perf_counter.c 113.3 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3
/*
 * Performance counter core code
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 9
 *
 *  For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18
#include <linux/poll.h>
#include <linux/sysfs.h>
19
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
20
#include <linux/percpu.h>
21
#include <linux/ptrace.h>
22 23 24
#include <linux/vmstat.h>
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
25 26 27
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
28
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
29 30
#include <linux/perf_counter.h>

31 32
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
33 34 35 36 37
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

38
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
39 40 41
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

42
static atomic_t nr_counters __read_mostly;
P
Peter Zijlstra 已提交
43 44
static atomic_t nr_mmap_counters __read_mostly;
static atomic_t nr_comm_counters __read_mostly;
P
Peter Zijlstra 已提交
45
static atomic_t nr_task_counters __read_mostly;
46

47
/*
48 49 50 51
 * perf counter paranoia level:
 *  0 - not paranoid
 *  1 - disallow cpu counters to unpriv
 *  2 - disallow kernel profiling to unpriv
52
 */
53
int sysctl_perf_counter_paranoid __read_mostly;
54 55 56 57 58 59 60 61 62 63 64

static inline bool perf_paranoid_cpu(void)
{
	return sysctl_perf_counter_paranoid > 0;
}

static inline bool perf_paranoid_kernel(void)
{
	return sysctl_perf_counter_paranoid > 1;
}

65
int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
66 67 68 69 70

/*
 * max perf counter sample rate
 */
int sysctl_perf_counter_sample_rate __read_mostly = 100000;
71

72 73
static atomic64_t perf_counter_id;

T
Thomas Gleixner 已提交
74
/*
75
 * Lock for (sysadmin-configurable) counter reservations:
T
Thomas Gleixner 已提交
76
 */
77
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
78 79 80 81

/*
 * Architecture provided APIs - weak aliases:
 */
82
extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
83
{
84
	return NULL;
T
Thomas Gleixner 已提交
85 86
}

87 88 89
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

90
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
91
void __weak hw_perf_counter_setup_online(int cpu)	{ barrier(); }
92 93 94

int __weak
hw_perf_group_sched_in(struct perf_counter *group_leader,
95 96 97 98 99
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
100

101 102
void __weak perf_counter_print_debug(void)	{ }

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
static DEFINE_PER_CPU(int, disable_count);

void __perf_disable(void)
{
	__get_cpu_var(disable_count)++;
}

bool __perf_enable(void)
{
	return !--__get_cpu_var(disable_count);
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

127 128
static void get_ctx(struct perf_counter_context *ctx)
{
129
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
130 131
}

132 133 134 135 136 137 138 139
static void free_ctx(struct rcu_head *head)
{
	struct perf_counter_context *ctx;

	ctx = container_of(head, struct perf_counter_context, rcu_head);
	kfree(ctx);
}

140 141
static void put_ctx(struct perf_counter_context *ctx)
{
142 143 144
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
145 146 147
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
148
	}
149 150
}

151 152 153 154 155 156 157 158
static void unclone_ctx(struct perf_counter_context *ctx)
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

159 160 161 162 163 164 165 166 167 168 169 170 171 172
/*
 * If we inherit counters we want to return the parent counter id
 * to userspace.
 */
static u64 primary_counter_id(struct perf_counter *counter)
{
	u64 id = counter->id;

	if (counter->parent)
		id = counter->parent->id;

	return id;
}

173 174 175 176 177
/*
 * Get the perf_counter_context for a task and lock it.
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
178 179
static struct perf_counter_context *
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
{
	struct perf_counter_context *ctx;

	rcu_read_lock();
 retry:
	ctx = rcu_dereference(task->perf_counter_ctxp);
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
		 * perf_counter_task_sched_out, though the
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
		spin_lock_irqsave(&ctx->lock, *flags);
		if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
			spin_unlock_irqrestore(&ctx->lock, *flags);
			goto retry;
		}
202 203 204 205 206

		if (!atomic_inc_not_zero(&ctx->refcount)) {
			spin_unlock_irqrestore(&ctx->lock, *flags);
			ctx = NULL;
		}
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
{
	struct perf_counter_context *ctx;
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
		spin_unlock_irqrestore(&ctx->lock, flags);
	}
	return ctx;
}

static void perf_unpin_context(struct perf_counter_context *ctx)
{
	unsigned long flags;

	spin_lock_irqsave(&ctx->lock, flags);
	--ctx->pin_count;
	spin_unlock_irqrestore(&ctx->lock, flags);
	put_ctx(ctx);
}

240 241 242 243
/*
 * Add a counter from the lists for its context.
 * Must be called with ctx->mutex and ctx->lock held.
 */
244 245 246 247 248 249 250 251 252 253
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
P
Peter Zijlstra 已提交
254
	if (group_leader == counter)
255
		list_add_tail(&counter->list_entry, &ctx->counter_list);
P
Peter Zijlstra 已提交
256
	else {
257
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
258 259
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
260 261

	list_add_rcu(&counter->event_entry, &ctx->event_list);
262
	ctx->nr_counters++;
263 264
	if (counter->attr.inherit_stat)
		ctx->nr_stat++;
265 266
}

267 268
/*
 * Remove a counter from the lists for its context.
269
 * Must be called with ctx->mutex and ctx->lock held.
270
 */
271 272 273 274 275
static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

276 277
	if (list_empty(&counter->list_entry))
		return;
278
	ctx->nr_counters--;
279 280
	if (counter->attr.inherit_stat)
		ctx->nr_stat--;
281

282
	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
283
	list_del_rcu(&counter->event_entry);
284

