perf_counter.c 79.7 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3
/*
 * Performance counter core code
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 9
 *
 *  For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18 19 20
#include <linux/poll.h>
#include <linux/sysfs.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
21 22 23
#include <linux/vmstat.h>
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
24 25 26
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
27
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
28
#include <linux/perf_counter.h>
29
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
30

31 32
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
33 34 35 36 37
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

38
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
39 40 41
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

42
static atomic_t nr_counters __read_mostly;
43 44 45 46
static atomic_t nr_mmap_tracking __read_mostly;
static atomic_t nr_munmap_tracking __read_mostly;
static atomic_t nr_comm_tracking __read_mostly;

47
int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48
int sysctl_perf_counter_mlock __read_mostly = 128; /* 'free' kb per counter */
49

T
Thomas Gleixner 已提交
50
/*
51
 * Lock for (sysadmin-configurable) counter reservations:
T
Thomas Gleixner 已提交
52
 */
53
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
54 55 56 57

/*
 * Architecture provided APIs - weak aliases:
 */
58
extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
59
{
60
	return NULL;
T
Thomas Gleixner 已提交
61 62
}

63
u64 __weak hw_perf_save_disable(void)		{ return 0; }
64
void __weak hw_perf_restore(u64 ctrl)		{ barrier(); }
65
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
66 67 68 69 70 71
int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
72

73 74
void __weak perf_counter_print_debug(void)	{ }

75 76 77 78 79 80 81 82 83 84
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
P
Peter Zijlstra 已提交
85
	if (group_leader == counter)
86
		list_add_tail(&counter->list_entry, &ctx->counter_list);
P
Peter Zijlstra 已提交
87
	else {
88
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
89 90
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
91 92

	list_add_rcu(&counter->event_entry, &ctx->event_list);
93 94 95 96 97 98 99 100
}

static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
101
	list_del_rcu(&counter->event_entry);
102

P
Peter Zijlstra 已提交
103 104 105
	if (counter->group_leader != counter)
		counter->group_leader->nr_siblings--;

106 107 108 109 110 111 112 113
	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

114
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
115 116 117 118
		sibling->group_leader = sibling;
	}
}

119 120 121 122 123 124 125 126 127
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
128
	counter->tstamp_stopped = ctx->time;
129
	counter->pmu->disable(counter);
130 131 132 133 134 135 136 137 138
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
	if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
		cpuctx->exclusive = 0;
}

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

	if (group_counter->hw_event.exclusive)
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
161 162 163 164 165 166
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
167
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
168 169 170 171
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
172
	unsigned long flags;
173
	u64 perf_flags;
T
Thomas Gleixner 已提交
174 175 176 177 178 179 180 181 182

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

183
	spin_lock_irqsave(&ctx->lock, flags);
T
Thomas Gleixner 已提交
184

185 186 187
	counter_sched_out(counter, cpuctx, ctx);

	counter->task = NULL;
T
Thomas Gleixner 已提交
188 189 190 191 192 193
	ctx->nr_counters--;

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
194
	perf_flags = hw_perf_save_disable();
195
	list_del_counter(counter, ctx);
196
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
197 198 199 200 201 202 203 204 205 206 207

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

208
	spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
209 210 211 212 213 214
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
215
 * Must be called with counter->mutex and ctx->mutex held.
T
Thomas Gleixner 已提交
216 217 218 219
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
 */
220
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
221 222 223 224 225 226 227 228 229 230
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
231
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
232 233 234 235 236
					 counter, 1);
		return;
	}

retry:
237
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
238 239 240 241 242 243
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
244
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
245 246 247 248 249 250
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
251
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
252 253
	 * succeed.
	 */
254
	if (!list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
255
		ctx->nr_counters--;
256
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
257 258 259 260 261
		counter->task = NULL;
	}
	spin_unlock_irq(&ctx->lock);
}

262
static inline u64 perf_clock(void)
263
{
264
	return cpu_clock(smp_processor_id());
265 266 267 268 269
}

/*
 * Update the record of the current time in a context.
 */
270
static void update_context_time(struct perf_counter_context *ctx)
271
{
272 273 274 275
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
276 277 278 279 280 281 282 283 284 285
}

/*
 * Update the total_time_enabled and total_time_running fields for a counter.
 */
static void update_counter_times(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	u64 run_end;

286 287 288 289 290 291 292 293 294 295 296
	if (counter->state < PERF_COUNTER_STATE_INACTIVE)
		return;

	counter->total_time_enabled = ctx->time - counter->tstamp_enabled;

	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		run_end = counter->tstamp_stopped;
	else
		run_end = ctx->time;

	counter->total_time_running = run_end - counter->tstamp_running;
297 298 299 300 301 302 303 304 305 306 307 308 309 310
}

/*
 * Update total_time_enabled and total_time_running for all counters in a group.
 */
static void update_group_times(struct perf_counter *leader)
{
	struct perf_counter *counter;

	update_counter_times(leader);
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		update_counter_times(counter);
}

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long flags;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

328
	spin_lock_irqsave(&ctx->lock, flags);
329 330 331 332 333 334

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
335
		update_context_time(ctx);
336
		update_counter_times(counter);
337 338 339 340 341 342 343
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

344
	spin_unlock_irqrestore(&ctx->lock, flags);
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
}

/*
 * Disable a counter.
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
380 381
	if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
382
		counter->state = PERF_COUNTER_STATE_OFF;
383
	}
384 385 386 387

	spin_unlock_irq(&ctx->lock);
}

388 389 390 391 392 393
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
394
	if (counter->state <= PERF_COUNTER_STATE_OFF)
395 396 397 398 399 400 401 402 403
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

404
	if (counter->pmu->enable(counter)) {
405 406 407 408 409
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

410
	counter->tstamp_running += ctx->time - counter->tstamp_stopped;
411

412 413
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
414 415
	ctx->nr_active++;

416 417 418
	if (counter->hw_event.exclusive)
		cpuctx->exclusive = 1;

419 420 421
	return 0;
}

422 423 424 425 426 427 428 429 430 431
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
P
Peter Zijlstra 已提交
432

433 434 435
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
P
Peter Zijlstra 已提交
436

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
	if (counter->hw_event.exclusive && cpuctx->active_oncpu)
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

471 472 473 474 475 476
static void add_counter_to_ctx(struct perf_counter *counter,
			       struct perf_counter_context *ctx)
{
	list_add_counter(counter, ctx);
	ctx->nr_counters++;
	counter->prev_state = PERF_COUNTER_STATE_OFF;
477 478 479
	counter->tstamp_enabled = ctx->time;
	counter->tstamp_running = ctx->time;
	counter->tstamp_stopped = ctx->time;
480 481
}

T
Thomas Gleixner 已提交
482
/*
483
 * Cross CPU call to install and enable a performance counter
T
Thomas Gleixner 已提交
484 485 486 487 488 489
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
490
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
491
	int cpu = smp_processor_id();
492
	unsigned long flags;
493
	u64 perf_flags;
494
	int err;
T
Thomas Gleixner 已提交
495 496 497 498 499 500 501 502 503

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

504
	spin_lock_irqsave(&ctx->lock, flags);
505
	update_context_time(ctx);
T
Thomas Gleixner 已提交
506 507 508 509 510

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
511
	perf_flags = hw_perf_save_disable();
T
Thomas Gleixner 已提交
512

513
	add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
514

515 516 517 518 519 520 521 522
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

523 524 525 526 527
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
528
	if (!group_can_go_on(counter, cpuctx, 1))
529 530 531 532
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

533 534 535 536 537 538 539 540
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
541 542
		if (leader->hw_event.pinned) {
			update_group_times(leader);
543
			leader->state = PERF_COUNTER_STATE_ERROR;
544
		}
545
	}
T
Thomas Gleixner 已提交
546

547
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
548 549
		cpuctx->max_pertask--;

550
 unlock:
551 552
	hw_perf_restore(perf_flags);

