perf_counter.c 102.1 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3
/*
 * Performance counter core code
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 9
 *
 *  For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18
#include <linux/poll.h>
#include <linux/sysfs.h>
19
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
20
#include <linux/percpu.h>
21
#include <linux/ptrace.h>
22 23 24
#include <linux/vmstat.h>
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
25 26 27
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
28
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
29 30
#include <linux/perf_counter.h>

31 32
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
33 34 35 36 37
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

38
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
39 40 41
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

42
static atomic_t nr_counters __read_mostly;
P
Peter Zijlstra 已提交
43 44
static atomic_t nr_mmap_counters __read_mostly;
static atomic_t nr_comm_counters __read_mostly;
45

46
/*
47 48 49 50
 * perf counter paranoia level:
 *  0 - not paranoid
 *  1 - disallow cpu counters to unpriv
 *  2 - disallow kernel profiling to unpriv
51
 */
52
int sysctl_perf_counter_paranoid __read_mostly;
53 54 55 56 57 58 59 60 61 62 63

static inline bool perf_paranoid_cpu(void)
{
	return sysctl_perf_counter_paranoid > 0;
}

static inline bool perf_paranoid_kernel(void)
{
	return sysctl_perf_counter_paranoid > 1;
}

64
int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
65 66 67 68 69

/*
 * max perf counter sample rate
 */
int sysctl_perf_counter_sample_rate __read_mostly = 100000;
70

71 72
static atomic64_t perf_counter_id;

T
Thomas Gleixner 已提交
73
/*
74
 * Lock for (sysadmin-configurable) counter reservations:
T
Thomas Gleixner 已提交
75
 */
76
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
77 78 79 80

/*
 * Architecture provided APIs - weak aliases:
 */
81
extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
82
{
83
	return NULL;
T
Thomas Gleixner 已提交
84 85
}

86 87 88
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

89
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
90 91 92

int __weak
hw_perf_group_sched_in(struct perf_counter *group_leader,
93 94 95 96 97
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
98

99 100
void __weak perf_counter_print_debug(void)	{ }

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
static DEFINE_PER_CPU(int, disable_count);

void __perf_disable(void)
{
	__get_cpu_var(disable_count)++;
}

bool __perf_enable(void)
{
	return !--__get_cpu_var(disable_count);
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

125 126
static void get_ctx(struct perf_counter_context *ctx)
{
127
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
128 129
}

130 131 132 133 134 135 136 137
static void free_ctx(struct rcu_head *head)
{
	struct perf_counter_context *ctx;

	ctx = container_of(head, struct perf_counter_context, rcu_head);
	kfree(ctx);
}

138 139
static void put_ctx(struct perf_counter_context *ctx)
{
140 141 142
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
143 144 145
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
146
	}
147 148
}

149 150 151 152 153
/*
 * Get the perf_counter_context for a task and lock it.
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
154 155
static struct perf_counter_context *
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
{
	struct perf_counter_context *ctx;

	rcu_read_lock();
 retry:
	ctx = rcu_dereference(task->perf_counter_ctxp);
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
		 * perf_counter_task_sched_out, though the
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
		spin_lock_irqsave(&ctx->lock, *flags);
		if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
			spin_unlock_irqrestore(&ctx->lock, *flags);
			goto retry;
		}
178 179 180 181 182

		if (!atomic_inc_not_zero(&ctx->refcount)) {
			spin_unlock_irqrestore(&ctx->lock, *flags);
			ctx = NULL;
		}
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
{
	struct perf_counter_context *ctx;
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
		spin_unlock_irqrestore(&ctx->lock, flags);
	}
	return ctx;
}

static void perf_unpin_context(struct perf_counter_context *ctx)
{
	unsigned long flags;

	spin_lock_irqsave(&ctx->lock, flags);
	--ctx->pin_count;
	spin_unlock_irqrestore(&ctx->lock, flags);
	put_ctx(ctx);
}

216 217 218 219
/*
 * Add a counter from the lists for its context.
 * Must be called with ctx->mutex and ctx->lock held.
 */
220 221 222 223 224 225 226 227 228 229
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
P
Peter Zijlstra 已提交
230
	if (group_leader == counter)
231
		list_add_tail(&counter->list_entry, &ctx->counter_list);
P
Peter Zijlstra 已提交
232
	else {
233
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
234 235
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
236 237

	list_add_rcu(&counter->event_entry, &ctx->event_list);
238
	ctx->nr_counters++;
239 240
}

241 242
/*
 * Remove a counter from the lists for its context.
243
 * Must be called with ctx->mutex and ctx->lock held.
244
 */
245 246 247 248 249
static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

250 251
	if (list_empty(&counter->list_entry))
		return;
252 253
	ctx->nr_counters--;

254
	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
255
	list_del_rcu(&counter->event_entry);
256

P
Peter Zijlstra 已提交
257 258 259
	if (counter->group_leader != counter)
		counter->group_leader->nr_siblings--;

260 261 262 263 264 265 266 267
	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

268
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
269 270 271 272
		sibling->group_leader = sibling;
	}
}

273 274 275 276 277 278 279 280 281
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
282
	counter->tstamp_stopped = ctx->time;
283
	counter->pmu->disable(counter);
284 285 286 287 288
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
289
	if (counter->attr.exclusive || !cpuctx->active_oncpu)
290 291 292
		cpuctx->exclusive = 0;
}

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

311
	if (group_counter->attr.exclusive)
312 313 314
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
315 316 317 318 319 320
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
321
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
322 323 324 325 326 327 328 329 330 331
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
332
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
333 334
		return;

335
	spin_lock(&ctx->lock);
336 337 338 339 340
	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level.
	 */
	perf_disable();
T
Thomas Gleixner 已提交
341

342 343
	counter_sched_out(counter, cpuctx, ctx);

344
	list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
345 346 347 348 349 350 351 352 353 354 355

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

356
	perf_enable();
357
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
358 359 360 361 362 363
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
364
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
365 366 367
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
368 369 370 371 372 373 374
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
 * When called from perf_counter_exit_task, it's OK because the
 * context has been detached from its task.
T
Thomas Gleixner 已提交
375
 */
376
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
377 378 379 380 381 382 383 384 385 386
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
387
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
388 389 390 391 392
					 counter, 1);
		return;
	}

retry:
393
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
394 395 396 397 398 399
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
400
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
401 402 403 404 405 406
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
407
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
408 409
	 * succeed.
	 */
410 411
	if (!list_empty(&counter->list_entry)) {
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
412 413 414 415
	}
	spin_unlock_irq(&ctx->lock);
}

416
static inline u64 perf_clock(void)
417
{
418
	return cpu_clock(smp_processor_id());
419 420 421 422 423
}

/*
 * Update the record of the current time in a context.
 */
424
static void update_context_time(struct perf_counter_context *ctx)
425
{
426 427 428 429
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
430 431 432 433 434 435 436 437 438 439
}

/*
 * Update the total_time_enabled and total_time_running fields for a counter.
 */
static void update_counter_times(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	u64 run_end;

440 441 442 443 444 445 446 447 448 449 450
	if (counter->state < PERF_COUNTER_STATE_INACTIVE)
		return;

	counter->total_time_enabled = ctx->time - counter->tstamp_enabled;

	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		run_end = counter->tstamp_stopped;
	else
		run_end = ctx->time;

	counter->total_time_running = run_end - counter->tstamp_running;
451 452 453 454 455 456 457 458 459 460 461 462 463 464
}

/*
 * Update total_time_enabled and total_time_running for all counters in a group.
 */
static void update_group_times(struct perf_counter *leader)
{
	struct perf_counter *counter;

	update_counter_times(leader);
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		update_counter_times(counter);
}

465 466 467 468 469 470 471 472 473 474 475 476 477
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
478
	if (ctx->task && cpuctx->task_ctx != ctx)
479 480
		return;

481
	spin_lock(&ctx->lock);
482 483 484 485 486 487

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
488
		update_context_time(ctx);
489
		update_counter_times(counter);
490 491 492 493 494 495 496
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

497
	spin_unlock(&ctx->lock);
498 499 500 501
}

/*
 * Disable a counter.
502 503 504 505 506 507 508 509 510 511
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This condition is satisifed when called through
 * perf_counter_for_each_child or perf_counter_for_each because they
 * hold the top-level counter's child_mutex, so any descendant that
 * goes to exit will block in sync_child_counter.
 * When called from perf_pending_counter it's OK because counter->ctx
 * is the current context on this CPU and preemption is disabled,
 * hence we can't get into perf_counter_task_sched_out for this context.
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
543 544
	if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
545
		counter->state = PERF_COUNTER_STATE_OFF;
546
	}
547 548 549 550

	spin_unlock_irq(&ctx->lock);
}

551 552 553 554 555 556
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
557
	if (counter->state <= PERF_COUNTER_STATE_OFF)
558 559 560 561 562 563 564 565 566
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

567
	if (counter->pmu->enable(counter)) {
568 569 570 571 572
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

573
	counter->tstamp_running += ctx->time - counter->tstamp_stopped;
574

575 576
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
577 578
	ctx->nr_active++;

579
	if (counter->attr.exclusive)
580 581
		cpuctx->exclusive = 1;

582 583 584
	return 0;
}

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
static int
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
	struct perf_counter *counter, *partial_group;
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;

	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
	}
	counter_sched_out(group_counter, cpuctx, ctx);

	return -EAGAIN;
}

631 632 633 634 635 636 637 638 639 640
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
P
Peter Zijlstra 已提交
641

642 643 644
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
P
Peter Zijlstra 已提交
645

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
671
	if (counter->attr.exclusive && cpuctx->active_oncpu)
672 673 674 675 676 677 678 679
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

680 681 682 683
static void add_counter_to_ctx(struct perf_counter *counter,
			       struct perf_counter_context *ctx)
{
	list_add_counter(counter, ctx);
684 685 686
	counter->tstamp_enabled = ctx->time;
	counter->tstamp_running = ctx->time;
	counter->tstamp_stopped = ctx->time;
687 688
}

T
Thomas Gleixner 已提交
689
/*
690
 * Cross CPU call to install and enable a performance counter
691 692
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
693 694 695 696 697 698
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
699
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
700
	int cpu = smp_processor_id();
701
	int err;
T
Thomas Gleixner 已提交
702 703 704 705 706

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
707 708
	 * Or possibly this is the right context but it isn't
	 * on this cpu because it had no counters.
T
Thomas Gleixner 已提交
709
	 */
710
	if (ctx->task && cpuctx->task_ctx != ctx) {
711
		if (cpuctx->task_ctx || ctx->task != current)
712 713 714
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
715

716
	spin_lock(&ctx->lock);
717
	ctx->is_active = 1;
718
	update_context_time(ctx);
T
Thomas Gleixner 已提交
719 720 721 722 723

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
724
	perf_disable();
T
Thomas Gleixner 已提交
725

726
	add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
727

728 729 730 731 732 733 734 735
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