P
Peter Zijlstra 已提交
285 286 287
	if (counter->group_leader != counter)
		counter->group_leader->nr_siblings--;

288 289 290 291 292 293 294 295
	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

296
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
297 298 299 300
		sibling->group_leader = sibling;
	}
}

301 302 303 304 305 306 307 308 309
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
310 311 312 313
	if (counter->pending_disable) {
		counter->pending_disable = 0;
		counter->state = PERF_COUNTER_STATE_OFF;
	}
314
	counter->tstamp_stopped = ctx->time;
315
	counter->pmu->disable(counter);
316 317 318 319 320
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
321
	if (counter->attr.exclusive || !cpuctx->active_oncpu)
322 323 324
		cpuctx->exclusive = 0;
}

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

343
	if (group_counter->attr.exclusive)
344 345 346
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
347 348 349 350 351 352
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
353
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
354 355 356 357 358 359 360 361 362 363
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
364
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
365 366
		return;

367
	spin_lock(&ctx->lock);
368 369 370 371 372
	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level.
	 */
	perf_disable();
T
Thomas Gleixner 已提交
373

374 375
	counter_sched_out(counter, cpuctx, ctx);

376
	list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
377 378 379 380 381 382 383 384 385 386 387

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

388
	perf_enable();
389
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
390 391 392 393 394 395
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
396
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
397 398 399
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
400 401 402 403 404 405 406
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
 * When called from perf_counter_exit_task, it's OK because the
 * context has been detached from its task.
T
Thomas Gleixner 已提交
407
 */
408
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
409 410 411 412 413 414 415 416 417 418
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
419
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
420 421 422 423 424
					 counter, 1);
		return;
	}

retry:
425
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
426 427 428 429 430 431
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
432
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
433 434 435 436 437 438
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
439
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
440 441
	 * succeed.
	 */
442 443
	if (!list_empty(&counter->list_entry)) {
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
444 445 446 447
	}
	spin_unlock_irq(&ctx->lock);
}

448
static inline u64 perf_clock(void)
449
{
450
	return cpu_clock(smp_processor_id());
451 452 453 454 455
}

/*
 * Update the record of the current time in a context.
 */
456
static void update_context_time(struct perf_counter_context *ctx)
457
{
458 459 460 461
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
462 463 464 465 466 467 468 469 470 471
}

/*
 * Update the total_time_enabled and total_time_running fields for a counter.
 */
static void update_counter_times(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	u64 run_end;

472 473 474 475 476 477 478 479 480 481 482
	if (counter->state < PERF_COUNTER_STATE_INACTIVE)
		return;

	counter->total_time_enabled = ctx->time - counter->tstamp_enabled;

	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		run_end = counter->tstamp_stopped;
	else
		run_end = ctx->time;

	counter->total_time_running = run_end - counter->tstamp_running;
483 484 485 486 487 488 489 490 491 492 493 494 495 496
}

/*
 * Update total_time_enabled and total_time_running for all counters in a group.
 */
static void update_group_times(struct perf_counter *leader)
{
	struct perf_counter *counter;

	update_counter_times(leader);
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		update_counter_times(counter);
}

497 498 499 500 501 502 503 504 505 506 507 508 509
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
510
	if (ctx->task && cpuctx->task_ctx != ctx)
511 512
		return;

513
	spin_lock(&ctx->lock);
514 515 516 517 518 519

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
520
		update_context_time(ctx);
521
		update_counter_times(counter);
522 523 524 525 526 527 528
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

529
	spin_unlock(&ctx->lock);
530 531 532 533
}

/*
 * Disable a counter.
534 535 536 537 538 539 540 541 542 543
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This condition is satisifed when called through
 * perf_counter_for_each_child or perf_counter_for_each because they
 * hold the top-level counter's child_mutex, so any descendant that
 * goes to exit will block in sync_child_counter.
 * When called from perf_pending_counter it's OK because counter->ctx
 * is the current context on this CPU and preemption is disabled,
 * hence we can't get into perf_counter_task_sched_out for this context.
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
575 576
	if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
577
		counter->state = PERF_COUNTER_STATE_OFF;
578
	}
579 580 581 582

	spin_unlock_irq(&ctx->lock);
}

583 584 585 586 587 588
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
589
	if (counter->state <= PERF_COUNTER_STATE_OFF)
590 591 592 593 594 595 596 597 598
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

599
	if (counter->pmu->enable(counter)) {
600 601 602 603 604
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

605
	counter->tstamp_running += ctx->time - counter->tstamp_stopped;
606

607 608
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
609 610
	ctx->nr_active++;

611
	if (counter->attr.exclusive)
612 613
		cpuctx->exclusive = 1;

614 615 616
	return 0;
}

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
static int
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
	struct perf_counter *counter, *partial_group;
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;

	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
	}
	counter_sched_out(group_counter, cpuctx, ctx);

	return -EAGAIN;
}

663 664 665 666 667 668 669 670 671 672
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
P
Peter Zijlstra 已提交
673

674 675 676
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
P
Peter Zijlstra 已提交
677

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
703
	if (counter->attr.exclusive && cpuctx->active_oncpu)
704 705 706 707 708 709 710 711
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

712 713 714 715
static void add_counter_to_ctx(struct perf_counter *counter,
			       struct perf_counter_context *ctx)
{
	list_add_counter(counter, ctx);
716 717 718
	counter->tstamp_enabled = ctx->time;
	counter->tstamp_running = ctx->time;
	counter->tstamp_stopped = ctx->time;
719 720
}