553
	spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
554 555 556 557 558 559 560 561 562 563 564
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
565 566
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

	counter->task = task;
retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
594
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
595 596 597 598 599 600 601 602 603
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
604 605
	if (list_empty(&counter->list_entry))
		add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
606 607 608
	spin_unlock_irq(&ctx->lock);
}

609 610 611 612
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
613
{
614 615 616 617 618 619
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	unsigned long flags;
	int err;
620

621 622 623 624 625
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
626 627
		return;

628
	spin_lock_irqsave(&ctx->lock, flags);
629
	update_context_time(ctx);
630

631
	counter->prev_state = counter->state;
632 633 634
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
635
	counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
636 637

	/*
638 639
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
640
	 */
641 642
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
643

644 645 646 647 648 649 650 651 652 653 654 655 656
	if (!group_can_go_on(counter, cpuctx, 1))
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx,
				       smp_processor_id());

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
657 658
		if (leader->hw_event.pinned) {
			update_group_times(leader);
659
			leader->state = PERF_COUNTER_STATE_ERROR;
660
		}
661 662 663
	}

 unlock:
664
	spin_unlock_irqrestore(&ctx->lock, flags);
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
}

/*
 * Enable a counter.
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
715
	if (counter->state == PERF_COUNTER_STATE_OFF) {
716
		counter->state = PERF_COUNTER_STATE_INACTIVE;
717 718
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
719
	}
720 721 722 723
 out:
	spin_unlock_irq(&ctx->lock);
}

724
static int perf_counter_refresh(struct perf_counter *counter, int refresh)
725
{
726 727 728 729 730 731
	/*
	 * not supported on inherited counters
	 */
	if (counter->hw_event.inherit)
		return -EINVAL;

732 733
	atomic_add(refresh, &counter->event_limit);
	perf_counter_enable(counter);
734 735

	return 0;
736 737
}

738 739 740 741
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;
742
	u64 flags;
743

744 745
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
746
	if (likely(!ctx->nr_counters))
747
		goto out;
748
	update_context_time(ctx);
749

750
	flags = hw_perf_save_disable();
751 752 753 754
	if (ctx->nr_active) {
		list_for_each_entry(counter, &ctx->counter_list, list_entry)
			group_sched_out(counter, cpuctx, ctx);
	}
755
	hw_perf_restore(flags);
756
 out:
757 758 759
	spin_unlock(&ctx->lock);
}

T
Thomas Gleixner 已提交
760 761 762 763 764 765
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
766
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
767 768 769 770 771 772 773 774
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
void perf_counter_task_sched_out(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
775
	struct pt_regs *regs;
T
Thomas Gleixner 已提交
776 777 778 779

	if (likely(!cpuctx->task_ctx))
		return;

780 781
	update_context_time(ctx);

782
	regs = task_pt_regs(task);
783
	perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
784 785
	__perf_counter_sched_out(ctx, cpuctx);

T
Thomas Gleixner 已提交
786 787 788
	cpuctx->task_ctx = NULL;
}

789
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
790
{
791
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
792 793
}

I
Ingo Molnar 已提交
794
static int
795 796 797 798 799
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
800
	struct perf_counter *counter, *partial_group;
801 802 803 804 805 806 807 808
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;
809

810
	group_counter->prev_state = group_counter->state;
811 812
	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;
813 814 815 816

	/*
	 * Schedule in siblings as one group (if any):
	 */
I
Ingo Molnar 已提交
817
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
818
		counter->prev_state = counter->state;
819 820 821 822 823 824
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

825
	return 0;
826 827 828 829 830 831 832 833 834 835

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
I
Ingo Molnar 已提交
836
	}
837
	counter_sched_out(group_counter, cpuctx, ctx);
I
Ingo Molnar 已提交
838

839
	return -EAGAIN;
840 841
}

842 843 844
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
845 846
{
	struct perf_counter *counter;
847
	u64 flags;
848
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
849

850 851
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
852
	if (likely(!ctx->nr_counters))
853
		goto out;
T
Thomas Gleixner 已提交
854

855
	ctx->timestamp = perf_clock();
856

857
	flags = hw_perf_save_disable();
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    !counter->hw_event.pinned)
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

		if (group_can_go_on(counter, cpuctx, 1))
			group_sched_in(counter, cpuctx, ctx, cpu);

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
877 878
		if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
			update_group_times(counter);
879
			counter->state = PERF_COUNTER_STATE_ERROR;
880
		}
881 882
	}

883
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
884 885 886 887 888 889 890 891
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    counter->hw_event.pinned)
			continue;

892 893 894 895
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
896 897 898
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

899
		if (group_can_go_on(counter, cpuctx, can_add_hw)) {
900 901
			if (group_sched_in(counter, cpuctx, ctx, cpu))
				can_add_hw = 0;
902
		}
T
Thomas Gleixner 已提交
903
	}
904
	hw_perf_restore(flags);
905
 out:
T
Thomas Gleixner 已提交
906
	spin_unlock(&ctx->lock);
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
924

925
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
926 927 928
	cpuctx->task_ctx = ctx;
}

929 930 931 932 933 934 935
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

936 937 938 939 940
int perf_counter_task_disable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
941
	unsigned long flags;
942 943 944 945 946 947
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

948
	local_irq_save(flags);
949 950 951 952 953 954 955 956 957 958 959
	cpu = smp_processor_id();

	perf_counter_task_sched_out(curr, cpu);

	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

960
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
961 962
		if (counter->state != PERF_COUNTER_STATE_ERROR) {
			update_group_times(counter);
963
			counter->state = PERF_COUNTER_STATE_OFF;
964
		}
965
	}
966

967 968
	hw_perf_restore(perf_flags);

969
	spin_unlock_irqrestore(&ctx->lock, flags);
970 971 972 973 974 975 976 977 978

	return 0;
}

int perf_counter_task_enable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
979
	unsigned long flags;
980 981 982 983 984 985
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

986
	local_irq_save(flags);
987 988
	cpu = smp_processor_id();

989 990
	perf_counter_task_sched_out(curr, cpu);

991 992 993 994 995 996 997 998
	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
999
		if (counter->state > PERF_COUNTER_STATE_OFF)
1000
			continue;
1001
		counter->state = PERF_COUNTER_STATE_INACTIVE;
1002 1003
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
I
Ingo Molnar 已提交
1004
		counter->hw_event.disabled = 0;
1005 1006 1007 1008 1009 1010 1011
	}
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

	perf_counter_task_sched_in(curr, cpu);

1012
	local_irq_restore(flags);
1013 1014 1015 1016

	return 0;
}

1017 1018 1019 1020
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
1021 1022
{
	struct perf_counter *counter;
1023
	u64 perf_flags;
T
Thomas Gleixner 已提交
1024

1025
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
1026 1027 1028 1029
		return;

	spin_lock(&ctx->lock);
	/*
1030
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
1031
	 */
1032
	perf_flags = hw_perf_save_disable();
1033
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1034
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
1035 1036
		break;
	}
1037
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
1038 1039

	spin_unlock(&ctx->lock);
1040 1041 1042 1043
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
1044 1045 1046 1047 1048 1049 1050 1051
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;

	if (!atomic_read(&nr_counters))
		return;

	cpuctx = &per_cpu(perf_cpu_context, cpu);
	ctx = &curr->perf_counter_ctx;
1052

1053
	perf_counter_cpu_sched_out(cpuctx);
1054
	perf_counter_task_sched_out(curr, cpu);
T
Thomas Gleixner 已提交
1055

1056
	rotate_ctx(&cpuctx->ctx);
1057 1058
	rotate_ctx(ctx);

1059
	perf_counter_cpu_sched_in(cpuctx, cpu);
T
Thomas Gleixner 已提交
1060 1061 1062 1063 1064 1065
	perf_counter_task_sched_in(curr, cpu);
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
1066
static void __read(void *info)
T
Thomas Gleixner 已提交
1067
{
I
Ingo Molnar 已提交
1068
	struct perf_counter *counter = info;
1069
	struct perf_counter_context *ctx = counter->ctx;
I
Ingo Molnar 已提交
1070
	unsigned long flags;
I
Ingo Molnar 已提交
1071

