
Peter Zijlstra 已提交
204
	if (group_leader == counter)
205
		list_add_tail(&counter->list_entry, &ctx->counter_list);
P
Peter Zijlstra 已提交
206
	else {
207
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
208 209
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
210 211

	list_add_rcu(&counter->event_entry, &ctx->event_list);
212
	ctx->nr_counters++;
213 214
}

215 216
/*
 * Remove a counter from the lists for its context.
217
 * Must be called with ctx->mutex and ctx->lock held.
218
 */
219 220 221 222 223
static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

224 225
	if (list_empty(&counter->list_entry))
		return;
226 227
	ctx->nr_counters--;

228
	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
229
	list_del_rcu(&counter->event_entry);
230

P
Peter Zijlstra 已提交
231 232 233
	if (counter->group_leader != counter)
		counter->group_leader->nr_siblings--;

234 235 236 237 238 239 240 241
	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

242
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
243 244 245 246
		sibling->group_leader = sibling;
	}
}

247 248 249 250 251 252 253 254 255
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
256
	counter->tstamp_stopped = ctx->time;
257
	counter->pmu->disable(counter);
258 259 260 261 262 263 264 265 266
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
	if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
		cpuctx->exclusive = 0;
}

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

	if (group_counter->hw_event.exclusive)
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
289 290 291 292 293 294
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
295
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
296 297 298 299 300 301 302 303 304 305
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
306
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
307 308
		return;

309
	spin_lock(&ctx->lock);
310 311 312 313 314
	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level.
	 */
	perf_disable();
T
Thomas Gleixner 已提交
315

316 317
	counter_sched_out(counter, cpuctx, ctx);

318
	list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
319 320 321 322 323 324 325 326 327 328 329

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

330
	perf_enable();
331
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
332 333 334 335 336 337
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
338
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
339 340 341
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
342 343 344 345 346 347 348
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
 * When called from perf_counter_exit_task, it's OK because the
 * context has been detached from its task.
T
Thomas Gleixner 已提交
349
 */
350
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
351 352 353 354 355 356 357 358 359 360
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
361
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
362 363 364 365 366
					 counter, 1);
		return;
	}

retry:
367
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
368 369 370 371 372 373
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
374
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
375 376 377 378 379 380
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
381
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
382 383
	 * succeed.
	 */
384 385
	if (!list_empty(&counter->list_entry)) {
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
386 387 388 389
	}
	spin_unlock_irq(&ctx->lock);
}

390
static inline u64 perf_clock(void)
391
{
392
	return cpu_clock(smp_processor_id());
393 394 395 396 397
}

/*
 * Update the record of the current time in a context.
 */
398
static void update_context_time(struct perf_counter_context *ctx)
399
{
400 401 402 403
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
404 405 406 407 408 409 410 411 412 413
}

/*
 * Update the total_time_enabled and total_time_running fields for a counter.
 */
static void update_counter_times(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	u64 run_end;

414 415 416 417 418 419 420 421 422 423 424
	if (counter->state < PERF_COUNTER_STATE_INACTIVE)
		return;

	counter->total_time_enabled = ctx->time - counter->tstamp_enabled;

	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		run_end = counter->tstamp_stopped;
	else
		run_end = ctx->time;

	counter->total_time_running = run_end - counter->tstamp_running;
425 426 427 428 429 430 431 432 433 434 435 436 437 438
}

/*
 * Update total_time_enabled and total_time_running for all counters in a group.
 */
static void update_group_times(struct perf_counter *leader)
{
	struct perf_counter *counter;

	update_counter_times(leader);
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		update_counter_times(counter);
}

439 440 441 442 443 444 445 446 447 448 449 450 451
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
452
	if (ctx->task && cpuctx->task_ctx != ctx)
453 454
		return;

455
	spin_lock(&ctx->lock);
456 457 458 459 460 461

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
462
		update_context_time(ctx);
463
		update_counter_times(counter);
464 465 466 467 468 469 470
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

471
	spin_unlock(&ctx->lock);
472 473 474 475
}

/*
 * Disable a counter.
476 477 478 479 480 481 482 483 484 485
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This condition is satisifed when called through
 * perf_counter_for_each_child or perf_counter_for_each because they
 * hold the top-level counter's child_mutex, so any descendant that
 * goes to exit will block in sync_child_counter.
 * When called from perf_pending_counter it's OK because counter->ctx
 * is the current context on this CPU and preemption is disabled,
 * hence we can't get into perf_counter_task_sched_out for this context.
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
517 518
	if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
519
		counter->state = PERF_COUNTER_STATE_OFF;
520
	}
521 522 523 524

	spin_unlock_irq(&ctx->lock);
}

525 526 527 528 529 530
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
531
	if (counter->state <= PERF_COUNTER_STATE_OFF)
532 533 534 535 536 537 538 539 540
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

541
	if (counter->pmu->enable(counter)) {
542 543 544 545 546
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

547
	counter->tstamp_running += ctx->time - counter->tstamp_stopped;
548

549 550
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
551 552
	ctx->nr_active++;

553 554 555
	if (counter->hw_event.exclusive)
		cpuctx->exclusive = 1;

556 557 558
	return 0;
}

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
static int
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
	struct perf_counter *counter, *partial_group;
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;

	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
	}
	counter_sched_out(group_counter, cpuctx, ctx);

	return -EAGAIN;
}

605 606 607 608 609 610 611 612 613 614
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
P
Peter Zijlstra 已提交
615

616 617 618
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
P
Peter Zijlstra 已提交
619

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
	if (counter->hw_event.exclusive && cpuctx->active_oncpu)
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

654 655 656 657
static void add_counter_to_ctx(struct perf_counter *counter,
			       struct perf_counter_context *ctx)
{
	list_add_counter(counter, ctx);
658 659 660
	counter->tstamp_enabled = ctx->time;
	counter->tstamp_running = ctx->time;
	counter->tstamp_stopped = ctx->time;
661 662
}

T
Thomas Gleixner 已提交
663
/*
664
 * Cross CPU call to install and enable a performance counter
665 666
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
667 668 669 670 671 672
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
673
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
674
	int cpu = smp_processor_id();
675
	int err;
T
Thomas Gleixner 已提交
676 677 678 679 680

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
681 682
	 * Or possibly this is the right context but it isn't
	 * on this cpu because it had no counters.
T
Thomas Gleixner 已提交
683
	 */
684
	if (ctx->task && cpuctx->task_ctx != ctx) {
685
		if (cpuctx->task_ctx || ctx->task != current)
686 687 688
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
689

690
	spin_lock(&ctx->lock);
691
	ctx->is_active = 1;
692
	update_context_time(ctx);
T
Thomas Gleixner 已提交
693 694 695 696 697

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
698
	perf_disable();
T
Thomas Gleixner 已提交
699

700
	add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
701

702 703 704 705 706 707 708 709
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

710 711 712 713 714
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
715
	if (!group_can_go_on(counter, cpuctx, 1))
716 717 718 719
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

720 721 722 723 724 725 726 727
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
728 729
		if (leader->hw_event.pinned) {
			update_group_times(leader);
730
			leader->state = PERF_COUNTER_STATE_ERROR;
731
		}
732
	}
T
Thomas Gleixner 已提交
733

734
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
735 736
		cpuctx->max_pertask--;

737
 unlock:
738
	perf_enable();
739

740
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
741 742 743 744 745 746 747 748 749 750 751
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
752 753
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
780
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
781 782 783 784 785 786 787 788 789
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
790 791
	if (list_empty(&counter->list_entry))
		add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
792 793 794
	spin_unlock_irq(&ctx->lock);
}

795 796 797 798
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
799
{
800 801 802 803 804
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	int err;
805

806 807 808 809
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
810
	if (ctx->task && cpuctx->task_ctx != ctx) {
811
		if (cpuctx->task_ctx || ctx->task != current)
812 813 814
			return;
		cpuctx->task_ctx = ctx;
	}
815

816
	spin_lock(&ctx->lock);
817
	ctx->is_active = 1;
818
	update_context_time(ctx);
819 820 821 822

	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
823
	counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
824 825

	/*
826 827
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
828
	 */
829 830
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
831

832
	if (!group_can_go_on(counter, cpuctx, 1)) {
833
		err = -EEXIST;
834
	} else {
835
		perf_disable();
836 837 838 839 840 841
		if (counter == leader)
			err = group_sched_in(counter, cpuctx, ctx,
					     smp_processor_id());
		else
			err = counter_sched_in(counter, cpuctx, ctx,
					       smp_processor_id());
842
		perf_enable();
843
	}
844 845 846 847 848 849 850 851

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
852 853
		if (leader->hw_event.pinned) {
			update_group_times(leader);
854
			leader->state = PERF_COUNTER_STATE_ERROR;
855
		}
856 857 858
	}

 unlock:
859
	spin_unlock(&ctx->lock);
860 861 862 863
}

/*
 * Enable a counter.
864 865 866 867 868 869
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This condition is satisfied when called through
 * perf_counter_for_each_child or perf_counter_for_each as described
 * for perf_counter_disable.
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
916
	if (counter->state == PERF_COUNTER_STATE_OFF) {
917
		counter->state = PERF_COUNTER_STATE_INACTIVE;
918 919
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
920
	}
921 922 923 924
 out:
	spin_unlock_irq(&ctx->lock);
}

925
static int perf_counter_refresh(struct perf_counter *counter, int refresh)
926
{
927 928 929 930 931 932
	/*
	 * not supported on inherited counters
	 */
	if (counter->hw_event.inherit)
		return -EINVAL;

933 934
	atomic_add(refresh, &counter->event_limit);
	perf_counter_enable(counter);
935 936

	return 0;
937 938
}

939 940 941 942 943
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;

