perf_counter.c 77.9 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3
/*
 * Performance counter core code
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 9
 *
 *  For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18 19 20
#include <linux/poll.h>
#include <linux/sysfs.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
21 22 23
#include <linux/vmstat.h>
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
24 25 26
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
27
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
28
#include <linux/perf_counter.h>
29
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
30

31 32
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
33 34 35 36 37
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

38
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
39 40 41
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

42 43 44 45
static atomic_t nr_mmap_tracking __read_mostly;
static atomic_t nr_munmap_tracking __read_mostly;
static atomic_t nr_comm_tracking __read_mostly;

46 47
int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */

T
Thomas Gleixner 已提交
48 49 50 51 52 53 54 55
/*
 * Mutex for (sysadmin-configurable) counter reservations:
 */
static DEFINE_MUTEX(perf_resource_mutex);

/*
 * Architecture provided APIs - weak aliases:
 */
56
extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
57
{
58
	return NULL;
T
Thomas Gleixner 已提交
59 60
}

61
u64 __weak hw_perf_save_disable(void)		{ return 0; }
62
void __weak hw_perf_restore(u64 ctrl)		{ barrier(); }
63
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
64 65 66 67 68 69
int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
70

71 72
void __weak perf_counter_print_debug(void)	{ }

73 74 75 76 77 78 79 80 81 82 83 84
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
	if (counter->group_leader == counter)
		list_add_tail(&counter->list_entry, &ctx->counter_list);
P
Peter Zijlstra 已提交
85
	else {
86
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
87 88
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
89 90

	list_add_rcu(&counter->event_entry, &ctx->event_list);
91 92 93 94 95 96 97 98
}

static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
99
	list_del_rcu(&counter->event_entry);
100

P
Peter Zijlstra 已提交
101 102 103
	if (counter->group_leader != counter)
		counter->group_leader->nr_siblings--;

104 105 106 107 108 109 110 111
	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

112
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
113 114 115 116
		sibling->group_leader = sibling;
	}
}

117 118 119 120 121 122 123 124 125
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
126
	counter->tstamp_stopped = ctx->time;
127
	counter->pmu->disable(counter);
128 129 130 131 132 133 134 135 136
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
	if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
		cpuctx->exclusive = 0;
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

	if (group_counter->hw_event.exclusive)
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
159 160 161 162 163 164
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
165
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
166 167 168 169
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
170
	unsigned long flags;
171
	u64 perf_flags;
T
Thomas Gleixner 已提交
172 173 174 175 176 177 178 179 180

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

181
	spin_lock_irqsave(&ctx->lock, flags);
T
Thomas Gleixner 已提交
182

183 184 185
	counter_sched_out(counter, cpuctx, ctx);

	counter->task = NULL;
T
Thomas Gleixner 已提交
186 187 188 189 190 191
	ctx->nr_counters--;

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
192
	perf_flags = hw_perf_save_disable();
193
	list_del_counter(counter, ctx);
194
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
195 196 197 198 199 200 201 202 203 204 205

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

206
	spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
207 208 209 210 211 212
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
213
 * Must be called with counter->mutex and ctx->mutex held.
T
Thomas Gleixner 已提交
214 215 216 217
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
 */
218
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
219 220 221 222 223 224 225 226 227 228
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
229
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
230 231 232 233 234
					 counter, 1);
		return;
	}

retry:
235
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
236 237 238 239 240 241
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
242
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
243 244 245 246 247 248
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
249
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
250 251
	 * succeed.
	 */
252
	if (!list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
253
		ctx->nr_counters--;
254
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
255 256 257 258 259
		counter->task = NULL;
	}
	spin_unlock_irq(&ctx->lock);
}

260
static inline u64 perf_clock(void)
261
{
262
	return cpu_clock(smp_processor_id());
263 264 265 266 267
}

/*
 * Update the record of the current time in a context.
 */
268
static void update_context_time(struct perf_counter_context *ctx)
269
{
270 271 272 273
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
274 275 276 277 278 279 280 281 282 283
}

/*
 * Update the total_time_enabled and total_time_running fields for a counter.
 */
static void update_counter_times(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	u64 run_end;

284 285 286 287 288 289 290 291 292 293 294
	if (counter->state < PERF_COUNTER_STATE_INACTIVE)
		return;

	counter->total_time_enabled = ctx->time - counter->tstamp_enabled;

	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		run_end = counter->tstamp_stopped;
	else
		run_end = ctx->time;

	counter->total_time_running = run_end - counter->tstamp_running;
295 296 297 298 299 300 301 302 303 304 305 306 307 308
}

/*
 * Update total_time_enabled and total_time_running for all counters in a group.
 */
static void update_group_times(struct perf_counter *leader)
{
	struct perf_counter *counter;

	update_counter_times(leader);
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		update_counter_times(counter);
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long flags;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

326
	spin_lock_irqsave(&ctx->lock, flags);
327 328 329 330 331 332

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
333
		update_context_time(ctx);
334
		update_counter_times(counter);
335 336 337 338 339 340 341
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

342
	spin_unlock_irqrestore(&ctx->lock, flags);
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
}

/*
 * Disable a counter.
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
378 379
	if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
380
		counter->state = PERF_COUNTER_STATE_OFF;
381
	}
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

	spin_unlock_irq(&ctx->lock);
}

/*
 * Disable a counter and all its children.
 */
static void perf_counter_disable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_disable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_disable(child);
	mutex_unlock(&counter->mutex);
}

404 405 406 407 408 409
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
410
	if (counter->state <= PERF_COUNTER_STATE_OFF)
411 412 413 414 415 416 417 418 419
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

420
	if (counter->pmu->enable(counter)) {
421 422 423 424 425
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

426
	counter->tstamp_running += ctx->time - counter->tstamp_stopped;
427

428 429
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
430 431
	ctx->nr_active++;

432 433 434
	if (counter->hw_event.exclusive)
		cpuctx->exclusive = 1;

435 436 437
	return 0;
}

438 439 440 441 442 443 444 445 446 447
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
P
Peter Zijlstra 已提交
448

449 450 451
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
P
Peter Zijlstra 已提交
452

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
	if (counter->hw_event.exclusive && cpuctx->active_oncpu)
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

487 488 489 490 491 492
static void add_counter_to_ctx(struct perf_counter *counter,
			       struct perf_counter_context *ctx)
{
	list_add_counter(counter, ctx);
	ctx->nr_counters++;
	counter->prev_state = PERF_COUNTER_STATE_OFF;
493 494 495
	counter->tstamp_enabled = ctx->time;
	counter->tstamp_running = ctx->time;
	counter->tstamp_stopped = ctx->time;
496 497
}

T
Thomas Gleixner 已提交
498
/*
499
 * Cross CPU call to install and enable a performance counter
T
Thomas Gleixner 已提交
500 501 502 503 504 505
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
506
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
507
	int cpu = smp_processor_id();
508
	unsigned long flags;
509
	u64 perf_flags;
510
	int err;
T
Thomas Gleixner 已提交
511 512 513 514 515 516 517 518 519

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

520
	spin_lock_irqsave(&ctx->lock, flags);
521
	update_context_time(ctx);
T
Thomas Gleixner 已提交
522 523 524 525 526

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
527
	perf_flags = hw_perf_save_disable();
T
Thomas Gleixner 已提交
528

529
	add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
530

531 532 533 534 535 536 537 538
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

539 540 541 542 543
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
544
	if (!group_can_go_on(counter, cpuctx, 1))
545 546 547 548
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

549 550 551 552 553 554 555 556
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
557 558
		if (leader->hw_event.pinned) {
			update_group_times(leader);
559
			leader->state = PERF_COUNTER_STATE_ERROR;
560
		}
561
	}
T
Thomas Gleixner 已提交
562