736 737 738 739 740
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
741
	if (!group_can_go_on(counter, cpuctx, 1))
742 743 744 745
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

746 747 748 749 750 751 752 753
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
754
		if (leader->attr.pinned) {
755
			update_group_times(leader);
756
			leader->state = PERF_COUNTER_STATE_ERROR;
757
		}
758
	}
T
Thomas Gleixner 已提交
759

760
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
761 762
		cpuctx->max_pertask--;

763
 unlock:
764
	perf_enable();
765

766
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
767 768 769 770 771 772 773 774 775 776 777
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
778 779
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
806
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
807 808 809 810 811 812 813 814 815
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
816 817
	if (list_empty(&counter->list_entry))
		add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
818 819 820
	spin_unlock_irq(&ctx->lock);
}

821 822 823 824
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
825
{
826 827 828 829 830
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	int err;
831

832 833 834 835
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
836
	if (ctx->task && cpuctx->task_ctx != ctx) {
837
		if (cpuctx->task_ctx || ctx->task != current)
838 839 840
			return;
		cpuctx->task_ctx = ctx;
	}
841

842
	spin_lock(&ctx->lock);
843
	ctx->is_active = 1;
844
	update_context_time(ctx);
845 846 847 848

	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
849
	counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
850 851

	/*
852 853
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
854
	 */
855 856
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
857

858
	if (!group_can_go_on(counter, cpuctx, 1)) {
859
		err = -EEXIST;
860
	} else {
861
		perf_disable();
862 863 864 865 866 867
		if (counter == leader)
			err = group_sched_in(counter, cpuctx, ctx,
					     smp_processor_id());
		else
			err = counter_sched_in(counter, cpuctx, ctx,
					       smp_processor_id());
868
		perf_enable();
869
	}
870 871 872 873 874 875 876 877

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
878
		if (leader->attr.pinned) {
879
			update_group_times(leader);
880
			leader->state = PERF_COUNTER_STATE_ERROR;
881
		}
882 883 884
	}

 unlock:
885
	spin_unlock(&ctx->lock);
886 887 888 889
}

/*
 * Enable a counter.
890 891 892 893 894 895
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This condition is satisfied when called through
 * perf_counter_for_each_child or perf_counter_for_each as described
 * for perf_counter_disable.
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
942
	if (counter->state == PERF_COUNTER_STATE_OFF) {
943
		counter->state = PERF_COUNTER_STATE_INACTIVE;
944 945
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
946
	}
947 948 949 950
 out:
	spin_unlock_irq(&ctx->lock);
}

951
static int perf_counter_refresh(struct perf_counter *counter, int refresh)
952
{
953 954 955
	/*
	 * not supported on inherited counters
	 */
956
	if (counter->attr.inherit)
957 958
		return -EINVAL;

959 960
	atomic_add(refresh, &counter->event_limit);
	perf_counter_enable(counter);
961 962

	return 0;
963 964
}

965 966 967 968 969
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;

970 971
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
972
	if (likely(!ctx->nr_counters))
973
		goto out;
974
	update_context_time(ctx);
975

976
	perf_disable();
977
	if (ctx->nr_active) {
978 979 980 981 982 983
		list_for_each_entry(counter, &ctx->counter_list, list_entry) {
			if (counter != counter->group_leader)
				counter_sched_out(counter, cpuctx, ctx);
			else
				group_sched_out(counter, cpuctx, ctx);
		}
984
	}
985
	perf_enable();
986
 out:
987 988 989
	spin_unlock(&ctx->lock);
}

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
 * and they both have the same number of enabled counters.
 * If the number of enabled counters is the same, then the set
 * of enabled counters should be the same, because these are both
 * inherited contexts, therefore we can't access individual counters
 * in them directly with an fd; we can only enable/disable all
 * counters via prctl, or enable/disable all counters in a family
 * via ioctl, which will have the same effect on both contexts.
 */
static int context_equiv(struct perf_counter_context *ctx1,
			 struct perf_counter_context *ctx2)
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1005
		&& ctx1->parent_gen == ctx2->parent_gen
1006
		&& !ctx1->pin_count && !ctx2->pin_count;
1007 1008
}

T
Thomas Gleixner 已提交
1009 1010 1011 1012 1013 1014
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
1015
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
1016 1017 1018 1019
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
1020 1021
void perf_counter_task_sched_out(struct task_struct *task,
				 struct task_struct *next, int cpu)
T
Thomas Gleixner 已提交
1022 1023
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1024
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
1025
	struct perf_counter_context *next_ctx;
1026
	struct perf_counter_context *parent;
1027
	struct pt_regs *regs;
1028
	int do_switch = 1;
T
Thomas Gleixner 已提交
1029

1030
	regs = task_pt_regs(task);
1031
	perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1032

1033
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1034 1035
		return;

1036
	update_context_time(ctx);
1037 1038 1039

	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1040
	next_ctx = next->perf_counter_ctxp;
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
		spin_lock(&ctx->lock);
		spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
		if (context_equiv(ctx, next_ctx)) {
1055 1056 1057 1058
			/*
			 * XXX do we need a memory barrier of sorts
			 * wrt to rcu_dereference() of perf_counter_ctxp
			 */
1059 1060 1061 1062 1063 1064 1065 1066
			task->perf_counter_ctxp = next_ctx;
			next->perf_counter_ctxp = ctx;
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
		}
		spin_unlock(&next_ctx->lock);
		spin_unlock(&ctx->lock);
1067
	}
1068
	rcu_read_unlock();
1069

1070 1071 1072 1073
	if (do_switch) {
		__perf_counter_sched_out(ctx, cpuctx);
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1074 1075
}

1076 1077 1078
/*
 * Called with IRQs disabled
 */
1079 1080 1081 1082
static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1083 1084
	if (!cpuctx->task_ctx)
		return;
1085 1086 1087 1088

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1089 1090 1091 1092
	__perf_counter_sched_out(ctx, cpuctx);
	cpuctx->task_ctx = NULL;
}

1093 1094 1095
/*
 * Called with IRQs disabled
 */
1096
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1097
{
1098
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1099 1100
}

1101 1102 1103
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
1104 1105
{
	struct perf_counter *counter;
1106
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
1107

1108 1109
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
1110
	if (likely(!ctx->nr_counters))
1111
		goto out;
T
Thomas Gleixner 已提交
1112

1113
	ctx->timestamp = perf_clock();
1114

1115
	perf_disable();
1116 1117 1118 1119 1120 1121 1122

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
1123
		    !counter->attr.pinned)
1124 1125 1126 1127
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

1128 1129 1130 1131 1132 1133
		if (counter != counter->group_leader)
			counter_sched_in(counter, cpuctx, ctx, cpu);
		else {
			if (group_can_go_on(counter, cpuctx, 1))
				group_sched_in(counter, cpuctx, ctx, cpu);
		}
1134 1135 1136 1137 1138

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1139 1140
		if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
			update_group_times(counter);
1141
			counter->state = PERF_COUNTER_STATE_ERROR;
1142
		}
1143 1144
	}

1145
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1146 1147 1148 1149 1150
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
1151
		    counter->attr.pinned)
1152 1153
			continue;

1154 1155 1156 1157
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
1158 1159 1160
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

1161 1162
		if (counter != counter->group_leader) {
			if (counter_sched_in(counter, cpuctx, ctx, cpu))
1163
				can_add_hw = 0;
1164 1165 1166 1167 1168
		} else {
			if (group_can_go_on(counter, cpuctx, can_add_hw)) {
				if (group_sched_in(counter, cpuctx, ctx, cpu))
					can_add_hw = 0;
			}
1169
		}
T
Thomas Gleixner 已提交
1170
	}
1171
	perf_enable();
1172
 out:
T
Thomas Gleixner 已提交
1173
	spin_unlock(&ctx->lock);
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1190
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
1191

1192 1193
	if (likely(!ctx))
		return;
1194 1195
	if (cpuctx->task_ctx == ctx)
		return;
1196
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
1197 1198 1199
	cpuctx->task_ctx = ctx;
}

1200 1201 1202 1203 1204 1205 1206
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

1207 1208 1209
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_counter *counter, int enable);
1210 1211
static void perf_log_period(struct perf_counter *counter, u64 period);

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
static void perf_adjust_period(struct perf_counter *counter, u64 events)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 period, sample_period;
	s64 delta;

	events *= hwc->sample_period;
	period = div64_u64(events, counter->attr.sample_freq);

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	perf_log_period(counter, sample_period);

	hwc->sample_period = sample_period;
}

static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
1235 1236
{
	struct perf_counter *counter;
1237
	struct hw_perf_counter *hwc;
1238
	u64 interrupts, freq;
1239 1240 1241 1242 1243 1244

	spin_lock(&ctx->lock);
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state != PERF_COUNTER_STATE_ACTIVE)
			continue;

1245 1246 1247 1248
		hwc = &counter->hw;

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1249

1250 1251 1252
		/*
		 * unthrottle counters on the tick
		 */
1253 1254 1255
		if (interrupts == MAX_INTERRUPTS) {
			perf_log_throttle(counter, 1);
			counter->pmu->unthrottle(counter);
1256
			interrupts = 2*sysctl_perf_counter_sample_rate/HZ;
1257 1258
		}

1259
		if (!counter->attr.freq || !counter->attr.sample_freq)
1260 1261
			continue;

1262 1263 1264
		/*
		 * if the specified freq < HZ then we need to skip ticks
		 */
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
		if (counter->attr.sample_freq < HZ) {
			freq = counter->attr.sample_freq;

			hwc->freq_count += freq;
			hwc->freq_interrupts += interrupts;

			if (hwc->freq_count < HZ)
				continue;

			interrupts = hwc->freq_interrupts;
			hwc->freq_interrupts = 0;
			hwc->freq_count -= HZ;
		} else
			freq = HZ;

1280
		perf_adjust_period(counter, freq * interrupts);
1281

1282 1283 1284 1285 1286 1287 1288 1289
		/*
		 * In order to avoid being stalled by an (accidental) huge
		 * sample period, force reset the sample period if we didn't
		 * get any events in this freq period.
		 */
		if (!interrupts) {
			perf_disable();
			counter->pmu->disable(counter);
1290
			atomic64_set(&hwc->period_left, 0);
1291 1292 1293
			counter->pmu->enable(counter);
			perf_enable();
		}
1294 1295 1296 1297
	}
	spin_unlock(&ctx->lock);
}

1298 1299 1300 1301
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
1302 1303 1304
{
	struct perf_counter *counter;

1305
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
1306 1307 1308 1309
		return;

	spin_lock(&ctx->lock);
	/*
1310
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
1311
	 */
1312
	perf_disable();
1313
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1314
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
1315 1316
		break;
	}
1317
	perf_enable();
T
Thomas Gleixner 已提交
1318 1319

	spin_unlock(&ctx->lock);
1320 1321 1322 1323
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
1324 1325 1326 1327 1328 1329 1330
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;

	if (!atomic_read(&nr_counters))
		return;

	cpuctx = &per_cpu(perf_cpu_context, cpu);
1331
	ctx = curr->perf_counter_ctxp;
1332

