perf_counter.c 86.2 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3
/*
 * Performance counter core code
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 9
 *
 *  For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18 19 20
#include <linux/poll.h>
#include <linux/sysfs.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
21 22 23
#include <linux/vmstat.h>
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
24 25 26
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
27
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
28
#include <linux/perf_counter.h>
29
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
30

31 32
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
33 34 35 36 37
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

38
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
39 40 41
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

42
static atomic_t nr_counters __read_mostly;
43 44 45 46
static atomic_t nr_mmap_tracking __read_mostly;
static atomic_t nr_munmap_tracking __read_mostly;
static atomic_t nr_comm_tracking __read_mostly;

47
int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48
int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49

T
Thomas Gleixner 已提交
50
/*
51
 * Lock for (sysadmin-configurable) counter reservations:
T
Thomas Gleixner 已提交
52
 */
53
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
54 55 56 57

/*
 * Architecture provided APIs - weak aliases:
 */
58
extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
59
{
60
	return NULL;
T
Thomas Gleixner 已提交
61 62
}

63 64 65
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

66
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
67 68 69 70 71 72
int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
73

74 75
void __weak perf_counter_print_debug(void)	{ }

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
static DEFINE_PER_CPU(int, disable_count);

void __perf_disable(void)
{
	__get_cpu_var(disable_count)++;
}

bool __perf_enable(void)
{
	return !--__get_cpu_var(disable_count);
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

100 101 102 103 104 105 106
static void get_ctx(struct perf_counter_context *ctx)
{
	atomic_inc(&ctx->refcount);
}

static void put_ctx(struct perf_counter_context *ctx)
{
107 108 109
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
110
		kfree(ctx);
111
	}
112 113
}

114 115 116 117
/*
 * Add a counter from the lists for its context.
 * Must be called with ctx->mutex and ctx->lock held.
 */
118 119 120 121 122 123 124 125 126 127
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
P
Peter Zijlstra 已提交
128
	if (group_leader == counter)
129
		list_add_tail(&counter->list_entry, &ctx->counter_list);
P
Peter Zijlstra 已提交
130
	else {
131
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
132 133
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
134 135

	list_add_rcu(&counter->event_entry, &ctx->event_list);
136
	ctx->nr_counters++;
137 138
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		ctx->nr_enabled++;
139 140
}

141 142
/*
 * Remove a counter from the lists for its context.
143
 * Must be called with ctx->mutex and ctx->lock held.
144
 */
145 146 147 148 149
static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

150 151
	if (list_empty(&counter->list_entry))
		return;
152
	ctx->nr_counters--;
153 154
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		ctx->nr_enabled--;
155

156
	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
157
	list_del_rcu(&counter->event_entry);
158

P
Peter Zijlstra 已提交
159 160 161
	if (counter->group_leader != counter)
		counter->group_leader->nr_siblings--;

162 163 164 165 166 167 168 169
	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

170
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
171 172 173 174
		sibling->group_leader = sibling;
	}
}

175 176 177 178 179 180 181 182 183
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
184
	counter->tstamp_stopped = ctx->time;
185
	counter->pmu->disable(counter);
186 187 188 189 190 191 192 193 194
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
	if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
		cpuctx->exclusive = 0;
}

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

	if (group_counter->hw_event.exclusive)
		cpuctx->exclusive = 0;
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
/*
 * Mark this context as not being a clone of another.
 * Called when counters are added to or removed from this context.
 * We also increment our generation number so that anything that
 * was cloned from this context before this will not match anything
 * cloned from this context after this.
 */
static void unclone_ctx(struct perf_counter_context *ctx)
{
	++ctx->generation;
	if (!ctx->parent_ctx)
		return;
	put_ctx(ctx->parent_ctx);
	ctx->parent_ctx = NULL;
}

T
Thomas Gleixner 已提交
233 234 235 236 237 238
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
239
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
240 241 242 243
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
244
	unsigned long flags;
T
Thomas Gleixner 已提交
245 246 247 248 249 250 251 252 253

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

254
	spin_lock_irqsave(&ctx->lock, flags);
255 256 257 258 259
	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level.
	 */
	perf_disable();
T
Thomas Gleixner 已提交
260

261 262
	counter_sched_out(counter, cpuctx, ctx);

263
	list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
264 265 266 267 268 269 270 271 272 273 274

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

275
	perf_enable();
276
	spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
277 278 279 280 281 282
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
283
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
284 285 286 287
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
 */
288
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
289 290 291 292
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

293
	unclone_ctx(ctx);
T
Thomas Gleixner 已提交
294 295 296 297 298 299
	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
300
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
301 302 303 304 305
					 counter, 1);
		return;
	}

retry:
306
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
307 308 309 310 311 312
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
313
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
314 315 316 317 318 319
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
320
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
321 322
	 * succeed.
	 */
323 324
	if (!list_empty(&counter->list_entry)) {
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
325 326 327 328
	}
	spin_unlock_irq(&ctx->lock);
}

329
static inline u64 perf_clock(void)
330
{
331
	return cpu_clock(smp_processor_id());
332 333 334 335 336
}

/*
 * Update the record of the current time in a context.
 */
337
static void update_context_time(struct perf_counter_context *ctx)
338
{
339 340 341 342
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
343 344 345 346 347 348 349 350 351 352
}

/*
 * Update the total_time_enabled and total_time_running fields for a counter.
 */
static void update_counter_times(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	u64 run_end;

353 354 355 356 357 358 359 360 361 362 363
	if (counter->state < PERF_COUNTER_STATE_INACTIVE)
		return;

	counter->total_time_enabled = ctx->time - counter->tstamp_enabled;

	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		run_end = counter->tstamp_stopped;
	else
		run_end = ctx->time;

	counter->total_time_running = run_end - counter->tstamp_running;
364 365 366 367 368 369 370 371 372 373 374 375 376 377
}

/*
 * Update total_time_enabled and total_time_running for all counters in a group.
 */
static void update_group_times(struct perf_counter *leader)
{
	struct perf_counter *counter;

	update_counter_times(leader);
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		update_counter_times(counter);
}

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long flags;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

395
	spin_lock_irqsave(&ctx->lock, flags);
396 397 398 399 400 401

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
402
		update_context_time(ctx);
403
		update_counter_times(counter);
404 405 406 407 408
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
409
		ctx->nr_enabled--;
410 411
	}

412
	spin_unlock_irqrestore(&ctx->lock, flags);
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
}

/*
 * Disable a counter.
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
448 449
	if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
450
		counter->state = PERF_COUNTER_STATE_OFF;
451
		ctx->nr_enabled--;
452
	}
453 454 455 456

	spin_unlock_irq(&ctx->lock);
}

457 458 459 460 461 462
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
463
	if (counter->state <= PERF_COUNTER_STATE_OFF)
464 465 466 467 468 469 470 471 472
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

473
	if (counter->pmu->enable(counter)) {
474 475 476 477 478
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

479
	counter->tstamp_running += ctx->time - counter->tstamp_stopped;
480

481 482
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
483 484
	ctx->nr_active++;

485 486 487
	if (counter->hw_event.exclusive)
		cpuctx->exclusive = 1;

488 489 490
	return 0;
}

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
static int
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
	struct perf_counter *counter, *partial_group;
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;

	group_counter->prev_state = group_counter->state;
	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		counter->prev_state = counter->state;
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
	}
	counter_sched_out(group_counter, cpuctx, ctx);

	return -EAGAIN;
}

539 540 541 542 543 544 545 546 547 548
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
P
Peter Zijlstra 已提交
549

550 551 552
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
P
Peter Zijlstra 已提交
553

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
	if (counter->hw_event.exclusive && cpuctx->active_oncpu)
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

588 589 590 591 592
static void add_counter_to_ctx(struct perf_counter *counter,
			       struct perf_counter_context *ctx)
{
	list_add_counter(counter, ctx);
	counter->prev_state = PERF_COUNTER_STATE_OFF;
593 594 595
	counter->tstamp_enabled = ctx->time;
	counter->tstamp_running = ctx->time;
	counter->tstamp_stopped = ctx->time;
596 597
}

T
Thomas Gleixner 已提交
598
/*
599
 * Cross CPU call to install and enable a performance counter
600 601
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
602 603 604 605 606 607
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
608
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
609
	int cpu = smp_processor_id();
610
	unsigned long flags;
611
	int err;
T
Thomas Gleixner 已提交
612 613 614 615 616

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
617 618
	 * Or possibly this is the right context but it isn't
	 * on this cpu because it had no counters.
T
Thomas Gleixner 已提交
619
	 */
620 621 622 623 624
	if (ctx->task && cpuctx->task_ctx != ctx) {
		if (cpuctx->task_ctx || ctx->task != current)
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
625

626
	spin_lock_irqsave(&ctx->lock, flags);
627
	ctx->is_active = 1;
628
	update_context_time(ctx);
T
Thomas Gleixner 已提交
629 630 631 632 633

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
634
	perf_disable();
T
Thomas Gleixner 已提交
635

636
	add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
637

638 639 640 641 642 643 644 645
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

646 647 648 649 650
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
651
	if (!group_can_go_on(counter, cpuctx, 1))
652 653 654 655
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