563
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
564 565
		cpuctx->max_pertask--;

566
 unlock:
567 568
	hw_perf_restore(perf_flags);

569
	spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
570 571 572 573 574 575 576 577 578 579 580
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
581 582
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

	counter->task = task;
retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
610
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
611 612 613 614 615 616 617 618 619
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
620 621
	if (list_empty(&counter->list_entry))
		add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
622 623 624
	spin_unlock_irq(&ctx->lock);
}

625 626 627 628
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
629
{
630 631 632 633 634 635
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	unsigned long flags;
	int err;
636

637 638 639 640 641
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
642 643
		return;

644
	spin_lock_irqsave(&ctx->lock, flags);
645
	update_context_time(ctx);
646

647
	counter->prev_state = counter->state;
648 649 650
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
651
	counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
652 653

	/*
654 655
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
656
	 */
657 658
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
659

660 661 662 663 664 665 666 667 668 669 670 671 672
	if (!group_can_go_on(counter, cpuctx, 1))
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx,
				       smp_processor_id());

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
673 674
		if (leader->hw_event.pinned) {
			update_group_times(leader);
675
			leader->state = PERF_COUNTER_STATE_ERROR;
676
		}
677 678 679
	}

 unlock:
680
	spin_unlock_irqrestore(&ctx->lock, flags);
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
}

/*
 * Enable a counter.
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
731
	if (counter->state == PERF_COUNTER_STATE_OFF) {
732
		counter->state = PERF_COUNTER_STATE_INACTIVE;
733 734
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
735
	}
736 737 738 739
 out:
	spin_unlock_irq(&ctx->lock);
}

740 741 742 743 744 745
static void perf_counter_refresh(struct perf_counter *counter, int refresh)
{
	atomic_add(refresh, &counter->event_limit);
	perf_counter_enable(counter);
}

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
/*
 * Enable a counter and all its children.
 */
static void perf_counter_enable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_enable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_enable(child);
	mutex_unlock(&counter->mutex);
762 763
}

764 765 766 767
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;
768
	u64 flags;
769

770 771
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
772
	if (likely(!ctx->nr_counters))
773
		goto out;
774
	update_context_time(ctx);
775

776
	flags = hw_perf_save_disable();
777 778 779 780
	if (ctx->nr_active) {
		list_for_each_entry(counter, &ctx->counter_list, list_entry)
			group_sched_out(counter, cpuctx, ctx);
	}
781
	hw_perf_restore(flags);
782
 out:
783 784 785
	spin_unlock(&ctx->lock);
}

T
Thomas Gleixner 已提交
786 787 788 789 790 791
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
792
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
793 794 795 796 797 798 799 800
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
void perf_counter_task_sched_out(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
801
	struct pt_regs *regs;
T
Thomas Gleixner 已提交
802 803 804 805

	if (likely(!cpuctx->task_ctx))
		return;

806 807
	update_context_time(ctx);

808
	regs = task_pt_regs(task);
809
	perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
810 811
	__perf_counter_sched_out(ctx, cpuctx);

T
Thomas Gleixner 已提交
812 813 814
	cpuctx->task_ctx = NULL;
}

815
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
816
{
817
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
818 819
}

I
Ingo Molnar 已提交
820
static int
821 822 823 824 825
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
826
	struct perf_counter *counter, *partial_group;
827 828 829 830 831 832 833 834
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;
835

836
	group_counter->prev_state = group_counter->state;
837 838
	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;
839 840 841 842

	/*
	 * Schedule in siblings as one group (if any):
	 */
I
Ingo Molnar 已提交
843
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
844
		counter->prev_state = counter->state;
845 846 847 848 849 850
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

851
	return 0;
852 853 854 855 856 857 858 859 860 861

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
I
Ingo Molnar 已提交
862
	}
863
	counter_sched_out(group_counter, cpuctx, ctx);
I
Ingo Molnar 已提交
864

865
	return -EAGAIN;
866 867
}

868 869 870
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
871 872
{
	struct perf_counter *counter;
873
	u64 flags;
874
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
875

876 877
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
878
	if (likely(!ctx->nr_counters))
879
		goto out;
T
Thomas Gleixner 已提交
880

881
	ctx->timestamp = perf_clock();
882

883
	flags = hw_perf_save_disable();
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    !counter->hw_event.pinned)
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

		if (group_can_go_on(counter, cpuctx, 1))
			group_sched_in(counter, cpuctx, ctx, cpu);

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
903 904
		if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
			update_group_times(counter);
905
			counter->state = PERF_COUNTER_STATE_ERROR;
906
		}
907 908
	}

909
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
910 911 912 913 914 915 916 917
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    counter->hw_event.pinned)
			continue;

918 919 920 921
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
922 923 924
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

925
		if (group_can_go_on(counter, cpuctx, can_add_hw)) {
926 927
			if (group_sched_in(counter, cpuctx, ctx, cpu))
				can_add_hw = 0;
928
		}
T
Thomas Gleixner 已提交
929
	}
930
	hw_perf_restore(flags);
931
 out:
T
Thomas Gleixner 已提交
932
	spin_unlock(&ctx->lock);
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
950

951
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
952 953 954
	cpuctx->task_ctx = ctx;
}

955 956 957 958 959 960 961
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

962 963 964 965 966
int perf_counter_task_disable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
967
	unsigned long flags;
968 969 970 971 972 973
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

974
	local_irq_save(flags);
975 976 977 978 979 980 981 982 983 984 985
	cpu = smp_processor_id();

	perf_counter_task_sched_out(curr, cpu);

	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

986
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
987 988
		if (counter->state != PERF_COUNTER_STATE_ERROR) {
			update_group_times(counter);
989
			counter->state = PERF_COUNTER_STATE_OFF;
990
		}
991
	}
992

993 994
	hw_perf_restore(perf_flags);

995
	spin_unlock_irqrestore(&ctx->lock, flags);
996 997 998 999 1000 1001 1002 1003 1004

	return 0;
}

int perf_counter_task_enable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
1005
	unsigned long flags;
1006 1007 1008 1009 1010 1011
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

1012
	local_irq_save(flags);
1013 1014
	cpu = smp_processor_id();

1015 1016
	perf_counter_task_sched_out(curr, cpu);

1017 1018 1019 1020 1021 1022 1023 1024
	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1025
		if (counter->state > PERF_COUNTER_STATE_OFF)
1026
			continue;
1027
		counter->state = PERF_COUNTER_STATE_INACTIVE;
1028 1029
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
I
Ingo Molnar 已提交
1030
		counter->hw_event.disabled = 0;
1031 1032 1033 1034 1035 1036 1037
	}
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

	perf_counter_task_sched_in(curr, cpu);

1038
	local_irq_restore(flags);
1039 1040 1041 1042

	return 0;
}

1043 1044 1045 1046
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
1047 1048
{
	struct perf_counter *counter;
1049
	u64 perf_flags;
T
Thomas Gleixner 已提交
1050

1051
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
1052 1053 1054 1055
		return;

	spin_lock(&ctx->lock);
	/*
1056
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
1057
	 */
1058
	perf_flags = hw_perf_save_disable();
1059
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1060
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
1061 1062
		break;
	}
1063
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
1064 1065

	spin_unlock(&ctx->lock);
1066 1067 1068 1069 1070 1071 1072
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;

1073
	perf_counter_cpu_sched_out(cpuctx);
1074
	perf_counter_task_sched_out(curr, cpu);
T
Thomas Gleixner 已提交
1075

1076
	rotate_ctx(&cpuctx->ctx);
1077 1078
	rotate_ctx(ctx);