944 945
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
946
	if (likely(!ctx->nr_counters))
947
		goto out;
948
	update_context_time(ctx);
949

950
	perf_disable();
951
	if (ctx->nr_active) {
952 953 954 955 956 957
		list_for_each_entry(counter, &ctx->counter_list, list_entry) {
			if (counter != counter->group_leader)
				counter_sched_out(counter, cpuctx, ctx);
			else
				group_sched_out(counter, cpuctx, ctx);
		}
958
	}
959
	perf_enable();
960
 out:
961 962 963
	spin_unlock(&ctx->lock);
}

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
 * and they both have the same number of enabled counters.
 * If the number of enabled counters is the same, then the set
 * of enabled counters should be the same, because these are both
 * inherited contexts, therefore we can't access individual counters
 * in them directly with an fd; we can only enable/disable all
 * counters via prctl, or enable/disable all counters in a family
 * via ioctl, which will have the same effect on both contexts.
 */
static int context_equiv(struct perf_counter_context *ctx1,
			 struct perf_counter_context *ctx2)
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
979
		&& ctx1->parent_gen == ctx2->parent_gen
980
		&& !ctx1->pin_count && !ctx2->pin_count;
981 982
}

T
Thomas Gleixner 已提交
983 984 985 986 987 988
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
989
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
990 991 992 993
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
994 995
void perf_counter_task_sched_out(struct task_struct *task,
				 struct task_struct *next, int cpu)
T
Thomas Gleixner 已提交
996 997
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
998
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
999
	struct perf_counter_context *next_ctx;
1000
	struct perf_counter_context *parent;
1001
	struct pt_regs *regs;
1002
	int do_switch = 1;
T
Thomas Gleixner 已提交
1003

1004 1005 1006
	regs = task_pt_regs(task);
	perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);

1007
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1008 1009
		return;

1010
	update_context_time(ctx);
1011 1012 1013

	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1014
	next_ctx = next->perf_counter_ctxp;
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
		spin_lock(&ctx->lock);
		spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
		if (context_equiv(ctx, next_ctx)) {
1029 1030 1031 1032
			/*
			 * XXX do we need a memory barrier of sorts
			 * wrt to rcu_dereference() of perf_counter_ctxp
			 */
1033 1034 1035 1036 1037 1038 1039 1040
			task->perf_counter_ctxp = next_ctx;
			next->perf_counter_ctxp = ctx;
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
		}
		spin_unlock(&next_ctx->lock);
		spin_unlock(&ctx->lock);
1041
	}
1042
	rcu_read_unlock();
1043

1044 1045 1046 1047
	if (do_switch) {
		__perf_counter_sched_out(ctx, cpuctx);
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1048 1049
}

1050 1051 1052
/*
 * Called with IRQs disabled
 */
1053 1054 1055 1056
static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1057 1058
	if (!cpuctx->task_ctx)
		return;
1059 1060 1061 1062

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1063 1064 1065 1066
	__perf_counter_sched_out(ctx, cpuctx);
	cpuctx->task_ctx = NULL;
}

1067 1068 1069
/*
 * Called with IRQs disabled
 */
1070
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1071
{
1072
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1073 1074
}

1075 1076 1077
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
1078 1079
{
	struct perf_counter *counter;
1080
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
1081

1082 1083
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
1084
	if (likely(!ctx->nr_counters))
1085
		goto out;
T
Thomas Gleixner 已提交
1086

1087
	ctx->timestamp = perf_clock();
1088

1089
	perf_disable();
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    !counter->hw_event.pinned)
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

1102 1103 1104 1105 1106 1107
		if (counter != counter->group_leader)
			counter_sched_in(counter, cpuctx, ctx, cpu);
		else {
			if (group_can_go_on(counter, cpuctx, 1))
				group_sched_in(counter, cpuctx, ctx, cpu);
		}
1108 1109 1110 1111 1112

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1113 1114
		if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
			update_group_times(counter);
1115
			counter->state = PERF_COUNTER_STATE_ERROR;
1116
		}
1117 1118
	}

1119
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1120 1121 1122 1123 1124 1125 1126 1127
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    counter->hw_event.pinned)
			continue;

1128 1129 1130 1131
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
1132 1133 1134
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

1135 1136
		if (counter != counter->group_leader) {
			if (counter_sched_in(counter, cpuctx, ctx, cpu))
1137
				can_add_hw = 0;
1138 1139 1140 1141 1142
		} else {
			if (group_can_go_on(counter, cpuctx, can_add_hw)) {
				if (group_sched_in(counter, cpuctx, ctx, cpu))
					can_add_hw = 0;
			}
1143
		}
T
Thomas Gleixner 已提交
1144
	}
1145
	perf_enable();
1146
 out:
T
Thomas Gleixner 已提交
1147
	spin_unlock(&ctx->lock);
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1164
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
1165

1166 1167
	if (likely(!ctx))
		return;
1168 1169
	if (cpuctx->task_ctx == ctx)
		return;
1170
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
1171 1172 1173
	cpuctx->task_ctx = ctx;
}

1174 1175 1176 1177 1178 1179 1180
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

1181 1182 1183
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_counter *counter, int enable);
1184 1185 1186
static void perf_log_period(struct perf_counter *counter, u64 period);

static void perf_adjust_freq(struct perf_counter_context *ctx)
1187 1188
{
	struct perf_counter *counter;
1189
	u64 interrupts, sample_period;
1190 1191 1192 1193 1194 1195 1196 1197
	u64 events, period;
	s64 delta;

	spin_lock(&ctx->lock);
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state != PERF_COUNTER_STATE_ACTIVE)
			continue;

1198 1199 1200 1201 1202 1203 1204 1205 1206
		interrupts = counter->hw.interrupts;
		counter->hw.interrupts = 0;

		if (interrupts == MAX_INTERRUPTS) {
			perf_log_throttle(counter, 1);
			counter->pmu->unthrottle(counter);
			interrupts = 2*sysctl_perf_counter_limit/HZ;
		}

1207
		if (!counter->hw_event.freq || !counter->hw_event.sample_freq)
1208 1209
			continue;

1210 1211
		events = HZ * interrupts * counter->hw.sample_period;
		period = div64_u64(events, counter->hw_event.sample_freq);
1212

1213
		delta = (s64)(1 + period - counter->hw.sample_period);
1214 1215
		delta >>= 1;

1216
		sample_period = counter->hw.sample_period + delta;
1217

1218 1219
		if (!sample_period)
			sample_period = 1;
1220

1221
		perf_log_period(counter, sample_period);
1222

1223
		counter->hw.sample_period = sample_period;
1224 1225 1226 1227
	}
	spin_unlock(&ctx->lock);
}

1228 1229 1230 1231
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
1232 1233 1234
{
	struct perf_counter *counter;

1235
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
1236 1237 1238 1239
		return;

	spin_lock(&ctx->lock);
	/*
1240
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
1241
	 */
1242
	perf_disable();
1243
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1244
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
1245 1246
		break;
	}
1247
	perf_enable();
T
Thomas Gleixner 已提交
1248 1249

	spin_unlock(&ctx->lock);
1250 1251 1252 1253
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
1254 1255 1256 1257 1258 1259 1260
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;

	if (!atomic_read(&nr_counters))
		return;

	cpuctx = &per_cpu(perf_cpu_context, cpu);
1261
	ctx = curr->perf_counter_ctxp;
1262

1263
	perf_adjust_freq(&cpuctx->ctx);
1264 1265
	if (ctx)
		perf_adjust_freq(ctx);
1266

1267
	perf_counter_cpu_sched_out(cpuctx);
1268 1269
	if (ctx)
		__perf_counter_task_sched_out(ctx);
T
Thomas Gleixner 已提交
1270

1271
	rotate_ctx(&cpuctx->ctx);
1272 1273
	if (ctx)
		rotate_ctx(ctx);
1274

1275
	perf_counter_cpu_sched_in(cpuctx, cpu);
1276 1277
	if (ctx)
		perf_counter_task_sched_in(curr, cpu);
T
Thomas Gleixner 已提交
1278 1279 1280 1281 1282
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
1283
static void __read(void *info)
T
Thomas Gleixner 已提交
1284
{
I
Ingo Molnar 已提交
1285
	struct perf_counter *counter = info;
1286
	struct perf_counter_context *ctx = counter->ctx;
I
Ingo Molnar 已提交
1287
	unsigned long flags;
I
Ingo Molnar 已提交
1288

1289
	local_irq_save(flags);
1290
	if (ctx->is_active)
1291
		update_context_time(ctx);
1292
	counter->pmu->read(counter);
1293
	update_counter_times(counter);
1294
	local_irq_restore(flags);
T
Thomas Gleixner 已提交
1295 1296
}

1297
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1298 1299 1300 1301 1302
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1303
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1304
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1305
					 __read, counter, 1);
1306 1307
	} else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
T
Thomas Gleixner 已提交
1308 1309
	}

1310
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1311 1312
}

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
	mutex_init(&ctx->mutex);
	INIT_LIST_HEAD(&ctx->counter_list);
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

T
Thomas Gleixner 已提交
1329 1330
static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
1331
	struct perf_counter_context *parent_ctx;
1332 1333
	struct perf_counter_context *ctx;
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1334
	struct task_struct *task;
1335
	unsigned long flags;
1336
	int err;
T
Thomas Gleixner 已提交
1337 1338 1339 1340 1341 1342