1072
	local_irq_save(flags);
1073
	if (ctx->is_active)
1074
		update_context_time(ctx);
1075
	counter->pmu->read(counter);
1076
	update_counter_times(counter);
1077
	local_irq_restore(flags);
T
Thomas Gleixner 已提交
1078 1079
}

1080
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1081 1082 1083 1084 1085
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1086
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1087
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1088
					 __read, counter, 1);
1089 1090
	} else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
T
Thomas Gleixner 已提交
1091 1092
	}

1093
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
}

static void put_context(struct perf_counter_context *ctx)
{
	if (ctx->task)
		put_task_struct(ctx->task);
}

static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;
	struct task_struct *task;

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
1113
		if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	ctx = &task->perf_counter_ctx;
	ctx->task = task;

	/* Reuse ptrace permission checks for now. */
	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
		put_context(ctx);
		return ERR_PTR(-EACCES);
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1157 1158 1159 1160 1161 1162 1163 1164
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
	kfree(counter);
}

1165 1166
static void perf_pending_sync(struct perf_counter *counter);

1167 1168
static void free_counter(struct perf_counter *counter)
{
1169 1170
	perf_pending_sync(counter);

1171
	atomic_dec(&nr_counters);
1172 1173 1174 1175 1176 1177 1178
	if (counter->hw_event.mmap)
		atomic_dec(&nr_mmap_tracking);
	if (counter->hw_event.munmap)
		atomic_dec(&nr_munmap_tracking);
	if (counter->hw_event.comm)
		atomic_dec(&nr_comm_tracking);

1179 1180 1181
	if (counter->destroy)
		counter->destroy(counter);

1182 1183 1184
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1195
	mutex_lock(&ctx->mutex);
T
Thomas Gleixner 已提交
1196 1197
	mutex_lock(&counter->mutex);

1198
	perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
1199 1200

	mutex_unlock(&counter->mutex);
1201
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1202

1203
	free_counter(counter);
1204
	put_context(ctx);
T
Thomas Gleixner 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
1215 1216
	u64 values[3];
	int n;
T
Thomas Gleixner 已提交
1217

1218 1219 1220 1221 1222 1223 1224 1225
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

T
Thomas Gleixner 已提交
1226
	mutex_lock(&counter->mutex);
1227 1228 1229 1230 1231 1232 1233 1234
	values[0] = perf_counter_read(counter);
	n = 1;
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);
T
Thomas Gleixner 已提交
1235 1236
	mutex_unlock(&counter->mutex);

1237 1238 1239 1240 1241 1242 1243 1244
	if (count < n * sizeof(u64))
		return -EINVAL;
	count = n * sizeof(u64);

	if (copy_to_user(buf, values, count))
		return -EFAULT;

	return count;
T
Thomas Gleixner 已提交
1245 1246 1247 1248 1249 1250 1251
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

1252
	return perf_read_hw(counter, buf, count);
T
Thomas Gleixner 已提交
1253 1254 1255 1256 1257
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1258
	struct perf_mmap_data *data;
1259
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1260 1261 1262 1263

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
1264
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1265
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1266 1267 1268 1269 1270 1271

	poll_wait(file, &counter->waitq, wait);

	return events;
}

1272 1273
static void perf_counter_reset(struct perf_counter *counter)
{
P
Peter Zijlstra 已提交
1274
	(void)perf_counter_read(counter);
1275
	atomic_set(&counter->count, 0);
P
Peter Zijlstra 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
	perf_counter_update_userpage(counter);
}

static void perf_counter_for_each_sibling(struct perf_counter *counter,
					  void (*func)(struct perf_counter *))
{
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *sibling;

	spin_lock_irq(&ctx->lock);
	counter = counter->group_leader;

	func(counter);
	list_for_each_entry(sibling, &counter->sibling_list, list_entry)
		func(sibling);
	spin_unlock_irq(&ctx->lock);
}

static void perf_counter_for_each_child(struct perf_counter *counter,
					void (*func)(struct perf_counter *))
{
	struct perf_counter *child;

	mutex_lock(&counter->mutex);
	func(counter);
	list_for_each_entry(child, &counter->child_list, child_list)
		func(child);
	mutex_unlock(&counter->mutex);
}

static void perf_counter_for_each(struct perf_counter *counter,
				  void (*func)(struct perf_counter *))
{
	struct perf_counter *child;

	mutex_lock(&counter->mutex);
	perf_counter_for_each_sibling(counter, func);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_for_each_sibling(child, func);
	mutex_unlock(&counter->mutex);
1316 1317
}

1318 1319 1320
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1321 1322
	void (*func)(struct perf_counter *);
	u32 flags = arg;
1323 1324 1325

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
P
Peter Zijlstra 已提交
1326
		func = perf_counter_enable;
1327 1328
		break;
	case PERF_COUNTER_IOC_DISABLE:
P
Peter Zijlstra 已提交
1329
		func = perf_counter_disable;
1330
		break;
1331
	case PERF_COUNTER_IOC_RESET:
P
Peter Zijlstra 已提交
1332
		func = perf_counter_reset;
1333
		break;
P
Peter Zijlstra 已提交
1334 1335 1336

	case PERF_COUNTER_IOC_REFRESH:
		return perf_counter_refresh(counter, arg);
1337
	default:
P
Peter Zijlstra 已提交
1338
		return -ENOTTY;
1339
	}
P
Peter Zijlstra 已提交
1340 1341 1342 1343 1344 1345 1346

	if (flags & PERF_IOC_FLAG_GROUP)
		perf_counter_for_each(counter, func);
	else
		perf_counter_for_each_child(counter, func);

	return 0;
1347 1348
}

1349 1350 1351 1352 1353 1354
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
void perf_counter_update_userpage(struct perf_counter *counter)
1355
{
1356 1357 1358 1359 1360 1361 1362 1363 1364
	struct perf_mmap_data *data;
	struct perf_counter_mmap_page *userpg;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	userpg = data->user_page;
1365

1366 1367 1368 1369 1370
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
1371
	++userpg->lock;
1372
	barrier();
1373 1374 1375 1376
	userpg->index = counter->hw.idx;
	userpg->offset = atomic64_read(&counter->count);
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&counter->hw.prev_count);
1377

1378
	barrier();
1379
	++userpg->lock;
1380
	preempt_enable();
1381
unlock:
1382
	rcu_read_unlock();
1383 1384 1385 1386 1387
}

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_counter *counter = vma->vm_file->private_data;
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff == 0) {
		vmf->page = virt_to_page(data->user_page);
	} else {
		int nr = vmf->pgoff - 1;
1400

1401 1402
		if ((unsigned)nr > data->nr_pages)
			goto unlock;
1403

1404 1405
		vmf->page = virt_to_page(data->data_pages[nr]);
	}
1406
	get_page(vmf->page);
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	WARN_ON(atomic_read(&counter->mmap_count));

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;
1440
	atomic_set(&data->lock, -1);
1441 1442 1443

	rcu_assign_pointer(counter->data, data);

1444
	return 0;
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
	return -ENOMEM;
}

static void __perf_mmap_data_free(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data = container_of(rcu_head,
			struct perf_mmap_data, rcu_head);
	int i;

	free_page((unsigned long)data->user_page);
	for (i = 0; i < data->nr_pages; i++)
		free_page((unsigned long)data->data_pages[i]);
	kfree(data);
}

static void perf_mmap_data_free(struct perf_counter *counter)
{
	struct perf_mmap_data *data = counter->data;

	WARN_ON(atomic_read(&counter->mmap_count));

	rcu_assign_pointer(counter->data, NULL);
	call_rcu(&data->rcu_head, __perf_mmap_data_free);
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	atomic_inc(&counter->mmap_count);
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	if (atomic_dec_and_mutex_lock(&counter->mmap_count,
				      &counter->mmap_mutex)) {
1494
		vma->vm_mm->locked_vm -= counter->data->nr_locked;
1495 1496 1497
		perf_mmap_data_free(counter);
		mutex_unlock(&counter->mmap_mutex);
	}
1498 1499 1500
}

static struct vm_operations_struct perf_mmap_vmops = {
1501
	.open  = perf_mmap_open,
1502
	.close = perf_mmap_close,
1503 1504 1505 1506 1507 1508
	.fault = perf_mmap_fault,
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct perf_counter *counter = file->private_data;
1509 1510 1511 1512
	unsigned long vma_size;
	unsigned long nr_pages;
	unsigned long locked, lock_limit;
	int ret = 0;
1513
	long extra;
1514 1515 1516

	if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
		return -EINVAL;
1517 1518 1519 1520