1333
	perf_ctx_adjust_freq(&cpuctx->ctx);
1334
	if (ctx)
1335
		perf_ctx_adjust_freq(ctx);
1336

1337
	perf_counter_cpu_sched_out(cpuctx);
1338 1339
	if (ctx)
		__perf_counter_task_sched_out(ctx);
T
Thomas Gleixner 已提交
1340

1341
	rotate_ctx(&cpuctx->ctx);
1342 1343
	if (ctx)
		rotate_ctx(ctx);
1344

1345
	perf_counter_cpu_sched_in(cpuctx, cpu);
1346 1347
	if (ctx)
		perf_counter_task_sched_in(curr, cpu);
T
Thomas Gleixner 已提交
1348 1349 1350 1351 1352
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
1353
static void __read(void *info)
T
Thomas Gleixner 已提交
1354
{
I
Ingo Molnar 已提交
1355
	struct perf_counter *counter = info;
1356
	struct perf_counter_context *ctx = counter->ctx;
I
Ingo Molnar 已提交
1357
	unsigned long flags;
I
Ingo Molnar 已提交
1358

1359
	local_irq_save(flags);
1360
	if (ctx->is_active)
1361
		update_context_time(ctx);
1362
	counter->pmu->read(counter);
1363
	update_counter_times(counter);
1364
	local_irq_restore(flags);
T
Thomas Gleixner 已提交
1365 1366
}

1367
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1368 1369 1370 1371 1372
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1373
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1374
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1375
					 __read, counter, 1);
1376 1377
	} else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
T
Thomas Gleixner 已提交
1378 1379
	}

1380
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1381 1382
}

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
	mutex_init(&ctx->mutex);
	INIT_LIST_HEAD(&ctx->counter_list);
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

T
Thomas Gleixner 已提交
1399 1400
static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
1401
	struct perf_counter_context *parent_ctx;
1402 1403
	struct perf_counter_context *ctx;
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1404
	struct task_struct *task;
1405
	unsigned long flags;
1406
	int err;
T
Thomas Gleixner 已提交
1407 1408 1409 1410 1411 1412

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
1413
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1429
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1446 1447 1448 1449 1450 1451 1452
	/*
	 * Can't attach counters to a dying task.
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1453
	/* Reuse ptrace permission checks for now. */
1454 1455 1456 1457 1458
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1459
	ctx = perf_lock_task_context(task, &flags);
1460 1461 1462 1463 1464 1465
	if (ctx) {
		parent_ctx = ctx->parent_ctx;
		if (parent_ctx) {
			put_ctx(parent_ctx);
			ctx->parent_ctx = NULL;		/* no longer a clone */
		}
1466
		spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1467 1468
	}

1469 1470
	if (!ctx) {
		ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1471 1472 1473
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1474
		__perf_counter_init_context(ctx, task);
1475 1476
		get_ctx(ctx);
		if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1477 1478 1479 1480 1481
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1482
			goto retry;
1483
		}
1484
		get_task_struct(task);
1485 1486
	}

1487
	put_task_struct(task);
T
Thomas Gleixner 已提交
1488
	return ctx;
1489 1490 1491 1492

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1493 1494
}

P
Peter Zijlstra 已提交
1495 1496 1497 1498 1499
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
1500 1501
	if (counter->ns)
		put_pid_ns(counter->ns);
P
Peter Zijlstra 已提交
1502 1503 1504
	kfree(counter);
}

1505 1506
static void perf_pending_sync(struct perf_counter *counter);

1507 1508
static void free_counter(struct perf_counter *counter)
{
1509 1510
	perf_pending_sync(counter);

1511
	atomic_dec(&nr_counters);
1512
	if (counter->attr.mmap)
P
Peter Zijlstra 已提交
1513
		atomic_dec(&nr_mmap_counters);
1514
	if (counter->attr.comm)
P
Peter Zijlstra 已提交
1515
		atomic_dec(&nr_comm_counters);
1516

1517 1518 1519
	if (counter->destroy)
		counter->destroy(counter);

1520
	put_ctx(counter->ctx);
1521 1522 1523
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1534
	WARN_ON_ONCE(ctx->parent_ctx);
1535
	mutex_lock(&ctx->mutex);
1536
	perf_counter_remove_from_context(counter);
1537
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1538

1539 1540 1541 1542 1543
	mutex_lock(&counter->owner->perf_counter_mutex);
	list_del_init(&counter->owner_entry);
	mutex_unlock(&counter->owner->perf_counter_mutex);
	put_task_struct(counter->owner);

1544
	free_counter(counter);
T
Thomas Gleixner 已提交
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
1555
	u64 values[4];
1556
	int n;
T
Thomas Gleixner 已提交
1557

1558 1559 1560 1561 1562 1563 1564 1565
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

1566
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1567
	mutex_lock(&counter->child_mutex);
1568 1569
	values[0] = perf_counter_read(counter);
	n = 1;
1570
	if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1571 1572
		values[n++] = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);
1573
	if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1574 1575
		values[n++] = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);
1576
	if (counter->attr.read_format & PERF_FORMAT_ID)
1577
		values[n++] = counter->id;
1578
	mutex_unlock(&counter->child_mutex);
T
Thomas Gleixner 已提交
1579

1580 1581 1582 1583 1584 1585 1586 1587
	if (count < n * sizeof(u64))
		return -EINVAL;
	count = n * sizeof(u64);

	if (copy_to_user(buf, values, count))
		return -EFAULT;

	return count;
T
Thomas Gleixner 已提交
1588 1589 1590 1591 1592 1593 1594
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

1595
	return perf_read_hw(counter, buf, count);
T
Thomas Gleixner 已提交
1596 1597 1598 1599 1600
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1601
	struct perf_mmap_data *data;
1602
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1603 1604 1605 1606

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
1607
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1608
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1609 1610 1611 1612 1613 1614

	poll_wait(file, &counter->waitq, wait);

	return events;
}

1615 1616
static void perf_counter_reset(struct perf_counter *counter)
{
P
Peter Zijlstra 已提交
1617
	(void)perf_counter_read(counter);
1618
	atomic64_set(&counter->count, 0);
P
Peter Zijlstra 已提交
1619 1620 1621
	perf_counter_update_userpage(counter);
}

1622 1623 1624 1625 1626 1627
/*
 * Holding the top-level counter's child_mutex means that any
 * descendant process that has inherited this counter will block
 * in sync_child_counter if it goes to exit, thus satisfying the
 * task existence requirements of perf_counter_enable/disable.
 */
P
Peter Zijlstra 已提交
1628 1629 1630 1631 1632
static void perf_counter_for_each_child(struct perf_counter *counter,
					void (*func)(struct perf_counter *))
{
	struct perf_counter *child;

1633
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1634
	mutex_lock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1635 1636 1637
	func(counter);
	list_for_each_entry(child, &counter->child_list, child_list)
		func(child);
1638
	mutex_unlock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1639 1640 1641 1642 1643
}

static void perf_counter_for_each(struct perf_counter *counter,
				  void (*func)(struct perf_counter *))
{
1644 1645
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *sibling;
P
Peter Zijlstra 已提交
1646

1647 1648 1649 1650 1651 1652 1653 1654 1655
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	counter = counter->group_leader;

	perf_counter_for_each_child(counter, func);
	func(counter);
	list_for_each_entry(sibling, &counter->sibling_list, list_entry)
		perf_counter_for_each_child(counter, func);
	mutex_unlock(&ctx->mutex);
1656 1657
}

1658 1659 1660 1661 1662 1663 1664
static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
{
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long size;
	int ret = 0;
	u64 value;

1665
	if (!counter->attr.sample_period)
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	spin_lock_irq(&ctx->lock);
1676
	if (counter->attr.freq) {
1677
		if (value > sysctl_perf_counter_sample_rate) {
1678 1679 1680 1681
			ret = -EINVAL;
			goto unlock;
		}

1682
		counter->attr.sample_freq = value;
1683
	} else {
1684 1685
		perf_log_period(counter, value);

1686
		counter->attr.sample_period = value;
1687 1688 1689 1690 1691 1692 1693 1694
		counter->hw.sample_period = value;
	}
unlock:
	spin_unlock_irq(&ctx->lock);

	return ret;
}

1695 1696 1697
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1698 1699
	void (*func)(struct perf_counter *);
	u32 flags = arg;
1700 1701 1702

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
P
Peter Zijlstra 已提交
1703
		func = perf_counter_enable;
1704 1705
		break;
	case PERF_COUNTER_IOC_DISABLE:
P
Peter Zijlstra 已提交
1706
		func = perf_counter_disable;
1707
		break;
1708
	case PERF_COUNTER_IOC_RESET:
P
Peter Zijlstra 已提交
1709
		func = perf_counter_reset;
1710
		break;
P
Peter Zijlstra 已提交
1711 1712 1713

	case PERF_COUNTER_IOC_REFRESH:
		return perf_counter_refresh(counter, arg);
1714 1715 1716 1717

	case PERF_COUNTER_IOC_PERIOD:
		return perf_counter_period(counter, (u64 __user *)arg);

1718
	default:
P
Peter Zijlstra 已提交
1719
		return -ENOTTY;
1720
	}
P
Peter Zijlstra 已提交
1721 1722 1723 1724 1725 1726 1727

	if (flags & PERF_IOC_FLAG_GROUP)
		perf_counter_for_each(counter, func);
	else
		perf_counter_for_each_child(counter, func);

	return 0;
1728 1729
}

1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
int perf_counter_task_enable(void)
{
	struct perf_counter *counter;

	mutex_lock(&current->perf_counter_mutex);
	list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
		perf_counter_for_each_child(counter, perf_counter_enable);
	mutex_unlock(&current->perf_counter_mutex);

	return 0;
}

int perf_counter_task_disable(void)
{
	struct perf_counter *counter;

	mutex_lock(&current->perf_counter_mutex);
	list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
		perf_counter_for_each_child(counter, perf_counter_disable);
	mutex_unlock(&current->perf_counter_mutex);

	return 0;
}

1754 1755 1756 1757 1758 1759
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
void perf_counter_update_userpage(struct perf_counter *counter)
1760
{
1761
	struct perf_counter_mmap_page *userpg;
1762
	struct perf_mmap_data *data;
1763 1764 1765 1766 1767 1768 1769

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	userpg = data->user_page;
1770

1771 1772 1773 1774 1775
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
1776
	++userpg->lock;
1777
	barrier();
1778 1779 1780 1781
	userpg->index = counter->hw.idx;
	userpg->offset = atomic64_read(&counter->count);
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&counter->hw.prev_count);
1782

1783
	barrier();
1784
	++userpg->lock;
1785
	preempt_enable();
1786
unlock:
1787
	rcu_read_unlock();
1788 1789 1790 1791 1792
}