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
1343
		if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1359
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1376 1377 1378 1379 1380 1381 1382
	/*
	 * Can't attach counters to a dying task.
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1383
	/* Reuse ptrace permission checks for now. */
1384 1385 1386 1387 1388
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1389
	ctx = perf_lock_task_context(task, &flags);
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
	if (ctx) {
		parent_ctx = ctx->parent_ctx;
		if (parent_ctx) {
			put_ctx(parent_ctx);
			ctx->parent_ctx = NULL;		/* no longer a clone */
		}
		/*
		 * Get an extra reference before dropping the lock so that
		 * this context won't get freed if the task exits.
		 */
		get_ctx(ctx);
1401
		spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1402 1403
	}

1404 1405
	if (!ctx) {
		ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1406 1407 1408
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1409
		__perf_counter_init_context(ctx, task);
1410 1411
		get_ctx(ctx);
		if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1412 1413 1414 1415 1416
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1417
			goto retry;
1418
		}
1419
		get_task_struct(task);
1420 1421
	}

1422
	put_task_struct(task);
T
Thomas Gleixner 已提交
1423
	return ctx;
1424 1425 1426 1427

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1428 1429
}

P
Peter Zijlstra 已提交
1430 1431 1432 1433 1434
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
1435 1436
	if (counter->ns)
		put_pid_ns(counter->ns);
P
Peter Zijlstra 已提交
1437 1438 1439
	kfree(counter);
}

1440 1441
static void perf_pending_sync(struct perf_counter *counter);

1442 1443
static void free_counter(struct perf_counter *counter)
{
1444 1445
	perf_pending_sync(counter);

1446
	atomic_dec(&nr_counters);
1447 1448 1449 1450 1451 1452 1453
	if (counter->hw_event.mmap)
		atomic_dec(&nr_mmap_tracking);
	if (counter->hw_event.munmap)
		atomic_dec(&nr_munmap_tracking);
	if (counter->hw_event.comm)
		atomic_dec(&nr_comm_tracking);

1454 1455 1456
	if (counter->destroy)
		counter->destroy(counter);

1457
	put_ctx(counter->ctx);
1458 1459 1460
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1471
	WARN_ON_ONCE(ctx->parent_ctx);
1472
	mutex_lock(&ctx->mutex);
1473
	perf_counter_remove_from_context(counter);
1474
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1475

1476 1477 1478 1479 1480
	mutex_lock(&counter->owner->perf_counter_mutex);
	list_del_init(&counter->owner_entry);
	mutex_unlock(&counter->owner->perf_counter_mutex);
	put_task_struct(counter->owner);

1481
	free_counter(counter);
T
Thomas Gleixner 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
1492 1493
	u64 values[3];
	int n;
T
Thomas Gleixner 已提交
1494

1495 1496 1497 1498 1499 1500 1501 1502
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

1503
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1504
	mutex_lock(&counter->child_mutex);
1505 1506 1507 1508 1509 1510 1511 1512
	values[0] = perf_counter_read(counter);
	n = 1;
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);
1513 1514
	if (counter->hw_event.read_format & PERF_FORMAT_ID)
		values[n++] = counter->id;
1515
	mutex_unlock(&counter->child_mutex);
T
Thomas Gleixner 已提交
1516

1517 1518 1519 1520 1521 1522 1523 1524
	if (count < n * sizeof(u64))
		return -EINVAL;
	count = n * sizeof(u64);

	if (copy_to_user(buf, values, count))
		return -EFAULT;

	return count;
T
Thomas Gleixner 已提交
1525 1526 1527 1528 1529 1530 1531
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

1532
	return perf_read_hw(counter, buf, count);
T
Thomas Gleixner 已提交
1533 1534 1535 1536 1537
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1538
	struct perf_mmap_data *data;
1539
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1540 1541 1542 1543

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
1544
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1545
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1546 1547 1548 1549 1550 1551

	poll_wait(file, &counter->waitq, wait);

	return events;
}

1552 1553
static void perf_counter_reset(struct perf_counter *counter)
{
P
Peter Zijlstra 已提交
1554
	(void)perf_counter_read(counter);
1555
	atomic64_set(&counter->count, 0);
P
Peter Zijlstra 已提交
1556 1557 1558 1559 1560 1561 1562 1563 1564
	perf_counter_update_userpage(counter);
}

static void perf_counter_for_each_sibling(struct perf_counter *counter,
					  void (*func)(struct perf_counter *))
{
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *sibling;

1565
	WARN_ON_ONCE(ctx->parent_ctx);
1566
	mutex_lock(&ctx->mutex);
P
Peter Zijlstra 已提交
1567 1568 1569 1570 1571
	counter = counter->group_leader;

	func(counter);
	list_for_each_entry(sibling, &counter->sibling_list, list_entry)
		func(sibling);
1572
	mutex_unlock(&ctx->mutex);
P
Peter Zijlstra 已提交
1573 1574
}

1575 1576 1577 1578 1579 1580
/*
 * Holding the top-level counter's child_mutex means that any
 * descendant process that has inherited this counter will block
 * in sync_child_counter if it goes to exit, thus satisfying the
 * task existence requirements of perf_counter_enable/disable.
 */
P
Peter Zijlstra 已提交
1581 1582 1583 1584 1585
static void perf_counter_for_each_child(struct perf_counter *counter,
					void (*func)(struct perf_counter *))
{
	struct perf_counter *child;

1586
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1587
	mutex_lock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1588 1589 1590
	func(counter);
	list_for_each_entry(child, &counter->child_list, child_list)
		func(child);
1591
	mutex_unlock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1592 1593 1594 1595 1596 1597 1598
}

static void perf_counter_for_each(struct perf_counter *counter,
				  void (*func)(struct perf_counter *))
{
	struct perf_counter *child;

1599
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1600
	mutex_lock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1601 1602 1603
	perf_counter_for_each_sibling(counter, func);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_for_each_sibling(child, func);
1604
	mutex_unlock(&counter->child_mutex);
1605 1606
}

1607 1608 1609
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1610 1611
	void (*func)(struct perf_counter *);
	u32 flags = arg;
1612 1613 1614

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
P
Peter Zijlstra 已提交
1615
		func = perf_counter_enable;
1616 1617
		break;
	case PERF_COUNTER_IOC_DISABLE:
P
Peter Zijlstra 已提交
1618
		func = perf_counter_disable;
1619
		break;
1620
	case PERF_COUNTER_IOC_RESET:
P
Peter Zijlstra 已提交
1621
		func = perf_counter_reset;
1622
		break;
P
Peter Zijlstra 已提交
1623 1624 1625

	case PERF_COUNTER_IOC_REFRESH:
		return perf_counter_refresh(counter, arg);
1626
	default:
P
Peter Zijlstra 已提交
1627
		return -ENOTTY;
1628
	}
P
Peter Zijlstra 已提交
1629 1630 1631 1632 1633 1634 1635

	if (flags & PERF_IOC_FLAG_GROUP)
		perf_counter_for_each(counter, func);
	else
		perf_counter_for_each_child(counter, func);

	return 0;
1636 1637
}

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
int perf_counter_task_enable(void)
{
	struct perf_counter *counter;

	mutex_lock(&current->perf_counter_mutex);
	list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
		perf_counter_for_each_child(counter, perf_counter_enable);
	mutex_unlock(&current->perf_counter_mutex);

	return 0;
}

int perf_counter_task_disable(void)
{
	struct perf_counter *counter;

	mutex_lock(&current->perf_counter_mutex);
	list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
		perf_counter_for_each_child(counter, perf_counter_disable);
	mutex_unlock(&current->perf_counter_mutex);

	return 0;
}

1662 1663 1664 1665 1666 1667
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
void perf_counter_update_userpage(struct perf_counter *counter)
1668
{
1669
	struct perf_counter_mmap_page *userpg;
1670
	struct perf_mmap_data *data;
1671 1672 1673 1674 1675 1676 1677

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	userpg = data->user_page;
1678

1679 1680 1681 1682 1683
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
1684
	++userpg->lock;
1685
	barrier();
1686 1687 1688 1689
	userpg->index = counter->hw.idx;
	userpg->offset = atomic64_read(&counter->count);
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&counter->hw.prev_count);
1690

1691
	barrier();
1692
	++userpg->lock;
1693
	preempt_enable();
1694
unlock:
1695
	rcu_read_unlock();
1696 1697 1698 1699 1700
}

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_counter *counter = vma->vm_file->private_data;
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff == 0) {
		vmf->page = virt_to_page(data->user_page);
	} else {
		int nr = vmf->pgoff - 1;
1713

1714 1715
		if ((unsigned)nr > data->nr_pages)
			goto unlock;
1716

1717 1718
		vmf->page = virt_to_page(data->data_pages[nr]);
	}
1719
	get_page(vmf->page);
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	WARN_ON(atomic_read(&counter->mmap_count));

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;
1753
	atomic_set(&data->lock, -1);
1754 1755 1756

	rcu_assign_pointer(counter->data, data);

1757
	return 0;
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
	return -ENOMEM;
}

static void __perf_mmap_data_free(struct rcu_head *rcu_head)
{
1774
	struct perf_mmap_data *data;
1775 1776
	int i;

1777 1778
	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
	free_page((unsigned long)data->user_page);
	for (i = 0; i < data->nr_pages; i++)
		free_page((unsigned long)data->data_pages[i]);
	kfree(data);
}

static void perf_mmap_data_free(struct perf_counter *counter)
{
	struct perf_mmap_data *data = counter->data;

	WARN_ON(atomic_read(&counter->mmap_count));

	rcu_assign_pointer(counter->data, NULL);
	call_rcu(&data->rcu_head, __perf_mmap_data_free);
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	atomic_inc(&counter->mmap_count);
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