T
Thomas Gleixner 已提交
721
/*
722
 * Cross CPU call to install and enable a performance counter
723 724
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
725 726 727 728 729 730
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
731
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
732
	int cpu = smp_processor_id();
733
	int err;
T
Thomas Gleixner 已提交
734 735 736 737 738

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
739 740
	 * Or possibly this is the right context but it isn't
	 * on this cpu because it had no counters.
T
Thomas Gleixner 已提交
741
	 */
742
	if (ctx->task && cpuctx->task_ctx != ctx) {
743
		if (cpuctx->task_ctx || ctx->task != current)
744 745 746
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
747

748
	spin_lock(&ctx->lock);
749
	ctx->is_active = 1;
750
	update_context_time(ctx);
T
Thomas Gleixner 已提交
751 752 753 754 755

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
756
	perf_disable();
T
Thomas Gleixner 已提交
757

758
	add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
759

760 761 762 763 764 765 766 767
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

768 769 770 771 772
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
773
	if (!group_can_go_on(counter, cpuctx, 1))
774 775 776 777
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

778 779 780 781 782 783 784 785
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
786
		if (leader->attr.pinned) {
787
			update_group_times(leader);
788
			leader->state = PERF_COUNTER_STATE_ERROR;
789
		}
790
	}
T
Thomas Gleixner 已提交
791

792
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
793 794
		cpuctx->max_pertask--;

795
 unlock:
796
	perf_enable();
797

798
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
799 800 801 802 803 804 805 806 807 808 809
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
810 811
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
838
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
839 840 841 842 843 844 845 846 847
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
848 849
	if (list_empty(&counter->list_entry))
		add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
850 851 852
	spin_unlock_irq(&ctx->lock);
}

853 854 855 856
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
857
{
858 859 860 861 862
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	int err;
863

864 865 866 867
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
868
	if (ctx->task && cpuctx->task_ctx != ctx) {
869
		if (cpuctx->task_ctx || ctx->task != current)
870 871 872
			return;
		cpuctx->task_ctx = ctx;
	}
873

874
	spin_lock(&ctx->lock);
875
	ctx->is_active = 1;
876
	update_context_time(ctx);
877 878 879 880

	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
881
	counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
882 883

	/*
884 885
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
886
	 */
887 888
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
889

890
	if (!group_can_go_on(counter, cpuctx, 1)) {
891
		err = -EEXIST;
892
	} else {
893
		perf_disable();
894 895 896 897 898 899
		if (counter == leader)
			err = group_sched_in(counter, cpuctx, ctx,
					     smp_processor_id());
		else
			err = counter_sched_in(counter, cpuctx, ctx,
					       smp_processor_id());
900
		perf_enable();
901
	}
902 903 904 905 906 907 908 909

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
910
		if (leader->attr.pinned) {
911
			update_group_times(leader);
912
			leader->state = PERF_COUNTER_STATE_ERROR;
913
		}
914 915 916
	}

 unlock:
917
	spin_unlock(&ctx->lock);
918 919 920 921
}

/*
 * Enable a counter.
922 923 924 925 926 927
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This condition is satisfied when called through
 * perf_counter_for_each_child or perf_counter_for_each as described
 * for perf_counter_disable.
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
974
	if (counter->state == PERF_COUNTER_STATE_OFF) {
975
		counter->state = PERF_COUNTER_STATE_INACTIVE;
976 977
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
978
	}
979 980 981 982
 out:
	spin_unlock_irq(&ctx->lock);
}

983
static int perf_counter_refresh(struct perf_counter *counter, int refresh)
984
{
985 986 987
	/*
	 * not supported on inherited counters
	 */
988
	if (counter->attr.inherit)
989 990
		return -EINVAL;

991 992
	atomic_add(refresh, &counter->event_limit);
	perf_counter_enable(counter);
993 994

	return 0;
995 996
}

997 998 999 1000 1001
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;

1002 1003
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
1004
	if (likely(!ctx->nr_counters))
1005
		goto out;
1006
	update_context_time(ctx);
1007

1008
	perf_disable();
1009
	if (ctx->nr_active) {
1010 1011 1012 1013 1014 1015
		list_for_each_entry(counter, &ctx->counter_list, list_entry) {
			if (counter != counter->group_leader)
				counter_sched_out(counter, cpuctx, ctx);
			else
				group_sched_out(counter, cpuctx, ctx);
		}
1016
	}
1017
	perf_enable();
1018
 out:
1019 1020 1021
	spin_unlock(&ctx->lock);
}

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
 * and they both have the same number of enabled counters.
 * If the number of enabled counters is the same, then the set
 * of enabled counters should be the same, because these are both
 * inherited contexts, therefore we can't access individual counters
 * in them directly with an fd; we can only enable/disable all
 * counters via prctl, or enable/disable all counters in a family
 * via ioctl, which will have the same effect on both contexts.
 */
static int context_equiv(struct perf_counter_context *ctx1,
			 struct perf_counter_context *ctx2)
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1037
		&& ctx1->parent_gen == ctx2->parent_gen
1038
		&& !ctx1->pin_count && !ctx2->pin_count;
1039 1040
}

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
static void __perf_counter_read(void *counter);

static void __perf_counter_sync_stat(struct perf_counter *counter,
				     struct perf_counter *next_counter)
{
	u64 value;

	if (!counter->attr.inherit_stat)
		return;

	/*
	 * Update the counter value, we cannot use perf_counter_read()
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
	 * we know the counter must be on the current CPU, therefore we
	 * don't need to use it.
	 */
	switch (counter->state) {
	case PERF_COUNTER_STATE_ACTIVE:
		__perf_counter_read(counter);
		break;

	case PERF_COUNTER_STATE_INACTIVE:
		update_counter_times(counter);
		break;

	default:
		break;
	}

	/*
	 * In order to keep per-task stats reliable we need to flip the counter
	 * values when we flip the contexts.
	 */
	value = atomic64_read(&next_counter->count);
	value = atomic64_xchg(&counter->count, value);
	atomic64_set(&next_counter->count, value);