656 657 658 659 660 661 662 663
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
664 665
		if (leader->hw_event.pinned) {
			update_group_times(leader);
666
			leader->state = PERF_COUNTER_STATE_ERROR;
667
		}
668
	}
T
Thomas Gleixner 已提交
669

670
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
671 672
		cpuctx->max_pertask--;

673
 unlock:
674
	perf_enable();
675

676
	spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
677 678 679 680 681 682 683 684 685 686 687
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
688 689
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
716
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
717 718 719 720 721 722 723 724 725
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
726 727
	if (list_empty(&counter->list_entry))
		add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
728 729 730
	spin_unlock_irq(&ctx->lock);
}

731 732 733 734
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
735
{
736 737 738 739 740 741
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	unsigned long flags;
	int err;
742

743 744 745 746
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
747 748 749 750 751
	if (ctx->task && cpuctx->task_ctx != ctx) {
		if (cpuctx->task_ctx || ctx->task != current)
			return;
		cpuctx->task_ctx = ctx;
	}
752

753
	spin_lock_irqsave(&ctx->lock, flags);
754
	ctx->is_active = 1;
755
	update_context_time(ctx);
756

757
	counter->prev_state = counter->state;
758 759 760
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
761
	counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
762
	ctx->nr_enabled++;
763 764

	/*
765 766
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
767
	 */
768 769
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
770

771
	if (!group_can_go_on(counter, cpuctx, 1)) {
772
		err = -EEXIST;
773
	} else {
774
		perf_disable();
775 776 777 778 779 780
		if (counter == leader)
			err = group_sched_in(counter, cpuctx, ctx,
					     smp_processor_id());
		else
			err = counter_sched_in(counter, cpuctx, ctx,
					       smp_processor_id());
781
		perf_enable();
782
	}
783 784 785 786 787 788 789 790

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
791 792
		if (leader->hw_event.pinned) {
			update_group_times(leader);
793
			leader->state = PERF_COUNTER_STATE_ERROR;
794
		}
795 796 797
	}

 unlock:
798
	spin_unlock_irqrestore(&ctx->lock, flags);
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
}

/*
 * Enable a counter.
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
849
	if (counter->state == PERF_COUNTER_STATE_OFF) {
850
		counter->state = PERF_COUNTER_STATE_INACTIVE;
851 852
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
853
		ctx->nr_enabled++;
854
	}
855 856 857 858
 out:
	spin_unlock_irq(&ctx->lock);
}

859
static int perf_counter_refresh(struct perf_counter *counter, int refresh)
860
{
861 862 863 864 865 866
	/*
	 * not supported on inherited counters
	 */
	if (counter->hw_event.inherit)
		return -EINVAL;

867 868
	atomic_add(refresh, &counter->event_limit);
	perf_counter_enable(counter);
869 870

	return 0;
871 872
}

873 874 875 876 877
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;

878 879
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
880
	if (likely(!ctx->nr_counters))
881
		goto out;
882
	update_context_time(ctx);
883

884
	perf_disable();
885
	if (ctx->nr_active) {
886 887 888 889 890 891
		list_for_each_entry(counter, &ctx->counter_list, list_entry) {
			if (counter != counter->group_leader)
				counter_sched_out(counter, cpuctx, ctx);
			else
				group_sched_out(counter, cpuctx, ctx);
		}
892
	}
893
	perf_enable();
894
 out:
895 896 897
	spin_unlock(&ctx->lock);
}

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
 * and they both have the same number of enabled counters.
 * If the number of enabled counters is the same, then the set
 * of enabled counters should be the same, because these are both
 * inherited contexts, therefore we can't access individual counters
 * in them directly with an fd; we can only enable/disable all
 * counters via prctl, or enable/disable all counters in a family
 * via ioctl, which will have the same effect on both contexts.
 */
static int context_equiv(struct perf_counter_context *ctx1,
			 struct perf_counter_context *ctx2)
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
		&& ctx1->parent_gen == ctx2->parent_gen
		&& ctx1->nr_enabled == ctx2->nr_enabled;
}

T
Thomas Gleixner 已提交
917 918 919 920 921 922
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
923
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
924 925 926 927
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
928 929
void perf_counter_task_sched_out(struct task_struct *task,
				 struct task_struct *next, int cpu)
T
Thomas Gleixner 已提交
930 931
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
932
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
933
	struct perf_counter_context *next_ctx;
934
	struct pt_regs *regs;
T
Thomas Gleixner 已提交
935

936
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
937 938
		return;

939 940
	update_context_time(ctx);

941
	regs = task_pt_regs(task);
942
	perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
943 944 945 946 947 948 949 950 951 952

	next_ctx = next->perf_counter_ctxp;
	if (next_ctx && context_equiv(ctx, next_ctx)) {
		task->perf_counter_ctxp = next_ctx;
		next->perf_counter_ctxp = ctx;
		ctx->task = next;
		next_ctx->task = task;
		return;
	}

953 954
	__perf_counter_sched_out(ctx, cpuctx);

T
Thomas Gleixner 已提交
955 956 957
	cpuctx->task_ctx = NULL;
}

958 959 960 961
static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

962 963
	if (!cpuctx->task_ctx)
		return;
964 965 966 967
	__perf_counter_sched_out(ctx, cpuctx);
	cpuctx->task_ctx = NULL;
}

968
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
969
{
970
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
971 972
}

973 974 975
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
976 977
{
	struct perf_counter *counter;
978
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
979

980 981
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
982
	if (likely(!ctx->nr_counters))
983
		goto out;
T
Thomas Gleixner 已提交
984

985
	ctx->timestamp = perf_clock();
986

987
	perf_disable();
988 989 990 991 992 993 994 995 996 997 998 999

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    !counter->hw_event.pinned)
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

1000 1001 1002 1003 1004 1005
		if (counter != counter->group_leader)
			counter_sched_in(counter, cpuctx, ctx, cpu);
		else {
			if (group_can_go_on(counter, cpuctx, 1))
				group_sched_in(counter, cpuctx, ctx, cpu);
		}
1006 1007 1008 1009 1010

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1011 1012
		if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
			update_group_times(counter);
1013
			counter->state = PERF_COUNTER_STATE_ERROR;
1014
		}
1015 1016
	}

1017
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1018 1019 1020 1021 1022 1023 1024 1025
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    counter->hw_event.pinned)
			continue;

1026 1027 1028 1029
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
1030 1031 1032
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

1033 1034
		if (counter != counter->group_leader) {
			if (counter_sched_in(counter, cpuctx, ctx, cpu))
1035
				can_add_hw = 0;
1036 1037 1038 1039 1040
		} else {
			if (group_can_go_on(counter, cpuctx, can_add_hw)) {
				if (group_sched_in(counter, cpuctx, ctx, cpu))
					can_add_hw = 0;
			}
1041
		}
T
Thomas Gleixner 已提交
1042
	}
1043
	perf_enable();
1044
 out:
T
Thomas Gleixner 已提交
1045
	spin_unlock(&ctx->lock);
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1062
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
1063

1064 1065
	if (likely(!ctx))
		return;
1066 1067
	if (cpuctx->task_ctx == ctx)
		return;
1068
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
1069 1070 1071
	cpuctx->task_ctx = ctx;
}

1072 1073 1074 1075 1076 1077 1078
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

1079 1080 1081
int perf_counter_task_disable(void)
{
	struct task_struct *curr = current;
1082
	struct perf_counter_context *ctx = curr->perf_counter_ctxp;
1083
	struct perf_counter *counter;
I
Ingo Molnar 已提交
1084
	unsigned long flags;
1085

1086
	if (!ctx || !ctx->nr_counters)
1087 1088
		return 0;

1089
	local_irq_save(flags);
1090

1091
	__perf_counter_task_sched_out(ctx);
1092 1093 1094 1095 1096 1097

	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
1098
	perf_disable();
1099

1100
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1101 1102
		if (counter->state != PERF_COUNTER_STATE_ERROR) {
			update_group_times(counter);
1103
			counter->state = PERF_COUNTER_STATE_OFF;
1104
		}
1105
	}
1106

1107
	perf_enable();
1108

1109
	spin_unlock_irqrestore(&ctx->lock, flags);
1110 1111 1112 1113 1114 1115 1116

	return 0;
}

int perf_counter_task_enable(void)
{
	struct task_struct *curr = current;
1117
	struct perf_counter_context *ctx = curr->perf_counter_ctxp;
1118
	struct perf_counter *counter;
I
Ingo Molnar 已提交
1119
	unsigned long flags;
1120 1121
	int cpu;

1122
	if (!ctx || !ctx->nr_counters)
1123 1124
		return 0;

1125
	local_irq_save(flags);
1126 1127
	cpu = smp_processor_id();

1128
	__perf_counter_task_sched_out(ctx);
1129

1130 1131 1132 1133 1134
	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
1135
	perf_disable();
1136 1137

	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1138
		if (counter->state > PERF_COUNTER_STATE_OFF)
1139
			continue;
1140
		counter->state = PERF_COUNTER_STATE_INACTIVE;
1141 1142
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
I
Ingo Molnar 已提交
1143
		counter->hw_event.disabled = 0;
1144
	}
1145
	perf_enable();
1146 1147 1148 1149 1150

	spin_unlock(&ctx->lock);

	perf_counter_task_sched_in(curr, cpu);