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_counter *counter = vma->vm_file->private_data;
1793 1794 1795
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

1796 1797 1798 1799 1800 1801
	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

1802 1803 1804 1805 1806 1807 1808 1809 1810
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff == 0) {
		vmf->page = virt_to_page(data->user_page);
	} else {
		int nr = vmf->pgoff - 1;
1811

1812 1813
		if ((unsigned)nr > data->nr_pages)
			goto unlock;
1814

1815 1816 1817
		if (vmf->flags & FAULT_FLAG_WRITE)
			goto unlock;

1818 1819
		vmf->page = virt_to_page(data->data_pages[nr]);
	}
1820

1821
	get_page(vmf->page);
1822 1823 1824
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	WARN_ON(atomic_read(&counter->mmap_count));

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;
1858
	atomic_set(&data->lock, -1);
1859 1860 1861

	rcu_assign_pointer(counter->data, data);

1862
	return 0;
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
	return -ENOMEM;
}

1877 1878 1879 1880 1881 1882 1883 1884
static void perf_mmap_free_page(unsigned long addr)
{
	struct page *page = virt_to_page(addr);

	page->mapping = NULL;
	__free_page(page);
}

1885 1886
static void __perf_mmap_data_free(struct rcu_head *rcu_head)
{
1887
	struct perf_mmap_data *data;
1888 1889
	int i;

1890 1891
	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);

1892
	perf_mmap_free_page((unsigned long)data->user_page);
1893
	for (i = 0; i < data->nr_pages; i++)
1894 1895
		perf_mmap_free_page((unsigned long)data->data_pages[i]);

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
	kfree(data);
}

static void perf_mmap_data_free(struct perf_counter *counter)
{
	struct perf_mmap_data *data = counter->data;

	WARN_ON(atomic_read(&counter->mmap_count));

	rcu_assign_pointer(counter->data, NULL);
	call_rcu(&data->rcu_head, __perf_mmap_data_free);
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	atomic_inc(&counter->mmap_count);
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

1920
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1921
	if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
1922 1923 1924
		struct user_struct *user = current_user();

		atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1925
		vma->vm_mm->locked_vm -= counter->data->nr_locked;
1926 1927 1928
		perf_mmap_data_free(counter);
		mutex_unlock(&counter->mmap_mutex);
	}
1929 1930 1931
}

static struct vm_operations_struct perf_mmap_vmops = {
1932 1933 1934 1935
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
1936 1937 1938 1939 1940
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct perf_counter *counter = file->private_data;
1941
	unsigned long user_locked, user_lock_limit;
1942
	struct user_struct *user = current_user();
1943
	unsigned long locked, lock_limit;
1944 1945
	unsigned long vma_size;
	unsigned long nr_pages;
1946
	long user_extra, extra;
1947
	int ret = 0;
1948

1949
	if (!(vma->vm_flags & VM_SHARED))
1950
		return -EINVAL;
1951 1952 1953 1954

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

1955 1956 1957 1958 1959
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
1960 1961
		return -EINVAL;

1962
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
1963 1964
		return -EINVAL;

1965 1966
	if (vma->vm_pgoff != 0)
		return -EINVAL;
1967

1968
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1969 1970 1971 1972 1973 1974 1975
	mutex_lock(&counter->mmap_mutex);
	if (atomic_inc_not_zero(&counter->mmap_count)) {
		if (nr_pages != counter->data->nr_pages)
			ret = -EINVAL;
		goto unlock;
	}

1976 1977
	user_extra = nr_pages + 1;
	user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
1978 1979 1980 1981 1982 1983

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

1984
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1985

1986 1987 1988
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
1989 1990 1991

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
1992
	locked = vma->vm_mm->locked_vm + extra;
1993

1994 1995 1996 1997
	if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
		ret = -EPERM;
		goto unlock;
	}
1998 1999 2000

	WARN_ON(counter->data);
	ret = perf_mmap_data_alloc(counter, nr_pages);
2001 2002 2003 2004
	if (ret)
		goto unlock;

	atomic_set(&counter->mmap_count, 1);
2005
	atomic_long_add(user_extra, &user->locked_vm);
2006 2007
	vma->vm_mm->locked_vm += extra;
	counter->data->nr_locked = extra;
2008 2009 2010
	if (vma->vm_flags & VM_WRITE)
		counter->data->writable = 1;

2011
unlock:
2012
	mutex_unlock(&counter->mmap_mutex);
2013 2014 2015

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2016 2017

	return ret;
2018 2019
}

P
Peter Zijlstra 已提交
2020 2021 2022
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2023
	struct perf_counter *counter = filp->private_data;
P
Peter Zijlstra 已提交
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
	int retval;

	mutex_lock(&inode->i_mutex);
	retval = fasync_helper(fd, filp, on, &counter->fasync);
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2036 2037 2038 2039
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2040 2041
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2042
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2043
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2044 2045
};

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
/*
 * Perf counter wakeup
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

void perf_counter_wakeup(struct perf_counter *counter)
{
	wake_up_all(&counter->waitq);
2056 2057 2058 2059 2060

	if (counter->pending_kill) {
		kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
		counter->pending_kill = 0;
	}
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
static void perf_pending_counter(struct perf_pending_entry *entry)
{
	struct perf_counter *counter = container_of(entry,
			struct perf_counter, pending);

	if (counter->pending_disable) {
		counter->pending_disable = 0;
		perf_counter_disable(counter);
	}

	if (counter->pending_wakeup) {
		counter->pending_wakeup = 0;
		perf_counter_wakeup(counter);
	}
}

2088
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2089

2090
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2091 2092 2093
	PENDING_TAIL,
};

2094 2095
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2096
{
2097
	struct perf_pending_entry **head;
2098

2099
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2100 2101
		return;

2102 2103 2104
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2105 2106

	do {
2107 2108
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2109 2110 2111

	set_perf_counter_pending();

2112
	put_cpu_var(perf_pending_head);
2113 2114 2115 2116
}

static int __perf_pending_run(void)
{
2117
	struct perf_pending_entry *list;
2118 2119
	int nr = 0;

2120
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2121
	while (list != PENDING_TAIL) {
2122 2123
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2124 2125 2126

		list = list->next;

2127 2128
		func = entry->func;
		entry->next = NULL;
2129 2130 2131 2132 2133 2134 2135
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2136
		func(entry);
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
		nr++;
	}

	return nr;
}

static inline int perf_not_pending(struct perf_counter *counter)
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2158
	return counter->pending.next == NULL;
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
}

static void perf_pending_sync(struct perf_counter *counter)
{
	wait_event(counter->waitq, perf_not_pending(counter));
}

void perf_counter_do_pending(void)
{
	__perf_pending_run();
}

2171 2172 2173 2174
/*
 * Callchain support -- arch specific
 */

2175
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2176 2177 2178 2179
{
	return NULL;
}

2180 2181 2182 2183
/*
 * Output
 */

2184 2185 2186
struct perf_output_handle {
	struct perf_counter	*counter;
	struct perf_mmap_data	*data;
2187 2188
	unsigned long		head;
	unsigned long		offset;
2189
	int			nmi;
2190
	int			sample;
2191 2192
	int			locked;
	unsigned long		flags;
2193 2194
};

2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
static bool perf_output_space(struct perf_mmap_data *data,
			      unsigned int offset, unsigned int head)
{
	unsigned long tail;
	unsigned long mask;

	if (!data->writable)
		return true;

	mask = (data->nr_pages << PAGE_SHIFT) - 1;
	/*
	 * Userspace could choose to issue a mb() before updating the tail
	 * pointer. So that all reads will be completed before the write is
	 * issued.
	 */
	tail = ACCESS_ONCE(data->user_page->data_tail);
	smp_rmb();

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2222
static void perf_output_wakeup(struct perf_output_handle *handle)
2223
{
2224 2225
	atomic_set(&handle->data->poll, POLL_IN);

2226
	if (handle->nmi) {
2227
		handle->counter->pending_wakeup = 1;
2228
		perf_pending_queue(&handle->counter->pending,
2229
				   perf_pending_counter);
2230
	} else
2231 2232 2233
		perf_counter_wakeup(handle->counter);
}

2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
/*
 * Curious locking construct.
 *
 * We need to ensure a later event doesn't publish a head when a former
 * event isn't done writing. However since we need to deal with NMIs we
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
 * event completes.
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
	int cpu;

	handle->locked = 0;

	local_irq_save(handle->flags);
	cpu = smp_processor_id();

	if (in_nmi() && atomic_read(&data->lock) == cpu)
		return;

2260
	while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2261 2262 2263 2264 2265 2266 2267 2268
		cpu_relax();

	handle->locked = 1;
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2269 2270
	unsigned long head;
	int cpu;
2271

2272
	data->done_head = data->head;
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2283
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2284 2285 2286
		data->user_page->data_head = head;

	/*
2287
	 * NMI can happen here, which means we can miss a done_head update.
2288 2289
	 */

2290
	cpu = atomic_xchg(&data->lock, -1);
2291 2292 2293 2294 2295
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2296
	if (unlikely(atomic_long_read(&data->done_head))) {
2297 2298 2299
		/*
		 * Since we had it locked, we can lock it again.
		 */
2300
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2301 2302 2303 2304 2305
			cpu_relax();

		goto again;
	}

2306
	if (atomic_xchg(&data->wakeup, 0))
2307 2308 2309 2310 2311
		perf_output_wakeup(handle);
out:
	local_irq_restore(handle->flags);
}

2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
static void perf_output_copy(struct perf_output_handle *handle,
			     const void *buf, unsigned int len)
{
	unsigned int pages_mask;
	unsigned int offset;
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
		unsigned int page_offset;
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
		page_offset = offset & (PAGE_SIZE - 1);
		size	    = min_t(unsigned int, PAGE_SIZE - page_offset, len);

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

#define perf_output_put(handle, x) \
	perf_output_copy((handle), &(x), sizeof(x))

2351
static int perf_output_begin(struct perf_output_handle *handle,
2352
			     struct perf_counter *counter, unsigned int size,
2353
			     int nmi, int sample)
2354
{
2355
	struct perf_mmap_data *data;
2356
	unsigned int offset, head;
2357 2358 2359 2360 2361 2362
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
2363

2364 2365 2366 2367 2368 2369
	/*
	 * For inherited counters we send all the output towards the parent.
	 */
	if (counter->parent)
		counter = counter->parent;

2370 2371 2372 2373 2374
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto out;

2375 2376 2377 2378
	handle->data	= data;
	handle->counter	= counter;
	handle->nmi	= nmi;
	handle->sample	= sample;
2379

2380
	if (!data->nr_pages)
2381
		goto fail;
2382

2383 2384 2385 2386
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

2387 2388
	perf_output_lock(handle);

2389
	do {
2390
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
2391
		head += size;
2392 2393
		if (unlikely(!perf_output_space(data, offset, head)))
			goto fail;
2394
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2395