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

1521 1522 1523 1524 1525
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
1526 1527
		return -EINVAL;

1528
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
1529 1530
		return -EINVAL;

1531 1532
	if (vma->vm_pgoff != 0)
		return -EINVAL;
1533

1534 1535 1536 1537 1538 1539 1540
	mutex_lock(&counter->mmap_mutex);
	if (atomic_inc_not_zero(&counter->mmap_count)) {
		if (nr_pages != counter->data->nr_pages)
			ret = -EINVAL;
		goto unlock;
	}

1541 1542 1543 1544 1545 1546
	extra = nr_pages /* + 1 only account the data pages */;
	extra -= sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
	if (extra < 0)
		extra = 0;

	locked = vma->vm_mm->locked_vm + extra;
1547 1548 1549 1550

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;

1551 1552 1553 1554
	if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
		ret = -EPERM;
		goto unlock;
	}
1555 1556 1557

	WARN_ON(counter->data);
	ret = perf_mmap_data_alloc(counter, nr_pages);
1558 1559 1560 1561
	if (ret)
		goto unlock;

	atomic_set(&counter->mmap_count, 1);
1562 1563
	vma->vm_mm->locked_vm += extra;
	counter->data->nr_locked = extra;
1564
unlock:
1565
	mutex_unlock(&counter->mmap_mutex);
1566 1567 1568 1569

	vma->vm_flags &= ~VM_MAYWRITE;
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
1570 1571

	return ret;
1572 1573
}

P
Peter Zijlstra 已提交
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct perf_counter *counter = filp->private_data;
	struct inode *inode = filp->f_path.dentry->d_inode;
	int retval;

	mutex_lock(&inode->i_mutex);
	retval = fasync_helper(fd, filp, on, &counter->fasync);
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
1590 1591 1592 1593
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
1594 1595
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
1596
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
1597
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
1598 1599
};

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
/*
 * Perf counter wakeup
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

void perf_counter_wakeup(struct perf_counter *counter)
{
	wake_up_all(&counter->waitq);
1610 1611 1612 1613 1614

	if (counter->pending_kill) {
		kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
		counter->pending_kill = 0;
	}
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
static void perf_pending_counter(struct perf_pending_entry *entry)
{
	struct perf_counter *counter = container_of(entry,
			struct perf_counter, pending);

	if (counter->pending_disable) {
		counter->pending_disable = 0;
		perf_counter_disable(counter);
	}

	if (counter->pending_wakeup) {
		counter->pending_wakeup = 0;
		perf_counter_wakeup(counter);
	}
}

1642
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1643

1644
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1645 1646 1647
	PENDING_TAIL,
};

1648 1649
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
1650
{
1651
	struct perf_pending_entry **head;
1652

1653
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1654 1655
		return;

1656 1657 1658
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
1659 1660

	do {
1661 1662
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
1663 1664 1665

	set_perf_counter_pending();

1666
	put_cpu_var(perf_pending_head);
1667 1668 1669 1670
}

static int __perf_pending_run(void)
{
1671
	struct perf_pending_entry *list;
1672 1673
	int nr = 0;

1674
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1675
	while (list != PENDING_TAIL) {
1676 1677
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
1678 1679 1680

		list = list->next;

1681 1682
		func = entry->func;
		entry->next = NULL;
1683 1684 1685 1686 1687 1688 1689
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

1690
		func(entry);
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
		nr++;
	}

	return nr;
}

static inline int perf_not_pending(struct perf_counter *counter)
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
1712
	return counter->pending.next == NULL;
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
}

static void perf_pending_sync(struct perf_counter *counter)
{
	wait_event(counter->waitq, perf_not_pending(counter));
}

void perf_counter_do_pending(void)
{
	__perf_pending_run();
}

1725 1726 1727 1728
/*
 * Callchain support -- arch specific
 */

1729
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1730 1731 1732 1733
{
	return NULL;
}

1734 1735 1736 1737
/*
 * Output
 */

1738 1739 1740 1741
struct perf_output_handle {
	struct perf_counter	*counter;
	struct perf_mmap_data	*data;
	unsigned int		offset;
1742
	unsigned int		head;
1743
	int			nmi;
1744
	int			overflow;
1745 1746
	int			locked;
	unsigned long		flags;
1747 1748
};

1749
static void perf_output_wakeup(struct perf_output_handle *handle)
1750
{
1751 1752
	atomic_set(&handle->data->poll, POLL_IN);

1753
	if (handle->nmi) {
1754
		handle->counter->pending_wakeup = 1;
1755
		perf_pending_queue(&handle->counter->pending,
1756
				   perf_pending_counter);
1757
	} else
1758 1759 1760
		perf_counter_wakeup(handle->counter);
}

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
/*
 * Curious locking construct.
 *
 * We need to ensure a later event doesn't publish a head when a former
 * event isn't done writing. However since we need to deal with NMIs we
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
 * event completes.
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
	int cpu;

	handle->locked = 0;

	local_irq_save(handle->flags);
	cpu = smp_processor_id();

	if (in_nmi() && atomic_read(&data->lock) == cpu)
		return;

1787
	while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
		cpu_relax();

	handle->locked = 1;
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
	int head, cpu;

1798
	data->done_head = data->head;
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
1809
	while ((head = atomic_xchg(&data->done_head, 0)))
1810 1811 1812
		data->user_page->data_head = head;

	/*
1813
	 * NMI can happen here, which means we can miss a done_head update.
1814 1815
	 */

1816
	cpu = atomic_xchg(&data->lock, -1);
1817 1818 1819 1820 1821
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
1822
	if (unlikely(atomic_read(&data->done_head))) {
1823 1824 1825
		/*
		 * Since we had it locked, we can lock it again.
		 */
1826
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1827 1828 1829 1830 1831
			cpu_relax();

		goto again;
	}

1832
	if (atomic_xchg(&data->wakeup, 0))
1833 1834 1835 1836 1837
		perf_output_wakeup(handle);
out:
	local_irq_restore(handle->flags);
}

1838
static int perf_output_begin(struct perf_output_handle *handle,
1839
			     struct perf_counter *counter, unsigned int size,
1840
			     int nmi, int overflow)
1841
{
1842
	struct perf_mmap_data *data;
1843
	unsigned int offset, head;
1844

1845 1846 1847 1848 1849 1850
	/*
	 * For inherited counters we send all the output towards the parent.
	 */
	if (counter->parent)
		counter = counter->parent;

1851 1852 1853 1854 1855
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto out;

1856
	handle->data	 = data;
1857 1858 1859
	handle->counter	 = counter;
	handle->nmi	 = nmi;
	handle->overflow = overflow;
1860

1861
	if (!data->nr_pages)
1862
		goto fail;
1863

1864 1865
	perf_output_lock(handle);

1866 1867
	do {
		offset = head = atomic_read(&data->head);
P
Peter Zijlstra 已提交
1868
		head += size;
1869 1870
	} while (atomic_cmpxchg(&data->head, offset, head) != offset);

1871
	handle->offset	= offset;
1872
	handle->head	= head;
1873 1874 1875

	if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
		atomic_set(&data->wakeup, 1);
1876

1877
	return 0;
1878

1879
fail:
1880
	perf_output_wakeup(handle);
1881 1882
out:
	rcu_read_unlock();
1883

1884 1885
	return -ENOSPC;
}
1886

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
static void perf_output_copy(struct perf_output_handle *handle,
			     void *buf, unsigned int len)
{
	unsigned int pages_mask;
	unsigned int offset;
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
		unsigned int page_offset;
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
		page_offset = offset & (PAGE_SIZE - 1);
		size	    = min_t(unsigned int, PAGE_SIZE - page_offset, len);