1151
	local_irq_restore(flags);
1152 1153 1154 1155

	return 0;
}

1156 1157 1158
static void perf_log_period(struct perf_counter *counter, u64 period);

static void perf_adjust_freq(struct perf_counter_context *ctx)
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
{
	struct perf_counter *counter;
	u64 irq_period;
	u64 events, period;
	s64 delta;

	spin_lock(&ctx->lock);
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state != PERF_COUNTER_STATE_ACTIVE)
			continue;

		if (!counter->hw_event.freq || !counter->hw_event.irq_freq)
			continue;

		events = HZ * counter->hw.interrupts * counter->hw.irq_period;
		period = div64_u64(events, counter->hw_event.irq_freq);

		delta = (s64)(1 + period - counter->hw.irq_period);
		delta >>= 1;

		irq_period = counter->hw.irq_period + delta;

		if (!irq_period)
			irq_period = 1;

1184 1185
		perf_log_period(counter, irq_period);

1186 1187 1188 1189 1190 1191
		counter->hw.irq_period = irq_period;
		counter->hw.interrupts = 0;
	}
	spin_unlock(&ctx->lock);
}

1192 1193 1194 1195
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
1196 1197 1198
{
	struct perf_counter *counter;

1199
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
1200 1201 1202 1203
		return;

	spin_lock(&ctx->lock);
	/*
1204
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
1205
	 */
1206
	perf_disable();
1207
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1208
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
1209 1210
		break;
	}
1211
	perf_enable();
T
Thomas Gleixner 已提交
1212 1213

	spin_unlock(&ctx->lock);
1214 1215 1216 1217
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
1218 1219 1220 1221 1222 1223 1224
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;

	if (!atomic_read(&nr_counters))
		return;

	cpuctx = &per_cpu(perf_cpu_context, cpu);
1225
	ctx = curr->perf_counter_ctxp;
1226

1227
	perf_adjust_freq(&cpuctx->ctx);
1228 1229
	if (ctx)
		perf_adjust_freq(ctx);
1230

1231
	perf_counter_cpu_sched_out(cpuctx);
1232 1233
	if (ctx)
		__perf_counter_task_sched_out(ctx);
T
Thomas Gleixner 已提交
1234

1235
	rotate_ctx(&cpuctx->ctx);
1236 1237
	if (ctx)
		rotate_ctx(ctx);
1238

1239
	perf_counter_cpu_sched_in(cpuctx, cpu);
1240 1241
	if (ctx)
		perf_counter_task_sched_in(curr, cpu);
T
Thomas Gleixner 已提交
1242 1243 1244 1245 1246
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
1247
static void __read(void *info)
T
Thomas Gleixner 已提交
1248
{
I
Ingo Molnar 已提交
1249
	struct perf_counter *counter = info;
1250
	struct perf_counter_context *ctx = counter->ctx;
I
Ingo Molnar 已提交
1251
	unsigned long flags;
I
Ingo Molnar 已提交
1252

1253
	local_irq_save(flags);
1254
	if (ctx->is_active)
1255
		update_context_time(ctx);
1256
	counter->pmu->read(counter);
1257
	update_counter_times(counter);
1258
	local_irq_restore(flags);
T
Thomas Gleixner 已提交
1259 1260
}

1261
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1262 1263 1264 1265 1266
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1267
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1268
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1269
					 __read, counter, 1);
1270 1271
	} else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
T
Thomas Gleixner 已提交
1272 1273
	}

1274
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1275 1276
}

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
	mutex_init(&ctx->mutex);
	INIT_LIST_HEAD(&ctx->counter_list);
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

T
Thomas Gleixner 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
static void put_context(struct perf_counter_context *ctx)
{
	if (ctx->task)
		put_task_struct(ctx->task);
}

static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;
1303
	struct perf_counter_context *tctx;
T
Thomas Gleixner 已提交
1304 1305 1306 1307 1308 1309 1310
	struct task_struct *task;

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
1311
		if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1345
		put_task_struct(task);
T
Thomas Gleixner 已提交
1346 1347 1348
		return ERR_PTR(-EACCES);
	}

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
	ctx = task->perf_counter_ctxp;
	if (!ctx) {
		ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
		if (!ctx) {
			put_task_struct(task);
			return ERR_PTR(-ENOMEM);
		}
		__perf_counter_init_context(ctx, task);
		/*
		 * Make sure other cpus see correct values for *ctx
		 * once task->perf_counter_ctxp is visible to them.
		 */
		smp_wmb();
		tctx = cmpxchg(&task->perf_counter_ctxp, NULL, ctx);
		if (tctx) {
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
			ctx = tctx;
		}
	}

T
Thomas Gleixner 已提交
1373 1374 1375
	return ctx;
}

P
Peter Zijlstra 已提交
1376 1377 1378 1379 1380
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
1381
	put_ctx(counter->ctx);
P
Peter Zijlstra 已提交
1382 1383 1384
	kfree(counter);
}

1385 1386
static void perf_pending_sync(struct perf_counter *counter);

1387 1388
static void free_counter(struct perf_counter *counter)
{
1389 1390
	perf_pending_sync(counter);

1391
	atomic_dec(&nr_counters);
1392 1393 1394 1395 1396 1397 1398
	if (counter->hw_event.mmap)
		atomic_dec(&nr_mmap_tracking);
	if (counter->hw_event.munmap)
		atomic_dec(&nr_munmap_tracking);
	if (counter->hw_event.comm)
		atomic_dec(&nr_comm_tracking);

1399 1400 1401
	if (counter->destroy)
		counter->destroy(counter);

1402 1403 1404
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1415
	mutex_lock(&ctx->mutex);
1416
	perf_counter_remove_from_context(counter);
1417
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1418

1419
	free_counter(counter);
1420
	put_context(ctx);
T
Thomas Gleixner 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
1431 1432
	u64 values[3];
	int n;
T
Thomas Gleixner 已提交
1433

1434 1435 1436 1437 1438 1439 1440 1441
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

1442
	mutex_lock(&counter->child_mutex);
1443 1444 1445 1446 1447 1448 1449 1450
	values[0] = perf_counter_read(counter);
	n = 1;
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);
1451
	mutex_unlock(&counter->child_mutex);
T
Thomas Gleixner 已提交
1452

1453 1454 1455 1456 1457 1458 1459 1460
	if (count < n * sizeof(u64))
		return -EINVAL;
	count = n * sizeof(u64);

	if (copy_to_user(buf, values, count))
		return -EFAULT;

	return count;
T
Thomas Gleixner 已提交
1461 1462 1463 1464 1465 1466 1467
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

1468
	return perf_read_hw(counter, buf, count);
T
Thomas Gleixner 已提交
1469 1470 1471 1472 1473
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1474
	struct perf_mmap_data *data;
1475
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1476 1477 1478 1479

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
1480
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1481
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1482 1483 1484 1485 1486 1487

	poll_wait(file, &counter->waitq, wait);

	return events;
}

1488 1489
static void perf_counter_reset(struct perf_counter *counter)
{
P
Peter Zijlstra 已提交
1490
	(void)perf_counter_read(counter);
1491
	atomic64_set(&counter->count, 0);
P
Peter Zijlstra 已提交
1492 1493 1494 1495 1496 1497 1498 1499 1500
	perf_counter_update_userpage(counter);
}

static void perf_counter_for_each_sibling(struct perf_counter *counter,
					  void (*func)(struct perf_counter *))
{
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *sibling;

1501
	mutex_lock(&ctx->mutex);
P
Peter Zijlstra 已提交
1502 1503 1504 1505 1506
	counter = counter->group_leader;

	func(counter);
	list_for_each_entry(sibling, &counter->sibling_list, list_entry)
		func(sibling);
1507
	mutex_unlock(&ctx->mutex);
P
Peter Zijlstra 已提交
1508 1509 1510 1511 1512 1513 1514
}

static void perf_counter_for_each_child(struct perf_counter *counter,
					void (*func)(struct perf_counter *))
{
	struct perf_counter *child;

1515
	mutex_lock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1516 1517 1518
	func(counter);
	list_for_each_entry(child, &counter->child_list, child_list)
		func(child);
1519
	mutex_unlock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1520 1521 1522 1523 1524 1525 1526
}

static void perf_counter_for_each(struct perf_counter *counter,
				  void (*func)(struct perf_counter *))
{
	struct perf_counter *child;

1527
	mutex_lock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1528 1529 1530
	perf_counter_for_each_sibling(counter, func);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_for_each_sibling(child, func);
1531
	mutex_unlock(&counter->child_mutex);
1532 1533
}

1534 1535 1536
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1537 1538
	void (*func)(struct perf_counter *);
	u32 flags = arg;
1539 1540 1541