1079
	perf_counter_cpu_sched_in(cpuctx, cpu);
T
Thomas Gleixner 已提交
1080 1081 1082 1083 1084 1085
	perf_counter_task_sched_in(curr, cpu);
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
1086
static void __read(void *info)
T
Thomas Gleixner 已提交
1087
{
I
Ingo Molnar 已提交
1088
	struct perf_counter *counter = info;
1089
	struct perf_counter_context *ctx = counter->ctx;
I
Ingo Molnar 已提交
1090
	unsigned long flags;
I
Ingo Molnar 已提交
1091

1092
	local_irq_save(flags);
1093
	if (ctx->is_active)
1094
		update_context_time(ctx);
1095
	counter->pmu->read(counter);
1096
	update_counter_times(counter);
1097
	local_irq_restore(flags);
T
Thomas Gleixner 已提交
1098 1099
}

1100
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1101 1102 1103 1104 1105
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1106
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1107
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1108
					 __read, counter, 1);
1109 1110
	} else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
T
Thomas Gleixner 已提交
1111 1112
	}

1113
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
}

static void put_context(struct perf_counter_context *ctx)
{
	if (ctx->task)
		put_task_struct(ctx->task);
}

static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;
	struct task_struct *task;

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
1133
		if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	ctx = &task->perf_counter_ctx;
	ctx->task = task;

	/* Reuse ptrace permission checks for now. */
	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
		put_context(ctx);
		return ERR_PTR(-EACCES);
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1177 1178 1179 1180 1181 1182 1183 1184
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
	kfree(counter);
}

1185 1186
static void perf_pending_sync(struct perf_counter *counter);

1187 1188
static void free_counter(struct perf_counter *counter)
{
1189 1190
	perf_pending_sync(counter);

1191 1192 1193 1194 1195 1196 1197
	if (counter->hw_event.mmap)
		atomic_dec(&nr_mmap_tracking);
	if (counter->hw_event.munmap)
		atomic_dec(&nr_munmap_tracking);
	if (counter->hw_event.comm)
		atomic_dec(&nr_comm_tracking);

1198 1199 1200
	if (counter->destroy)
		counter->destroy(counter);

1201 1202 1203
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1214
	mutex_lock(&ctx->mutex);
T
Thomas Gleixner 已提交
1215 1216
	mutex_lock(&counter->mutex);

1217
	perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
1218 1219

	mutex_unlock(&counter->mutex);
1220
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1221

1222
	free_counter(counter);
1223
	put_context(ctx);
T
Thomas Gleixner 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
1234 1235
	u64 values[3];
	int n;
T
Thomas Gleixner 已提交
1236

1237 1238 1239 1240 1241 1242 1243 1244
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

T
Thomas Gleixner 已提交
1245
	mutex_lock(&counter->mutex);
1246 1247 1248 1249 1250 1251 1252 1253
	values[0] = perf_counter_read(counter);
	n = 1;
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);
	if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);
T
Thomas Gleixner 已提交
1254 1255
	mutex_unlock(&counter->mutex);

1256 1257 1258 1259 1260 1261 1262 1263
	if (count < n * sizeof(u64))
		return -EINVAL;
	count = n * sizeof(u64);

	if (copy_to_user(buf, values, count))
		return -EFAULT;

	return count;
T
Thomas Gleixner 已提交
1264 1265 1266 1267 1268 1269 1270
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

1271
	return perf_read_hw(counter, buf, count);
T
Thomas Gleixner 已提交
1272 1273 1274 1275 1276
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1277
	struct perf_mmap_data *data;
1278
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1279 1280 1281 1282

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
1283
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1284
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1285 1286 1287 1288 1289 1290

	poll_wait(file, &counter->waitq, wait);

	return events;
}

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
	int err = 0;

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
		perf_counter_enable_family(counter);
		break;
	case PERF_COUNTER_IOC_DISABLE:
		perf_counter_disable_family(counter);
		break;
1303 1304 1305
	case PERF_COUNTER_IOC_REFRESH:
		perf_counter_refresh(counter, arg);
		break;
1306 1307 1308 1309 1310 1311
	default:
		err = -ENOTTY;
	}
	return err;
}

1312 1313 1314 1315 1316 1317
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
void perf_counter_update_userpage(struct perf_counter *counter)
1318
{
1319 1320 1321 1322 1323 1324 1325 1326 1327
	struct perf_mmap_data *data;
	struct perf_counter_mmap_page *userpg;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	userpg = data->user_page;
1328

1329 1330 1331 1332 1333
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
1334
	++userpg->lock;
1335
	barrier();
1336 1337 1338 1339
	userpg->index = counter->hw.idx;
	userpg->offset = atomic64_read(&counter->count);
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&counter->hw.prev_count);
1340

1341
	barrier();
1342
	++userpg->lock;
1343
	preempt_enable();
1344
unlock:
1345
	rcu_read_unlock();
1346 1347 1348 1349 1350
}

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_counter *counter = vma->vm_file->private_data;
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff == 0) {
		vmf->page = virt_to_page(data->user_page);
	} else {
		int nr = vmf->pgoff - 1;
1363

1364 1365
		if ((unsigned)nr > data->nr_pages)
			goto unlock;
1366

1367 1368
		vmf->page = virt_to_page(data->data_pages[nr]);
	}
1369
	get_page(vmf->page);
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	WARN_ON(atomic_read(&counter->mmap_count));

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;

	rcu_assign_pointer(counter->data, data);

1406
	return 0;
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
	return -ENOMEM;
}

static void __perf_mmap_data_free(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data = container_of(rcu_head,
			struct perf_mmap_data, rcu_head);
	int i;

	free_page((unsigned long)data->user_page);
	for (i = 0; i < data->nr_pages; i++)
		free_page((unsigned long)data->data_pages[i]);
	kfree(data);
}

static void perf_mmap_data_free(struct perf_counter *counter)
{
	struct perf_mmap_data *data = counter->data;

	WARN_ON(atomic_read(&counter->mmap_count));

	rcu_assign_pointer(counter->data, NULL);
	call_rcu(&data->rcu_head, __perf_mmap_data_free);
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	atomic_inc(&counter->mmap_count);
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	if (atomic_dec_and_mutex_lock(&counter->mmap_count,
				      &counter->mmap_mutex)) {
1456
		vma->vm_mm->locked_vm -= counter->data->nr_pages + 1;
1457 1458 1459
		perf_mmap_data_free(counter);
		mutex_unlock(&counter->mmap_mutex);
	}
1460 1461 1462
}

static struct vm_operations_struct perf_mmap_vmops = {
1463
	.open  = perf_mmap_open,
1464
	.close = perf_mmap_close,
1465 1466 1467 1468 1469 1470
	.fault = perf_mmap_fault,
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct perf_counter *counter = file->private_data;
1471 1472 1473 1474
	unsigned long vma_size;
	unsigned long nr_pages;
	unsigned long locked, lock_limit;
	int ret = 0;
1475 1476 1477

	if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
		return -EINVAL;
1478 1479 1480 1481

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

1482 1483 1484 1485 1486
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
1487 1488
		return -EINVAL;

1489
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
1490 1491
		return -EINVAL;

1492 1493
	if (vma->vm_pgoff != 0)
		return -EINVAL;
1494

1495 1496 1497 1498 1499 1500 1501 1502 1503
	mutex_lock(&counter->mmap_mutex);
	if (atomic_inc_not_zero(&counter->mmap_count)) {
		if (nr_pages != counter->data->nr_pages)
			ret = -EINVAL;
		goto unlock;
	}

	locked = vma->vm_mm->locked_vm;
	locked += nr_pages + 1;
1504 1505 1506 1507

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;