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;
1915 1916

	WARN_ON_ONCE(handle->offset > handle->head);
1917 1918
}

P
Peter Zijlstra 已提交
1919 1920 1921
#define perf_output_put(handle, x) \
	perf_output_copy((handle), &(x), sizeof(x))

1922
static void perf_output_end(struct perf_output_handle *handle)
1923
{
1924 1925 1926 1927
	struct perf_counter *counter = handle->counter;
	struct perf_mmap_data *data = handle->data;

	int wakeup_events = counter->hw_event.wakeup_events;
P
Peter Zijlstra 已提交
1928

1929
	if (handle->overflow && wakeup_events) {
1930
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
1931
		if (events >= wakeup_events) {
1932
			atomic_sub(wakeup_events, &data->events);
1933
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
1934
		}
1935 1936 1937
	}

	perf_output_unlock(handle);
1938
	rcu_read_unlock();
1939 1940
}

1941
static void perf_counter_output(struct perf_counter *counter,
1942
				int nmi, struct pt_regs *regs, u64 addr)
1943
{
1944
	int ret;
1945
	u64 record_type = counter->hw_event.record_type;
1946 1947 1948
	struct perf_output_handle handle;
	struct perf_event_header header;
	u64 ip;
P
Peter Zijlstra 已提交
1949
	struct {
1950
		u32 pid, tid;
1951
	} tid_entry;
1952 1953 1954 1955
	struct {
		u64 event;
		u64 counter;
	} group_entry;
1956 1957
	struct perf_callchain_entry *callchain = NULL;
	int callchain_size = 0;
P
Peter Zijlstra 已提交
1958
	u64 time;
1959

1960
	header.type = 0;
1961
	header.size = sizeof(header);
1962

1963 1964
	header.misc = PERF_EVENT_MISC_OVERFLOW;
	header.misc |= user_mode(regs) ?
1965 1966
		PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;

1967 1968
	if (record_type & PERF_RECORD_IP) {
		ip = instruction_pointer(regs);
1969
		header.type |= PERF_RECORD_IP;
1970 1971
		header.size += sizeof(ip);
	}
1972

1973
	if (record_type & PERF_RECORD_TID) {
1974
		/* namespace issues */
1975 1976 1977
		tid_entry.pid = current->group_leader->pid;
		tid_entry.tid = current->pid;

1978
		header.type |= PERF_RECORD_TID;
1979 1980 1981
		header.size += sizeof(tid_entry);
	}

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
	if (record_type & PERF_RECORD_TIME) {
		/*
		 * Maybe do better on x86 and provide cpu_clock_nmi()
		 */
		time = sched_clock();

		header.type |= PERF_RECORD_TIME;
		header.size += sizeof(u64);
	}

1992 1993 1994 1995 1996
	if (record_type & PERF_RECORD_ADDR) {
		header.type |= PERF_RECORD_ADDR;
		header.size += sizeof(u64);
	}

1997 1998 1999 2000 2001
	if (record_type & PERF_RECORD_CONFIG) {
		header.type |= PERF_RECORD_CONFIG;
		header.size += sizeof(u64);
	}

2002
	if (record_type & PERF_RECORD_GROUP) {
2003
		header.type |= PERF_RECORD_GROUP;
2004 2005 2006 2007 2008
		header.size += sizeof(u64) +
			counter->nr_siblings * sizeof(group_entry);
	}

	if (record_type & PERF_RECORD_CALLCHAIN) {
2009 2010 2011
		callchain = perf_callchain(regs);

		if (callchain) {
2012
			callchain_size = (1 + callchain->nr) * sizeof(u64);
2013

2014
			header.type |= PERF_RECORD_CALLCHAIN;
2015 2016 2017 2018
			header.size += callchain_size;
		}
	}

2019
	ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2020 2021
	if (ret)
		return;
2022

2023
	perf_output_put(&handle, header);
P
Peter Zijlstra 已提交
2024

2025 2026
	if (record_type & PERF_RECORD_IP)
		perf_output_put(&handle, ip);
P
Peter Zijlstra 已提交
2027

2028 2029
	if (record_type & PERF_RECORD_TID)
		perf_output_put(&handle, tid_entry);
P
Peter Zijlstra 已提交
2030

2031 2032 2033
	if (record_type & PERF_RECORD_TIME)
		perf_output_put(&handle, time);

2034 2035 2036
	if (record_type & PERF_RECORD_ADDR)
		perf_output_put(&handle, addr);

2037 2038 2039
	if (record_type & PERF_RECORD_CONFIG)
		perf_output_put(&handle, counter->hw_event.config);

2040 2041 2042
	/*
	 * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
	 */
2043 2044 2045
	if (record_type & PERF_RECORD_GROUP) {
		struct perf_counter *leader, *sub;
		u64 nr = counter->nr_siblings;
P
Peter Zijlstra 已提交
2046

2047
		perf_output_put(&handle, nr);
2048

2049 2050 2051
		leader = counter->group_leader;
		list_for_each_entry(sub, &leader->sibling_list, list_entry) {
			if (sub != counter)
2052
				sub->pmu->read(sub);
2053

2054 2055
			group_entry.event = sub->hw_event.config;
			group_entry.counter = atomic64_read(&sub->count);
2056

2057 2058
			perf_output_put(&handle, group_entry);
		}
2059
	}
P
Peter Zijlstra 已提交
2060

2061 2062
	if (callchain)
		perf_output_copy(&handle, callchain, callchain_size);
2063

2064
	perf_output_end(&handle);
2065 2066
}

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
/*
 * comm tracking
 */

struct perf_comm_event {
	struct task_struct 	*task;
	char 			*comm;
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
	} event;
};

static void perf_counter_comm_output(struct perf_counter *counter,
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
	int size = comm_event->event.header.size;
	int ret = perf_output_begin(&handle, counter, size, 0, 0);

	if (ret)
		return;

	perf_output_put(&handle, comm_event->event);
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

static int perf_counter_comm_match(struct perf_counter *counter,
				   struct perf_comm_event *comm_event)
{
	if (counter->hw_event.comm &&
	    comm_event->event.header.type == PERF_EVENT_COMM)
		return 1;

	return 0;
}

static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
				  struct perf_comm_event *comm_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_comm_match(counter, comm_event))
			perf_counter_comm_output(counter, comm_event);
	}
	rcu_read_unlock();
}

static void perf_counter_comm_event(struct perf_comm_event *comm_event)
{
	struct perf_cpu_context *cpuctx;
	unsigned int size;
	char *comm = comm_event->task->comm;

2132
	size = ALIGN(strlen(comm)+1, sizeof(u64));
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147

	comm_event->comm = comm;
	comm_event->comm_size = size;

	comm_event->event.header.size = sizeof(comm_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
	put_cpu_var(perf_cpu_context);

	perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
}

void perf_counter_comm(struct task_struct *task)
{
2148 2149 2150 2151 2152 2153
	struct perf_comm_event comm_event;

	if (!atomic_read(&nr_comm_tracking))
		return;
       
	comm_event = (struct perf_comm_event){
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
		.task	= task,
		.event  = {
			.header = { .type = PERF_EVENT_COMM, },
			.pid	= task->group_leader->pid,
			.tid	= task->pid,
		},
	};

	perf_counter_comm_event(&comm_event);
}

2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
/*
 * mmap tracking
 */

struct perf_mmap_event {
	struct file	*file;
	char		*file_name;
	int		file_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
	} event;
};

static void perf_counter_mmap_output(struct perf_counter *counter,
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
	int size = mmap_event->event.header.size;
2190
	int ret = perf_output_begin(&handle, counter, size, 0, 0);
2191 2192 2193 2194 2195 2196 2197

	if (ret)
		return;

	perf_output_put(&handle, mmap_event->event);
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
2198
	perf_output_end(&handle);
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
}

static int perf_counter_mmap_match(struct perf_counter *counter,
				   struct perf_mmap_event *mmap_event)
{
	if (counter->hw_event.mmap &&
	    mmap_event->event.header.type == PERF_EVENT_MMAP)
		return 1;