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
P
Peter Zijlstra 已提交
1542
		func = perf_counter_enable;
1543 1544
		break;
	case PERF_COUNTER_IOC_DISABLE:
P
Peter Zijlstra 已提交
1545
		func = perf_counter_disable;
1546
		break;
1547
	case PERF_COUNTER_IOC_RESET:
P
Peter Zijlstra 已提交
1548
		func = perf_counter_reset;
1549
		break;
P
Peter Zijlstra 已提交
1550 1551 1552

	case PERF_COUNTER_IOC_REFRESH:
		return perf_counter_refresh(counter, arg);
1553
	default:
P
Peter Zijlstra 已提交
1554
		return -ENOTTY;
1555
	}
P
Peter Zijlstra 已提交
1556 1557 1558 1559 1560 1561 1562

	if (flags & PERF_IOC_FLAG_GROUP)
		perf_counter_for_each(counter, func);
	else
		perf_counter_for_each_child(counter, func);

	return 0;
1563 1564
}

1565 1566 1567 1568 1569 1570
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
void perf_counter_update_userpage(struct perf_counter *counter)
1571
{
1572 1573 1574 1575 1576 1577 1578 1579 1580
	struct perf_mmap_data *data;
	struct perf_counter_mmap_page *userpg;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	userpg = data->user_page;
1581

1582 1583 1584 1585 1586
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
1587
	++userpg->lock;
1588
	barrier();
1589 1590 1591 1592
	userpg->index = counter->hw.idx;
	userpg->offset = atomic64_read(&counter->count);
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&counter->hw.prev_count);
1593

1594
	barrier();
1595
	++userpg->lock;
1596
	preempt_enable();
1597
unlock:
1598
	rcu_read_unlock();
1599 1600 1601 1602 1603
}

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_counter *counter = vma->vm_file->private_data;
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff == 0) {
		vmf->page = virt_to_page(data->user_page);
	} else {
		int nr = vmf->pgoff - 1;
1616

1617 1618
		if ((unsigned)nr > data->nr_pages)
			goto unlock;
1619

1620 1621
		vmf->page = virt_to_page(data->data_pages[nr]);
	}
1622
	get_page(vmf->page);
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	WARN_ON(atomic_read(&counter->mmap_count));

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;
1656
	atomic_set(&data->lock, -1);
1657 1658 1659

	rcu_assign_pointer(counter->data, data);

1660
	return 0;
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
	return -ENOMEM;
}

static void __perf_mmap_data_free(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data = container_of(rcu_head,
			struct perf_mmap_data, rcu_head);
	int i;

	free_page((unsigned long)data->user_page);
	for (i = 0; i < data->nr_pages; i++)
		free_page((unsigned long)data->data_pages[i]);
	kfree(data);
}

static void perf_mmap_data_free(struct perf_counter *counter)
{
	struct perf_mmap_data *data = counter->data;

	WARN_ON(atomic_read(&counter->mmap_count));

	rcu_assign_pointer(counter->data, NULL);
	call_rcu(&data->rcu_head, __perf_mmap_data_free);
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	atomic_inc(&counter->mmap_count);
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	if (atomic_dec_and_mutex_lock(&counter->mmap_count,
				      &counter->mmap_mutex)) {
1710 1711 1712
		struct user_struct *user = current_user();

		atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1713
		vma->vm_mm->locked_vm -= counter->data->nr_locked;
1714 1715 1716
		perf_mmap_data_free(counter);
		mutex_unlock(&counter->mmap_mutex);
	}
1717 1718 1719
}

static struct vm_operations_struct perf_mmap_vmops = {
1720
	.open  = perf_mmap_open,
1721
	.close = perf_mmap_close,
1722 1723 1724 1725 1726 1727
	.fault = perf_mmap_fault,
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct perf_counter *counter = file->private_data;
1728
	struct user_struct *user = current_user();
1729 1730
	unsigned long vma_size;
	unsigned long nr_pages;
1731
	unsigned long user_locked, user_lock_limit;
1732
	unsigned long locked, lock_limit;
1733
	long user_extra, extra;
1734
	int ret = 0;
1735 1736 1737

	if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
		return -EINVAL;
1738 1739 1740 1741

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

1742 1743 1744 1745 1746
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
1747 1748
		return -EINVAL;

1749
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
1750 1751
		return -EINVAL;

1752 1753
	if (vma->vm_pgoff != 0)
		return -EINVAL;
1754

1755 1756 1757 1758 1759 1760 1761
	mutex_lock(&counter->mmap_mutex);
	if (atomic_inc_not_zero(&counter->mmap_count)) {
		if (nr_pages != counter->data->nr_pages)
			ret = -EINVAL;
		goto unlock;
	}

1762 1763 1764
	user_extra = nr_pages + 1;
	user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1765

1766 1767 1768
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
1769 1770 1771

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
1772
	locked = vma->vm_mm->locked_vm + extra;
1773

1774 1775 1776 1777
	if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
		ret = -EPERM;
		goto unlock;
	}
1778 1779 1780

	WARN_ON(counter->data);
	ret = perf_mmap_data_alloc(counter, nr_pages);
1781 1782 1783 1784
	if (ret)
		goto unlock;

	atomic_set(&counter->mmap_count, 1);
1785
	atomic_long_add(user_extra, &user->locked_vm);
1786 1787
	vma->vm_mm->locked_vm += extra;
	counter->data->nr_locked = extra;
1788
unlock:
1789
	mutex_unlock(&counter->mmap_mutex);
1790 1791 1792 1793

	vma->vm_flags &= ~VM_MAYWRITE;
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
1794 1795

	return ret;
1796 1797
}

P
Peter Zijlstra 已提交
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct perf_counter *counter = filp->private_data;
	struct inode *inode = filp->f_path.dentry->d_inode;
	int retval;

	mutex_lock(&inode->i_mutex);
	retval = fasync_helper(fd, filp, on, &counter->fasync);
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
1814 1815 1816 1817
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
1818 1819
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
1820
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
1821
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
1822 1823
};

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
/*
 * Perf counter wakeup
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

void perf_counter_wakeup(struct perf_counter *counter)
{
	wake_up_all(&counter->waitq);
1834 1835 1836 1837 1838

	if (counter->pending_kill) {
		kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
		counter->pending_kill = 0;
	}
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
static void perf_pending_counter(struct perf_pending_entry *entry)
{
	struct perf_counter *counter = container_of(entry,
			struct perf_counter, pending);

	if (counter->pending_disable) {
		counter->pending_disable = 0;
		perf_counter_disable(counter);
	}

	if (counter->pending_wakeup) {
		counter->pending_wakeup = 0;
		perf_counter_wakeup(counter);
	}
}

1866
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1867

1868
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1869 1870 1871
	PENDING_TAIL,
};

1872 1873
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
1874
{
1875
	struct perf_pending_entry **head;
1876

1877
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1878 1879
		return;

1880 1881 1882
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
1883 1884

	do {
1885 1886
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
1887 1888 1889

	set_perf_counter_pending();

1890
	put_cpu_var(perf_pending_head);
1891 1892 1893 1894
}

static int __perf_pending_run(void)
{
1895
	struct perf_pending_entry *list;
1896 1897
	int nr = 0;

1898
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1899
	while (list != PENDING_TAIL) {
1900 1901
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
1902 1903 1904

		list = list->next;

1905 1906
		func = entry->func;
		entry->next = NULL;
1907 1908 1909 1910 1911 1912 1913
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

1914
		func(entry);
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
		nr++;
	}

	return nr;
}

static inline int perf_not_pending(struct perf_counter *counter)
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
1936
	return counter->pending.next == NULL;
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
}

static void perf_pending_sync(struct perf_counter *counter)
{
	wait_event(counter->waitq, perf_not_pending(counter));
}

void perf_counter_do_pending(void)
{
	__perf_pending_run();
}

1949 1950 1951 1952
/*
 * Callchain support -- arch specific
 */

1953
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1954 1955 1956 1957
{
	return NULL;
}

1958 1959 1960 1961
/*
 * Output
 */

1962 1963 1964 1965
struct perf_output_handle {
	struct perf_counter	*counter;
	struct perf_mmap_data	*data;
	unsigned int		offset;
1966
	unsigned int		head;
1967
	int			nmi;
1968
	int			overflow;
1969 1970
	int			locked;
	unsigned long		flags;
1971 1972
};

1973
static void perf_output_wakeup(struct perf_output_handle *handle)
1974
{
1975 1976
	atomic_set(&handle->data->poll, POLL_IN);

1977
	if (handle->nmi) {
1978
		handle->counter->pending_wakeup = 1;
1979
		perf_pending_queue(&handle->counter->pending,
1980
				   perf_pending_counter);
1981
	} else
1982 1983 1984
		perf_counter_wakeup(handle->counter);
}

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
/*
 * Curious locking construct.
 *
 * We need to ensure a later event doesn't publish a head when a former
 * event isn't done writing. However since we need to deal with NMIs we
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
 * event completes.
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
	int cpu;

	handle->locked = 0;

	local_irq_save(handle->flags);
	cpu = smp_processor_id();

	if (in_nmi() && atomic_read(&data->lock) == cpu)
		return;

2011
	while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
		cpu_relax();

	handle->locked = 1;
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
	int head, cpu;

2022
	data->done_head = data->head;
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2033
	while ((head = atomic_xchg(&data->done_head, 0)))
2034 2035 2036
		data->user_page->data_head = head;