1079 1080 1081
	swap(counter->total_time_enabled, next_counter->total_time_enabled);
	swap(counter->total_time_running, next_counter->total_time_running);

1082
	/*
1083
	 * Since we swizzled the values, update the user visible data too.
1084
	 */
1085 1086
	perf_counter_update_userpage(counter);
	perf_counter_update_userpage(next_counter);
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

static void perf_counter_sync_stat(struct perf_counter_context *ctx,
				   struct perf_counter_context *next_ctx)
{
	struct perf_counter *counter, *next_counter;

	if (!ctx->nr_stat)
		return;

	counter = list_first_entry(&ctx->event_list,
				   struct perf_counter, event_entry);

	next_counter = list_first_entry(&next_ctx->event_list,
					struct perf_counter, event_entry);

	while (&counter->event_entry != &ctx->event_list &&
	       &next_counter->event_entry != &next_ctx->event_list) {

		__perf_counter_sync_stat(counter, next_counter);

		counter = list_next_entry(counter, event_entry);
1112
		next_counter = list_next_entry(next_counter, event_entry);
1113 1114 1115
	}
}

T
Thomas Gleixner 已提交
1116 1117 1118 1119 1120 1121
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
1122
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
1123 1124 1125 1126
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
1127 1128
void perf_counter_task_sched_out(struct task_struct *task,
				 struct task_struct *next, int cpu)
T
Thomas Gleixner 已提交
1129 1130
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1131
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
1132
	struct perf_counter_context *next_ctx;
1133
	struct perf_counter_context *parent;
1134
	struct pt_regs *regs;
1135
	int do_switch = 1;
T
Thomas Gleixner 已提交
1136

1137
	regs = task_pt_regs(task);
1138
	perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1139

1140
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1141 1142
		return;

1143
	update_context_time(ctx);
1144 1145 1146

	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1147
	next_ctx = next->perf_counter_ctxp;
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
		spin_lock(&ctx->lock);
		spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
		if (context_equiv(ctx, next_ctx)) {
1162 1163 1164 1165
			/*
			 * XXX do we need a memory barrier of sorts
			 * wrt to rcu_dereference() of perf_counter_ctxp
			 */
1166 1167 1168 1169 1170
			task->perf_counter_ctxp = next_ctx;
			next->perf_counter_ctxp = ctx;
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1171 1172

			perf_counter_sync_stat(ctx, next_ctx);
1173 1174 1175
		}
		spin_unlock(&next_ctx->lock);
		spin_unlock(&ctx->lock);
1176
	}
1177
	rcu_read_unlock();
1178

1179 1180 1181 1182
	if (do_switch) {
		__perf_counter_sched_out(ctx, cpuctx);
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1183 1184
}

1185 1186 1187
/*
 * Called with IRQs disabled
 */
1188 1189 1190 1191
static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1192 1193
	if (!cpuctx->task_ctx)
		return;
1194 1195 1196 1197

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1198 1199 1200 1201
	__perf_counter_sched_out(ctx, cpuctx);
	cpuctx->task_ctx = NULL;
}

1202 1203 1204
/*
 * Called with IRQs disabled
 */
1205
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1206
{
1207
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1208 1209
}

1210 1211 1212
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
1213 1214
{
	struct perf_counter *counter;
1215
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
1216

1217 1218
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
1219
	if (likely(!ctx->nr_counters))
1220
		goto out;
T
Thomas Gleixner 已提交
1221

1222
	ctx->timestamp = perf_clock();
1223

1224
	perf_disable();
1225 1226 1227 1228 1229 1230 1231

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
1232
		    !counter->attr.pinned)
1233 1234 1235 1236
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

1237 1238 1239 1240 1241 1242
		if (counter != counter->group_leader)
			counter_sched_in(counter, cpuctx, ctx, cpu);
		else {
			if (group_can_go_on(counter, cpuctx, 1))
				group_sched_in(counter, cpuctx, ctx, cpu);
		}
1243 1244 1245 1246 1247

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1248 1249
		if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
			update_group_times(counter);
1250
			counter->state = PERF_COUNTER_STATE_ERROR;
1251
		}
1252 1253
	}

1254
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1255 1256 1257 1258 1259
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
1260
		    counter->attr.pinned)
1261 1262
			continue;

1263 1264 1265 1266
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
1267 1268 1269
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

1270 1271
		if (counter != counter->group_leader) {
			if (counter_sched_in(counter, cpuctx, ctx, cpu))
1272
				can_add_hw = 0;
1273 1274 1275 1276 1277
		} else {
			if (group_can_go_on(counter, cpuctx, can_add_hw)) {
				if (group_sched_in(counter, cpuctx, ctx, cpu))
					can_add_hw = 0;
			}
1278
		}
T
Thomas Gleixner 已提交
1279
	}
1280
	perf_enable();
1281
 out:
T
Thomas Gleixner 已提交
1282
	spin_unlock(&ctx->lock);
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1299
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
1300

1301 1302
	if (likely(!ctx))
		return;
1303 1304
	if (cpuctx->task_ctx == ctx)
		return;
1305
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
1306 1307 1308
	cpuctx->task_ctx = ctx;
}

1309 1310 1311 1312 1313 1314 1315
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

1316 1317 1318
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_counter *counter, int enable);
1319