1508 1509 1510 1511
	if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
		ret = -EPERM;
		goto unlock;
	}
1512 1513 1514

	WARN_ON(counter->data);
	ret = perf_mmap_data_alloc(counter, nr_pages);
1515 1516 1517 1518 1519 1520
	if (ret)
		goto unlock;

	atomic_set(&counter->mmap_count, 1);
	vma->vm_mm->locked_vm += nr_pages + 1;
unlock:
1521
	mutex_unlock(&counter->mmap_mutex);
1522 1523 1524 1525

	vma->vm_flags &= ~VM_MAYWRITE;
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
1526 1527

	return ret;
1528 1529
}

P
Peter Zijlstra 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct perf_counter *counter = filp->private_data;
	struct inode *inode = filp->f_path.dentry->d_inode;
	int retval;

	mutex_lock(&inode->i_mutex);
	retval = fasync_helper(fd, filp, on, &counter->fasync);
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
1546 1547 1548 1549
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
1550 1551
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
1552
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
1553
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
1554 1555
};

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
/*
 * Perf counter wakeup
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

void perf_counter_wakeup(struct perf_counter *counter)
{
	wake_up_all(&counter->waitq);
1566 1567 1568 1569 1570

	if (counter->pending_kill) {
		kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
		counter->pending_kill = 0;
	}
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
static void perf_pending_counter(struct perf_pending_entry *entry)
{
	struct perf_counter *counter = container_of(entry,
			struct perf_counter, pending);

	if (counter->pending_disable) {
		counter->pending_disable = 0;
		perf_counter_disable(counter);
	}

	if (counter->pending_wakeup) {
		counter->pending_wakeup = 0;
		perf_counter_wakeup(counter);
	}
}

1598
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1599

1600
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1601 1602 1603
	PENDING_TAIL,
};

1604 1605
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
1606
{
1607
	struct perf_pending_entry **head;
1608

1609
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1610 1611
		return;

1612 1613 1614
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
1615 1616

	do {
1617 1618
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
1619 1620 1621

	set_perf_counter_pending();

1622
	put_cpu_var(perf_pending_head);
1623 1624 1625 1626
}

static int __perf_pending_run(void)
{
1627
	struct perf_pending_entry *list;
1628 1629
	int nr = 0;

1630
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1631
	while (list != PENDING_TAIL) {
1632 1633
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
1634 1635 1636

		list = list->next;

1637 1638
		func = entry->func;
		entry->next = NULL;
1639 1640 1641 1642 1643 1644 1645
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

1646
		func(entry);
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
		nr++;
	}

	return nr;
}

static inline int perf_not_pending(struct perf_counter *counter)
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
1668
	return counter->pending.next == NULL;
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
}

static void perf_pending_sync(struct perf_counter *counter)
{
	wait_event(counter->waitq, perf_not_pending(counter));
}

void perf_counter_do_pending(void)
{
	__perf_pending_run();
}

1681 1682 1683 1684
/*
 * Callchain support -- arch specific
 */

1685
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1686 1687 1688 1689
{
	return NULL;
}

1690 1691 1692 1693
/*
 * Output
 */

1694 1695 1696 1697
struct perf_output_handle {
	struct perf_counter	*counter;
	struct perf_mmap_data	*data;
	unsigned int		offset;
1698
	unsigned int		head;
1699
	int			wakeup;
1700
	int			nmi;
1701
	int			overflow;
1702 1703
	int			locked;
	unsigned long		flags;
1704 1705
};

1706
static void perf_output_wakeup(struct perf_output_handle *handle)
1707
{
1708 1709
	atomic_set(&handle->data->poll, POLL_IN);

1710
	if (handle->nmi) {
1711
		handle->counter->pending_wakeup = 1;
1712
		perf_pending_queue(&handle->counter->pending,
1713
				   perf_pending_counter);
1714
	} else
1715 1716 1717
		perf_counter_wakeup(handle->counter);
}

1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
/*
 * Curious locking construct.
 *
 * We need to ensure a later event doesn't publish a head when a former
 * event isn't done writing. However since we need to deal with NMIs we
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
 * event completes.
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
	int cpu;

	handle->locked = 0;

	local_irq_save(handle->flags);
	cpu = smp_processor_id();

	if (in_nmi() && atomic_read(&data->lock) == cpu)
		return;

	while (atomic_cmpxchg(&data->lock, 0, cpu) != 0)
		cpu_relax();

	handle->locked = 1;
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
	int head, cpu;

	if (handle->wakeup)
		data->wakeup_head = data->head;

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
	while ((head = atomic_xchg(&data->wakeup_head, 0))) {
		data->user_page->data_head = head;
		handle->wakeup = 1;
	}

	/*
	 * NMI can happen here, which means we can miss a wakeup_head update.
	 */

	cpu = atomic_xchg(&data->lock, 0);
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
	if (unlikely(atomic_read(&data->wakeup_head))) {
		/*
		 * Since we had it locked, we can lock it again.
		 */
		while (atomic_cmpxchg(&data->lock, 0, cpu) != 0)
			cpu_relax();

		goto again;
	}

	if (handle->wakeup)
		perf_output_wakeup(handle);
out:
	local_irq_restore(handle->flags);
}

1798
static int perf_output_begin(struct perf_output_handle *handle,
1799
			     struct perf_counter *counter, unsigned int size,
1800
			     int nmi, int overflow)
1801
{
1802
	struct perf_mmap_data *data;
1803
	unsigned int offset, head;
1804

1805 1806 1807 1808 1809
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto out;

1810
	handle->data	 = data;
1811 1812 1813
	handle->counter	 = counter;
	handle->nmi	 = nmi;
	handle->overflow = overflow;
1814

1815
	if (!data->nr_pages)
1816
		goto fail;
1817

1818 1819
	perf_output_lock(handle);

1820 1821
	do {
		offset = head = atomic_read(&data->head);
P
Peter Zijlstra 已提交
1822
		head += size;
1823 1824
	} while (atomic_cmpxchg(&data->head, offset, head) != offset);

1825
	handle->offset	= offset;
1826
	handle->head	= head;
1827
	handle->wakeup	= (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1828

1829
	return 0;
1830

1831
fail:
1832
	perf_output_wakeup(handle);
1833 1834
out:
	rcu_read_unlock();
1835

1836 1837
	return -ENOSPC;
}
1838

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
static void perf_output_copy(struct perf_output_handle *handle,
			     void *buf, unsigned int len)
{
	unsigned int pages_mask;
	unsigned int offset;
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
		unsigned int page_offset;
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
		page_offset = offset & (PAGE_SIZE - 1);
		size	    = min_t(unsigned int, PAGE_SIZE - page_offset, len);

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;
1867 1868

	WARN_ON_ONCE(handle->offset > handle->head);
1869 1870
}

P
Peter Zijlstra 已提交
1871 1872 1873
#define perf_output_put(handle, x) \
	perf_output_copy((handle), &(x), sizeof(x))

1874
static void perf_output_end(struct perf_output_handle *handle)
1875
{
1876 1877 1878 1879
	struct perf_counter *counter = handle->counter;
	struct perf_mmap_data *data = handle->data;

	int wakeup_events = counter->hw_event.wakeup_events;
P
Peter Zijlstra 已提交
1880

1881
	if (handle->overflow && wakeup_events) {
1882
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
1883
		if (events >= wakeup_events) {
1884 1885
			atomic_sub(wakeup_events, &data->events);
			handle->wakeup = 1;
P
Peter Zijlstra 已提交
1886
		}
1887 1888 1889
	}

	perf_output_unlock(handle);
1890
	rcu_read_unlock();
1891 1892
}

1893
static void perf_counter_output(struct perf_counter *counter,
1894
				int nmi, struct pt_regs *regs, u64 addr)
1895
{
1896
	int ret;
1897
	u64 record_type = counter->hw_event.record_type;
1898 1899 1900
	struct perf_output_handle handle;
	struct perf_event_header header;
	u64 ip;
P
Peter Zijlstra 已提交
1901
	struct {
1902
		u32 pid, tid;
1903
	} tid_entry;
1904 1905 1906 1907
	struct {
		u64 event;
		u64 counter;
	} group_entry;
1908 1909
	struct perf_callchain_entry *callchain = NULL;
	int callchain_size = 0;
P
Peter Zijlstra 已提交
1910
	u64 time;
1911