	/*
2037
	 * NMI can happen here, which means we can miss a done_head update.
2038 2039
	 */

2040
	cpu = atomic_xchg(&data->lock, -1);
2041 2042 2043 2044 2045
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2046
	if (unlikely(atomic_read(&data->done_head))) {
2047 2048 2049
		/*
		 * Since we had it locked, we can lock it again.
		 */
2050
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2051 2052 2053 2054 2055
			cpu_relax();

		goto again;
	}

2056
	if (atomic_xchg(&data->wakeup, 0))
2057 2058 2059 2060 2061
		perf_output_wakeup(handle);
out:
	local_irq_restore(handle->flags);
}

2062
static int perf_output_begin(struct perf_output_handle *handle,
2063
			     struct perf_counter *counter, unsigned int size,
2064
			     int nmi, int overflow)
2065
{
2066
	struct perf_mmap_data *data;
2067
	unsigned int offset, head;
2068

2069 2070 2071 2072 2073 2074
	/*
	 * For inherited counters we send all the output towards the parent.
	 */
	if (counter->parent)
		counter = counter->parent;

2075 2076 2077 2078 2079
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto out;

2080
	handle->data	 = data;
2081 2082 2083
	handle->counter	 = counter;
	handle->nmi	 = nmi;
	handle->overflow = overflow;
2084

2085
	if (!data->nr_pages)
2086
		goto fail;
2087

2088 2089
	perf_output_lock(handle);

2090 2091
	do {
		offset = head = atomic_read(&data->head);
P
Peter Zijlstra 已提交
2092
		head += size;
2093 2094
	} while (atomic_cmpxchg(&data->head, offset, head) != offset);

2095
	handle->offset	= offset;
2096
	handle->head	= head;
2097 2098 2099

	if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
		atomic_set(&data->wakeup, 1);
2100

2101
	return 0;
2102

2103
fail:
2104
	perf_output_wakeup(handle);
2105 2106
out:
	rcu_read_unlock();
2107

2108 2109
	return -ENOSPC;
}
2110

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
static void perf_output_copy(struct perf_output_handle *handle,
			     void *buf, unsigned int len)
{
	unsigned int pages_mask;
	unsigned int offset;
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
		unsigned int page_offset;
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
		page_offset = offset & (PAGE_SIZE - 1);
		size	    = min_t(unsigned int, PAGE_SIZE - page_offset, len);

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;
2139

2140 2141 2142 2143 2144
	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
2145 2146
}

P
Peter Zijlstra 已提交
2147 2148 2149
#define perf_output_put(handle, x) \
	perf_output_copy((handle), &(x), sizeof(x))

2150
static void perf_output_end(struct perf_output_handle *handle)
2151
{
2152 2153 2154 2155
	struct perf_counter *counter = handle->counter;
	struct perf_mmap_data *data = handle->data;

	int wakeup_events = counter->hw_event.wakeup_events;
P
Peter Zijlstra 已提交
2156

2157
	if (handle->overflow && wakeup_events) {
2158
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2159
		if (events >= wakeup_events) {
2160
			atomic_sub(wakeup_events, &data->events);
2161
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2162
		}
2163 2164 2165
	}

	perf_output_unlock(handle);
2166
	rcu_read_unlock();
2167 2168
}

2169
static void perf_counter_output(struct perf_counter *counter,
2170
				int nmi, struct pt_regs *regs, u64 addr)
2171
{
2172
	int ret;
2173
	u64 record_type = counter->hw_event.record_type;
2174 2175 2176
	struct perf_output_handle handle;
	struct perf_event_header header;
	u64 ip;
P
Peter Zijlstra 已提交
2177
	struct {
2178
		u32 pid, tid;
2179
	} tid_entry;
2180 2181 2182 2183
	struct {
		u64 event;
		u64 counter;
	} group_entry;
2184 2185
	struct perf_callchain_entry *callchain = NULL;
	int callchain_size = 0;
P
Peter Zijlstra 已提交
2186
	u64 time;
2187 2188 2189
	struct {
		u32 cpu, reserved;
	} cpu_entry;
2190

2191
	header.type = 0;
2192
	header.size = sizeof(header);
2193

2194
	header.misc = PERF_EVENT_MISC_OVERFLOW;
2195
	header.misc |= perf_misc_flags(regs);
2196

2197
	if (record_type & PERF_RECORD_IP) {
2198
		ip = perf_instruction_pointer(regs);
2199
		header.type |= PERF_RECORD_IP;
2200 2201
		header.size += sizeof(ip);
	}
2202

2203
	if (record_type & PERF_RECORD_TID) {
2204
		/* namespace issues */
2205 2206 2207
		tid_entry.pid = current->group_leader->pid;
		tid_entry.tid = current->pid;

2208
		header.type |= PERF_RECORD_TID;
2209 2210 2211
		header.size += sizeof(tid_entry);
	}

2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	if (record_type & PERF_RECORD_TIME) {
		/*
		 * Maybe do better on x86 and provide cpu_clock_nmi()
		 */
		time = sched_clock();

		header.type |= PERF_RECORD_TIME;
		header.size += sizeof(u64);
	}

2222 2223 2224 2225 2226
	if (record_type & PERF_RECORD_ADDR) {
		header.type |= PERF_RECORD_ADDR;
		header.size += sizeof(u64);
	}

2227 2228 2229 2230 2231
	if (record_type & PERF_RECORD_CONFIG) {
		header.type |= PERF_RECORD_CONFIG;
		header.size += sizeof(u64);
	}

2232 2233 2234 2235 2236 2237 2238
	if (record_type & PERF_RECORD_CPU) {
		header.type |= PERF_RECORD_CPU;
		header.size += sizeof(cpu_entry);

		cpu_entry.cpu = raw_smp_processor_id();
	}

2239
	if (record_type & PERF_RECORD_GROUP) {
2240
		header.type |= PERF_RECORD_GROUP;
2241 2242 2243 2244 2245
		header.size += sizeof(u64) +
			counter->nr_siblings * sizeof(group_entry);
	}

	if (record_type & PERF_RECORD_CALLCHAIN) {
2246 2247 2248
		callchain = perf_callchain(regs);

		if (callchain) {
2249
			callchain_size = (1 + callchain->nr) * sizeof(u64);
2250

2251
			header.type |= PERF_RECORD_CALLCHAIN;
2252 2253 2254 2255
			header.size += callchain_size;
		}
	}

2256
	ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2257 2258
	if (ret)
		return;
2259

2260
	perf_output_put(&handle, header);
P
Peter Zijlstra 已提交
2261

2262 2263
	if (record_type & PERF_RECORD_IP)
		perf_output_put(&handle, ip);
P
Peter Zijlstra 已提交
2264

2265 2266
	if (record_type & PERF_RECORD_TID)
		perf_output_put(&handle, tid_entry);
P
Peter Zijlstra 已提交
2267

2268 2269 2270
	if (record_type & PERF_RECORD_TIME)
		perf_output_put(&handle, time);

2271 2272 2273
	if (record_type & PERF_RECORD_ADDR)
		perf_output_put(&handle, addr);

2274 2275 2276
	if (record_type & PERF_RECORD_CONFIG)
		perf_output_put(&handle, counter->hw_event.config);

2277 2278 2279
	if (record_type & PERF_RECORD_CPU)
		perf_output_put(&handle, cpu_entry);

2280 2281 2282
	/*
	 * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
	 */
2283 2284 2285
	if (record_type & PERF_RECORD_GROUP) {
		struct perf_counter *leader, *sub;
		u64 nr = counter->nr_siblings;
P
Peter Zijlstra 已提交
2286

2287
		perf_output_put(&handle, nr);
2288

2289 2290 2291
		leader = counter->group_leader;
		list_for_each_entry(sub, &leader->sibling_list, list_entry) {
			if (sub != counter)
2292
				sub->pmu->read(sub);
2293

2294 2295
			group_entry.event = sub->hw_event.config;
			group_entry.counter = atomic64_read(&sub->count);
2296

2297 2298
			perf_output_put(&handle, group_entry);
		}
2299
	}
P
Peter Zijlstra 已提交
2300

2301 2302
	if (callchain)
		perf_output_copy(&handle, callchain, callchain_size);
2303

2304
	perf_output_end(&handle);
2305 2306
}

2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
/*
 * comm tracking
 */

struct perf_comm_event {
	struct task_struct 	*task;
	char 			*comm;
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
	} event;
};

static void perf_counter_comm_output(struct perf_counter *counter,
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
	int size = comm_event->event.header.size;
	int ret = perf_output_begin(&handle, counter, size, 0, 0);

	if (ret)
		return;

	perf_output_put(&handle, comm_event->event);
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

static int perf_counter_comm_match(struct perf_counter *counter,
				   struct perf_comm_event *comm_event)
{
	if (counter->hw_event.comm &&
	    comm_event->event.header.type == PERF_EVENT_COMM)
		return 1;

	return 0;
}

static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
				  struct perf_comm_event *comm_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_comm_match(counter, comm_event))
			perf_counter_comm_output(counter, comm_event);
	}
	rcu_read_unlock();
}

static void perf_counter_comm_event(struct perf_comm_event *comm_event)
{
	struct perf_cpu_context *cpuctx;
	unsigned int size;
	char *comm = comm_event->task->comm;