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
static void perf_adjust_period(struct perf_counter *counter, u64 events)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 period, sample_period;
	s64 delta;

	events *= hwc->sample_period;
	period = div64_u64(events, counter->attr.sample_freq);

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
}

static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
1341 1342
{
	struct perf_counter *counter;
1343
	struct hw_perf_counter *hwc;
1344
	u64 interrupts, freq;
1345 1346 1347 1348 1349 1350

	spin_lock(&ctx->lock);
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state != PERF_COUNTER_STATE_ACTIVE)
			continue;

1351 1352 1353 1354
		hwc = &counter->hw;

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1355

1356 1357 1358
		/*
		 * unthrottle counters on the tick
		 */
1359 1360 1361
		if (interrupts == MAX_INTERRUPTS) {
			perf_log_throttle(counter, 1);
			counter->pmu->unthrottle(counter);
1362
			interrupts = 2*sysctl_perf_counter_sample_rate/HZ;
1363 1364
		}

1365
		if (!counter->attr.freq || !counter->attr.sample_freq)
1366 1367
			continue;

1368 1369 1370
		/*
		 * if the specified freq < HZ then we need to skip ticks
		 */
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
		if (counter->attr.sample_freq < HZ) {
			freq = counter->attr.sample_freq;

			hwc->freq_count += freq;
			hwc->freq_interrupts += interrupts;

			if (hwc->freq_count < HZ)
				continue;

			interrupts = hwc->freq_interrupts;
			hwc->freq_interrupts = 0;
			hwc->freq_count -= HZ;
		} else
			freq = HZ;

1386
		perf_adjust_period(counter, freq * interrupts);
1387

1388 1389 1390 1391 1392 1393 1394 1395
		/*
		 * In order to avoid being stalled by an (accidental) huge
		 * sample period, force reset the sample period if we didn't
		 * get any events in this freq period.
		 */
		if (!interrupts) {
			perf_disable();
			counter->pmu->disable(counter);
1396
			atomic64_set(&hwc->period_left, 0);
1397 1398 1399
			counter->pmu->enable(counter);
			perf_enable();
		}
1400 1401 1402 1403
	}
	spin_unlock(&ctx->lock);
}

1404 1405 1406 1407
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
1408 1409 1410
{
	struct perf_counter *counter;

1411
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
1412 1413 1414 1415
		return;

	spin_lock(&ctx->lock);
	/*
1416
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
1417
	 */
1418
	perf_disable();
1419
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1420
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
1421 1422
		break;
	}
1423
	perf_enable();
T
Thomas Gleixner 已提交
1424 1425

	spin_unlock(&ctx->lock);
1426 1427 1428 1429
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
1430 1431 1432 1433 1434 1435 1436
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;

	if (!atomic_read(&nr_counters))
		return;

	cpuctx = &per_cpu(perf_cpu_context, cpu);
1437
	ctx = curr->perf_counter_ctxp;
1438

1439
	perf_ctx_adjust_freq(&cpuctx->ctx);
1440
	if (ctx)
1441
		perf_ctx_adjust_freq(ctx);
1442

1443
	perf_counter_cpu_sched_out(cpuctx);
1444 1445
	if (ctx)
		__perf_counter_task_sched_out(ctx);
T
Thomas Gleixner 已提交
1446

1447
	rotate_ctx(&cpuctx->ctx);
1448 1449
	if (ctx)
		rotate_ctx(ctx);
1450

1451
	perf_counter_cpu_sched_in(cpuctx, cpu);
1452 1453
	if (ctx)
		perf_counter_task_sched_in(curr, cpu);
T
Thomas Gleixner 已提交
1454 1455
}

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
/*
 * Enable all of a task's counters that have been marked enable-on-exec.
 * This expects task == current.
 */
static void perf_counter_enable_on_exec(struct task_struct *task)
{
	struct perf_counter_context *ctx;
	struct perf_counter *counter;
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
	ctx = task->perf_counter_ctxp;
	if (!ctx || !ctx->nr_counters)
		goto out;

	__perf_counter_task_sched_out(ctx);

	spin_lock(&ctx->lock);

	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (!counter->attr.enable_on_exec)
			continue;
		counter->attr.enable_on_exec = 0;
		if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
			continue;
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
		enabled = 1;
	}

	/*
	 * Unclone this context if we enabled any counter.
	 */
1491 1492
	if (enabled)
		unclone_ctx(ctx);
1493 1494 1495 1496 1497 1498 1499 1500

	spin_unlock(&ctx->lock);

	perf_counter_task_sched_in(task, smp_processor_id());
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1501 1502 1503
/*
 * Cross CPU call to read the hardware counter
 */
1504
static void __perf_counter_read(void *info)
T
Thomas Gleixner 已提交
1505
{
1506
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
I
Ingo Molnar 已提交
1507
	struct perf_counter *counter = info;
1508
	struct perf_counter_context *ctx = counter->ctx;
I
Ingo Molnar 已提交
1509
	unsigned long flags;
I
Ingo Molnar 已提交
1510

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
	 * counter->count would have been updated to a recent sample
	 * when the counter was scheduled out.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1521
	local_irq_save(flags);
1522
	if (ctx->is_active)
1523
		update_context_time(ctx);
1524
	counter->pmu->read(counter);
1525
	update_counter_times(counter);
1526
	local_irq_restore(flags);
T
Thomas Gleixner 已提交
1527 1528
}

1529
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1530 1531 1532 1533 1534
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1535
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1536
		smp_call_function_single(counter->oncpu,
1537
					 __perf_counter_read, counter, 1);
1538 1539
	} else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
T
Thomas Gleixner 已提交
1540 1541
	}