1912
	header.type = 0;
1913
	header.size = sizeof(header);
1914

1915 1916
	header.misc = PERF_EVENT_MISC_OVERFLOW;
	header.misc |= user_mode(regs) ?
1917 1918
		PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;

1919 1920
	if (record_type & PERF_RECORD_IP) {
		ip = instruction_pointer(regs);
1921
		header.type |= PERF_RECORD_IP;
1922 1923
		header.size += sizeof(ip);
	}
1924

1925
	if (record_type & PERF_RECORD_TID) {
1926
		/* namespace issues */
1927 1928 1929
		tid_entry.pid = current->group_leader->pid;
		tid_entry.tid = current->pid;

1930
		header.type |= PERF_RECORD_TID;
1931 1932 1933
		header.size += sizeof(tid_entry);
	}

1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
	if (record_type & PERF_RECORD_TIME) {
		/*
		 * Maybe do better on x86 and provide cpu_clock_nmi()
		 */
		time = sched_clock();

		header.type |= PERF_RECORD_TIME;
		header.size += sizeof(u64);
	}

1944 1945 1946 1947 1948
	if (record_type & PERF_RECORD_ADDR) {
		header.type |= PERF_RECORD_ADDR;
		header.size += sizeof(u64);
	}

1949
	if (record_type & PERF_RECORD_GROUP) {
1950
		header.type |= PERF_RECORD_GROUP;
1951 1952 1953 1954 1955
		header.size += sizeof(u64) +
			counter->nr_siblings * sizeof(group_entry);
	}

	if (record_type & PERF_RECORD_CALLCHAIN) {
1956 1957 1958
		callchain = perf_callchain(regs);

		if (callchain) {
1959
			callchain_size = (1 + callchain->nr) * sizeof(u64);
1960

1961
			header.type |= PERF_RECORD_CALLCHAIN;
1962 1963 1964 1965
			header.size += callchain_size;
		}
	}

1966
	ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
1967 1968
	if (ret)
		return;
1969

1970
	perf_output_put(&handle, header);
P
Peter Zijlstra 已提交
1971

1972 1973
	if (record_type & PERF_RECORD_IP)
		perf_output_put(&handle, ip);
P
Peter Zijlstra 已提交
1974

1975 1976
	if (record_type & PERF_RECORD_TID)
		perf_output_put(&handle, tid_entry);
P
Peter Zijlstra 已提交
1977

1978 1979 1980
	if (record_type & PERF_RECORD_TIME)
		perf_output_put(&handle, time);

1981 1982 1983
	if (record_type & PERF_RECORD_ADDR)
		perf_output_put(&handle, addr);

1984 1985 1986
	if (record_type & PERF_RECORD_GROUP) {
		struct perf_counter *leader, *sub;
		u64 nr = counter->nr_siblings;
P
Peter Zijlstra 已提交
1987

1988
		perf_output_put(&handle, nr);
1989

1990 1991 1992
		leader = counter->group_leader;
		list_for_each_entry(sub, &leader->sibling_list, list_entry) {
			if (sub != counter)
1993
				sub->pmu->read(sub);
1994

1995 1996
			group_entry.event = sub->hw_event.config;
			group_entry.counter = atomic64_read(&sub->count);
1997

1998 1999
			perf_output_put(&handle, group_entry);
		}
2000
	}
P
Peter Zijlstra 已提交
2001

2002 2003
	if (callchain)
		perf_output_copy(&handle, callchain, callchain_size);
2004

2005
	perf_output_end(&handle);
2006 2007
}

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
/*
 * comm tracking
 */

struct perf_comm_event {
	struct task_struct 	*task;
	char 			*comm;
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
	} event;
};

static void perf_counter_comm_output(struct perf_counter *counter,
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
	int size = comm_event->event.header.size;
	int ret = perf_output_begin(&handle, counter, size, 0, 0);

	if (ret)
		return;

	perf_output_put(&handle, comm_event->event);
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

static int perf_counter_comm_match(struct perf_counter *counter,
				   struct perf_comm_event *comm_event)
{
	if (counter->hw_event.comm &&
	    comm_event->event.header.type == PERF_EVENT_COMM)
		return 1;

	return 0;
}

static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
				  struct perf_comm_event *comm_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_comm_match(counter, comm_event))
			perf_counter_comm_output(counter, comm_event);
	}
	rcu_read_unlock();
}

static void perf_counter_comm_event(struct perf_comm_event *comm_event)
{
	struct perf_cpu_context *cpuctx;
	unsigned int size;
	char *comm = comm_event->task->comm;

2073
	size = ALIGN(strlen(comm)+1, sizeof(u64));
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088

	comm_event->comm = comm;
	comm_event->comm_size = size;

	comm_event->event.header.size = sizeof(comm_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
	put_cpu_var(perf_cpu_context);

	perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
}

void perf_counter_comm(struct task_struct *task)
{
2089 2090 2091 2092 2093 2094
	struct perf_comm_event comm_event;

	if (!atomic_read(&nr_comm_tracking))
		return;
       
	comm_event = (struct perf_comm_event){
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
		.task	= task,
		.event  = {
			.header = { .type = PERF_EVENT_COMM, },
			.pid	= task->group_leader->pid,
			.tid	= task->pid,
		},
	};

	perf_counter_comm_event(&comm_event);
}

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
/*
 * mmap tracking
 */

struct perf_mmap_event {
	struct file	*file;
	char		*file_name;
	int		file_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
	} event;
};

static void perf_counter_mmap_output(struct perf_counter *counter,
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
	int size = mmap_event->event.header.size;
2131
	int ret = perf_output_begin(&handle, counter, size, 0, 0);
2132 2133 2134 2135 2136 2137 2138

	if (ret)
		return;

	perf_output_put(&handle, mmap_event->event);
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
2139
	perf_output_end(&handle);
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
}

static int perf_counter_mmap_match(struct perf_counter *counter,
				   struct perf_mmap_event *mmap_event)
{
	if (counter->hw_event.mmap &&
	    mmap_event->event.header.type == PERF_EVENT_MMAP)
		return 1;

	if (counter->hw_event.munmap &&
	    mmap_event->event.header.type == PERF_EVENT_MUNMAP)
		return 1;

	return 0;
}

static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
				  struct perf_mmap_event *mmap_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_mmap_match(counter, mmap_event))
			perf_counter_mmap_output(counter, mmap_event);
	}
	rcu_read_unlock();
}

static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
{
	struct perf_cpu_context *cpuctx;
	struct file *file = mmap_event->file;
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
	char *name;

	if (file) {
		buf = kzalloc(PATH_MAX, GFP_KERNEL);
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
2187
		name = d_path(&file->f_path, buf, PATH_MAX);
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
2198
	size = ALIGN(strlen(name)+1, sizeof(u64));
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216

	mmap_event->file_name = name;
	mmap_event->file_size = size;

	mmap_event->event.header.size = sizeof(mmap_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
	put_cpu_var(perf_cpu_context);

	perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);

	kfree(buf);
}

void perf_counter_mmap(unsigned long addr, unsigned long len,
		       unsigned long pgoff, struct file *file)
{
2217 2218 2219 2220 2221 2222
	struct perf_mmap_event mmap_event;

	if (!atomic_read(&nr_mmap_tracking))
		return;

	mmap_event = (struct perf_mmap_event){
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

void perf_counter_munmap(unsigned long addr, unsigned long len,
			 unsigned long pgoff, struct file *file)
{
2240 2241 2242 2243 2244 2245
	struct perf_mmap_event mmap_event;

	if (!atomic_read(&nr_munmap_tracking))
		return;

	mmap_event = (struct perf_mmap_event){
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
		.file   = file,
		.event  = {
			.header = { .type = PERF_EVENT_MUNMAP, },
			.pid	= current->group_leader->pid,
			.tid	= current->pid,
			.start  = addr,
			.len    = len,
			.pgoff  = pgoff,
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