2372
	size = ALIGN(strlen(comm)+1, sizeof(u64));
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382

	comm_event->comm = comm;
	comm_event->comm_size = size;

	comm_event->event.header.size = sizeof(comm_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
	put_cpu_var(perf_cpu_context);

2383
	perf_counter_comm_ctx(current->perf_counter_ctxp, comm_event);
2384 2385 2386 2387
}

void perf_counter_comm(struct task_struct *task)
{
2388 2389 2390 2391
	struct perf_comm_event comm_event;

	if (!atomic_read(&nr_comm_tracking))
		return;
2392 2393 2394
	if (!current->perf_counter_ctxp)
		return;

2395
	comm_event = (struct perf_comm_event){
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
		.task	= task,
		.event  = {
			.header = { .type = PERF_EVENT_COMM, },
			.pid	= task->group_leader->pid,
			.tid	= task->pid,
		},
	};

	perf_counter_comm_event(&comm_event);
}

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
/*
 * mmap tracking
 */

struct perf_mmap_event {
	struct file	*file;
	char		*file_name;
	int		file_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
	} event;
};

static void perf_counter_mmap_output(struct perf_counter *counter,
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
	int size = mmap_event->event.header.size;
2432
	int ret = perf_output_begin(&handle, counter, size, 0, 0);
2433 2434 2435 2436 2437 2438 2439

	if (ret)
		return;

	perf_output_put(&handle, mmap_event->event);
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
2440
	perf_output_end(&handle);
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
}

static int perf_counter_mmap_match(struct perf_counter *counter,
				   struct perf_mmap_event *mmap_event)
{
	if (counter->hw_event.mmap &&
	    mmap_event->event.header.type == PERF_EVENT_MMAP)
		return 1;

	if (counter->hw_event.munmap &&
	    mmap_event->event.header.type == PERF_EVENT_MUNMAP)
		return 1;

	return 0;
}

static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
				  struct perf_mmap_event *mmap_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_mmap_match(counter, mmap_event))
			perf_counter_mmap_output(counter, mmap_event);
	}
	rcu_read_unlock();
}

static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
{
	struct perf_cpu_context *cpuctx;
	struct file *file = mmap_event->file;
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
	char *name;

	if (file) {
		buf = kzalloc(PATH_MAX, GFP_KERNEL);
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
2488
		name = d_path(&file->f_path, buf, PATH_MAX);
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
2499
	size = ALIGN(strlen(name)+1, sizeof(u64));
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509

	mmap_event->file_name = name;
	mmap_event->file_size = size;

	mmap_event->event.header.size = sizeof(mmap_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
	put_cpu_var(perf_cpu_context);

2510
	perf_counter_mmap_ctx(current->perf_counter_ctxp, mmap_event);
2511 2512 2513 2514 2515 2516 2517

	kfree(buf);
}

void perf_counter_mmap(unsigned long addr, unsigned long len,
		       unsigned long pgoff, struct file *file)
{
2518 2519 2520 2521
	struct perf_mmap_event mmap_event;

	if (!atomic_read(&nr_mmap_tracking))
		return;
2522 2523
	if (!current->perf_counter_ctxp)
		return;
2524 2525

	mmap_event = (struct perf_mmap_event){
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

void perf_counter_munmap(unsigned long addr, unsigned long len,
			 unsigned long pgoff, struct file *file)
{
2543 2544 2545 2546 2547 2548
	struct perf_mmap_event mmap_event;

	if (!atomic_read(&nr_munmap_tracking))
		return;

	mmap_event = (struct perf_mmap_event){
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MUNMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

2563
/*
2564 2565
 * Log irq_period changes so that analyzing tools can re-normalize the
 * event flow.
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
 */

static void perf_log_period(struct perf_counter *counter, u64 period)
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
		u64				period;
	} freq_event = {
		.header = {
			.type = PERF_EVENT_PERIOD,
			.misc = 0,
			.size = sizeof(freq_event),
		},
		.time = sched_clock(),
		.period = period,
	};

	if (counter->hw.irq_period == period)
		return;

	ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
	if (ret)
		return;

	perf_output_put(&handle, freq_event);
	perf_output_end(&handle);
}

2598 2599 2600 2601 2602
/*
 * Generic counter overflow handling.
 */

int perf_counter_overflow(struct perf_counter *counter,
2603
			  int nmi, struct pt_regs *regs, u64 addr)
2604
{
2605 2606 2607
	int events = atomic_read(&counter->event_limit);
	int ret = 0;

2608 2609
	counter->hw.interrupts++;

2610 2611 2612 2613 2614
	/*
	 * XXX event_limit might not quite work as expected on inherited
	 * counters
	 */

2615
	counter->pending_kill = POLL_IN;
2616 2617
	if (events && atomic_dec_and_test(&counter->event_limit)) {
		ret = 1;
2618
		counter->pending_kill = POLL_HUP;
2619 2620 2621 2622 2623 2624 2625 2626
		if (nmi) {
			counter->pending_disable = 1;
			perf_pending_queue(&counter->pending,
					   perf_pending_counter);
		} else
			perf_counter_disable(counter);
	}

2627
	perf_counter_output(counter, nmi, regs, addr);
2628
	return ret;
2629 2630
}

2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
/*
 * Generic software counter infrastructure
 */

static void perf_swcounter_update(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 prev, now;
	s64 delta;

again:
	prev = atomic64_read(&hwc->prev_count);
	now = atomic64_read(&hwc->count);
	if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
		goto again;

	delta = now - prev;

	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &hwc->period_left);
}

static void perf_swcounter_set_period(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	s64 left = atomic64_read(&hwc->period_left);
	s64 period = hwc->irq_period;

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_add(period, &hwc->period_left);
	}

	atomic64_set(&hwc->prev_count, -left);
	atomic64_set(&hwc->count, -left);
}

2673 2674
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
2675
	enum hrtimer_restart ret = HRTIMER_RESTART;
2676 2677
	struct perf_counter *counter;
	struct pt_regs *regs;
2678
	u64 period;
2679 2680

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
2681
	counter->pmu->read(counter);
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691

	regs = get_irq_regs();
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
	if ((counter->hw_event.exclude_kernel || !regs) &&
			!counter->hw_event.exclude_user)
		regs = task_pt_regs(current);

2692
	if (regs) {
2693
		if (perf_counter_overflow(counter, 0, regs, 0))
2694 2695
			ret = HRTIMER_NORESTART;
	}
2696

2697 2698
	period = max_t(u64, 10000, counter->hw.irq_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2699

2700
	return ret;
2701 2702 2703
}

static void perf_swcounter_overflow(struct perf_counter *counter,
2704
				    int nmi, struct pt_regs *regs, u64 addr)
2705
{
2706 2707
	perf_swcounter_update(counter);
	perf_swcounter_set_period(counter);
2708
	if (perf_counter_overflow(counter, nmi, regs, addr))
2709 2710 2711
		/* soft-disable the counter */
		;

2712 2713
}

2714
static int perf_swcounter_match(struct perf_counter *counter,
2715 2716
				enum perf_event_types type,
				u32 event, struct pt_regs *regs)
2717 2718 2719 2720
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return 0;

2721
	if (perf_event_raw(&counter->hw_event))
2722 2723
		return 0;

2724
	if (perf_event_type(&counter->hw_event) != type)
2725 2726
		return 0;

2727
	if (perf_event_id(&counter->hw_event) != event)
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
		return 0;

	if (counter->hw_event.exclude_user && user_mode(regs))
		return 0;

	if (counter->hw_event.exclude_kernel && !user_mode(regs))
		return 0;

	return 1;
}

2739
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2740
			       int nmi, struct pt_regs *regs, u64 addr)
2741 2742 2743
{
	int neg = atomic64_add_negative(nr, &counter->hw.count);
	if (counter->hw.irq_period && !neg)
2744
		perf_swcounter_overflow(counter, nmi, regs, addr);
2745 2746
}

2747
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2748
				     enum perf_event_types type, u32 event,
2749 2750
				     u64 nr, int nmi, struct pt_regs *regs,
				     u64 addr)
2751 2752 2753
{
	struct perf_counter *counter;

2754
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2755 2756
		return;

P
Peter Zijlstra 已提交
2757 2758
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2759
		if (perf_swcounter_match(counter, type, event, regs))
2760
			perf_swcounter_add(counter, nr, nmi, regs, addr);
2761
	}
P
Peter Zijlstra 已提交
2762
	rcu_read_unlock();
2763 2764
}

P
Peter Zijlstra 已提交
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

2779
static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2780 2781
				   u64 nr, int nmi, struct pt_regs *regs,
				   u64 addr)
2782 2783
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
2784 2785 2786 2787 2788 2789 2790
	int *recursion = perf_swcounter_recursion_context(cpuctx);

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
2791

2792 2793
	perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
				 nr, nmi, regs, addr);
2794 2795
	if (cpuctx->task_ctx) {
		perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2796
					 nr, nmi, regs, addr);
2797
	}
2798