2396
	handle->offset	= offset;
2397
	handle->head	= head;
2398 2399 2400

	if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
		atomic_set(&data->wakeup, 1);
2401

2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
	if (have_lost) {
		lost_event.header.type = PERF_EVENT_LOST;
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
		lost_event.id          = counter->id;
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

2412
	return 0;
2413

2414
fail:
2415 2416
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
2417 2418
out:
	rcu_read_unlock();
2419

2420 2421
	return -ENOSPC;
}
2422

2423
static void perf_output_end(struct perf_output_handle *handle)
2424
{
2425 2426 2427
	struct perf_counter *counter = handle->counter;
	struct perf_mmap_data *data = handle->data;

2428
	int wakeup_events = counter->attr.wakeup_events;
P
Peter Zijlstra 已提交
2429

2430
	if (handle->sample && wakeup_events) {
2431
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2432
		if (events >= wakeup_events) {
2433
			atomic_sub(wakeup_events, &data->events);
2434
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2435
		}
2436 2437 2438
	}

	perf_output_unlock(handle);
2439
	rcu_read_unlock();
2440 2441
}

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
{
	/*
	 * only top level counters have the pid namespace they were created in
	 */
	if (counter->parent)
		counter = counter->parent;

	return task_tgid_nr_ns(p, counter->ns);
}

static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
{
	/*
	 * only top level counters have the pid namespace they were created in
	 */
	if (counter->parent)
		counter = counter->parent;

	return task_pid_nr_ns(p, counter->ns);
}

2464 2465
static void perf_counter_output(struct perf_counter *counter, int nmi,
				struct perf_sample_data *data)
2466
{
2467
	int ret;
2468
	u64 sample_type = counter->attr.sample_type;
2469 2470 2471
	struct perf_output_handle handle;
	struct perf_event_header header;
	u64 ip;
P
Peter Zijlstra 已提交
2472
	struct {
2473
		u32 pid, tid;
2474
	} tid_entry;
2475
	struct {
2476
		u64 id;
2477 2478
		u64 counter;
	} group_entry;
2479 2480
	struct perf_callchain_entry *callchain = NULL;
	int callchain_size = 0;
P
Peter Zijlstra 已提交
2481
	u64 time;
2482 2483 2484
	struct {
		u32 cpu, reserved;
	} cpu_entry;
2485

2486
	header.type = 0;
2487
	header.size = sizeof(header);
2488

2489
	header.misc = PERF_EVENT_MISC_OVERFLOW;
2490
	header.misc |= perf_misc_flags(data->regs);
2491

2492
	if (sample_type & PERF_SAMPLE_IP) {
2493
		ip = perf_instruction_pointer(data->regs);
2494
		header.type |= PERF_SAMPLE_IP;
2495 2496
		header.size += sizeof(ip);
	}
2497

2498
	if (sample_type & PERF_SAMPLE_TID) {
2499
		/* namespace issues */
2500 2501
		tid_entry.pid = perf_counter_pid(counter, current);
		tid_entry.tid = perf_counter_tid(counter, current);
2502

2503
		header.type |= PERF_SAMPLE_TID;
2504 2505 2506
		header.size += sizeof(tid_entry);
	}

2507
	if (sample_type & PERF_SAMPLE_TIME) {
2508 2509 2510 2511 2512
		/*
		 * Maybe do better on x86 and provide cpu_clock_nmi()
		 */
		time = sched_clock();

2513
		header.type |= PERF_SAMPLE_TIME;
2514 2515 2516
		header.size += sizeof(u64);
	}

2517 2518
	if (sample_type & PERF_SAMPLE_ADDR) {
		header.type |= PERF_SAMPLE_ADDR;
2519 2520 2521
		header.size += sizeof(u64);
	}

2522 2523
	if (sample_type & PERF_SAMPLE_ID) {
		header.type |= PERF_SAMPLE_ID;
2524 2525 2526
		header.size += sizeof(u64);
	}

2527 2528
	if (sample_type & PERF_SAMPLE_CPU) {
		header.type |= PERF_SAMPLE_CPU;
2529 2530 2531 2532 2533
		header.size += sizeof(cpu_entry);

		cpu_entry.cpu = raw_smp_processor_id();
	}

2534 2535 2536 2537 2538
	if (sample_type & PERF_SAMPLE_PERIOD) {
		header.type |= PERF_SAMPLE_PERIOD;
		header.size += sizeof(u64);
	}

2539 2540
	if (sample_type & PERF_SAMPLE_GROUP) {
		header.type |= PERF_SAMPLE_GROUP;
2541 2542 2543 2544
		header.size += sizeof(u64) +
			counter->nr_siblings * sizeof(group_entry);
	}

2545
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2546
		callchain = perf_callchain(data->regs);
2547 2548

		if (callchain) {
2549
			callchain_size = (1 + callchain->nr) * sizeof(u64);
2550

2551
			header.type |= PERF_SAMPLE_CALLCHAIN;
2552 2553 2554 2555
			header.size += callchain_size;
		}
	}

2556
	ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2557 2558
	if (ret)
		return;
2559

2560
	perf_output_put(&handle, header);
P
Peter Zijlstra 已提交
2561

2562
	if (sample_type & PERF_SAMPLE_IP)
2563
		perf_output_put(&handle, ip);
P
Peter Zijlstra 已提交
2564

2565
	if (sample_type & PERF_SAMPLE_TID)
2566
		perf_output_put(&handle, tid_entry);
P
Peter Zijlstra 已提交
2567

2568
	if (sample_type & PERF_SAMPLE_TIME)
2569 2570
		perf_output_put(&handle, time);

2571
	if (sample_type & PERF_SAMPLE_ADDR)
2572
		perf_output_put(&handle, data->addr);
2573

2574 2575
	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(&handle, counter->id);
2576

2577
	if (sample_type & PERF_SAMPLE_CPU)
2578 2579
		perf_output_put(&handle, cpu_entry);

2580
	if (sample_type & PERF_SAMPLE_PERIOD)
2581
		perf_output_put(&handle, data->period);
2582

2583
	/*
2584
	 * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2585
	 */
2586
	if (sample_type & PERF_SAMPLE_GROUP) {
2587 2588
		struct perf_counter *leader, *sub;
		u64 nr = counter->nr_siblings;
P
Peter Zijlstra 已提交
2589

2590
		perf_output_put(&handle, nr);
2591

2592 2593 2594
		leader = counter->group_leader;
		list_for_each_entry(sub, &leader->sibling_list, list_entry) {
			if (sub != counter)
2595
				sub->pmu->read(sub);
2596

2597
			group_entry.id = sub->id;
2598
			group_entry.counter = atomic64_read(&sub->count);
2599

2600 2601
			perf_output_put(&handle, group_entry);
		}
2602
	}
P
Peter Zijlstra 已提交
2603

2604 2605
	if (callchain)
		perf_output_copy(&handle, callchain, callchain_size);
2606

2607
	perf_output_end(&handle);
2608 2609
}

P
Peter Zijlstra 已提交
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
/*
 * fork tracking
 */

struct perf_fork_event {
	struct task_struct	*task;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
	} event;
};

static void perf_counter_fork_output(struct perf_counter *counter,
				     struct perf_fork_event *fork_event)
{
	struct perf_output_handle handle;
	int size = fork_event->event.header.size;
	struct task_struct *task = fork_event->task;
	int ret = perf_output_begin(&handle, counter, size, 0, 0);

	if (ret)
		return;

	fork_event->event.pid = perf_counter_pid(counter, task);
	fork_event->event.ppid = perf_counter_pid(counter, task->real_parent);

	perf_output_put(&handle, fork_event->event);
	perf_output_end(&handle);
}

static int perf_counter_fork_match(struct perf_counter *counter)
{
2645
	if (counter->attr.comm || counter->attr.mmap)
P
Peter Zijlstra 已提交
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
		return 1;

	return 0;
}

static void perf_counter_fork_ctx(struct perf_counter_context *ctx,
				  struct perf_fork_event *fork_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_fork_match(counter))
			perf_counter_fork_output(counter, fork_event);
	}
	rcu_read_unlock();
}

static void perf_counter_fork_event(struct perf_fork_event *fork_event)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_fork_ctx(&cpuctx->ctx, fork_event);
	put_cpu_var(perf_cpu_context);

	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
		perf_counter_fork_ctx(ctx, fork_event);
	rcu_read_unlock();
}

void perf_counter_fork(struct task_struct *task)
{
	struct perf_fork_event fork_event;

	if (!atomic_read(&nr_comm_counters) &&
2692
	    !atomic_read(&nr_mmap_counters))
P
Peter Zijlstra 已提交
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
		return;

	fork_event = (struct perf_fork_event){
		.task	= task,
		.event  = {
			.header = {
				.type = PERF_EVENT_FORK,
				.size = sizeof(fork_event.event),
			},
		},
	};

	perf_counter_fork_event(&fork_event);
}

2708 2709 2710 2711 2712
/*
 * comm tracking
 */

struct perf_comm_event {
2713 2714
	struct task_struct	*task;
	char			*comm;
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
	} event;
};

static void perf_counter_comm_output(struct perf_counter *counter,
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
	int size = comm_event->event.header.size;
	int ret = perf_output_begin(&handle, counter, size, 0, 0);

	if (ret)
		return;

2735 2736 2737
	comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
	comm_event->event.tid = perf_counter_tid(counter, comm_event->task);

2738 2739 2740 2741 2742 2743
	perf_output_put(&handle, comm_event->event);
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
2744
static int perf_counter_comm_match(struct perf_counter *counter)
2745
{
P
Peter Zijlstra 已提交
2746
	if (counter->attr.comm)
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
		return 1;

	return 0;
}

static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
				  struct perf_comm_event *comm_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
P
Peter Zijlstra 已提交
2762
		if (perf_counter_comm_match(counter))
2763 2764 2765 2766 2767 2768 2769 2770
			perf_counter_comm_output(counter, comm_event);
	}
	rcu_read_unlock();
}

static void perf_counter_comm_event(struct perf_comm_event *comm_event)
{
	struct perf_cpu_context *cpuctx;
2771
	struct perf_counter_context *ctx;
2772 2773 2774
	unsigned int size;
	char *comm = comm_event->task->comm;

2775
	size = ALIGN(strlen(comm)+1, sizeof(u64));
2776 2777 2778 2779 2780 2781 2782 2783 2784

	comm_event->comm = comm;
	comm_event->comm_size = size;

	comm_event->event.header.size = sizeof(comm_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
	put_cpu_var(perf_cpu_context);
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794

	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
		perf_counter_comm_ctx(ctx, comm_event);
	rcu_read_unlock();
2795 2796 2797 2798
}

void perf_counter_comm(struct task_struct *task)
{
2799 2800
	struct perf_comm_event comm_event;

P
Peter Zijlstra 已提交
2801
	if (!atomic_read(&nr_comm_counters))
2802
		return;
2803