1806
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1807
	if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
1808 1809 1810
		struct user_struct *user = current_user();

		atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1811
		vma->vm_mm->locked_vm -= counter->data->nr_locked;
1812 1813 1814
		perf_mmap_data_free(counter);
		mutex_unlock(&counter->mmap_mutex);
	}
1815 1816 1817
}

static struct vm_operations_struct perf_mmap_vmops = {
1818
	.open  = perf_mmap_open,
1819
	.close = perf_mmap_close,
1820 1821 1822 1823 1824 1825
	.fault = perf_mmap_fault,
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct perf_counter *counter = file->private_data;
1826
	unsigned long user_locked, user_lock_limit;
1827
	struct user_struct *user = current_user();
1828
	unsigned long locked, lock_limit;
1829 1830
	unsigned long vma_size;
	unsigned long nr_pages;
1831
	long user_extra, extra;
1832
	int ret = 0;
1833 1834 1835

	if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
		return -EINVAL;
1836 1837 1838 1839

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

1840 1841 1842 1843 1844
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
1845 1846
		return -EINVAL;

1847
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
1848 1849
		return -EINVAL;

1850 1851
	if (vma->vm_pgoff != 0)
		return -EINVAL;
1852

1853
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1854 1855 1856 1857 1858 1859 1860
	mutex_lock(&counter->mmap_mutex);
	if (atomic_inc_not_zero(&counter->mmap_count)) {
		if (nr_pages != counter->data->nr_pages)
			ret = -EINVAL;
		goto unlock;
	}

1861 1862
	user_extra = nr_pages + 1;
	user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
1863 1864 1865 1866 1867 1868

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

1869
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1870

1871 1872 1873
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
1874 1875 1876

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
1877
	locked = vma->vm_mm->locked_vm + extra;
1878

1879 1880 1881 1882
	if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
		ret = -EPERM;
		goto unlock;
	}
1883 1884 1885

	WARN_ON(counter->data);
	ret = perf_mmap_data_alloc(counter, nr_pages);
1886 1887 1888 1889
	if (ret)
		goto unlock;

	atomic_set(&counter->mmap_count, 1);
1890
	atomic_long_add(user_extra, &user->locked_vm);
1891 1892
	vma->vm_mm->locked_vm += extra;
	counter->data->nr_locked = extra;
1893
unlock:
1894
	mutex_unlock(&counter->mmap_mutex);
1895 1896 1897 1898

	vma->vm_flags &= ~VM_MAYWRITE;
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
1899 1900

	return ret;
1901 1902
}

P
Peter Zijlstra 已提交
1903 1904 1905
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
1906
	struct perf_counter *counter = filp->private_data;
P
Peter Zijlstra 已提交
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
	int retval;

	mutex_lock(&inode->i_mutex);
	retval = fasync_helper(fd, filp, on, &counter->fasync);
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
1919 1920 1921 1922
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
1923 1924
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
1925
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
1926
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
1927 1928
};

1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
/*
 * Perf counter wakeup
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

void perf_counter_wakeup(struct perf_counter *counter)
{
	wake_up_all(&counter->waitq);
1939 1940 1941 1942 1943

	if (counter->pending_kill) {
		kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
		counter->pending_kill = 0;
	}
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
static void perf_pending_counter(struct perf_pending_entry *entry)
{
	struct perf_counter *counter = container_of(entry,
			struct perf_counter, pending);

	if (counter->pending_disable) {
		counter->pending_disable = 0;
		perf_counter_disable(counter);
	}

	if (counter->pending_wakeup) {
		counter->pending_wakeup = 0;
		perf_counter_wakeup(counter);
	}
}

1971
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1972

1973
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1974 1975 1976
	PENDING_TAIL,
};

1977 1978
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
1979
{
1980
	struct perf_pending_entry **head;
1981

1982
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1983 1984
		return;

1985 1986 1987
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
1988 1989

	do {
1990 1991
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
1992 1993 1994

	set_perf_counter_pending();

1995
	put_cpu_var(perf_pending_head);
1996 1997 1998 1999
}

static int __perf_pending_run(void)
{
2000
	struct perf_pending_entry *list;
2001 2002
	int nr = 0;

2003
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2004
	while (list != PENDING_TAIL) {
2005 2006
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2007 2008 2009

		list = list->next;

2010 2011
		func = entry->func;
		entry->next = NULL;
2012 2013 2014 2015 2016 2017 2018
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2019
		func(entry);
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
		nr++;
	}

	return nr;
}

static inline int perf_not_pending(struct perf_counter *counter)
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2041
	return counter->pending.next == NULL;
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
}

static void perf_pending_sync(struct perf_counter *counter)
{
	wait_event(counter->waitq, perf_not_pending(counter));
}

void perf_counter_do_pending(void)
{
	__perf_pending_run();
}

2054 2055 2056 2057
/*
 * Callchain support -- arch specific
 */

2058
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2059 2060 2061 2062
{
	return NULL;
}

2063 2064 2065 2066
/*
 * Output
 */

2067 2068 2069 2070
struct perf_output_handle {
	struct perf_counter	*counter;
	struct perf_mmap_data	*data;
	unsigned int		offset;
2071
	unsigned int		head;
2072
	int			nmi;
2073
	int			overflow;
2074 2075
	int			locked;
	unsigned long		flags;
2076 2077
};

2078
static void perf_output_wakeup(struct perf_output_handle *handle)
2079
{
2080 2081
	atomic_set(&handle->data->poll, POLL_IN);

2082
	if (handle->nmi) {
2083
		handle->counter->pending_wakeup = 1;
2084
		perf_pending_queue(&handle->counter->pending,
2085
				   perf_pending_counter);
2086
	} else
2087 2088 2089
		perf_counter_wakeup(handle->counter);
}

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
/*
 * Curious locking construct.
 *
 * We need to ensure a later event doesn't publish a head when a former
 * event isn't done writing. However since we need to deal with NMIs we
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
 * event completes.
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
	int cpu;

	handle->locked = 0;

	local_irq_save(handle->flags);
	cpu = smp_processor_id();

	if (in_nmi() && atomic_read(&data->lock) == cpu)
		return;

2116
	while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
		cpu_relax();

	handle->locked = 1;
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
	int head, cpu;

2127
	data->done_head = data->head;
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2138
	while ((head = atomic_xchg(&data->done_head, 0)))
2139 2140 2141
		data->user_page->data_head = head;

	/*
2142
	 * NMI can happen here, which means we can miss a done_head update.
2143 2144
	 */

2145
	cpu = atomic_xchg(&data->lock, -1);
2146 2147 2148 2149 2150
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2151
	if (unlikely(atomic_read(&data->done_head))) {
2152 2153 2154
		/*
		 * Since we had it locked, we can lock it again.
		 */
2155
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2156 2157 2158 2159 2160
			cpu_relax();

		goto again;
	}

2161
	if (atomic_xchg(&data->wakeup, 0))
2162 2163 2164 2165 2166
		perf_output_wakeup(handle);
out:
	local_irq_restore(handle->flags);
}

2167
static int perf_output_begin(struct perf_output_handle *handle,
2168
			     struct perf_counter *counter, unsigned int size,
2169
			     int nmi, int overflow)
2170
{
2171
	struct perf_mmap_data *data;
2172
	unsigned int offset, head;
2173

2174 2175 2176 2177 2178 2179
	/*
	 * For inherited counters we send all the output towards the parent.
	 */
	if (counter->parent)
		counter = counter->parent;

2180 2181 2182 2183 2184
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto out;

2185
	handle->data	 = data;
2186 2187 2188
	handle->counter	 = counter;
	handle->nmi	 = nmi;
	handle->overflow = overflow;
2189

2190
	if (!data->nr_pages)
2191
		goto fail;
2192

2193 2194
	perf_output_lock(handle);

2195 2196
	do {
		offset = head = atomic_read(&data->head);
P
Peter Zijlstra 已提交
2197
		head += size;
2198 2199
	} while (atomic_cmpxchg(&data->head, offset, head) != offset);

2200
	handle->offset	= offset;
2201
	handle->head	= head;
2202 2203 2204

	if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
		atomic_set(&data->wakeup, 1);
2205

2206
	return 0;
2207

2208
fail:
2209
	perf_output_wakeup(handle);
2210 2211
out:
	rcu_read_unlock();
2212

2213 2214
	return -ENOSPC;
}
2215

2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
static void perf_output_copy(struct perf_output_handle *handle,
			     void *buf, unsigned int len)
{
	unsigned int pages_mask;
	unsigned int offset;
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
		unsigned int page_offset;
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
		page_offset = offset & (PAGE_SIZE - 1);
		size	    = min_t(unsigned int, PAGE_SIZE - page_offset, len);

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;
2244

2245 2246 2247 2248 2249
	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
2250 2251
}

P
Peter Zijlstra 已提交
2252 2253 2254
#define perf_output_put(handle, x) \
	perf_output_copy((handle), &(x), sizeof(x))