	if (counter->hw_event.munmap &&
	    mmap_event->event.header.type == PERF_EVENT_MUNMAP)
		return 1;

	return 0;
}

static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
				  struct perf_mmap_event *mmap_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_mmap_match(counter, mmap_event))
			perf_counter_mmap_output(counter, mmap_event);
	}
	rcu_read_unlock();
}

static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
{
	struct perf_cpu_context *cpuctx;
	struct file *file = mmap_event->file;
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
	char *name;

	if (file) {
		buf = kzalloc(PATH_MAX, GFP_KERNEL);
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
2246
		name = d_path(&file->f_path, buf, PATH_MAX);
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
2257
	size = ALIGN(strlen(name)+1, sizeof(u64));
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275

	mmap_event->file_name = name;
	mmap_event->file_size = size;

	mmap_event->event.header.size = sizeof(mmap_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
	put_cpu_var(perf_cpu_context);

	perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);

	kfree(buf);
}

void perf_counter_mmap(unsigned long addr, unsigned long len,
		       unsigned long pgoff, struct file *file)
{
2276 2277 2278 2279 2280 2281
	struct perf_mmap_event mmap_event;

	if (!atomic_read(&nr_mmap_tracking))
		return;

	mmap_event = (struct perf_mmap_event){
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

void perf_counter_munmap(unsigned long addr, unsigned long len,
			 unsigned long pgoff, struct file *file)
{
2299 2300 2301 2302 2303 2304
	struct perf_mmap_event mmap_event;

	if (!atomic_read(&nr_munmap_tracking))
		return;

	mmap_event = (struct perf_mmap_event){
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MUNMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

2319 2320 2321 2322 2323
/*
 * Generic counter overflow handling.
 */

int perf_counter_overflow(struct perf_counter *counter,
2324
			  int nmi, struct pt_regs *regs, u64 addr)
2325
{
2326 2327 2328
	int events = atomic_read(&counter->event_limit);
	int ret = 0;

2329 2330 2331 2332 2333
	/*
	 * XXX event_limit might not quite work as expected on inherited
	 * counters
	 */

2334
	counter->pending_kill = POLL_IN;
2335 2336
	if (events && atomic_dec_and_test(&counter->event_limit)) {
		ret = 1;
2337
		counter->pending_kill = POLL_HUP;
2338 2339 2340 2341 2342 2343 2344 2345
		if (nmi) {
			counter->pending_disable = 1;
			perf_pending_queue(&counter->pending,
					   perf_pending_counter);
		} else
			perf_counter_disable(counter);
	}

2346
	perf_counter_output(counter, nmi, regs, addr);
2347
	return ret;
2348 2349
}

2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
/*
 * Generic software counter infrastructure
 */

static void perf_swcounter_update(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 prev, now;
	s64 delta;

again:
	prev = atomic64_read(&hwc->prev_count);
	now = atomic64_read(&hwc->count);
	if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
		goto again;

	delta = now - prev;

	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &hwc->period_left);
}

static void perf_swcounter_set_period(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	s64 left = atomic64_read(&hwc->period_left);
	s64 period = hwc->irq_period;

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_add(period, &hwc->period_left);
	}

	atomic64_set(&hwc->prev_count, -left);
	atomic64_set(&hwc->count, -left);
}

2392 2393
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
2394
	enum hrtimer_restart ret = HRTIMER_RESTART;
2395 2396 2397 2398
	struct perf_counter *counter;
	struct pt_regs *regs;

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
2399
	counter->pmu->read(counter);
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409

	regs = get_irq_regs();
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
	if ((counter->hw_event.exclude_kernel || !regs) &&
			!counter->hw_event.exclude_user)
		regs = task_pt_regs(current);

2410
	if (regs) {
2411
		if (perf_counter_overflow(counter, 0, regs, 0))
2412 2413
			ret = HRTIMER_NORESTART;
	}
2414 2415 2416

	hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));

2417
	return ret;
2418 2419 2420
}

static void perf_swcounter_overflow(struct perf_counter *counter,
2421
				    int nmi, struct pt_regs *regs, u64 addr)
2422
{
2423 2424
	perf_swcounter_update(counter);
	perf_swcounter_set_period(counter);
2425
	if (perf_counter_overflow(counter, nmi, regs, addr))
2426 2427 2428
		/* soft-disable the counter */
		;

2429 2430
}

2431
static int perf_swcounter_match(struct perf_counter *counter,
2432 2433
				enum perf_event_types type,
				u32 event, struct pt_regs *regs)
2434 2435 2436 2437
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return 0;

2438
	if (perf_event_raw(&counter->hw_event))
2439 2440
		return 0;

2441
	if (perf_event_type(&counter->hw_event) != type)
2442 2443
		return 0;

2444
	if (perf_event_id(&counter->hw_event) != event)
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
		return 0;

	if (counter->hw_event.exclude_user && user_mode(regs))
		return 0;

	if (counter->hw_event.exclude_kernel && !user_mode(regs))
		return 0;

	return 1;
}

2456
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2457
			       int nmi, struct pt_regs *regs, u64 addr)
2458 2459 2460
{
	int neg = atomic64_add_negative(nr, &counter->hw.count);
	if (counter->hw.irq_period && !neg)
2461
		perf_swcounter_overflow(counter, nmi, regs, addr);
2462 2463
}

2464
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2465
				     enum perf_event_types type, u32 event,
2466 2467
				     u64 nr, int nmi, struct pt_regs *regs,
				     u64 addr)
2468 2469 2470
{
	struct perf_counter *counter;

2471
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2472 2473
		return;

P
Peter Zijlstra 已提交
2474 2475
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2476
		if (perf_swcounter_match(counter, type, event, regs))
2477
			perf_swcounter_add(counter, nr, nmi, regs, addr);
2478
	}
P
Peter Zijlstra 已提交
2479
	rcu_read_unlock();
2480 2481
}

P
Peter Zijlstra 已提交
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

2496
static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2497 2498
				   u64 nr, int nmi, struct pt_regs *regs,
				   u64 addr)
2499 2500
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
2501 2502 2503 2504 2505 2506 2507
	int *recursion = perf_swcounter_recursion_context(cpuctx);

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
2508

2509 2510
	perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
				 nr, nmi, regs, addr);
2511 2512
	if (cpuctx->task_ctx) {
		perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2513
					 nr, nmi, regs, addr);
2514
	}
2515

P
Peter Zijlstra 已提交
2516 2517 2518 2519
	barrier();
	(*recursion)--;

out:
2520 2521 2522
	put_cpu_var(perf_cpu_context);
}

2523 2524
void
perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2525
{
2526
	__perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2527 2528
}

2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
static void perf_swcounter_read(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
	perf_swcounter_set_period(counter);
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

2545
static const struct pmu perf_ops_generic = {
2546 2547 2548 2549 2550
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
};

2551 2552 2553 2554
/*
 * Software counter: cpu wall time clock
 */

2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

2567 2568 2569 2570 2571 2572
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2573 2574
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2575 2576 2577 2578 2579 2580 2581 2582 2583
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

2584 2585
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
2586
	hrtimer_cancel(&counter->hw.hrtimer);
2587
	cpu_clock_perf_counter_update(counter);
2588 2589 2590 2591
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
2592
	cpu_clock_perf_counter_update(counter);
2593 2594
}

2595
static const struct pmu perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
2596 2597 2598
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
2599 2600
};

2601 2602 2603 2604
/*
 * Software counter: task time clock
 */

2605
static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
I
Ingo Molnar 已提交
2606
{
2607
	u64 prev;
I
Ingo Molnar 已提交
2608 2609
	s64 delta;

2610
	prev = atomic64_xchg(&counter->hw.prev_count, now);
I
Ingo Molnar 已提交
2611 2612
	delta = now - prev;
	atomic64_add(delta, &counter->count);
2613 2614
}