P
Peter Zijlstra 已提交
2799 2800 2801 2802
	barrier();
	(*recursion)--;

out:
2803 2804 2805
	put_cpu_var(perf_cpu_context);
}

2806 2807
void
perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2808
{
2809
	__perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2810 2811
}

2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
static void perf_swcounter_read(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
	perf_swcounter_set_period(counter);
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

2828
static const struct pmu perf_ops_generic = {
2829 2830 2831 2832 2833
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
};

2834 2835 2836 2837
/*
 * Software counter: cpu wall time clock
 */

2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

2850 2851 2852 2853 2854 2855
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2856 2857
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2858
	if (hwc->irq_period) {
2859
		u64 period = max_t(u64, 10000, hwc->irq_period);
2860
		__hrtimer_start_range_ns(&hwc->hrtimer,
2861
				ns_to_ktime(period), 0,
2862 2863 2864 2865 2866 2867
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

2868 2869
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
2870 2871
	if (counter->hw.irq_period)
		hrtimer_cancel(&counter->hw.hrtimer);
2872
	cpu_clock_perf_counter_update(counter);
2873 2874 2875 2876
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
2877
	cpu_clock_perf_counter_update(counter);
2878 2879
}

2880
static const struct pmu perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
2881 2882 2883
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
2884 2885
};

2886 2887 2888 2889
/*
 * Software counter: task time clock
 */

2890
static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
I
Ingo Molnar 已提交
2891
{
2892
	u64 prev;
I
Ingo Molnar 已提交
2893 2894
	s64 delta;

2895
	prev = atomic64_xchg(&counter->hw.prev_count, now);
I
Ingo Molnar 已提交
2896 2897
	delta = now - prev;
	atomic64_add(delta, &counter->count);
2898 2899
}

2900
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
2901
{
2902
	struct hw_perf_counter *hwc = &counter->hw;
2903 2904 2905
	u64 now;

	now = counter->ctx->time;
2906

2907
	atomic64_set(&hwc->prev_count, now);
2908 2909
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2910
	if (hwc->irq_period) {
2911
		u64 period = max_t(u64, 10000, hwc->irq_period);
2912
		__hrtimer_start_range_ns(&hwc->hrtimer,
2913
				ns_to_ktime(period), 0,
2914 2915
				HRTIMER_MODE_REL, 0);
	}
2916 2917

	return 0;
I
Ingo Molnar 已提交
2918 2919 2920
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
2921
{
2922 2923
	if (counter->hw.irq_period)
		hrtimer_cancel(&counter->hw.hrtimer);
2924 2925
	task_clock_perf_counter_update(counter, counter->ctx->time);

2926
}
I
Ingo Molnar 已提交
2927

2928 2929
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
	u64 time;

	if (!in_nmi()) {
		update_context_time(counter->ctx);
		time = counter->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - counter->ctx->timestamp;
		time = counter->ctx->time + delta;
	}

	task_clock_perf_counter_update(counter, time);
2942 2943
}

2944
static const struct pmu perf_ops_task_clock = {
I
Ingo Molnar 已提交
2945 2946 2947
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
2948 2949
};

2950 2951 2952 2953
/*
 * Software counter: cpu migrations
 */

2954
static inline u64 get_cpu_migrations(struct perf_counter *counter)
2955
{
2956 2957 2958 2959 2960
	struct task_struct *curr = counter->ctx->task;

	if (curr)
		return curr->se.nr_migrations;
	return cpu_nr_migrations(smp_processor_id());
2961 2962 2963 2964 2965 2966 2967 2968
}

static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
2969
	now = get_cpu_migrations(counter);
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

2983
static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2984
{
2985 2986 2987
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count,
			     get_cpu_migrations(counter));
2988
	return 0;
2989 2990 2991 2992 2993 2994 2995
}

static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

2996
static const struct pmu perf_ops_cpu_migrations = {
I
Ingo Molnar 已提交
2997 2998 2999
	.enable		= cpu_migrations_perf_counter_enable,
	.disable	= cpu_migrations_perf_counter_disable,
	.read		= cpu_migrations_perf_counter_read,
3000 3001
};

3002 3003 3004
#ifdef CONFIG_EVENT_PROFILE
void perf_tpcounter_event(int event_id)
{
3005 3006 3007 3008 3009
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);

3010
	__perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3011
}
3012
EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3013 3014 3015 3016 3017 3018

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
3019
	ftrace_profile_disable(perf_event_id(&counter->hw_event));
3020 3021
}

3022
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3023
{
3024
	int event_id = perf_event_id(&counter->hw_event);
3025 3026 3027 3028 3029 3030 3031
	int ret;

	ret = ftrace_profile_enable(event_id);
	if (ret)
		return NULL;

	counter->destroy = tp_perf_counter_destroy;
3032
	counter->hw.irq_period = counter->hw_event.irq_period;
3033 3034 3035 3036

	return &perf_ops_generic;
}
#else
3037
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3038 3039 3040 3041 3042
{
	return NULL;
}
#endif

3043
static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3044
{
3045
	const struct pmu *pmu = NULL;
3046

3047 3048 3049 3050 3051 3052 3053
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
3054
	switch (perf_event_id(&counter->hw_event)) {
3055
	case PERF_COUNT_CPU_CLOCK:
3056
		pmu = &perf_ops_cpu_clock;
3057

3058
		break;
3059
	case PERF_COUNT_TASK_CLOCK:
3060 3061 3062 3063 3064
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
3065
			pmu = &perf_ops_task_clock;
3066
		else
3067
			pmu = &perf_ops_cpu_clock;
3068

3069
		break;
3070
	case PERF_COUNT_PAGE_FAULTS:
3071 3072
	case PERF_COUNT_PAGE_FAULTS_MIN:
	case PERF_COUNT_PAGE_FAULTS_MAJ:
3073
	case PERF_COUNT_CONTEXT_SWITCHES:
3074
		pmu = &perf_ops_generic;
3075
		break;
3076
	case PERF_COUNT_CPU_MIGRATIONS:
3077
		if (!counter->hw_event.exclude_kernel)
3078
			pmu = &perf_ops_cpu_migrations;
3079
		break;
3080
	}
3081

3082
	return pmu;
3083 3084
}

T
Thomas Gleixner 已提交
3085 3086 3087 3088
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
3089 3090
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
		   int cpu,
3091
		   struct perf_counter_context *ctx,
3092 3093
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
3094
{
3095
	const struct pmu *pmu;
I
Ingo Molnar 已提交
3096
	struct perf_counter *counter;
3097
	struct hw_perf_counter *hwc;
3098
	long err;
T
Thomas Gleixner 已提交
3099

3100
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
3101
	if (!counter)
3102
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
3103

3104 3105 3106 3107 3108 3109 3110
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

3111 3112 3113
	mutex_init(&counter->child_mutex);
	INIT_LIST_HEAD(&counter->child_list);

3114
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
3115
	INIT_LIST_HEAD(&counter->event_entry);
3116
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
3117 3118
	init_waitqueue_head(&counter->waitq);

3119 3120
	mutex_init(&counter->mmap_mutex);

I
Ingo Molnar 已提交
3121 3122
	counter->cpu			= cpu;
	counter->hw_event		= *hw_event;
3123
	counter->group_leader		= group_leader;
3124
	counter->pmu			= NULL;
3125
	counter->ctx			= ctx;
3126
	get_ctx(ctx);
I
Ingo Molnar 已提交
3127

3128
	counter->state = PERF_COUNTER_STATE_INACTIVE;
3129 3130 3131
	if (hw_event->disabled)
		counter->state = PERF_COUNTER_STATE_OFF;

3132
	pmu = NULL;
3133

3134 3135
	hwc = &counter->hw;
	if (hw_event->freq && hw_event->irq_freq)
3136
		hwc->irq_period = div64_u64(TICK_NSEC, hw_event->irq_freq);
3137 3138 3139
	else
		hwc->irq_period = hw_event->irq_period;

3140 3141 3142 3143 3144 3145
	/*
	 * we currently do not support PERF_RECORD_GROUP on inherited counters
	 */
	if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
		goto done;

3146
	if (perf_event_raw(hw_event)) {
3147
		pmu = hw_perf_counter_init(counter);
3148 3149 3150 3151
		goto done;
	}

	switch (perf_event_type(hw_event)) {
3152
	case PERF_TYPE_HARDWARE:
3153
		pmu = hw_perf_counter_init(counter);
3154 3155 3156
		break;

	case PERF_TYPE_SOFTWARE:
3157
		pmu = sw_perf_counter_init(counter);
3158 3159 3160
		break;

	case PERF_TYPE_TRACEPOINT:
3161
		pmu = tp_perf_counter_init(counter);
3162 3163
		break;
	}
3164 3165
done:
	err = 0;
3166
	if (!pmu)
3167
		err = -EINVAL;
3168 3169
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
3170

3171
	if (err) {
I
Ingo Molnar 已提交
3172
		kfree(counter);
3173
		return ERR_PTR(err);
I
Ingo Molnar 已提交
3174
	}
3175