2804
	comm_event = (struct perf_comm_event){
2805 2806 2807 2808 2809 2810 2811 2812 2813
		.task	= task,
		.event  = {
			.header = { .type = PERF_EVENT_COMM, },
		},
	};

	perf_counter_comm_event(&comm_event);
}

2814 2815 2816 2817 2818
/*
 * mmap tracking
 */

struct perf_mmap_event {
2819 2820 2821 2822
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
	} event;
};

static void perf_counter_mmap_output(struct perf_counter *counter,
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
	int size = mmap_event->event.header.size;
2840
	int ret = perf_output_begin(&handle, counter, size, 0, 0);
2841 2842 2843 2844

	if (ret)
		return;

2845 2846 2847
	mmap_event->event.pid = perf_counter_pid(counter, current);
	mmap_event->event.tid = perf_counter_tid(counter, current);

2848 2849 2850
	perf_output_put(&handle, mmap_event->event);
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
2851
	perf_output_end(&handle);
2852 2853 2854 2855 2856
}

static int perf_counter_mmap_match(struct perf_counter *counter,
				   struct perf_mmap_event *mmap_event)
{
2857
	if (counter->attr.mmap)
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
		return 1;

	return 0;
}

static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
				  struct perf_mmap_event *mmap_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_mmap_match(counter, mmap_event))
			perf_counter_mmap_output(counter, mmap_event);
	}
	rcu_read_unlock();
}

static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
{
	struct perf_cpu_context *cpuctx;
2882
	struct perf_counter_context *ctx;
2883 2884
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
2885 2886 2887
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
2888
	const char *name;
2889 2890 2891 2892 2893 2894 2895

	if (file) {
		buf = kzalloc(PATH_MAX, GFP_KERNEL);
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
2896
		name = d_path(&file->f_path, buf, PATH_MAX);
2897 2898 2899 2900 2901
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
2902 2903 2904 2905 2906 2907 2908 2909 2910
		name = arch_vma_name(mmap_event->vma);
		if (name)
			goto got_name;

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

2911 2912 2913 2914 2915
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
2916
	size = ALIGN(strlen(name)+1, sizeof(u64));
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926

	mmap_event->file_name = name;
	mmap_event->file_size = size;

	mmap_event->event.header.size = sizeof(mmap_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
	put_cpu_var(perf_cpu_context);

2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
		perf_counter_mmap_ctx(ctx, mmap_event);
	rcu_read_unlock();

2937 2938 2939
	kfree(buf);
}

2940
void __perf_counter_mmap(struct vm_area_struct *vma)
2941
{
2942 2943
	struct perf_mmap_event mmap_event;

P
Peter Zijlstra 已提交
2944
	if (!atomic_read(&nr_mmap_counters))
2945 2946 2947
		return;

	mmap_event = (struct perf_mmap_event){
2948
		.vma	= vma,
2949 2950
		.event  = {
			.header = { .type = PERF_EVENT_MMAP, },
2951 2952 2953
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
			.pgoff  = vma->vm_pgoff,
2954 2955 2956 2957 2958 2959
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

2960
/*
2961
 * Log sample_period changes so that analyzing tools can re-normalize the
2962
 * event flow.
2963 2964
 */

2965 2966 2967 2968 2969 2970 2971
struct freq_event {
	struct perf_event_header	header;
	u64				time;
	u64				id;
	u64				period;
};

2972 2973 2974
static void perf_log_period(struct perf_counter *counter, u64 period)
{
	struct perf_output_handle handle;
2975
	struct freq_event event;
2976 2977
	int ret;

2978 2979 2980 2981 2982 2983 2984
	if (counter->hw.sample_period == period)
		return;

	if (counter->attr.sample_type & PERF_SAMPLE_PERIOD)
		return;

	event = (struct freq_event) {
2985 2986 2987
		.header = {
			.type = PERF_EVENT_PERIOD,
			.misc = 0,
2988
			.size = sizeof(event),
2989 2990
		},
		.time = sched_clock(),
2991
		.id = counter->id,
2992 2993 2994
		.period = period,
	};

2995
	ret = perf_output_begin(&handle, counter, sizeof(event), 1, 0);
2996 2997 2998
	if (ret)
		return;

2999
	perf_output_put(&handle, event);
3000 3001 3002
	perf_output_end(&handle);
}

3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
/*
 * IRQ throttle logging
 */

static void perf_log_throttle(struct perf_counter *counter, int enable)
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3015
		u64				id;
3016 3017 3018 3019 3020 3021
	} throttle_event = {
		.header = {
			.type = PERF_EVENT_THROTTLE + 1,
			.misc = 0,
			.size = sizeof(throttle_event),
		},
3022 3023
		.time	= sched_clock(),
		.id	= counter->id,
3024 3025
	};

I
Ingo Molnar 已提交
3026
	ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
3027 3028 3029 3030 3031 3032 3033
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3034
/*
3035
 * Generic counter overflow handling, sampling.
3036 3037
 */

3038 3039
int perf_counter_overflow(struct perf_counter *counter, int nmi,
			  struct perf_sample_data *data)
3040
{
3041
	int events = atomic_read(&counter->event_limit);
3042
	int throttle = counter->pmu->unthrottle != NULL;
3043
	struct hw_perf_counter *hwc = &counter->hw;
3044 3045
	int ret = 0;

3046
	if (!throttle) {
3047
		hwc->interrupts++;
3048
	} else {
3049 3050
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3051 3052
			if (HZ * hwc->interrupts >
					(u64)sysctl_perf_counter_sample_rate) {
3053
				hwc->interrupts = MAX_INTERRUPTS;
3054 3055 3056 3057 3058 3059 3060 3061 3062
				perf_log_throttle(counter, 0);
				ret = 1;
			}
		} else {
			/*
			 * Keep re-disabling counters even though on the previous
			 * pass we disabled it - just in case we raced with a
			 * sched-in and the counter got enabled again:
			 */
3063 3064 3065
			ret = 1;
		}
	}
3066

3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
	if (counter->attr.freq) {
		u64 now = sched_clock();
		s64 delta = now - hwc->freq_stamp;

		hwc->freq_stamp = now;

		if (delta > 0 && delta < TICK_NSEC)
			perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
	}

3077 3078 3079 3080 3081
	/*
	 * XXX event_limit might not quite work as expected on inherited
	 * counters
	 */

3082
	counter->pending_kill = POLL_IN;
3083 3084
	if (events && atomic_dec_and_test(&counter->event_limit)) {
		ret = 1;
3085
		counter->pending_kill = POLL_HUP;
3086 3087 3088 3089 3090 3091 3092 3093
		if (nmi) {
			counter->pending_disable = 1;
			perf_pending_queue(&counter->pending,
					   perf_pending_counter);
		} else
			perf_counter_disable(counter);
	}

3094
	perf_counter_output(counter, nmi, data);
3095
	return ret;
3096 3097
}

3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
/*
 * Generic software counter infrastructure
 */

static void perf_swcounter_update(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 prev, now;
	s64 delta;

again:
	prev = atomic64_read(&hwc->prev_count);
	now = atomic64_read(&hwc->count);
	if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
		goto again;

	delta = now - prev;

	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &hwc->period_left);
}

static void perf_swcounter_set_period(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	s64 left = atomic64_read(&hwc->period_left);
3124
	s64 period = hwc->sample_period;
3125 3126 3127 3128

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
3129
		hwc->last_period = period;
3130 3131 3132 3133 3134
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_add(period, &hwc->period_left);
3135
		hwc->last_period = period;
3136 3137 3138 3139 3140 3141
	}

	atomic64_set(&hwc->prev_count, -left);
	atomic64_set(&hwc->count, -left);
}

3142 3143
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
3144
	enum hrtimer_restart ret = HRTIMER_RESTART;
3145
	struct perf_sample_data data;
3146
	struct perf_counter *counter;
3147
	u64 period;
3148 3149

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
3150
	counter->pmu->read(counter);
3151

3152 3153
	data.addr = 0;
	data.regs = get_irq_regs();
3154 3155 3156 3157
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
3158
	if ((counter->attr.exclude_kernel || !data.regs) &&
3159
			!counter->attr.exclude_user)
3160
		data.regs = task_pt_regs(current);
3161

3162 3163
	if (data.regs) {
		if (perf_counter_overflow(counter, 0, &data))
3164 3165
			ret = HRTIMER_NORESTART;
	}
3166

3167
	period = max_t(u64, 10000, counter->hw.sample_period);
3168
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3169

3170
	return ret;
3171 3172 3173
}

static void perf_swcounter_overflow(struct perf_counter *counter,
3174
				    int nmi, struct pt_regs *regs, u64 addr)
3175
{
3176
	struct perf_sample_data data = {
3177 3178 3179
		.regs	= regs,
		.addr	= addr,
		.period	= counter->hw.last_period,
3180 3181
	};

3182 3183
	perf_swcounter_update(counter);
	perf_swcounter_set_period(counter);
3184
	if (perf_counter_overflow(counter, nmi, &data))
3185 3186 3187
		/* soft-disable the counter */
		;

3188 3189
}

3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
static int perf_swcounter_is_counting(struct perf_counter *counter)
{
	struct perf_counter_context *ctx;
	unsigned long flags;
	int count;

	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		return 1;

	if (counter->state != PERF_COUNTER_STATE_INACTIVE)
		return 0;

	/*
	 * If the counter is inactive, it could be just because
	 * its task is scheduled out, or because it's in a group
	 * which could not go on the PMU.  We want to count in
	 * the first case but not the second.  If the context is
	 * currently active then an inactive software counter must
	 * be the second case.  If it's not currently active then
	 * we need to know whether the counter was active when the
	 * context was last active, which we can determine by
	 * comparing counter->tstamp_stopped with ctx->time.
	 *
	 * We are within an RCU read-side critical section,
	 * which protects the existence of *ctx.
	 */
	ctx = counter->ctx;
	spin_lock_irqsave(&ctx->lock, flags);
	count = 1;
	/* Re-check state now we have the lock */
	if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
	    counter->ctx->is_active ||
	    counter->tstamp_stopped < ctx->time)
		count = 0;
	spin_unlock_irqrestore(&ctx->lock, flags);
	return count;
}

3228
static int perf_swcounter_match(struct perf_counter *counter,
P
Peter Zijlstra 已提交
3229
				enum perf_type_id type,
3230
				u32 event, struct pt_regs *regs)
3231
{
3232
	if (!perf_swcounter_is_counting(counter))
3233 3234
		return 0;

3235 3236 3237
	if (counter->attr.type != type)
		return 0;
	if (counter->attr.config != event)
3238 3239
		return 0;

3240
	if (regs) {
3241
		if (counter->attr.exclude_user && user_mode(regs))
3242
			return 0;
3243