1542
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1543 1544
}

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
	mutex_init(&ctx->mutex);
	INIT_LIST_HEAD(&ctx->counter_list);
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

T
Thomas Gleixner 已提交
1561 1562
static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
1563 1564
	struct perf_counter_context *ctx;
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1565
	struct task_struct *task;
1566
	unsigned long flags;
1567
	int err;
T
Thomas Gleixner 已提交
1568 1569 1570 1571 1572 1573

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
1574
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1590
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1607 1608 1609 1610 1611 1612 1613
	/*
	 * Can't attach counters to a dying task.
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1614
	/* Reuse ptrace permission checks for now. */
1615 1616 1617 1618 1619
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1620
	ctx = perf_lock_task_context(task, &flags);
1621
	if (ctx) {
1622
		unclone_ctx(ctx);
1623
		spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1624 1625
	}

1626 1627
	if (!ctx) {
		ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1628 1629 1630
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1631
		__perf_counter_init_context(ctx, task);
1632 1633
		get_ctx(ctx);
		if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1634 1635 1636 1637 1638
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1639
			goto retry;
1640
		}
1641
		get_task_struct(task);
1642 1643
	}

1644
	put_task_struct(task);
T
Thomas Gleixner 已提交
1645
	return ctx;
1646 1647 1648 1649

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1650 1651
}

P
Peter Zijlstra 已提交
1652 1653 1654 1655 1656
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
1657 1658
	if (counter->ns)
		put_pid_ns(counter->ns);
P
Peter Zijlstra 已提交
1659 1660 1661
	kfree(counter);
}

1662 1663
static void perf_pending_sync(struct perf_counter *counter);

1664 1665
static void free_counter(struct perf_counter *counter)
{
1666 1667
	perf_pending_sync(counter);

1668 1669 1670 1671 1672 1673
	if (!counter->parent) {
		atomic_dec(&nr_counters);
		if (counter->attr.mmap)
			atomic_dec(&nr_mmap_counters);
		if (counter->attr.comm)
			atomic_dec(&nr_comm_counters);
P
Peter Zijlstra 已提交
1674 1675
		if (counter->attr.task)
			atomic_dec(&nr_task_counters);
1676
	}
1677

1678 1679 1680
	if (counter->destroy)
		counter->destroy(counter);

1681
	put_ctx(counter->ctx);
1682 1683 1684
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1695
	WARN_ON_ONCE(ctx->parent_ctx);
1696
	mutex_lock(&ctx->mutex);
1697
	perf_counter_remove_from_context(counter);
1698
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1699

1700 1701 1702 1703 1704
	mutex_lock(&counter->owner->perf_counter_mutex);
	list_del_init(&counter->owner_entry);
	mutex_unlock(&counter->owner->perf_counter_mutex);
	put_task_struct(counter->owner);

1705
	free_counter(counter);
T
Thomas Gleixner 已提交
1706 1707 1708 1709

	return 0;
}

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
static int perf_counter_read_size(struct perf_counter *counter)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (counter->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (counter->attr.read_format & PERF_FORMAT_GROUP) {
		nr += counter->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

static u64 perf_counter_read_value(struct perf_counter *counter)
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
{
	struct perf_counter *child;
	u64 total = 0;

	total += perf_counter_read(counter);
	list_for_each_entry(child, &counter->child_list, child_list)
		total += perf_counter_read(child);

	return total;
}

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
static int perf_counter_read_entry(struct perf_counter *counter,
				   u64 read_format, char __user *buf)
{
	int n = 0, count = 0;
	u64 values[2];

	values[n++] = perf_counter_read_value(counter);
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_counter_id(counter);

	count = n * sizeof(u64);

	if (copy_to_user(buf, values, count))
		return -EFAULT;

	return count;
}

static int perf_counter_read_group(struct perf_counter *counter,
				   u64 read_format, char __user *buf)
{
	struct perf_counter *leader = counter->group_leader, *sub;
	int n = 0, size = 0, err = -EFAULT;
	u64 values[3];

	values[n++] = 1 + leader->nr_siblings;
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] = leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] = leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
		return -EFAULT;

	err = perf_counter_read_entry(leader, read_format, buf + size);
	if (err < 0)
		return err;

	size += err;

	list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1794
		err = perf_counter_read_entry(sub, read_format,
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
				buf + size);
		if (err < 0)
			return err;

		size += err;
	}

	return size;
}

static int perf_counter_read_one(struct perf_counter *counter,
				 u64 read_format, char __user *buf)
{
	u64 values[4];
	int n = 0;

	values[n++] = perf_counter_read_value(counter);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);
	}
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_counter_id(counter);

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
1829 1830 1831 1832 1833 1834
/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
1835 1836
	u64 read_format = counter->attr.read_format;
	int ret;
T
Thomas Gleixner 已提交
1837

1838 1839 1840 1841 1842 1843 1844 1845
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

1846 1847 1848
	if (count < perf_counter_read_size(counter))
		return -ENOSPC;

1849
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1850
	mutex_lock(&counter->child_mutex);
1851 1852 1853 1854
	if (read_format & PERF_FORMAT_GROUP)
		ret = perf_counter_read_group(counter, read_format, buf);
	else
		ret = perf_counter_read_one(counter, read_format, buf);
1855
	mutex_unlock(&counter->child_mutex);
T
Thomas Gleixner 已提交
1856

1857
	return ret;
T
Thomas Gleixner 已提交
1858 1859 1860 1861 1862 1863 1864
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

1865
	return perf_read_hw(counter, buf, count);
T
Thomas Gleixner 已提交
1866 1867 1868 1869 1870
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1871
	struct perf_mmap_data *data;
1872
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1873 1874 1875 1876