2260 2261 2262 2263 2264
/*
 * Generic counter overflow handling.
 */

int perf_counter_overflow(struct perf_counter *counter,
2265
			  int nmi, struct pt_regs *regs, u64 addr)
2266
{
2267 2268 2269
	int events = atomic_read(&counter->event_limit);
	int ret = 0;

2270
	counter->pending_kill = POLL_IN;
2271 2272
	if (events && atomic_dec_and_test(&counter->event_limit)) {
		ret = 1;
2273
		counter->pending_kill = POLL_HUP;
2274 2275 2276 2277 2278 2279 2280 2281
		if (nmi) {
			counter->pending_disable = 1;
			perf_pending_queue(&counter->pending,
					   perf_pending_counter);
		} else
			perf_counter_disable(counter);
	}

2282
	perf_counter_output(counter, nmi, regs, addr);
2283
	return ret;
2284 2285
}

2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
/*
 * Generic software counter infrastructure
 */

static void perf_swcounter_update(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 prev, now;
	s64 delta;

again:
	prev = atomic64_read(&hwc->prev_count);
	now = atomic64_read(&hwc->count);
	if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
		goto again;

	delta = now - prev;

	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &hwc->period_left);
}

static void perf_swcounter_set_period(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	s64 left = atomic64_read(&hwc->period_left);
	s64 period = hwc->irq_period;

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_add(period, &hwc->period_left);
	}

	atomic64_set(&hwc->prev_count, -left);
	atomic64_set(&hwc->count, -left);
}

2328 2329
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
2330
	enum hrtimer_restart ret = HRTIMER_RESTART;
2331 2332 2333 2334
	struct perf_counter *counter;
	struct pt_regs *regs;

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
2335
	counter->pmu->read(counter);
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345

	regs = get_irq_regs();
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
	if ((counter->hw_event.exclude_kernel || !regs) &&
			!counter->hw_event.exclude_user)
		regs = task_pt_regs(current);

2346
	if (regs) {
2347
		if (perf_counter_overflow(counter, 0, regs, 0))
2348 2349
			ret = HRTIMER_NORESTART;
	}
2350 2351 2352

	hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));

2353
	return ret;
2354 2355 2356
}

static void perf_swcounter_overflow(struct perf_counter *counter,
2357
				    int nmi, struct pt_regs *regs, u64 addr)
2358
{
2359 2360
	perf_swcounter_update(counter);
	perf_swcounter_set_period(counter);
2361
	if (perf_counter_overflow(counter, nmi, regs, addr))
2362 2363 2364
		/* soft-disable the counter */
		;

2365 2366
}

2367
static int perf_swcounter_match(struct perf_counter *counter,
2368 2369
				enum perf_event_types type,
				u32 event, struct pt_regs *regs)
2370 2371 2372 2373
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return 0;

2374
	if (perf_event_raw(&counter->hw_event))
2375 2376
		return 0;

2377
	if (perf_event_type(&counter->hw_event) != type)
2378 2379
		return 0;

2380
	if (perf_event_id(&counter->hw_event) != event)
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
		return 0;

	if (counter->hw_event.exclude_user && user_mode(regs))
		return 0;

	if (counter->hw_event.exclude_kernel && !user_mode(regs))
		return 0;

	return 1;
}

2392
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2393
			       int nmi, struct pt_regs *regs, u64 addr)
2394 2395 2396
{
	int neg = atomic64_add_negative(nr, &counter->hw.count);
	if (counter->hw.irq_period && !neg)
2397
		perf_swcounter_overflow(counter, nmi, regs, addr);
2398 2399
}

2400
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2401
				     enum perf_event_types type, u32 event,
2402 2403
				     u64 nr, int nmi, struct pt_regs *regs,
				     u64 addr)
2404 2405 2406
{
	struct perf_counter *counter;

2407
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2408 2409
		return;

P
Peter Zijlstra 已提交
2410 2411
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2412
		if (perf_swcounter_match(counter, type, event, regs))
2413
			perf_swcounter_add(counter, nr, nmi, regs, addr);
2414
	}
P
Peter Zijlstra 已提交
2415
	rcu_read_unlock();
2416 2417
}

P
Peter Zijlstra 已提交
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

2432
static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2433 2434
				   u64 nr, int nmi, struct pt_regs *regs,
				   u64 addr)
2435 2436
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
2437 2438 2439 2440 2441 2442 2443
	int *recursion = perf_swcounter_recursion_context(cpuctx);

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
2444

2445 2446
	perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
				 nr, nmi, regs, addr);
2447 2448
	if (cpuctx->task_ctx) {
		perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2449
					 nr, nmi, regs, addr);
2450
	}
2451

P
Peter Zijlstra 已提交
2452 2453 2454 2455
	barrier();
	(*recursion)--;

out:
2456 2457 2458
	put_cpu_var(perf_cpu_context);
}

2459 2460
void
perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2461
{
2462
	__perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2463 2464
}

2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
static void perf_swcounter_read(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
	perf_swcounter_set_period(counter);
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

2481
static const struct pmu perf_ops_generic = {
2482 2483 2484 2485 2486
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
};

2487 2488 2489 2490
/*
 * Software counter: cpu wall time clock
 */

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

2503 2504 2505 2506 2507 2508
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2509 2510
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2511 2512 2513 2514 2515 2516 2517 2518 2519
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

2520 2521
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
2522
	hrtimer_cancel(&counter->hw.hrtimer);
2523
	cpu_clock_perf_counter_update(counter);
2524 2525 2526 2527
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
2528
	cpu_clock_perf_counter_update(counter);
2529 2530
}

2531
static const struct pmu perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
2532 2533 2534
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
2535 2536
};

2537 2538 2539 2540
/*
 * Software counter: task time clock
 */

2541
static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
I
Ingo Molnar 已提交
2542
{
2543
	u64 prev;
I
Ingo Molnar 已提交
2544 2545
	s64 delta;

2546
	prev = atomic64_xchg(&counter->hw.prev_count, now);
I
Ingo Molnar 已提交
2547 2548
	delta = now - prev;
	atomic64_add(delta, &counter->count);
2549 2550
}

2551
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
2552
{
2553
	struct hw_perf_counter *hwc = &counter->hw;
2554 2555 2556
	u64 now;

	now = counter->ctx->time;
2557

2558
	atomic64_set(&hwc->prev_count, now);
2559 2560
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
2561 2562 2563 2564 2565
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}
2566 2567

	return 0;
I
Ingo Molnar 已提交
2568 2569 2570
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
2571
{
2572
	hrtimer_cancel(&counter->hw.hrtimer);
2573 2574
	task_clock_perf_counter_update(counter, counter->ctx->time);