3244
		if (counter->attr.exclude_kernel && !user_mode(regs))
3245 3246
			return 0;
	}
3247 3248 3249 3250

	return 1;
}

3251
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3252
			       int nmi, struct pt_regs *regs, u64 addr)
3253 3254
{
	int neg = atomic64_add_negative(nr, &counter->hw.count);
3255

3256
	if (counter->hw.sample_period && !neg && regs)
3257
		perf_swcounter_overflow(counter, nmi, regs, addr);
3258 3259
}

3260
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
P
Peter Zijlstra 已提交
3261
				     enum perf_type_id type, u32 event,
3262 3263
				     u64 nr, int nmi, struct pt_regs *regs,
				     u64 addr)
3264 3265 3266
{
	struct perf_counter *counter;

3267
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3268 3269
		return;

P
Peter Zijlstra 已提交
3270 3271
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3272
		if (perf_swcounter_match(counter, type, event, regs))
3273
			perf_swcounter_add(counter, nr, nmi, regs, addr);
3274
	}
P
Peter Zijlstra 已提交
3275
	rcu_read_unlock();
3276 3277
}

P
Peter Zijlstra 已提交
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

P
Peter Zijlstra 已提交
3292
static void __perf_swcounter_event(enum perf_type_id type, u32 event,
3293 3294
				   u64 nr, int nmi, struct pt_regs *regs,
				   u64 addr)
3295 3296
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3297
	int *recursion = perf_swcounter_recursion_context(cpuctx);
3298
	struct perf_counter_context *ctx;
P
Peter Zijlstra 已提交
3299 3300 3301 3302 3303 3304

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
3305

3306 3307
	perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
				 nr, nmi, regs, addr);
3308 3309 3310 3311 3312 3313 3314 3315 3316
	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
		perf_swcounter_ctx_event(ctx, type, event, nr, nmi, regs, addr);
	rcu_read_unlock();
3317

P
Peter Zijlstra 已提交
3318 3319 3320 3321
	barrier();
	(*recursion)--;

out:
3322 3323 3324
	put_cpu_var(perf_cpu_context);
}

3325 3326
void
perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
3327
{
3328
	__perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
3329 3330
}

3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
static void perf_swcounter_read(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
	perf_swcounter_set_period(counter);
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

3347
static const struct pmu perf_ops_generic = {
3348 3349 3350 3351 3352
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
};

3353 3354 3355 3356
/*
 * Software counter: cpu wall time clock
 */

3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

3369 3370 3371 3372 3373 3374
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3375 3376
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
3377 3378
	if (hwc->sample_period) {
		u64 period = max_t(u64, 10000, hwc->sample_period);
3379
		__hrtimer_start_range_ns(&hwc->hrtimer,
3380
				ns_to_ktime(period), 0,
3381 3382 3383 3384 3385 3386
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

3387 3388
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
3389
	if (counter->hw.sample_period)
3390
		hrtimer_cancel(&counter->hw.hrtimer);
3391
	cpu_clock_perf_counter_update(counter);
3392 3393 3394 3395
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
3396
	cpu_clock_perf_counter_update(counter);
3397 3398
}

3399
static const struct pmu perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
3400 3401 3402
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
3403 3404
};

3405 3406 3407 3408
/*
 * Software counter: task time clock
 */

3409
static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
I
Ingo Molnar 已提交
3410
{
3411
	u64 prev;
I
Ingo Molnar 已提交
3412 3413
	s64 delta;

3414
	prev = atomic64_xchg(&counter->hw.prev_count, now);
I
Ingo Molnar 已提交
3415 3416
	delta = now - prev;
	atomic64_add(delta, &counter->count);
3417 3418
}

3419
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
3420
{
3421
	struct hw_perf_counter *hwc = &counter->hw;
3422 3423 3424
	u64 now;

	now = counter->ctx->time;
3425

3426
	atomic64_set(&hwc->prev_count, now);
3427 3428
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
3429 3430
	if (hwc->sample_period) {
		u64 period = max_t(u64, 10000, hwc->sample_period);
3431
		__hrtimer_start_range_ns(&hwc->hrtimer,
3432
				ns_to_ktime(period), 0,
3433 3434
				HRTIMER_MODE_REL, 0);
	}
3435 3436

	return 0;
I
Ingo Molnar 已提交
3437 3438 3439
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
3440
{
3441
	if (counter->hw.sample_period)
3442
		hrtimer_cancel(&counter->hw.hrtimer);
3443 3444
	task_clock_perf_counter_update(counter, counter->ctx->time);

3445
}
I
Ingo Molnar 已提交
3446

3447 3448
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
	u64 time;

	if (!in_nmi()) {
		update_context_time(counter->ctx);
		time = counter->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - counter->ctx->timestamp;
		time = counter->ctx->time + delta;
	}

	task_clock_perf_counter_update(counter, time);
3461 3462
}

3463
static const struct pmu perf_ops_task_clock = {
I
Ingo Molnar 已提交
3464 3465 3466
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
3467 3468
};

3469 3470 3471
#ifdef CONFIG_EVENT_PROFILE
void perf_tpcounter_event(int event_id)
{
3472 3473 3474 3475 3476
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);

3477
	__perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3478
}
3479
EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3480 3481 3482 3483 3484 3485

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
3486
	ftrace_profile_disable(perf_event_id(&counter->attr));
3487 3488
}

3489
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3490
{
3491
	int event_id = perf_event_id(&counter->attr);
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
	int ret;

	ret = ftrace_profile_enable(event_id);
	if (ret)
		return NULL;

	counter->destroy = tp_perf_counter_destroy;

	return &perf_ops_generic;
}
#else
3503
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3504 3505 3506 3507 3508
{
	return NULL;
}
#endif

3509
static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3510
{
3511
	const struct pmu *pmu = NULL;
3512

3513 3514 3515 3516 3517 3518 3519
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
3520
	switch (counter->attr.config) {
3521
	case PERF_COUNT_SW_CPU_CLOCK:
3522
		pmu = &perf_ops_cpu_clock;
3523

3524
		break;
3525
	case PERF_COUNT_SW_TASK_CLOCK:
3526 3527 3528 3529 3530
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
3531
			pmu = &perf_ops_task_clock;
3532
		else
3533
			pmu = &perf_ops_cpu_clock;
3534

3535
		break;
3536 3537 3538 3539 3540
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
3541
		pmu = &perf_ops_generic;
3542
		break;
3543
	}
3544

3545
	return pmu;
3546 3547
}

T
Thomas Gleixner 已提交
3548 3549 3550 3551
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
3552
perf_counter_alloc(struct perf_counter_attr *attr,
3553
		   int cpu,
3554
		   struct perf_counter_context *ctx,
3555 3556
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
3557
{
3558
	const struct pmu *pmu;
I
Ingo Molnar 已提交
3559
	struct perf_counter *counter;
3560
	struct hw_perf_counter *hwc;
3561
	long err;
T
Thomas Gleixner 已提交
3562

3563
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
3564
	if (!counter)
3565
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
3566

3567 3568 3569 3570 3571 3572 3573
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

3574 3575 3576
	mutex_init(&counter->child_mutex);
	INIT_LIST_HEAD(&counter->child_list);

3577
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
3578
	INIT_LIST_HEAD(&counter->event_entry);
3579
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
3580 3581
	init_waitqueue_head(&counter->waitq);

3582 3583
	mutex_init(&counter->mmap_mutex);

3584
	counter->cpu		= cpu;
3585
	counter->attr		= *attr;
3586 3587 3588 3589 3590 3591 3592 3593 3594
	counter->group_leader	= group_leader;
	counter->pmu		= NULL;
	counter->ctx		= ctx;
	counter->oncpu		= -1;

	counter->ns		= get_pid_ns(current->nsproxy->pid_ns);
	counter->id		= atomic64_inc_return(&perf_counter_id);

	counter->state		= PERF_COUNTER_STATE_INACTIVE;
3595

3596
	if (attr->disabled)
3597 3598
		counter->state = PERF_COUNTER_STATE_OFF;

3599
	pmu = NULL;
3600

3601
	hwc = &counter->hw;
3602
	hwc->sample_period = attr->sample_period;
3603
	if (attr->freq && attr->sample_freq)
3604 3605 3606
		hwc->sample_period = 1;

	atomic64_set(&hwc->period_left, hwc->sample_period);
3607

3608
	/*
3609
	 * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3610
	 */
3611
	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP))
3612 3613
		goto done;

3614
	switch (attr->type) {
3615
	case PERF_TYPE_RAW:
3616
	case PERF_TYPE_HARDWARE:
3617
	case PERF_TYPE_HW_CACHE:
3618
		pmu = hw_perf_counter_init(counter);
3619 3620 3621
		break;

	case PERF_TYPE_SOFTWARE:
3622
		pmu = sw_perf_counter_init(counter);
3623 3624 3625
		break;

	case PERF_TYPE_TRACEPOINT:
3626
		pmu = tp_perf_counter_init(counter);
3627
		break;
3628 3629 3630

	default:
		break;
3631
	}
3632 3633
done:
	err = 0;
3634
	if (!pmu)
3635
		err = -EINVAL;
3636 3637
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
3638

3639
	if (err) {
3640 3641
		if (counter->ns)
			put_pid_ns(counter->ns);
I
Ingo Molnar 已提交
3642
		kfree(counter);
3643
		return ERR_PTR(err);
I
Ingo Molnar 已提交
3644
	}
3645

3646
	counter->pmu = pmu;
T
Thomas Gleixner 已提交
3647

3648
	atomic_inc(&nr_counters);
3649
	if (counter->attr.mmap)
P
Peter Zijlstra 已提交
3650
		atomic_inc(&nr_mmap_counters);
3651
	if (counter->attr.comm)
P
Peter Zijlstra 已提交
3652
		atomic_inc(&nr_comm_counters);
3653

T
Thomas Gleixner 已提交
3654 3655 3656
	return counter;
}

3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
static int perf_copy_attr(struct perf_counter_attr __user *uattr,
			  struct perf_counter_attr *attr)
{
	int ret;
	u32 size;

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0.
	 */
	if (size > sizeof(*attr)) {
		unsigned long val;
		unsigned long __user *addr;
		unsigned long __user *end;

		addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr),
				sizeof(unsigned long));
		end  = PTR_ALIGN((void __user *)uattr + size,
				sizeof(unsigned long));

		for (; addr < end; addr += sizeof(unsigned long)) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

T
Thomas Gleixner 已提交
3736
/**
3737
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
3738
 *
3739
 * @attr_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
3740
 * @pid:		target pid
I
Ingo Molnar 已提交
3741 3742
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
3743
 */
3744
SYSCALL_DEFINE5(perf_counter_open,
3745
		struct perf_counter_attr __user *, attr_uptr,
3746
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
3747
{
3748
	struct perf_counter *counter, *group_leader;
3749
	struct perf_counter_attr attr;
3750
	struct perf_counter_context *ctx;
3751
	struct file *counter_file = NULL;
3752 3753
	struct file *group_file = NULL;
	int fput_needed = 0;
3754
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
3755 3756
	int ret;