2615
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
2616
{
2617
	struct hw_perf_counter *hwc = &counter->hw;
2618 2619 2620
	u64 now;

	now = counter->ctx->time;
2621

2622
	atomic64_set(&hwc->prev_count, now);
2623 2624
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2625 2626 2627 2628 2629
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}
2630 2631

	return 0;
I
Ingo Molnar 已提交
2632 2633 2634
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
2635
{
2636
	hrtimer_cancel(&counter->hw.hrtimer);
2637 2638
	task_clock_perf_counter_update(counter, counter->ctx->time);

2639
}
I
Ingo Molnar 已提交
2640

2641 2642
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
	u64 time;

	if (!in_nmi()) {
		update_context_time(counter->ctx);
		time = counter->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - counter->ctx->timestamp;
		time = counter->ctx->time + delta;
	}

	task_clock_perf_counter_update(counter, time);
2655 2656
}

2657
static const struct pmu perf_ops_task_clock = {
I
Ingo Molnar 已提交
2658 2659 2660
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
2661 2662
};

2663 2664 2665 2666
/*
 * Software counter: cpu migrations
 */

2667
static inline u64 get_cpu_migrations(struct perf_counter *counter)
2668
{
2669 2670 2671 2672 2673
	struct task_struct *curr = counter->ctx->task;

	if (curr)
		return curr->se.nr_migrations;
	return cpu_nr_migrations(smp_processor_id());
2674 2675 2676 2677 2678 2679 2680 2681
}

static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
2682
	now = get_cpu_migrations(counter);
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

2696
static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2697
{
2698 2699 2700
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count,
			     get_cpu_migrations(counter));
2701
	return 0;
2702 2703 2704 2705 2706 2707 2708
}

static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

2709
static const struct pmu perf_ops_cpu_migrations = {
I
Ingo Molnar 已提交
2710 2711 2712
	.enable		= cpu_migrations_perf_counter_enable,
	.disable	= cpu_migrations_perf_counter_disable,
	.read		= cpu_migrations_perf_counter_read,
2713 2714
};

2715 2716 2717
#ifdef CONFIG_EVENT_PROFILE
void perf_tpcounter_event(int event_id)
{
2718 2719 2720 2721 2722
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);

2723
	__perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2724
}
2725
EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2726 2727 2728 2729 2730 2731

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
2732
	ftrace_profile_disable(perf_event_id(&counter->hw_event));
2733 2734
}

2735
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2736
{
2737
	int event_id = perf_event_id(&counter->hw_event);
2738 2739 2740 2741 2742 2743 2744
	int ret;

	ret = ftrace_profile_enable(event_id);
	if (ret)
		return NULL;

	counter->destroy = tp_perf_counter_destroy;
2745
	counter->hw.irq_period = counter->hw_event.irq_period;
2746 2747 2748 2749

	return &perf_ops_generic;
}
#else
2750
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2751 2752 2753 2754 2755
{
	return NULL;
}
#endif

2756
static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2757
{
2758
	struct perf_counter_hw_event *hw_event = &counter->hw_event;
2759
	const struct pmu *pmu = NULL;
2760
	struct hw_perf_counter *hwc = &counter->hw;
2761

2762 2763 2764 2765 2766 2767 2768
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
2769
	switch (perf_event_id(&counter->hw_event)) {
2770
	case PERF_COUNT_CPU_CLOCK:
2771
		pmu = &perf_ops_cpu_clock;
2772 2773 2774

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
2775
		break;
2776
	case PERF_COUNT_TASK_CLOCK:
2777 2778 2779 2780 2781
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
2782
			pmu = &perf_ops_task_clock;
2783
		else
2784
			pmu = &perf_ops_cpu_clock;
2785 2786 2787

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
2788
		break;
2789
	case PERF_COUNT_PAGE_FAULTS:
2790 2791
	case PERF_COUNT_PAGE_FAULTS_MIN:
	case PERF_COUNT_PAGE_FAULTS_MAJ:
2792
	case PERF_COUNT_CONTEXT_SWITCHES:
2793
		pmu = &perf_ops_generic;
2794
		break;
2795
	case PERF_COUNT_CPU_MIGRATIONS:
2796
		if (!counter->hw_event.exclude_kernel)
2797
			pmu = &perf_ops_cpu_migrations;
2798
		break;
2799
	}
2800

2801
	if (pmu)
2802 2803
		hwc->irq_period = hw_event->irq_period;

2804
	return pmu;
2805 2806
}

T
Thomas Gleixner 已提交
2807 2808 2809 2810
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
2811 2812
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
		   int cpu,
2813
		   struct perf_counter_context *ctx,
2814 2815
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
2816
{
2817
	const struct pmu *pmu;
I
Ingo Molnar 已提交
2818
	struct perf_counter *counter;
2819
	long err;
T
Thomas Gleixner 已提交
2820

2821
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
2822
	if (!counter)
2823
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
2824

2825 2826 2827 2828 2829 2830 2831
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

T
Thomas Gleixner 已提交
2832
	mutex_init(&counter->mutex);
2833
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
2834
	INIT_LIST_HEAD(&counter->event_entry);
2835
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
2836 2837
	init_waitqueue_head(&counter->waitq);

2838 2839
	mutex_init(&counter->mmap_mutex);

2840 2841
	INIT_LIST_HEAD(&counter->child_list);

I
Ingo Molnar 已提交
2842 2843
	counter->cpu			= cpu;
	counter->hw_event		= *hw_event;
2844
	counter->group_leader		= group_leader;
2845
	counter->pmu			= NULL;
2846
	counter->ctx			= ctx;
I
Ingo Molnar 已提交
2847

2848
	counter->state = PERF_COUNTER_STATE_INACTIVE;
2849 2850 2851
	if (hw_event->disabled)
		counter->state = PERF_COUNTER_STATE_OFF;

2852
	pmu = NULL;
2853

2854 2855 2856 2857 2858 2859
	/*
	 * we currently do not support PERF_RECORD_GROUP on inherited counters
	 */
	if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
		goto done;

2860
	if (perf_event_raw(hw_event)) {
2861
		pmu = hw_perf_counter_init(counter);
2862 2863 2864 2865
		goto done;
	}

	switch (perf_event_type(hw_event)) {
2866
	case PERF_TYPE_HARDWARE:
2867
		pmu = hw_perf_counter_init(counter);
2868 2869 2870
		break;

	case PERF_TYPE_SOFTWARE:
2871
		pmu = sw_perf_counter_init(counter);
2872 2873 2874
		break;

	case PERF_TYPE_TRACEPOINT:
2875
		pmu = tp_perf_counter_init(counter);
2876 2877
		break;
	}
2878 2879
done:
	err = 0;
2880
	if (!pmu)
2881
		err = -EINVAL;
2882 2883
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
2884

2885
	if (err) {
I
Ingo Molnar 已提交
2886
		kfree(counter);
2887
		return ERR_PTR(err);
I
Ingo Molnar 已提交
2888
	}
2889

2890
	counter->pmu = pmu;
T
Thomas Gleixner 已提交
2891

2892
	atomic_inc(&nr_counters);
2893 2894 2895 2896 2897 2898 2899
	if (counter->hw_event.mmap)
		atomic_inc(&nr_mmap_tracking);
	if (counter->hw_event.munmap)
		atomic_inc(&nr_munmap_tracking);
	if (counter->hw_event.comm)
		atomic_inc(&nr_comm_tracking);

T
Thomas Gleixner 已提交
2900 2901 2902 2903
	return counter;
}

/**
2904
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
2905 2906
 *
 * @hw_event_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
2907
 * @pid:		target pid
I
Ingo Molnar 已提交
2908 2909
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
2910
 */
2911
SYSCALL_DEFINE5(perf_counter_open,
2912
		const struct perf_counter_hw_event __user *, hw_event_uptr,
2913
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
2914
{
2915
	struct perf_counter *counter, *group_leader;
I
Ingo Molnar 已提交
2916
	struct perf_counter_hw_event hw_event;
2917
	struct perf_counter_context *ctx;
2918
	struct file *counter_file = NULL;
2919 2920
	struct file *group_file = NULL;
	int fput_needed = 0;
2921
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
2922 2923
	int ret;