2255
static void perf_output_end(struct perf_output_handle *handle)
2256
{
2257 2258 2259 2260
	struct perf_counter *counter = handle->counter;
	struct perf_mmap_data *data = handle->data;

	int wakeup_events = counter->hw_event.wakeup_events;
P
Peter Zijlstra 已提交
2261

2262
	if (handle->overflow && wakeup_events) {
2263
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2264
		if (events >= wakeup_events) {
2265
			atomic_sub(wakeup_events, &data->events);
2266
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2267
		}
2268 2269 2270
	}

	perf_output_unlock(handle);
2271
	rcu_read_unlock();
2272 2273
}

2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
{
	/*
	 * only top level counters have the pid namespace they were created in
	 */
	if (counter->parent)
		counter = counter->parent;

	return task_tgid_nr_ns(p, counter->ns);
}

static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
{
	/*
	 * only top level counters have the pid namespace they were created in
	 */
	if (counter->parent)
		counter = counter->parent;

	return task_pid_nr_ns(p, counter->ns);
}

2296
static void perf_counter_output(struct perf_counter *counter,
2297
				int nmi, struct pt_regs *regs, u64 addr)
2298
{
2299
	int ret;
2300
	u64 sample_type = counter->hw_event.sample_type;
2301 2302 2303
	struct perf_output_handle handle;
	struct perf_event_header header;
	u64 ip;
P
Peter Zijlstra 已提交
2304
	struct {
2305
		u32 pid, tid;
2306
	} tid_entry;
2307
	struct {
2308
		u64 id;
2309 2310
		u64 counter;
	} group_entry;
2311 2312
	struct perf_callchain_entry *callchain = NULL;
	int callchain_size = 0;
P
Peter Zijlstra 已提交
2313
	u64 time;
2314 2315 2316
	struct {
		u32 cpu, reserved;
	} cpu_entry;
2317

2318
	header.type = 0;
2319
	header.size = sizeof(header);
2320

2321
	header.misc = PERF_EVENT_MISC_OVERFLOW;
2322
	header.misc |= perf_misc_flags(regs);
2323

2324
	if (sample_type & PERF_SAMPLE_IP) {
2325
		ip = perf_instruction_pointer(regs);
2326
		header.type |= PERF_SAMPLE_IP;
2327 2328
		header.size += sizeof(ip);
	}
2329

2330
	if (sample_type & PERF_SAMPLE_TID) {
2331
		/* namespace issues */
2332 2333
		tid_entry.pid = perf_counter_pid(counter, current);
		tid_entry.tid = perf_counter_tid(counter, current);
2334

2335
		header.type |= PERF_SAMPLE_TID;
2336 2337 2338
		header.size += sizeof(tid_entry);
	}

2339
	if (sample_type & PERF_SAMPLE_TIME) {
2340 2341 2342 2343 2344
		/*
		 * Maybe do better on x86 and provide cpu_clock_nmi()
		 */
		time = sched_clock();

2345
		header.type |= PERF_SAMPLE_TIME;
2346 2347 2348
		header.size += sizeof(u64);
	}

2349 2350
	if (sample_type & PERF_SAMPLE_ADDR) {
		header.type |= PERF_SAMPLE_ADDR;
2351 2352 2353
		header.size += sizeof(u64);
	}

2354 2355
	if (sample_type & PERF_SAMPLE_CONFIG) {
		header.type |= PERF_SAMPLE_CONFIG;
2356 2357 2358
		header.size += sizeof(u64);
	}

2359 2360
	if (sample_type & PERF_SAMPLE_CPU) {
		header.type |= PERF_SAMPLE_CPU;
2361 2362 2363 2364 2365
		header.size += sizeof(cpu_entry);

		cpu_entry.cpu = raw_smp_processor_id();
	}

2366 2367
	if (sample_type & PERF_SAMPLE_GROUP) {
		header.type |= PERF_SAMPLE_GROUP;
2368 2369 2370 2371
		header.size += sizeof(u64) +
			counter->nr_siblings * sizeof(group_entry);
	}

2372
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2373 2374 2375
		callchain = perf_callchain(regs);

		if (callchain) {
2376
			callchain_size = (1 + callchain->nr) * sizeof(u64);
2377

2378
			header.type |= PERF_SAMPLE_CALLCHAIN;
2379 2380 2381 2382
			header.size += callchain_size;
		}
	}

2383
	ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2384 2385
	if (ret)
		return;
2386

2387
	perf_output_put(&handle, header);
P
Peter Zijlstra 已提交
2388

2389
	if (sample_type & PERF_SAMPLE_IP)
2390
		perf_output_put(&handle, ip);
P
Peter Zijlstra 已提交
2391

2392
	if (sample_type & PERF_SAMPLE_TID)
2393
		perf_output_put(&handle, tid_entry);
P
Peter Zijlstra 已提交
2394

2395
	if (sample_type & PERF_SAMPLE_TIME)
2396 2397
		perf_output_put(&handle, time);

2398
	if (sample_type & PERF_SAMPLE_ADDR)
2399 2400
		perf_output_put(&handle, addr);

2401
	if (sample_type & PERF_SAMPLE_CONFIG)
2402 2403
		perf_output_put(&handle, counter->hw_event.config);

2404
	if (sample_type & PERF_SAMPLE_CPU)
2405 2406
		perf_output_put(&handle, cpu_entry);

2407
	/*
2408
	 * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2409
	 */
2410
	if (sample_type & PERF_SAMPLE_GROUP) {
2411 2412
		struct perf_counter *leader, *sub;
		u64 nr = counter->nr_siblings;
P
Peter Zijlstra 已提交
2413

2414
		perf_output_put(&handle, nr);
2415

2416 2417 2418
		leader = counter->group_leader;
		list_for_each_entry(sub, &leader->sibling_list, list_entry) {
			if (sub != counter)
2419
				sub->pmu->read(sub);
2420

2421
			group_entry.id = sub->id;
2422
			group_entry.counter = atomic64_read(&sub->count);
2423

2424 2425
			perf_output_put(&handle, group_entry);
		}
2426
	}
P
Peter Zijlstra 已提交
2427

2428 2429
	if (callchain)
		perf_output_copy(&handle, callchain, callchain_size);
2430

2431
	perf_output_end(&handle);
2432 2433
}

2434 2435 2436 2437 2438
/*
 * comm tracking
 */

struct perf_comm_event {
2439 2440
	struct task_struct	*task;
	char			*comm;
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
	} event;
};

static void perf_counter_comm_output(struct perf_counter *counter,
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
	int size = comm_event->event.header.size;
	int ret = perf_output_begin(&handle, counter, size, 0, 0);

	if (ret)
		return;

2461 2462 2463
	comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
	comm_event->event.tid = perf_counter_tid(counter, comm_event->task);

2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
	perf_output_put(&handle, comm_event->event);
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

static int perf_counter_comm_match(struct perf_counter *counter,
				   struct perf_comm_event *comm_event)
{
	if (counter->hw_event.comm &&
	    comm_event->event.header.type == PERF_EVENT_COMM)
		return 1;

	return 0;
}

static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
				  struct perf_comm_event *comm_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_comm_match(counter, comm_event))
			perf_counter_comm_output(counter, comm_event);
	}
	rcu_read_unlock();
}

static void perf_counter_comm_event(struct perf_comm_event *comm_event)
{
	struct perf_cpu_context *cpuctx;
2499
	struct perf_counter_context *ctx;
2500 2501 2502
	unsigned int size;
	char *comm = comm_event->task->comm;

2503
	size = ALIGN(strlen(comm)+1, sizeof(u64));
2504 2505 2506 2507 2508 2509 2510 2511 2512

	comm_event->comm = comm;
	comm_event->comm_size = size;

	comm_event->event.header.size = sizeof(comm_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
	put_cpu_var(perf_cpu_context);
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522

	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
		perf_counter_comm_ctx(ctx, comm_event);
	rcu_read_unlock();
2523 2524 2525 2526
}

void perf_counter_comm(struct task_struct *task)
{
2527 2528 2529 2530
	struct perf_comm_event comm_event;

	if (!atomic_read(&nr_comm_tracking))
		return;
2531

2532
	comm_event = (struct perf_comm_event){
2533 2534 2535 2536 2537 2538 2539 2540 2541
		.task	= task,
		.event  = {
			.header = { .type = PERF_EVENT_COMM, },
		},
	};

	perf_counter_comm_event(&comm_event);
}

2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
/*
 * mmap tracking
 */

struct perf_mmap_event {
	struct file	*file;
	char		*file_name;
	int		file_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
	} event;
};

static void perf_counter_mmap_output(struct perf_counter *counter,
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
	int size = mmap_event->event.header.size;
2567
	int ret = perf_output_begin(&handle, counter, size, 0, 0);
2568 2569 2570 2571

	if (ret)
		return;

2572 2573 2574
	mmap_event->event.pid = perf_counter_pid(counter, current);
	mmap_event->event.tid = perf_counter_tid(counter, current);

2575 2576 2577
	perf_output_put(&handle, mmap_event->event);
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
2578
	perf_output_end(&handle);
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
}

static int perf_counter_mmap_match(struct perf_counter *counter,
				   struct perf_mmap_event *mmap_event)
{
	if (counter->hw_event.mmap &&
	    mmap_event->event.header.type == PERF_EVENT_MMAP)
		return 1;

	if (counter->hw_event.munmap &&
	    mmap_event->event.header.type == PERF_EVENT_MUNMAP)
		return 1;

	return 0;
}

static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
				  struct perf_mmap_event *mmap_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_mmap_match(counter, mmap_event))
			perf_counter_mmap_output(counter, mmap_event);
	}
	rcu_read_unlock();
}

static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
{
	struct perf_cpu_context *cpuctx;
2614
	struct perf_counter_context *ctx;
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
	struct file *file = mmap_event->file;
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
	char *name;

	if (file) {
		buf = kzalloc(PATH_MAX, GFP_KERNEL);
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
2627
		name = d_path(&file->f_path, buf, PATH_MAX);
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
2638
	size = ALIGN(strlen(name)+1, sizeof(u64));
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648

	mmap_event->file_name = name;
	mmap_event->file_size = size;

	mmap_event->event.header.size = sizeof(mmap_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
	put_cpu_var(perf_cpu_context);

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
		perf_counter_mmap_ctx(ctx, mmap_event);
	rcu_read_unlock();