2575
}
I
Ingo Molnar 已提交
2576

2577 2578
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
	u64 time;

	if (!in_nmi()) {
		update_context_time(counter->ctx);
		time = counter->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - counter->ctx->timestamp;
		time = counter->ctx->time + delta;
	}

	task_clock_perf_counter_update(counter, time);
2591 2592
}

2593
static const struct pmu perf_ops_task_clock = {
I
Ingo Molnar 已提交
2594 2595 2596
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
2597 2598
};

2599 2600 2601 2602
/*
 * Software counter: cpu migrations
 */

2603
static inline u64 get_cpu_migrations(struct perf_counter *counter)
2604
{
2605 2606 2607 2608 2609
	struct task_struct *curr = counter->ctx->task;

	if (curr)
		return curr->se.nr_migrations;
	return cpu_nr_migrations(smp_processor_id());
2610 2611 2612 2613 2614 2615 2616 2617
}

static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
2618
	now = get_cpu_migrations(counter);
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

2632
static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2633
{
2634 2635 2636
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count,
			     get_cpu_migrations(counter));
2637
	return 0;
2638 2639 2640 2641 2642 2643 2644
}

static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

2645
static const struct pmu perf_ops_cpu_migrations = {
I
Ingo Molnar 已提交
2646 2647 2648
	.enable		= cpu_migrations_perf_counter_enable,
	.disable	= cpu_migrations_perf_counter_disable,
	.read		= cpu_migrations_perf_counter_read,
2649 2650
};

2651 2652 2653
#ifdef CONFIG_EVENT_PROFILE
void perf_tpcounter_event(int event_id)
{
2654 2655 2656 2657 2658
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);

2659
	__perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2660
}
2661
EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2662 2663 2664 2665 2666 2667

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
2668
	ftrace_profile_disable(perf_event_id(&counter->hw_event));
2669 2670
}

2671
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2672
{
2673
	int event_id = perf_event_id(&counter->hw_event);
2674 2675 2676 2677 2678 2679 2680
	int ret;

	ret = ftrace_profile_enable(event_id);
	if (ret)
		return NULL;

	counter->destroy = tp_perf_counter_destroy;
2681
	counter->hw.irq_period = counter->hw_event.irq_period;
2682 2683 2684 2685

	return &perf_ops_generic;
}
#else
2686
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2687 2688 2689 2690 2691
{
	return NULL;
}
#endif

2692
static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2693
{
2694
	struct perf_counter_hw_event *hw_event = &counter->hw_event;
2695
	const struct pmu *pmu = NULL;
2696
	struct hw_perf_counter *hwc = &counter->hw;
2697

2698 2699 2700 2701 2702 2703 2704
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
2705
	switch (perf_event_id(&counter->hw_event)) {
2706
	case PERF_COUNT_CPU_CLOCK:
2707
		pmu = &perf_ops_cpu_clock;
2708 2709 2710

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
2711
		break;
2712
	case PERF_COUNT_TASK_CLOCK:
2713 2714 2715 2716 2717
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
2718
			pmu = &perf_ops_task_clock;
2719
		else
2720
			pmu = &perf_ops_cpu_clock;
2721 2722 2723

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
2724
		break;
2725
	case PERF_COUNT_PAGE_FAULTS:
2726 2727
	case PERF_COUNT_PAGE_FAULTS_MIN:
	case PERF_COUNT_PAGE_FAULTS_MAJ:
2728
	case PERF_COUNT_CONTEXT_SWITCHES:
2729
		pmu = &perf_ops_generic;
2730
		break;
2731
	case PERF_COUNT_CPU_MIGRATIONS:
2732
		if (!counter->hw_event.exclude_kernel)
2733
			pmu = &perf_ops_cpu_migrations;
2734
		break;
2735
	}
2736

2737
	if (pmu)
2738 2739
		hwc->irq_period = hw_event->irq_period;

2740
	return pmu;
2741 2742
}

T
Thomas Gleixner 已提交
2743 2744 2745 2746
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
2747 2748
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
		   int cpu,
2749
		   struct perf_counter_context *ctx,
2750 2751
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
2752
{
2753
	const struct pmu *pmu;
I
Ingo Molnar 已提交
2754
	struct perf_counter *counter;
2755
	long err;
T
Thomas Gleixner 已提交
2756

2757
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
2758
	if (!counter)
2759
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
2760

2761 2762 2763 2764 2765 2766 2767
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

T
Thomas Gleixner 已提交
2768
	mutex_init(&counter->mutex);
2769
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
2770
	INIT_LIST_HEAD(&counter->event_entry);
2771
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
2772 2773
	init_waitqueue_head(&counter->waitq);

2774 2775
	mutex_init(&counter->mmap_mutex);

2776 2777
	INIT_LIST_HEAD(&counter->child_list);

I
Ingo Molnar 已提交
2778 2779
	counter->cpu			= cpu;
	counter->hw_event		= *hw_event;
2780
	counter->group_leader		= group_leader;
2781
	counter->pmu			= NULL;
2782
	counter->ctx			= ctx;
I
Ingo Molnar 已提交
2783

2784
	counter->state = PERF_COUNTER_STATE_INACTIVE;
2785 2786 2787
	if (hw_event->disabled)
		counter->state = PERF_COUNTER_STATE_OFF;

2788
	pmu = NULL;
2789

2790
	if (perf_event_raw(hw_event)) {
2791
		pmu = hw_perf_counter_init(counter);
2792 2793 2794 2795
		goto done;
	}

	switch (perf_event_type(hw_event)) {
2796
	case PERF_TYPE_HARDWARE:
2797
		pmu = hw_perf_counter_init(counter);
2798 2799 2800
		break;

	case PERF_TYPE_SOFTWARE:
2801
		pmu = sw_perf_counter_init(counter);
2802 2803 2804
		break;

	case PERF_TYPE_TRACEPOINT:
2805
		pmu = tp_perf_counter_init(counter);
2806 2807
		break;
	}
2808 2809
done:
	err = 0;
2810
	if (!pmu)
2811
		err = -EINVAL;
2812 2813
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
2814

2815
	if (err) {
I
Ingo Molnar 已提交
2816
		kfree(counter);
2817
		return ERR_PTR(err);
I
Ingo Molnar 已提交
2818
	}
2819

2820
	counter->pmu = pmu;
T
Thomas Gleixner 已提交
2821

2822 2823 2824 2825 2826 2827 2828
	if (counter->hw_event.mmap)
		atomic_inc(&nr_mmap_tracking);
	if (counter->hw_event.munmap)
		atomic_inc(&nr_munmap_tracking);
	if (counter->hw_event.comm)
		atomic_inc(&nr_comm_tracking);

T
Thomas Gleixner 已提交
2829 2830 2831 2832
	return counter;
}

/**
2833
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
2834 2835
 *
 * @hw_event_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
2836
 * @pid:		target pid
I
Ingo Molnar 已提交
2837 2838
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
2839
 */
2840
SYSCALL_DEFINE5(perf_counter_open,
2841
		const struct perf_counter_hw_event __user *, hw_event_uptr,
2842
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
2843
{
2844
	struct perf_counter *counter, *group_leader;
I
Ingo Molnar 已提交
2845
	struct perf_counter_hw_event hw_event;
2846
	struct perf_counter_context *ctx;
2847
	struct file *counter_file = NULL;
2848 2849
	struct file *group_file = NULL;
	int fput_needed = 0;
2850
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
2851 2852
	int ret;

2853 2854 2855 2856
	/* for future expandability... */
	if (flags)
		return -EINVAL;

I
Ingo Molnar 已提交
2857
	if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2858 2859
		return -EFAULT;

2860
	/*
I
Ingo Molnar 已提交
2861 2862 2863 2864 2865 2866 2867 2868
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
2869 2870 2871 2872 2873 2874
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
2875
			goto err_put_context;
2876
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
2877
			goto err_put_context;
2878 2879 2880