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
1877
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1878
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1879 1880 1881 1882 1883 1884

	poll_wait(file, &counter->waitq, wait);

	return events;
}

1885 1886
static void perf_counter_reset(struct perf_counter *counter)
{
P
Peter Zijlstra 已提交
1887
	(void)perf_counter_read(counter);
1888
	atomic64_set(&counter->count, 0);
P
Peter Zijlstra 已提交
1889 1890 1891
	perf_counter_update_userpage(counter);
}

1892 1893 1894 1895 1896 1897
/*
 * Holding the top-level counter's child_mutex means that any
 * descendant process that has inherited this counter will block
 * in sync_child_counter if it goes to exit, thus satisfying the
 * task existence requirements of perf_counter_enable/disable.
 */
P
Peter Zijlstra 已提交
1898 1899 1900 1901 1902
static void perf_counter_for_each_child(struct perf_counter *counter,
					void (*func)(struct perf_counter *))
{
	struct perf_counter *child;

1903
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1904
	mutex_lock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1905 1906 1907
	func(counter);
	list_for_each_entry(child, &counter->child_list, child_list)
		func(child);
1908
	mutex_unlock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1909 1910 1911 1912 1913
}

static void perf_counter_for_each(struct perf_counter *counter,
				  void (*func)(struct perf_counter *))
{
1914 1915
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *sibling;
P
Peter Zijlstra 已提交
1916

1917 1918 1919 1920 1921 1922 1923 1924 1925
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	counter = counter->group_leader;

	perf_counter_for_each_child(counter, func);
	func(counter);
	list_for_each_entry(sibling, &counter->sibling_list, list_entry)
		perf_counter_for_each_child(counter, func);
	mutex_unlock(&ctx->mutex);
1926 1927
}

1928 1929 1930 1931 1932 1933 1934
static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
{
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long size;
	int ret = 0;
	u64 value;

1935
	if (!counter->attr.sample_period)
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	spin_lock_irq(&ctx->lock);
1946
	if (counter->attr.freq) {
1947
		if (value > sysctl_perf_counter_sample_rate) {
1948 1949 1950 1951
			ret = -EINVAL;
			goto unlock;
		}

1952
		counter->attr.sample_freq = value;
1953
	} else {
1954
		counter->attr.sample_period = value;
1955 1956 1957 1958 1959 1960 1961 1962
		counter->hw.sample_period = value;
	}
unlock:
	spin_unlock_irq(&ctx->lock);

	return ret;
}

1963 1964 1965
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1966 1967
	void (*func)(struct perf_counter *);
	u32 flags = arg;
1968 1969 1970

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
P
Peter Zijlstra 已提交
1971
		func = perf_counter_enable;
1972 1973
		break;
	case PERF_COUNTER_IOC_DISABLE:
P
Peter Zijlstra 已提交
1974
		func = perf_counter_disable;
1975
		break;
1976
	case PERF_COUNTER_IOC_RESET:
P
Peter Zijlstra 已提交
1977
		func = perf_counter_reset;
1978
		break;
P
Peter Zijlstra 已提交
1979 1980 1981

	case PERF_COUNTER_IOC_REFRESH:
		return perf_counter_refresh(counter, arg);
1982 1983 1984 1985

	case PERF_COUNTER_IOC_PERIOD:
		return perf_counter_period(counter, (u64 __user *)arg);

1986
	default:
P
Peter Zijlstra 已提交
1987
		return -ENOTTY;
1988
	}
P
Peter Zijlstra 已提交
1989 1990 1991 1992 1993 1994 1995

	if (flags & PERF_IOC_FLAG_GROUP)
		perf_counter_for_each(counter, func);
	else
		perf_counter_for_each_child(counter, func);

	return 0;
1996 1997
}

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
int perf_counter_task_enable(void)
{
	struct perf_counter *counter;

	mutex_lock(&current->perf_counter_mutex);
	list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
		perf_counter_for_each_child(counter, perf_counter_enable);
	mutex_unlock(&current->perf_counter_mutex);

	return 0;
}

int perf_counter_task_disable(void)
{
	struct perf_counter *counter;

	mutex_lock(&current->perf_counter_mutex);
	list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
		perf_counter_for_each_child(counter, perf_counter_disable);
	mutex_unlock(&current->perf_counter_mutex);

	return 0;
}

I
Ingo Molnar 已提交
2022 2023 2024 2025
#ifndef PERF_COUNTER_INDEX_OFFSET
# define PERF_COUNTER_INDEX_OFFSET 0
#endif

2026 2027 2028 2029 2030 2031 2032 2033
static int perf_counter_index(struct perf_counter *counter)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return 0;

	return counter->hw.idx + 1 - PERF_COUNTER_INDEX_OFFSET;
}

2034 2035 2036 2037 2038 2039
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
void perf_counter_update_userpage(struct perf_counter *counter)
2040
{
2041
	struct perf_counter_mmap_page *userpg;
2042
	struct perf_mmap_data *data;
2043 2044 2045 2046 2047 2048 2049

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	userpg = data->user_page;
2050

2051 2052 2053 2054 2055
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2056
	++userpg->lock;
2057
	barrier();
2058
	userpg->index = perf_counter_index(counter);
2059 2060 2061
	userpg->offset = atomic64_read(&counter->count);
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&counter->hw.prev_count);
2062

2063 2064 2065 2066 2067 2068
	userpg->time_enabled = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);

	userpg->time_running = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);

2069
	barrier();
2070
	++userpg->lock;
2071
	preempt_enable();
2072
unlock:
2073
	rcu_read_unlock();
2074 2075 2076 2077 2078
}