2659 2660 2661 2662 2663 2664
	kfree(buf);
}

void perf_counter_mmap(unsigned long addr, unsigned long len,
		       unsigned long pgoff, struct file *file)
{
2665 2666 2667 2668 2669 2670
	struct perf_mmap_event mmap_event;

	if (!atomic_read(&nr_mmap_tracking))
		return;

	mmap_event = (struct perf_mmap_event){
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MMAP, },
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

void perf_counter_munmap(unsigned long addr, unsigned long len,
			 unsigned long pgoff, struct file *file)
{
2686 2687 2688 2689 2690 2691
	struct perf_mmap_event mmap_event;

	if (!atomic_read(&nr_munmap_tracking))
		return;

	mmap_event = (struct perf_mmap_event){
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MUNMAP, },
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

2704
/*
2705
 * Log sample_period changes so that analyzing tools can re-normalize the
2706
 * event flow.
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
 */

static void perf_log_period(struct perf_counter *counter, u64 period)
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
		u64				period;
	} freq_event = {
		.header = {
			.type = PERF_EVENT_PERIOD,
			.misc = 0,
			.size = sizeof(freq_event),
		},
		.time = sched_clock(),
		.period = period,
	};

2728
	if (counter->hw.sample_period == period)
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
		return;

	ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
	if (ret)
		return;

	perf_output_put(&handle, freq_event);
	perf_output_end(&handle);
}

2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
/*
 * IRQ throttle logging
 */

static void perf_log_throttle(struct perf_counter *counter, int enable)
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
	} throttle_event = {
		.header = {
			.type = PERF_EVENT_THROTTLE + 1,
			.misc = 0,
			.size = sizeof(throttle_event),
		},
		.time = sched_clock(),
	};

I
Ingo Molnar 已提交
2760
	ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
2761 2762 2763 2764 2765 2766 2767
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

2768 2769 2770 2771 2772
/*
 * Generic counter overflow handling.
 */

int perf_counter_overflow(struct perf_counter *counter,
2773
			  int nmi, struct pt_regs *regs, u64 addr)
2774
{
2775
	int events = atomic_read(&counter->event_limit);
2776
	int throttle = counter->pmu->unthrottle != NULL;
2777 2778
	int ret = 0;

2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
	if (!throttle) {
		counter->hw.interrupts++;
	} else if (counter->hw.interrupts != MAX_INTERRUPTS) {
		counter->hw.interrupts++;
		if (HZ*counter->hw.interrupts > (u64)sysctl_perf_counter_limit) {
			counter->hw.interrupts = MAX_INTERRUPTS;
			perf_log_throttle(counter, 0);
			ret = 1;
		}
	}
2789

2790 2791 2792 2793 2794
	/*
	 * XXX event_limit might not quite work as expected on inherited
	 * counters
	 */

2795
	counter->pending_kill = POLL_IN;
2796 2797
	if (events && atomic_dec_and_test(&counter->event_limit)) {
		ret = 1;
2798
		counter->pending_kill = POLL_HUP;
2799 2800 2801 2802 2803 2804 2805 2806
		if (nmi) {
			counter->pending_disable = 1;
			perf_pending_queue(&counter->pending,
					   perf_pending_counter);
		} else
			perf_counter_disable(counter);
	}

2807
	perf_counter_output(counter, nmi, regs, addr);
2808
	return ret;
2809 2810
}

2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
/*
 * Generic software counter infrastructure
 */

static void perf_swcounter_update(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 prev, now;
	s64 delta;

again:
	prev = atomic64_read(&hwc->prev_count);
	now = atomic64_read(&hwc->count);
	if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
		goto again;

	delta = now - prev;

	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &hwc->period_left);
}

static void perf_swcounter_set_period(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	s64 left = atomic64_read(&hwc->period_left);
2837
	s64 period = hwc->sample_period;
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_add(period, &hwc->period_left);
	}

	atomic64_set(&hwc->prev_count, -left);
	atomic64_set(&hwc->count, -left);
}

2853 2854
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
2855
	enum hrtimer_restart ret = HRTIMER_RESTART;
2856 2857
	struct perf_counter *counter;
	struct pt_regs *regs;
2858
	u64 period;
2859 2860

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
2861
	counter->pmu->read(counter);
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871

	regs = get_irq_regs();
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
	if ((counter->hw_event.exclude_kernel || !regs) &&
			!counter->hw_event.exclude_user)
		regs = task_pt_regs(current);

2872
	if (regs) {
2873
		if (perf_counter_overflow(counter, 0, regs, 0))
2874 2875
			ret = HRTIMER_NORESTART;
	}
2876

2877
	period = max_t(u64, 10000, counter->hw.sample_period);
2878
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2879

2880
	return ret;
2881 2882 2883
}

static void perf_swcounter_overflow(struct perf_counter *counter,
2884
				    int nmi, struct pt_regs *regs, u64 addr)
2885
{
2886 2887
	perf_swcounter_update(counter);
	perf_swcounter_set_period(counter);
2888
	if (perf_counter_overflow(counter, nmi, regs, addr))
2889 2890 2891
		/* soft-disable the counter */
		;

2892 2893
}

2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
static int perf_swcounter_is_counting(struct perf_counter *counter)
{
	struct perf_counter_context *ctx;
	unsigned long flags;
	int count;

	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		return 1;

	if (counter->state != PERF_COUNTER_STATE_INACTIVE)
		return 0;

	/*
	 * If the counter is inactive, it could be just because
	 * its task is scheduled out, or because it's in a group
	 * which could not go on the PMU.  We want to count in
	 * the first case but not the second.  If the context is
	 * currently active then an inactive software counter must
	 * be the second case.  If it's not currently active then
	 * we need to know whether the counter was active when the
	 * context was last active, which we can determine by
	 * comparing counter->tstamp_stopped with ctx->time.
	 *
	 * We are within an RCU read-side critical section,
	 * which protects the existence of *ctx.
	 */
	ctx = counter->ctx;
	spin_lock_irqsave(&ctx->lock, flags);
	count = 1;
	/* Re-check state now we have the lock */
	if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
	    counter->ctx->is_active ||
	    counter->tstamp_stopped < ctx->time)
		count = 0;
	spin_unlock_irqrestore(&ctx->lock, flags);
	return count;
}

2932
static int perf_swcounter_match(struct perf_counter *counter,
2933 2934
				enum perf_event_types type,
				u32 event, struct pt_regs *regs)
2935
{
2936
	u64 event_config;
2937

2938
	event_config = ((u64) type << PERF_COUNTER_TYPE_SHIFT) | event;
2939

2940
	if (!perf_swcounter_is_counting(counter))
2941 2942
		return 0;

2943
	if (counter->hw_event.config != event_config)
2944 2945
		return 0;

2946 2947 2948
	if (regs) {
		if (counter->hw_event.exclude_user && user_mode(regs))
			return 0;
2949

2950 2951 2952
		if (counter->hw_event.exclude_kernel && !user_mode(regs))
			return 0;
	}
2953 2954 2955 2956

	return 1;
}

2957
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2958
			       int nmi, struct pt_regs *regs, u64 addr)
2959 2960
{
	int neg = atomic64_add_negative(nr, &counter->hw.count);
2961

2962
	if (counter->hw.sample_period && !neg && regs)
2963
		perf_swcounter_overflow(counter, nmi, regs, addr);
2964 2965
}

2966
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2967
				     enum perf_event_types type, u32 event,
2968 2969
				     u64 nr, int nmi, struct pt_regs *regs,
				     u64 addr)
2970 2971 2972
{
	struct perf_counter *counter;

2973
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2974 2975
		return;

P
Peter Zijlstra 已提交
2976 2977
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2978
		if (perf_swcounter_match(counter, type, event, regs))
2979
			perf_swcounter_add(counter, nr, nmi, regs, addr);
2980
	}
P
Peter Zijlstra 已提交
2981
	rcu_read_unlock();
2982 2983
}

P
Peter Zijlstra 已提交
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

2998
static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2999 3000
				   u64 nr, int nmi, struct pt_regs *regs,
				   u64 addr)
3001 3002
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3003
	int *recursion = perf_swcounter_recursion_context(cpuctx);
3004
	struct perf_counter_context *ctx;
P
Peter Zijlstra 已提交
3005 3006 3007 3008 3009 3010

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
3011

3012 3013
	perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
				 nr, nmi, regs, addr);
3014 3015 3016 3017 3018 3019 3020 3021 3022
	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
		perf_swcounter_ctx_event(ctx, type, event, nr, nmi, regs, addr);
	rcu_read_unlock();
3023

P
Peter Zijlstra 已提交
3024 3025 3026 3027
	barrier();
	(*recursion)--;

out:
3028 3029 3030
	put_cpu_var(perf_cpu_context);
}

3031 3032
void
perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
3033
{
3034
	__perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
3035 3036
}

3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
static void perf_swcounter_read(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
	perf_swcounter_set_period(counter);
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

3053
static const struct pmu perf_ops_generic = {
3054 3055 3056 3057 3058
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
};

3059 3060 3061 3062
/*
 * Software counter: cpu wall time clock
 */

3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

3075 3076 3077 3078 3079 3080
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3081 3082
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
3083 3084
	if (hwc->sample_period) {
		u64 period = max_t(u64, 10000, hwc->sample_period);
3085
		__hrtimer_start_range_ns(&hwc->hrtimer,
3086
				ns_to_ktime(period), 0,
3087 3088 3089 3090 3091 3092
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

3093 3094
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
3095
	if (counter->hw.sample_period)
3096
		hrtimer_cancel(&counter->hw.hrtimer);
3097
	cpu_clock_perf_counter_update(counter);
3098 3099 3100 3101
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
3102
	cpu_clock_perf_counter_update(counter);
3103 3104
}