3176
	counter->pmu = pmu;
T
Thomas Gleixner 已提交
3177

3178
	atomic_inc(&nr_counters);
3179 3180 3181 3182 3183 3184 3185
	if (counter->hw_event.mmap)
		atomic_inc(&nr_mmap_tracking);
	if (counter->hw_event.munmap)
		atomic_inc(&nr_munmap_tracking);
	if (counter->hw_event.comm)
		atomic_inc(&nr_comm_tracking);

T
Thomas Gleixner 已提交
3186 3187 3188 3189
	return counter;
}

/**
3190
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
3191 3192
 *
 * @hw_event_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
3193
 * @pid:		target pid
I
Ingo Molnar 已提交
3194 3195
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
3196
 */
3197
SYSCALL_DEFINE5(perf_counter_open,
3198
		const struct perf_counter_hw_event __user *, hw_event_uptr,
3199
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
3200
{
3201
	struct perf_counter *counter, *group_leader;
I
Ingo Molnar 已提交
3202
	struct perf_counter_hw_event hw_event;
3203
	struct perf_counter_context *ctx;
3204
	struct file *counter_file = NULL;
3205 3206
	struct file *group_file = NULL;
	int fput_needed = 0;
3207
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
3208 3209
	int ret;

3210 3211 3212 3213
	/* for future expandability... */
	if (flags)
		return -EINVAL;

I
Ingo Molnar 已提交
3214
	if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3215 3216
		return -EFAULT;

3217
	/*
I
Ingo Molnar 已提交
3218 3219 3220 3221 3222 3223 3224 3225
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
3226 3227 3228 3229 3230 3231
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
3232
			goto err_put_context;
3233
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
3234
			goto err_put_context;
3235 3236 3237

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
3238 3239 3240 3241 3242 3243 3244 3245
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
3246
		 */
I
Ingo Molnar 已提交
3247 3248
		if (group_leader->ctx != ctx)
			goto err_put_context;
3249 3250 3251 3252 3253
		/*
		 * Only a group leader can be exclusive or pinned
		 */
		if (hw_event.exclusive || hw_event.pinned)
			goto err_put_context;
3254 3255
	}

3256 3257
	counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
				     GFP_KERNEL);
3258 3259
	ret = PTR_ERR(counter);
	if (IS_ERR(counter))
T
Thomas Gleixner 已提交
3260 3261 3262 3263
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
3264 3265 3266 3267 3268 3269 3270
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
3271
	mutex_lock(&ctx->mutex);
3272
	perf_install_in_context(ctx, counter, cpu);
3273
	mutex_unlock(&ctx->mutex);
3274 3275

	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
3276

3277 3278 3279
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
3280 3281
	return ret;

3282
err_free_put_context:
T
Thomas Gleixner 已提交
3283 3284 3285 3286 3287
	kfree(counter);

err_put_context:
	put_context(ctx);

3288
	goto out_fput;
T
Thomas Gleixner 已提交
3289 3290
}

3291 3292 3293
/*
 * inherit a counter from parent task to child task:
 */
3294
static struct perf_counter *
3295 3296 3297 3298
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
3299
	      struct perf_counter *group_leader,
3300 3301 3302 3303
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

3304 3305 3306 3307 3308 3309 3310 3311 3312
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

3313
	child_counter = perf_counter_alloc(&parent_counter->hw_event,
3314 3315
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
3316 3317
	if (IS_ERR(child_counter))
		return child_counter;
3318

3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
	/*
	 * Make the child state follow the state of the parent counter,
	 * not its hw_event.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_counter_{en,dis}able_family.
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

3329 3330 3331
	/*
	 * Link it up in the child's context:
	 */
3332
	add_counter_to_ctx(child_counter, child_ctx);
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
	child_counter->hw_event.inherit = 1;

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

3348 3349 3350
	/*
	 * Link this into the parent counter's child list
	 */
3351
	mutex_lock(&parent_counter->child_mutex);
3352
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3353
	mutex_unlock(&parent_counter->child_mutex);
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;
3366
	struct perf_counter *child_ctr;
3367 3368 3369

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
3370 3371
	if (IS_ERR(leader))
		return PTR_ERR(leader);
3372
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3373 3374 3375 3376
		child_ctr = inherit_counter(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
3377
	}
3378 3379 3380
	return 0;
}

3381 3382 3383
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
3384
	u64 child_val;
3385 3386 3387 3388 3389 3390 3391

	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);
3392 3393 3394 3395
	atomic64_add(child_counter->total_time_enabled,
		     &parent_counter->child_total_time_enabled);
	atomic64_add(child_counter->total_time_running,
		     &parent_counter->child_total_time_running);
3396 3397 3398 3399

	/*
	 * Remove this counter from the parent's list
	 */
3400
	mutex_lock(&parent_counter->child_mutex);
3401
	list_del_init(&child_counter->child_list);
3402
	mutex_unlock(&parent_counter->child_mutex);
3403 3404 3405 3406 3407 3408 3409 3410

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

3411 3412 3413 3414 3415 3416 3417
static void
__perf_counter_exit_task(struct task_struct *child,
			 struct perf_counter *child_counter,
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;

3418
	update_counter_times(child_counter);
3419 3420

	spin_lock_irq(&child_ctx->lock);
3421
	list_del_counter(child_counter, child_ctx);
3422
	spin_unlock_irq(&child_ctx->lock);
3423

3424 3425 3426 3427 3428 3429
	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
3430 3431
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
3432
		free_counter(child_counter);
3433
	}
3434 3435 3436
}

/*
3437
 * When a child task exits, feed back counter values to parent counters.
3438
 *
3439
 * Note: we may be running in child context, but the PID is not hashed
3440
 * anymore so new counters will not be added.
3441 3442
 * (XXX not sure that is true when we get called from flush_old_exec.
 *  -- paulus)
3443 3444 3445 3446 3447
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;
3448
	unsigned long flags;
3449

3450 3451
	WARN_ON_ONCE(child != current);

3452
	child_ctx = child->perf_counter_ctxp;
3453

3454
	if (likely(!child_ctx))
3455 3456
		return;

3457 3458 3459 3460 3461 3462 3463
	local_irq_save(flags);
	__perf_counter_task_sched_out(child_ctx);
	child->perf_counter_ctxp = NULL;
	local_irq_restore(flags);

	mutex_lock(&child_ctx->mutex);

3464
again:
3465 3466 3467
	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
		__perf_counter_exit_task(child, child_counter, child_ctx);
3468 3469 3470 3471 3472 3473 3474 3475

	/*
	 * If the last counter was a group counter, it will have appended all
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
	if (!list_empty(&child_ctx->counter_list))
		goto again;
3476 3477 3478 3479

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
3480 3481 3482 3483 3484 3485 3486 3487
}

/*
 * Initialize the perf_counter context in task_struct
 */
void perf_counter_init_task(struct task_struct *child)
{
	struct perf_counter_context *child_ctx, *parent_ctx;
3488
	struct perf_counter *counter;
3489
	struct task_struct *parent = current;
3490
	int inherited_all = 1;
3491

3492
	child->perf_counter_ctxp = NULL;
3493 3494 3495

	/*
	 * This is executed from the parent task context, so inherit
3496 3497
	 * counters that have been marked for cloning.
	 * First allocate and initialize a context for the child.
3498 3499
	 */

3500 3501 3502 3503 3504 3505
	child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
	if (!child_ctx)
		return;

	parent_ctx = parent->perf_counter_ctxp;
	if (likely(!parent_ctx || !parent_ctx->nr_counters))
3506 3507
		return;

3508 3509 3510
	__perf_counter_init_context(child_ctx, child);
	child->perf_counter_ctxp = child_ctx;

3511 3512 3513 3514
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
3515
	mutex_lock(&parent_ctx->mutex);
3516 3517 3518 3519 3520

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
3521 3522 3523 3524
	list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
		if (counter != counter->group_leader)
			continue;

3525 3526
		if (!counter->hw_event.inherit) {
			inherited_all = 0;
3527
			continue;
3528
		}
3529

3530
		if (inherit_group(counter, parent,
3531 3532
				  parent_ctx, child, child_ctx)) {
			inherited_all = 0;
3533
			break;
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
		}
	}

	if (inherited_all) {
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
		 */
		if (parent_ctx->parent_ctx) {
			child_ctx->parent_ctx = parent_ctx->parent_ctx;
			child_ctx->parent_gen = parent_ctx->parent_gen;
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
3550 3551
	}

3552
	mutex_unlock(&parent_ctx->mutex);
3553 3554
}

3555
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
3556
{
3557
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
3558

3559 3560
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
3561

3562
	spin_lock(&perf_resource_lock);
3563
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3564
	spin_unlock(&perf_resource_lock);
3565

3566
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
3567 3568 3569
}

#ifdef CONFIG_HOTPLUG_CPU
3570
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
3571 3572 3573 3574 3575
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

3576 3577
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
3578
}
3579
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
3580
{
3581 3582 3583 3584
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
3585
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3586
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3587 3588
}
#else
3589
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
3601
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
3602 3603 3604 3605
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
3606
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
};

3620
void __init perf_counter_init(void)
T
Thomas Gleixner 已提交
3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

3647
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3648 3649 3650 3651 3652 3653 3654 3655 3656
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
3657
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

3679
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3680
	perf_overcommit = val;
3681
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);