3757 3758 3759 3760
	/* for future expandability... */
	if (flags)
		return -EINVAL;

3761 3762 3763
	ret = perf_copy_attr(attr_uptr, &attr);
	if (ret)
		return ret;
3764

3765 3766 3767 3768 3769
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

3770 3771 3772 3773 3774
	if (attr.freq) {
		if (attr.sample_freq > sysctl_perf_counter_sample_rate)
			return -EINVAL;
	}

3775
	/*
I
Ingo Molnar 已提交
3776 3777 3778 3779 3780 3781 3782 3783
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
3784 3785 3786 3787 3788 3789
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
3790
			goto err_put_context;
3791
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
3792
			goto err_put_context;
3793 3794 3795

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
3796 3797 3798 3799 3800 3801 3802 3803
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
3804
		 */
I
Ingo Molnar 已提交
3805 3806
		if (group_leader->ctx != ctx)
			goto err_put_context;
3807 3808 3809
		/*
		 * Only a group leader can be exclusive or pinned
		 */
3810
		if (attr.exclusive || attr.pinned)
3811
			goto err_put_context;
3812 3813
	}

3814
	counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
3815
				     GFP_KERNEL);
3816 3817
	ret = PTR_ERR(counter);
	if (IS_ERR(counter))
T
Thomas Gleixner 已提交
3818 3819 3820 3821
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
3822 3823 3824 3825 3826 3827 3828
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
3829
	WARN_ON_ONCE(ctx->parent_ctx);
3830
	mutex_lock(&ctx->mutex);
3831
	perf_install_in_context(ctx, counter, cpu);
3832
	++ctx->generation;
3833
	mutex_unlock(&ctx->mutex);
3834

3835 3836 3837 3838 3839 3840
	counter->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_counter_mutex);
	list_add_tail(&counter->owner_entry, &current->perf_counter_list);
	mutex_unlock(&current->perf_counter_mutex);

3841
	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
3842

3843 3844 3845
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
3846 3847
	return ret;

3848
err_free_put_context:
T
Thomas Gleixner 已提交
3849 3850 3851
	kfree(counter);

err_put_context:
3852
	put_ctx(ctx);
T
Thomas Gleixner 已提交
3853

3854
	goto out_fput;
T
Thomas Gleixner 已提交
3855 3856
}

3857 3858 3859
/*
 * inherit a counter from parent task to child task:
 */
3860
static struct perf_counter *
3861 3862 3863 3864
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
3865
	      struct perf_counter *group_leader,
3866 3867 3868 3869
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

3870 3871 3872 3873 3874 3875 3876 3877 3878
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

3879
	child_counter = perf_counter_alloc(&parent_counter->attr,
3880 3881
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
3882 3883
	if (IS_ERR(child_counter))
		return child_counter;
3884
	get_ctx(child_ctx);
3885

3886 3887
	/*
	 * Make the child state follow the state of the parent counter,
3888
	 * not its attr.disabled bit.  We hold the parent's mutex,
3889
	 * so we won't race with perf_counter_{en, dis}able_family.
3890 3891 3892 3893 3894 3895
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

3896 3897 3898
	if (parent_counter->attr.freq)
		child_counter->hw.sample_period = parent_counter->hw.sample_period;

3899 3900 3901
	/*
	 * Link it up in the child's context:
	 */
3902
	add_counter_to_ctx(child_counter, child_ctx);
3903 3904 3905 3906 3907

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
3908
	child_counter->attr.inherit = 1;
3909 3910 3911 3912 3913 3914 3915 3916 3917

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

3918 3919 3920
	/*
	 * Link this into the parent counter's child list
	 */
3921
	WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3922
	mutex_lock(&parent_counter->child_mutex);
3923
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3924
	mutex_unlock(&parent_counter->child_mutex);
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;
3937
	struct perf_counter *child_ctr;
3938 3939 3940

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
3941 3942
	if (IS_ERR(leader))
		return PTR_ERR(leader);
3943
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3944 3945 3946 3947
		child_ctr = inherit_counter(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
3948
	}
3949 3950 3951
	return 0;
}

3952 3953 3954
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
3955
	u64 child_val;
3956 3957 3958 3959 3960 3961 3962

	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);
3963 3964 3965 3966
	atomic64_add(child_counter->total_time_enabled,
		     &parent_counter->child_total_time_enabled);
	atomic64_add(child_counter->total_time_running,
		     &parent_counter->child_total_time_running);
3967 3968 3969 3970

	/*
	 * Remove this counter from the parent's list
	 */
3971
	WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3972
	mutex_lock(&parent_counter->child_mutex);
3973
	list_del_init(&child_counter->child_list);
3974
	mutex_unlock(&parent_counter->child_mutex);
3975 3976 3977 3978 3979 3980 3981 3982

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

3983
static void
3984
__perf_counter_exit_task(struct perf_counter *child_counter,
3985 3986 3987 3988
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;

3989
	update_counter_times(child_counter);
3990
	perf_counter_remove_from_context(child_counter);
3991

3992 3993 3994 3995 3996 3997
	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
3998 3999
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
4000
		free_counter(child_counter);
4001
	}
4002 4003 4004
}

/*
4005
 * When a child task exits, feed back counter values to parent counters.
4006 4007 4008 4009 4010
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;
4011
	unsigned long flags;
4012

4013
	if (likely(!child->perf_counter_ctxp))
4014 4015
		return;

4016
	local_irq_save(flags);
4017 4018 4019 4020 4021 4022 4023
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
	child_ctx = child->perf_counter_ctxp;
4024
	__perf_counter_task_sched_out(child_ctx);
4025 4026 4027 4028 4029 4030 4031

	/*
	 * Take the context lock here so that if find_get_context is
	 * reading child->perf_counter_ctxp, we wait until it has
	 * incremented the context's refcount before we do put_ctx below.
	 */
	spin_lock(&child_ctx->lock);
4032
	child->perf_counter_ctxp = NULL;
4033 4034 4035 4036 4037 4038 4039 4040 4041
	if (child_ctx->parent_ctx) {
		/*
		 * This context is a clone; unclone it so it can't get
		 * swapped to another process while we're removing all
		 * the counters from it.
		 */
		put_ctx(child_ctx->parent_ctx);
		child_ctx->parent_ctx = NULL;
	}
4042
	spin_unlock(&child_ctx->lock);
4043 4044
	local_irq_restore(flags);

4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
	/*
	 * We can recurse on the same lock type through:
	 *
	 *   __perf_counter_exit_task()
	 *     sync_child_counter()
	 *       fput(parent_counter->filp)
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4057

4058
again:
4059 4060
	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
4061
		__perf_counter_exit_task(child_counter, child_ctx);
4062 4063 4064 4065 4066 4067 4068 4069

	/*
	 * If the last counter was a group counter, it will have appended all
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
	if (!list_empty(&child_ctx->counter_list))
		goto again;
4070 4071 4072 4073

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
4074 4075
}

4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
void perf_counter_free_task(struct task_struct *task)
{
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
	struct perf_counter *counter, *tmp;

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
		struct perf_counter *parent = counter->parent;

		if (WARN_ON_ONCE(!parent))
			continue;

		mutex_lock(&parent->child_mutex);
		list_del_init(&counter->child_list);
		mutex_unlock(&parent->child_mutex);

		fput(parent->filp);

		list_del_counter(counter, ctx);
		free_counter(counter);
	}

	if (!list_empty(&ctx->counter_list))
		goto again;

	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

4114 4115 4116
/*
 * Initialize the perf_counter context in task_struct
 */
4117
int perf_counter_init_task(struct task_struct *child)
4118 4119
{
	struct perf_counter_context *child_ctx, *parent_ctx;
4120
	struct perf_counter_context *cloned_ctx;
4121
	struct perf_counter *counter;
4122
	struct task_struct *parent = current;
4123
	int inherited_all = 1;
4124
	int ret = 0;
4125

4126
	child->perf_counter_ctxp = NULL;
4127

4128 4129 4130
	mutex_init(&child->perf_counter_mutex);
	INIT_LIST_HEAD(&child->perf_counter_list);

4131
	if (likely(!parent->perf_counter_ctxp))
4132 4133
		return 0;

4134 4135
	/*
	 * This is executed from the parent task context, so inherit
4136 4137
	 * counters that have been marked for cloning.
	 * First allocate and initialize a context for the child.
4138 4139
	 */

4140 4141
	child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
	if (!child_ctx)
4142
		return -ENOMEM;
4143

4144 4145
	__perf_counter_init_context(child_ctx, child);
	child->perf_counter_ctxp = child_ctx;
4146
	get_task_struct(child);
4147

4148
	/*
4149 4150
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
4151
	 */
4152 4153
	parent_ctx = perf_pin_task_context(parent);

4154 4155 4156 4157 4158 4159 4160
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

4161 4162 4163 4164
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
4165
	mutex_lock(&parent_ctx->mutex);
4166 4167 4168 4169 4170

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
4171 4172 4173 4174
	list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
		if (counter != counter->group_leader)
			continue;

4175
		if (!counter->attr.inherit) {
4176
			inherited_all = 0;
4177
			continue;
4178
		}
4179

4180 4181 4182
		ret = inherit_group(counter, parent, parent_ctx,
					     child, child_ctx);
		if (ret) {
4183
			inherited_all = 0;
4184
			break;
4185 4186 4187 4188 4189 4190 4191
		}
	}

	if (inherited_all) {
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
4192 4193 4194 4195
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
		 * because the list of counters and the generation
		 * count can't have changed since we took the mutex.
4196
		 */
4197 4198 4199
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
4200
			child_ctx->parent_gen = parent_ctx->parent_gen;
4201 4202 4203 4204 4205
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
4206 4207
	}

4208
	mutex_unlock(&parent_ctx->mutex);
4209

4210
	perf_unpin_context(parent_ctx);
4211

4212
	return ret;
4213 4214
}

4215
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
4216
{
4217
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
4218

4219 4220
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
4221

4222
	spin_lock(&perf_resource_lock);
4223
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
4224
	spin_unlock(&perf_resource_lock);
4225

4226
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
4227 4228 4229
}

#ifdef CONFIG_HOTPLUG_CPU
4230
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
4231 4232 4233 4234 4235
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

4236 4237
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
4238
}
4239
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
4240
{
4241 4242 4243 4244
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
4245
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4246
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
4247 4248
}
#else
4249
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4261
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
4262 4263 4264 4265
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
4266
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
4267 4268 4269 4270 4271 4272 4273 4274 4275
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

4276 4277 4278
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
4279 4280
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
4281
	.priority		= 20,
T
Thomas Gleixner 已提交
4282 4283
};

4284
void __init perf_counter_init(void)
T
Thomas Gleixner 已提交
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

4311
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4312 4313 4314 4315 4316 4317 4318 4319 4320
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
4321
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

4343
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4344
	perf_overcommit = val;
4345
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);