3105
static const struct pmu perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
3106 3107 3108
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
3109 3110
};

3111 3112 3113 3114
/*
 * Software counter: task time clock
 */

3115
static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
I
Ingo Molnar 已提交
3116
{
3117
	u64 prev;
I
Ingo Molnar 已提交
3118 3119
	s64 delta;

3120
	prev = atomic64_xchg(&counter->hw.prev_count, now);
I
Ingo Molnar 已提交
3121 3122
	delta = now - prev;
	atomic64_add(delta, &counter->count);
3123 3124
}

3125
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
3126
{
3127
	struct hw_perf_counter *hwc = &counter->hw;
3128 3129 3130
	u64 now;

	now = counter->ctx->time;
3131

3132
	atomic64_set(&hwc->prev_count, now);
3133 3134
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
3135 3136
	if (hwc->sample_period) {
		u64 period = max_t(u64, 10000, hwc->sample_period);
3137
		__hrtimer_start_range_ns(&hwc->hrtimer,
3138
				ns_to_ktime(period), 0,
3139 3140
				HRTIMER_MODE_REL, 0);
	}
3141 3142

	return 0;
I
Ingo Molnar 已提交
3143 3144 3145
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
3146
{
3147
	if (counter->hw.sample_period)
3148
		hrtimer_cancel(&counter->hw.hrtimer);
3149 3150
	task_clock_perf_counter_update(counter, counter->ctx->time);

3151
}
I
Ingo Molnar 已提交
3152

3153 3154
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
	u64 time;

	if (!in_nmi()) {
		update_context_time(counter->ctx);
		time = counter->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - counter->ctx->timestamp;
		time = counter->ctx->time + delta;
	}

	task_clock_perf_counter_update(counter, time);
3167 3168
}

3169
static const struct pmu perf_ops_task_clock = {
I
Ingo Molnar 已提交
3170 3171 3172
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
3173 3174
};

3175 3176 3177
/*
 * Software counter: cpu migrations
 */
3178
void perf_counter_task_migration(struct task_struct *task, int cpu)
3179
{
3180 3181
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx;
3182

3183 3184 3185
	perf_swcounter_ctx_event(&cpuctx->ctx, PERF_TYPE_SOFTWARE,
				 PERF_COUNT_CPU_MIGRATIONS,
				 1, 1, NULL, 0);
3186

3187 3188 3189 3190 3191 3192 3193
	ctx = perf_pin_task_context(task);
	if (ctx) {
		perf_swcounter_ctx_event(ctx, PERF_TYPE_SOFTWARE,
					 PERF_COUNT_CPU_MIGRATIONS,
					 1, 1, NULL, 0);
		perf_unpin_context(ctx);
	}
3194 3195
}

3196 3197 3198
#ifdef CONFIG_EVENT_PROFILE
void perf_tpcounter_event(int event_id)
{
3199 3200 3201 3202 3203
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);

3204
	__perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3205
}
3206
EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3207 3208 3209 3210 3211 3212

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
3213
	ftrace_profile_disable(perf_event_id(&counter->hw_event));
3214 3215
}

3216
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3217
{
3218
	int event_id = perf_event_id(&counter->hw_event);
3219 3220 3221 3222 3223 3224 3225
	int ret;

	ret = ftrace_profile_enable(event_id);
	if (ret)
		return NULL;

	counter->destroy = tp_perf_counter_destroy;
3226
	counter->hw.sample_period = counter->hw_event.sample_period;
3227 3228 3229 3230

	return &perf_ops_generic;
}
#else
3231
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3232 3233 3234 3235 3236
{
	return NULL;
}
#endif

3237
static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3238
{
3239
	const struct pmu *pmu = NULL;
3240

3241 3242 3243 3244 3245 3246 3247
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
3248
	switch (perf_event_id(&counter->hw_event)) {
3249
	case PERF_COUNT_CPU_CLOCK:
3250
		pmu = &perf_ops_cpu_clock;
3251

3252
		break;
3253
	case PERF_COUNT_TASK_CLOCK:
3254 3255 3256 3257 3258
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
3259
			pmu = &perf_ops_task_clock;
3260
		else
3261
			pmu = &perf_ops_cpu_clock;
3262

3263
		break;
3264
	case PERF_COUNT_PAGE_FAULTS:
3265 3266
	case PERF_COUNT_PAGE_FAULTS_MIN:
	case PERF_COUNT_PAGE_FAULTS_MAJ:
3267
	case PERF_COUNT_CONTEXT_SWITCHES:
3268
	case PERF_COUNT_CPU_MIGRATIONS:
3269
		pmu = &perf_ops_generic;
3270
		break;
3271
	}
3272

3273
	return pmu;
3274 3275
}

T
Thomas Gleixner 已提交
3276 3277 3278 3279
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
3280 3281
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
		   int cpu,
3282
		   struct perf_counter_context *ctx,
3283 3284
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
3285
{
3286
	const struct pmu *pmu;
I
Ingo Molnar 已提交
3287
	struct perf_counter *counter;
3288
	struct hw_perf_counter *hwc;
3289
	long err;
T
Thomas Gleixner 已提交
3290

3291
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
3292
	if (!counter)
3293
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
3294

3295 3296 3297 3298 3299 3300 3301
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

3302 3303 3304
	mutex_init(&counter->child_mutex);
	INIT_LIST_HEAD(&counter->child_list);

3305
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
3306
	INIT_LIST_HEAD(&counter->event_entry);
3307
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
3308 3309
	init_waitqueue_head(&counter->waitq);

3310 3311
	mutex_init(&counter->mmap_mutex);

I
Ingo Molnar 已提交
3312 3313
	counter->cpu			= cpu;
	counter->hw_event		= *hw_event;
3314
	counter->group_leader		= group_leader;
3315
	counter->pmu			= NULL;
3316
	counter->ctx			= ctx;
3317 3318
	counter->oncpu			= -1;

3319
	counter->state = PERF_COUNTER_STATE_INACTIVE;
3320 3321 3322
	if (hw_event->disabled)
		counter->state = PERF_COUNTER_STATE_OFF;

3323
	pmu = NULL;
3324

3325
	hwc = &counter->hw;
3326 3327
	if (hw_event->freq && hw_event->sample_freq)
		hwc->sample_period = div64_u64(TICK_NSEC, hw_event->sample_freq);
3328
	else
3329
		hwc->sample_period = hw_event->sample_period;
3330

3331
	/*
3332
	 * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3333
	 */
3334
	if (hw_event->inherit && (hw_event->sample_type & PERF_SAMPLE_GROUP))
3335 3336
		goto done;

3337
	if (perf_event_raw(hw_event)) {
3338
		pmu = hw_perf_counter_init(counter);
3339 3340 3341 3342
		goto done;
	}

	switch (perf_event_type(hw_event)) {
3343
	case PERF_TYPE_HARDWARE:
3344
		pmu = hw_perf_counter_init(counter);
3345 3346 3347
		break;

	case PERF_TYPE_SOFTWARE:
3348
		pmu = sw_perf_counter_init(counter);
3349 3350 3351
		break;

	case PERF_TYPE_TRACEPOINT:
3352
		pmu = tp_perf_counter_init(counter);
3353 3354
		break;
	}
3355 3356
done:
	err = 0;
3357
	if (!pmu)
3358
		err = -EINVAL;
3359 3360
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
3361

3362
	if (err) {
I
Ingo Molnar 已提交
3363
		kfree(counter);
3364
		return ERR_PTR(err);
I
Ingo Molnar 已提交
3365
	}
3366

3367
	counter->pmu = pmu;
T
Thomas Gleixner 已提交
3368

3369
	atomic_inc(&nr_counters);
3370 3371 3372 3373 3374 3375 3376
	if (counter->hw_event.mmap)
		atomic_inc(&nr_mmap_tracking);
	if (counter->hw_event.munmap)
		atomic_inc(&nr_munmap_tracking);
	if (counter->hw_event.comm)
		atomic_inc(&nr_comm_tracking);

T
Thomas Gleixner 已提交
3377 3378 3379
	return counter;
}

3380 3381
static atomic64_t perf_counter_id;

T
Thomas Gleixner 已提交
3382
/**
3383
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
3384 3385
 *
 * @hw_event_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
3386
 * @pid:		target pid
I
Ingo Molnar 已提交
3387 3388
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
3389
 */
3390
SYSCALL_DEFINE5(perf_counter_open,
3391
		const struct perf_counter_hw_event __user *, hw_event_uptr,
3392
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
3393
{
3394
	struct perf_counter *counter, *group_leader;
I
Ingo Molnar 已提交
3395
	struct perf_counter_hw_event hw_event;
3396
	struct perf_counter_context *ctx;
3397
	struct file *counter_file = NULL;
3398 3399
	struct file *group_file = NULL;
	int fput_needed = 0;
3400
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
3401 3402
	int ret;

3403 3404 3405 3406
	/* for future expandability... */
	if (flags)
		return -EINVAL;

I
Ingo Molnar 已提交
3407
	if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3408 3409
		return -EFAULT;

3410
	/*
I
Ingo Molnar 已提交
3411 3412 3413 3414 3415 3416 3417 3418
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
3419 3420 3421 3422 3423 3424
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
3425
			goto err_put_context;
3426
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
3427
			goto err_put_context;
3428 3429 3430

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
3431 3432 3433 3434 3435 3436 3437 3438
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
3439
		 */
I
Ingo Molnar 已提交
3440 3441
		if (group_leader->ctx != ctx)
			goto err_put_context;
3442 3443 3444 3445 3446
		/*
		 * Only a group leader can be exclusive or pinned
		 */
		if (hw_event.exclusive || hw_event.pinned)
			goto err_put_context;
3447 3448
	}