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
2881 2882 2883 2884 2885 2886 2887 2888
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
2889
		 */
I
Ingo Molnar 已提交
2890 2891
		if (group_leader->ctx != ctx)
			goto err_put_context;
2892 2893 2894 2895 2896
		/*
		 * Only a group leader can be exclusive or pinned
		 */
		if (hw_event.exclusive || hw_event.pinned)
			goto err_put_context;
2897 2898
	}

2899 2900
	counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
				     GFP_KERNEL);
2901 2902
	ret = PTR_ERR(counter);
	if (IS_ERR(counter))
T
Thomas Gleixner 已提交
2903 2904 2905 2906
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
2907 2908 2909 2910 2911 2912 2913
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
2914
	mutex_lock(&ctx->mutex);
2915
	perf_install_in_context(ctx, counter, cpu);
2916
	mutex_unlock(&ctx->mutex);
2917 2918

	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
2919

2920 2921 2922
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
2923 2924
	return ret;

2925
err_free_put_context:
T
Thomas Gleixner 已提交
2926 2927 2928 2929 2930
	kfree(counter);

err_put_context:
	put_context(ctx);

2931
	goto out_fput;
T
Thomas Gleixner 已提交
2932 2933
}

2934 2935 2936 2937 2938 2939 2940 2941 2942
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
2943
	mutex_init(&ctx->mutex);
2944
	INIT_LIST_HEAD(&ctx->counter_list);
P
Peter Zijlstra 已提交
2945
	INIT_LIST_HEAD(&ctx->event_list);
2946 2947 2948 2949 2950 2951
	ctx->task = task;
}

/*
 * inherit a counter from parent task to child task:
 */
2952
static struct perf_counter *
2953 2954 2955 2956
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
2957
	      struct perf_counter *group_leader,
2958 2959 2960 2961
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

2962 2963 2964 2965 2966 2967 2968 2969 2970
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

2971
	child_counter = perf_counter_alloc(&parent_counter->hw_event,
2972 2973
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
2974 2975
	if (IS_ERR(child_counter))
		return child_counter;
2976 2977 2978 2979 2980

	/*
	 * Link it up in the child's context:
	 */
	child_counter->task = child;
2981
	add_counter_to_ctx(child_counter, child_ctx);
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
	child_counter->hw_event.inherit = 1;

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
	/*
	 * Link this into the parent counter's child list
	 */
	mutex_lock(&parent_counter->mutex);
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);

	/*
	 * Make the child state follow the state of the parent counter,
	 * not its hw_event.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_counter_{en,dis}able_family.
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

	mutex_unlock(&parent_counter->mutex);

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;
3026
	struct perf_counter *child_ctr;
3027 3028 3029

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
3030 3031
	if (IS_ERR(leader))
		return PTR_ERR(leader);
3032
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3033 3034 3035 3036
		child_ctr = inherit_counter(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
3037
	}
3038 3039 3040
	return 0;
}

3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
	u64 parent_val, child_val;

	parent_val = atomic64_read(&parent_counter->count);
	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);
3053 3054 3055 3056
	atomic64_add(child_counter->total_time_enabled,
		     &parent_counter->child_total_time_enabled);
	atomic64_add(child_counter->total_time_running,
		     &parent_counter->child_total_time_running);
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

	/*
	 * Remove this counter from the parent's list
	 */
	mutex_lock(&parent_counter->mutex);
	list_del_init(&child_counter->child_list);
	mutex_unlock(&parent_counter->mutex);

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

3072 3073 3074 3075 3076 3077
static void
__perf_counter_exit_task(struct task_struct *child,
			 struct perf_counter *child_counter,
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;
3078
	struct perf_counter *sub, *tmp;
3079 3080

	/*
3081 3082 3083 3084 3085 3086
	 * If we do not self-reap then we have to wait for the
	 * child task to unschedule (it will happen for sure),
	 * so that its counter is at its final count. (This
	 * condition triggers rarely - child tasks usually get
	 * off their CPU before the parent has a chance to
	 * get this far into the reaping action)
3087
	 */
3088 3089 3090
	if (child != current) {
		wait_task_inactive(child, 0);
		list_del_init(&child_counter->list_entry);
3091
		update_counter_times(child_counter);
3092
	} else {
3093
		struct perf_cpu_context *cpuctx;
3094 3095 3096 3097 3098 3099 3100 3101 3102
		unsigned long flags;
		u64 perf_flags;

		/*
		 * Disable and unlink this counter.
		 *
		 * Be careful about zapping the list - IRQ/NMI context
		 * could still be processing it:
		 */
3103
		local_irq_save(flags);
3104
		perf_flags = hw_perf_save_disable();
3105 3106 3107

		cpuctx = &__get_cpu_var(perf_cpu_context);

3108
		group_sched_out(child_counter, cpuctx, child_ctx);
3109
		update_counter_times(child_counter);
3110

3111
		list_del_init(&child_counter->list_entry);
3112

3113
		child_ctx->nr_counters--;
3114

3115
		hw_perf_restore(perf_flags);
3116
		local_irq_restore(flags);
3117
	}
3118 3119 3120 3121 3122 3123 3124

	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
3125 3126 3127 3128
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
		list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
					 list_entry) {
3129
			if (sub->parent) {
3130
				sync_child_counter(sub, sub->parent);
3131
				free_counter(sub);
3132
			}
3133
		}
3134
		free_counter(child_counter);
3135
	}
3136 3137 3138
}

/*
3139
 * When a child task exits, feed back counter values to parent counters.
3140
 *
3141
 * Note: we may be running in child context, but the PID is not hashed
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
 * anymore so new counters will not be added.
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;

	child_ctx = &child->perf_counter_ctx;

	if (likely(!child_ctx->nr_counters))
		return;

	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
		__perf_counter_exit_task(child, child_counter, child_ctx);
}

/*
 * Initialize the perf_counter context in task_struct
 */
void perf_counter_init_task(struct task_struct *child)
{
	struct perf_counter_context *child_ctx, *parent_ctx;
3165
	struct perf_counter *counter;
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
	struct task_struct *parent = current;

	child_ctx  =  &child->perf_counter_ctx;
	parent_ctx = &parent->perf_counter_ctx;

	__perf_counter_init_context(child_ctx, child);

	/*
	 * This is executed from the parent task context, so inherit
	 * counters that have been marked for cloning:
	 */

	if (likely(!parent_ctx->nr_counters))
		return;

	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
3185
	mutex_lock(&parent_ctx->mutex);
3186 3187 3188 3189 3190 3191

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
	list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3192
		if (!counter->hw_event.inherit)
3193 3194
			continue;

3195
		if (inherit_group(counter, parent,
3196 3197 3198 3199
				  parent_ctx, child, child_ctx))
			break;
	}

3200
	mutex_unlock(&parent_ctx->mutex);
3201 3202
}

3203
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
3204
{
3205
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
3206

3207 3208
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
3209 3210

	mutex_lock(&perf_resource_mutex);
3211
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
T
Thomas Gleixner 已提交
3212
	mutex_unlock(&perf_resource_mutex);
3213

3214
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
3215 3216 3217
}

#ifdef CONFIG_HOTPLUG_CPU
3218
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
3219 3220 3221 3222 3223
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

3224 3225
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
3226
}
3227
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
3228
{
3229 3230 3231 3232
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
3233
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3234
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3235 3236
}
#else
3237
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
3249
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
3250 3251 3252 3253
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
3254
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
};

3268
void __init perf_counter_init(void)
T
Thomas Gleixner 已提交
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_overcommit = val;
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);