2924 2925 2926 2927
	/* for future expandability... */
	if (flags)
		return -EINVAL;

I
Ingo Molnar 已提交
2928
	if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2929 2930
		return -EFAULT;

2931
	/*
I
Ingo Molnar 已提交
2932 2933 2934 2935 2936 2937 2938 2939
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
2940 2941 2942 2943 2944 2945
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
2946
			goto err_put_context;
2947
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
2948
			goto err_put_context;
2949 2950 2951

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
2952 2953 2954 2955 2956 2957 2958 2959
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
2960
		 */
I
Ingo Molnar 已提交
2961 2962
		if (group_leader->ctx != ctx)
			goto err_put_context;
2963 2964 2965 2966 2967
		/*
		 * Only a group leader can be exclusive or pinned
		 */
		if (hw_event.exclusive || hw_event.pinned)
			goto err_put_context;
2968 2969
	}

2970 2971
	counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
				     GFP_KERNEL);
2972 2973
	ret = PTR_ERR(counter);
	if (IS_ERR(counter))
T
Thomas Gleixner 已提交
2974 2975 2976 2977
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
2978 2979 2980 2981 2982 2983 2984
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
2985
	mutex_lock(&ctx->mutex);
2986
	perf_install_in_context(ctx, counter, cpu);
2987
	mutex_unlock(&ctx->mutex);
2988 2989

	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
2990

2991 2992 2993
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
2994 2995
	return ret;

2996
err_free_put_context:
T
Thomas Gleixner 已提交
2997 2998 2999 3000 3001
	kfree(counter);

err_put_context:
	put_context(ctx);

3002
	goto out_fput;
T
Thomas Gleixner 已提交
3003 3004
}

3005 3006 3007 3008 3009 3010 3011 3012 3013
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
3014
	mutex_init(&ctx->mutex);
3015
	INIT_LIST_HEAD(&ctx->counter_list);
P
Peter Zijlstra 已提交
3016
	INIT_LIST_HEAD(&ctx->event_list);
3017 3018 3019 3020 3021 3022
	ctx->task = task;
}

/*
 * inherit a counter from parent task to child task:
 */
3023
static struct perf_counter *
3024 3025 3026 3027
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
3028
	      struct perf_counter *group_leader,
3029 3030 3031 3032
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

3033 3034 3035 3036 3037 3038 3039 3040 3041
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

3042
	child_counter = perf_counter_alloc(&parent_counter->hw_event,
3043 3044
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
3045 3046
	if (IS_ERR(child_counter))
		return child_counter;
3047 3048 3049 3050 3051

	/*
	 * Link it up in the child's context:
	 */
	child_counter->task = child;
3052
	add_counter_to_ctx(child_counter, child_ctx);
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
	child_counter->hw_event.inherit = 1;

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
	/*
	 * Link this into the parent counter's child list
	 */
	mutex_lock(&parent_counter->mutex);
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);

	/*
	 * Make the child state follow the state of the parent counter,
	 * not its hw_event.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_counter_{en,dis}able_family.
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

	mutex_unlock(&parent_counter->mutex);

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;
3097
	struct perf_counter *child_ctr;
3098 3099 3100

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
3101 3102
	if (IS_ERR(leader))
		return PTR_ERR(leader);
3103
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3104 3105 3106 3107
		child_ctr = inherit_counter(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
3108
	}
3109 3110 3111
	return 0;
}

3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
	u64 parent_val, child_val;

	parent_val = atomic64_read(&parent_counter->count);
	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);
3124 3125 3126 3127
	atomic64_add(child_counter->total_time_enabled,
		     &parent_counter->child_total_time_enabled);
	atomic64_add(child_counter->total_time_running,
		     &parent_counter->child_total_time_running);
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142

	/*
	 * Remove this counter from the parent's list
	 */
	mutex_lock(&parent_counter->mutex);
	list_del_init(&child_counter->child_list);
	mutex_unlock(&parent_counter->mutex);

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

3143 3144 3145 3146 3147 3148
static void
__perf_counter_exit_task(struct task_struct *child,
			 struct perf_counter *child_counter,
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;
3149
	struct perf_counter *sub, *tmp;
3150 3151

	/*
3152 3153 3154 3155 3156 3157
	 * If we do not self-reap then we have to wait for the
	 * child task to unschedule (it will happen for sure),
	 * so that its counter is at its final count. (This
	 * condition triggers rarely - child tasks usually get
	 * off their CPU before the parent has a chance to
	 * get this far into the reaping action)
3158
	 */
3159 3160 3161
	if (child != current) {
		wait_task_inactive(child, 0);
		list_del_init(&child_counter->list_entry);
3162
		update_counter_times(child_counter);
3163
	} else {
3164
		struct perf_cpu_context *cpuctx;
3165 3166 3167 3168 3169 3170 3171 3172 3173
		unsigned long flags;
		u64 perf_flags;

		/*
		 * Disable and unlink this counter.
		 *
		 * Be careful about zapping the list - IRQ/NMI context
		 * could still be processing it:
		 */
3174
		local_irq_save(flags);
3175
		perf_flags = hw_perf_save_disable();
3176 3177 3178

		cpuctx = &__get_cpu_var(perf_cpu_context);

3179
		group_sched_out(child_counter, cpuctx, child_ctx);
3180
		update_counter_times(child_counter);
3181

3182
		list_del_init(&child_counter->list_entry);
3183

3184
		child_ctx->nr_counters--;
3185

3186
		hw_perf_restore(perf_flags);
3187
		local_irq_restore(flags);
3188
	}
3189 3190 3191 3192 3193 3194 3195

	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
3196 3197 3198 3199
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
		list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
					 list_entry) {
3200
			if (sub->parent) {
3201
				sync_child_counter(sub, sub->parent);
3202
				free_counter(sub);
3203
			}
3204
		}
3205
		free_counter(child_counter);
3206
	}
3207 3208 3209
}

/*
3210
 * When a child task exits, feed back counter values to parent counters.
3211
 *
3212
 * Note: we may be running in child context, but the PID is not hashed
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
 * anymore so new counters will not be added.
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;

	child_ctx = &child->perf_counter_ctx;

	if (likely(!child_ctx->nr_counters))
		return;

	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
		__perf_counter_exit_task(child, child_counter, child_ctx);
}

/*
 * Initialize the perf_counter context in task_struct
 */
void perf_counter_init_task(struct task_struct *child)
{
	struct perf_counter_context *child_ctx, *parent_ctx;
3236
	struct perf_counter *counter;
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
	struct task_struct *parent = current;

	child_ctx  =  &child->perf_counter_ctx;
	parent_ctx = &parent->perf_counter_ctx;

	__perf_counter_init_context(child_ctx, child);

	/*
	 * This is executed from the parent task context, so inherit
	 * counters that have been marked for cloning:
	 */

	if (likely(!parent_ctx->nr_counters))
		return;

	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
3256
	mutex_lock(&parent_ctx->mutex);
3257 3258 3259 3260 3261 3262

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
	list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3263
		if (!counter->hw_event.inherit)
3264 3265
			continue;

3266
		if (inherit_group(counter, parent,
3267 3268 3269 3270
				  parent_ctx, child, child_ctx))
			break;
	}

3271
	mutex_unlock(&parent_ctx->mutex);
3272 3273
}

3274
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
3275
{
3276
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
3277

3278 3279
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
3280

3281
	spin_lock(&perf_resource_lock);
3282
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3283
	spin_unlock(&perf_resource_lock);
3284

3285
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
3286 3287 3288
}

#ifdef CONFIG_HOTPLUG_CPU
3289
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
3290 3291 3292 3293 3294
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

3295 3296
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
3297
}
3298
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
3299
{
3300 3301 3302 3303
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
3304
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3305
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3306 3307
}
#else
3308
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
3320
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
3321 3322 3323 3324
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
3325
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
};

3339
void __init perf_counter_init(void)
T
Thomas Gleixner 已提交
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

3366
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3367 3368 3369 3370 3371 3372 3373 3374 3375
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
3376
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

3398
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3399
	perf_overcommit = val;
3400
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);