3449 3450
	counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
				     GFP_KERNEL);
3451 3452
	ret = PTR_ERR(counter);
	if (IS_ERR(counter))
T
Thomas Gleixner 已提交
3453 3454 3455 3456
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
3457 3458 3459 3460 3461 3462 3463
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
3464
	WARN_ON_ONCE(ctx->parent_ctx);
3465
	mutex_lock(&ctx->mutex);
3466
	perf_install_in_context(ctx, counter, cpu);
3467
	++ctx->generation;
3468
	mutex_unlock(&ctx->mutex);
3469

3470 3471 3472 3473 3474 3475
	counter->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_counter_mutex);
	list_add_tail(&counter->owner_entry, &current->perf_counter_list);
	mutex_unlock(&current->perf_counter_mutex);

3476
	counter->ns = get_pid_ns(current->nsproxy->pid_ns);
3477
	counter->id = atomic64_inc_return(&perf_counter_id);
3478

3479
	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
3480

3481 3482 3483
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
3484 3485
	return ret;

3486
err_free_put_context:
T
Thomas Gleixner 已提交
3487 3488 3489
	kfree(counter);

err_put_context:
3490
	put_ctx(ctx);
T
Thomas Gleixner 已提交
3491

3492
	goto out_fput;
T
Thomas Gleixner 已提交
3493 3494
}

3495 3496 3497
/*
 * inherit a counter from parent task to child task:
 */
3498
static struct perf_counter *
3499 3500 3501 3502
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
3503
	      struct perf_counter *group_leader,
3504 3505 3506 3507
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

3508 3509 3510 3511 3512 3513 3514 3515 3516
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

3517
	child_counter = perf_counter_alloc(&parent_counter->hw_event,
3518 3519
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
3520 3521
	if (IS_ERR(child_counter))
		return child_counter;
3522
	get_ctx(child_ctx);
3523

3524 3525 3526
	/*
	 * Make the child state follow the state of the parent counter,
	 * not its hw_event.disabled bit.  We hold the parent's mutex,
3527
	 * so we won't race with perf_counter_{en, dis}able_family.
3528 3529 3530 3531 3532 3533
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

3534 3535 3536
	/*
	 * Link it up in the child's context:
	 */
3537
	add_counter_to_ctx(child_counter, child_ctx);
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
	child_counter->hw_event.inherit = 1;

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

3553 3554 3555
	/*
	 * Link this into the parent counter's child list
	 */
3556
	WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3557
	mutex_lock(&parent_counter->child_mutex);
3558
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3559
	mutex_unlock(&parent_counter->child_mutex);
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;
3572
	struct perf_counter *child_ctr;
3573 3574 3575

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
3576 3577
	if (IS_ERR(leader))
		return PTR_ERR(leader);
3578
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3579 3580 3581 3582
		child_ctr = inherit_counter(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
3583
	}
3584 3585 3586
	return 0;
}

3587 3588 3589
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
3590
	u64 child_val;
3591 3592 3593 3594 3595 3596 3597

	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);
3598 3599 3600 3601
	atomic64_add(child_counter->total_time_enabled,
		     &parent_counter->child_total_time_enabled);
	atomic64_add(child_counter->total_time_running,
		     &parent_counter->child_total_time_running);
3602 3603 3604 3605

	/*
	 * Remove this counter from the parent's list
	 */
3606
	WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3607
	mutex_lock(&parent_counter->child_mutex);
3608
	list_del_init(&child_counter->child_list);
3609
	mutex_unlock(&parent_counter->child_mutex);
3610 3611 3612 3613 3614 3615 3616 3617

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

3618
static void
3619
__perf_counter_exit_task(struct perf_counter *child_counter,
3620 3621 3622 3623
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;

3624
	update_counter_times(child_counter);
3625
	perf_counter_remove_from_context(child_counter);
3626

3627 3628 3629 3630 3631 3632
	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
3633 3634
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
3635
		free_counter(child_counter);
3636
	}
3637 3638 3639
}

/*
3640
 * When a child task exits, feed back counter values to parent counters.
3641 3642 3643 3644 3645
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;
3646
	unsigned long flags;
3647

3648
	if (likely(!child->perf_counter_ctxp))
3649 3650
		return;

3651
	local_irq_save(flags);
3652 3653 3654 3655 3656 3657 3658
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
	child_ctx = child->perf_counter_ctxp;
3659
	__perf_counter_task_sched_out(child_ctx);
3660 3661 3662 3663 3664 3665 3666

	/*
	 * Take the context lock here so that if find_get_context is
	 * reading child->perf_counter_ctxp, we wait until it has
	 * incremented the context's refcount before we do put_ctx below.
	 */
	spin_lock(&child_ctx->lock);
3667
	child->perf_counter_ctxp = NULL;
3668 3669 3670 3671 3672 3673 3674 3675 3676
	if (child_ctx->parent_ctx) {
		/*
		 * This context is a clone; unclone it so it can't get
		 * swapped to another process while we're removing all
		 * the counters from it.
		 */
		put_ctx(child_ctx->parent_ctx);
		child_ctx->parent_ctx = NULL;
	}
3677
	spin_unlock(&child_ctx->lock);
3678 3679 3680 3681
	local_irq_restore(flags);

	mutex_lock(&child_ctx->mutex);

3682
again:
3683 3684
	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
3685
		__perf_counter_exit_task(child_counter, child_ctx);
3686 3687 3688 3689 3690 3691 3692 3693

	/*
	 * If the last counter was a group counter, it will have appended all
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
	if (!list_empty(&child_ctx->counter_list))
		goto again;
3694 3695 3696 3697

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
3698 3699
}

3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
void perf_counter_free_task(struct task_struct *task)
{
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
	struct perf_counter *counter, *tmp;

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
		struct perf_counter *parent = counter->parent;

		if (WARN_ON_ONCE(!parent))
			continue;

		mutex_lock(&parent->child_mutex);
		list_del_init(&counter->child_list);
		mutex_unlock(&parent->child_mutex);

		fput(parent->filp);

		list_del_counter(counter, ctx);
		free_counter(counter);
	}

	if (!list_empty(&ctx->counter_list))
		goto again;

	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3738 3739 3740
/*
 * Initialize the perf_counter context in task_struct
 */
3741
int perf_counter_init_task(struct task_struct *child)
3742 3743
{
	struct perf_counter_context *child_ctx, *parent_ctx;
3744
	struct perf_counter_context *cloned_ctx;
3745
	struct perf_counter *counter;
3746
	struct task_struct *parent = current;
3747
	int inherited_all = 1;
3748
	int ret = 0;
3749

3750
	child->perf_counter_ctxp = NULL;
3751

3752 3753 3754
	mutex_init(&child->perf_counter_mutex);
	INIT_LIST_HEAD(&child->perf_counter_list);

3755
	if (likely(!parent->perf_counter_ctxp))
3756 3757
		return 0;

3758 3759
	/*
	 * This is executed from the parent task context, so inherit
3760 3761
	 * counters that have been marked for cloning.
	 * First allocate and initialize a context for the child.
3762 3763
	 */

3764 3765
	child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
	if (!child_ctx)
3766
		return -ENOMEM;
3767

3768 3769
	__perf_counter_init_context(child_ctx, child);
	child->perf_counter_ctxp = child_ctx;
3770
	get_task_struct(child);
3771

3772
	/*
3773 3774
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
3775
	 */
3776 3777
	parent_ctx = perf_pin_task_context(parent);

3778 3779 3780 3781 3782 3783 3784
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

3785 3786 3787 3788
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
3789
	mutex_lock(&parent_ctx->mutex);
3790 3791 3792 3793 3794

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
3795 3796 3797 3798
	list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
		if (counter != counter->group_leader)
			continue;

3799 3800
		if (!counter->hw_event.inherit) {
			inherited_all = 0;
3801
			continue;
3802
		}
3803

3804 3805 3806
		ret = inherit_group(counter, parent, parent_ctx,
					     child, child_ctx);
		if (ret) {
3807
			inherited_all = 0;
3808
			break;
3809 3810 3811 3812 3813 3814 3815
		}
	}

	if (inherited_all) {
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
3816 3817 3818 3819
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
		 * because the list of counters and the generation
		 * count can't have changed since we took the mutex.
3820
		 */
3821 3822 3823
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
3824
			child_ctx->parent_gen = parent_ctx->parent_gen;
3825 3826 3827 3828 3829
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
3830 3831
	}

3832
	mutex_unlock(&parent_ctx->mutex);
3833

3834
	perf_unpin_context(parent_ctx);
3835

3836
	return ret;
3837 3838
}

3839
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
3840
{
3841
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
3842

3843 3844
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
3845

3846
	spin_lock(&perf_resource_lock);
3847
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3848
	spin_unlock(&perf_resource_lock);
3849

3850
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
3851 3852 3853
}

#ifdef CONFIG_HOTPLUG_CPU
3854
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
3855 3856 3857 3858 3859
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

3860 3861
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
3862
}
3863
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
3864
{
3865 3866 3867 3868
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
3869
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3870
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3871 3872
}
#else
3873
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
3885
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
3886 3887 3888 3889
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
3890
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
3891 3892 3893 3894 3895 3896 3897 3898 3899
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

3900 3901 3902
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
3903 3904
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
3905
	.priority		= 20,
T
Thomas Gleixner 已提交
3906 3907
};

3908
void __init perf_counter_init(void)
T
Thomas Gleixner 已提交
3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

3935
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3936 3937 3938 3939 3940 3941 3942 3943 3944
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
3945
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

3967
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3968
	perf_overcommit = val;
3969
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);