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_counter *counter = vma->vm_file->private_data;
2079 2080 2081
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

2082 2083 2084 2085 2086 2087
	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

2088 2089 2090 2091 2092 2093 2094 2095 2096
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff == 0) {
		vmf->page = virt_to_page(data->user_page);
	} else {
		int nr = vmf->pgoff - 1;
2097

2098 2099
		if ((unsigned)nr > data->nr_pages)
			goto unlock;
2100

2101 2102 2103
		if (vmf->flags & FAULT_FLAG_WRITE)
			goto unlock;

2104 2105
		vmf->page = virt_to_page(data->data_pages[nr]);
	}
2106

2107
	get_page(vmf->page);
2108 2109 2110
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	WARN_ON(atomic_read(&counter->mmap_count));

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;
2144
	atomic_set(&data->lock, -1);
2145 2146 2147

	rcu_assign_pointer(counter->data, data);

2148
	return 0;
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
	return -ENOMEM;
}

2163 2164
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2165
	struct page *page = virt_to_page((void *)addr);
2166 2167 2168 2169 2170

	page->mapping = NULL;
	__free_page(page);
}

2171 2172
static void __perf_mmap_data_free(struct rcu_head *rcu_head)
{
2173
	struct perf_mmap_data *data;
2174 2175
	int i;

2176 2177
	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);

2178
	perf_mmap_free_page((unsigned long)data->user_page);
2179
	for (i = 0; i < data->nr_pages; i++)
2180 2181
		perf_mmap_free_page((unsigned long)data->data_pages[i]);

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
	kfree(data);
}

static void perf_mmap_data_free(struct perf_counter *counter)
{
	struct perf_mmap_data *data = counter->data;

	WARN_ON(atomic_read(&counter->mmap_count));

	rcu_assign_pointer(counter->data, NULL);
	call_rcu(&data->rcu_head, __perf_mmap_data_free);
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	atomic_inc(&counter->mmap_count);
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

2206
	WARN_ON_ONCE(counter->ctx->parent_ctx);
2207
	if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
2208 2209 2210
		struct user_struct *user = current_user();

		atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
2211
		vma->vm_mm->locked_vm -= counter->data->nr_locked;
2212 2213 2214
		perf_mmap_data_free(counter);
		mutex_unlock(&counter->mmap_mutex);
	}
2215 2216 2217
}

static struct vm_operations_struct perf_mmap_vmops = {
2218 2219 2220 2221
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2222 2223 2224 2225 2226
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct perf_counter *counter = file->private_data;
2227
	unsigned long user_locked, user_lock_limit;
2228
	struct user_struct *user = current_user();
2229
	unsigned long locked, lock_limit;
2230 2231
	unsigned long vma_size;
	unsigned long nr_pages;
2232
	long user_extra, extra;
2233
	int ret = 0;
2234

2235
	if (!(vma->vm_flags & VM_SHARED))
2236
		return -EINVAL;
2237 2238 2239 2240

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2241 2242 2243 2244 2245
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2246 2247
		return -EINVAL;

2248
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2249 2250
		return -EINVAL;

2251 2252
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2253

2254
	WARN_ON_ONCE(counter->ctx->parent_ctx);
2255 2256 2257 2258 2259 2260 2261
	mutex_lock(&counter->mmap_mutex);
	if (atomic_inc_not_zero(&counter->mmap_count)) {
		if (nr_pages != counter->data->nr_pages)
			ret = -EINVAL;
		goto unlock;
	}

2262 2263
	user_extra = nr_pages + 1;
	user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2264 2265 2266 2267 2268 2269

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2270
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2271

2272 2273 2274
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2275 2276 2277

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
2278
	locked = vma->vm_mm->locked_vm + extra;
2279

2280 2281 2282 2283
	if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
		ret = -EPERM;
		goto unlock;
	}
2284 2285 2286

	WARN_ON(counter->data);
	ret = perf_mmap_data_alloc(counter, nr_pages);
2287 2288 2289 2290
	if (ret)
		goto unlock;

	atomic_set(&counter->mmap_count, 1);
2291
	atomic_long_add(user_extra, &user->locked_vm);
2292 2293
	vma->vm_mm->locked_vm += extra;
	counter->data->nr_locked = extra;
2294 2295 2296
	if (vma->vm_flags & VM_WRITE)
		counter->data->writable = 1;

2297
unlock:
2298
	mutex_unlock(&counter->mmap_mutex);
2299 2300 2301

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2302 2303

	return ret;
2304 2305
}

P
Peter Zijlstra 已提交
2306 2307 2308
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2309
	struct perf_counter *counter = filp->private_data;
P
Peter Zijlstra 已提交
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
	int retval;

	mutex_lock(&inode->i_mutex);
	retval = fasync_helper(fd, filp, on, &counter->fasync);
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2322 2323 2324 2325
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2326 2327
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2328
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2329
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2330 2331
};

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
/*
 * Perf counter wakeup
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

void perf_counter_wakeup(struct perf_counter *counter)
{
	wake_up_all(&counter->waitq);
2342 2343 2344 2345 2346

	if (counter->pending_kill) {
		kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
		counter->pending_kill = 0;
	}
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2358 2359 2360 2361 2362 2363 2364
static void perf_pending_counter(struct perf_pending_entry *entry)
{
	struct perf_counter *counter = container_of(entry,
			struct perf_counter, pending);

	if (counter->pending_disable) {
		counter->pending_disable = 0;
2365
		__perf_counter_disable(counter);
2366 2367 2368 2369 2370 2371 2372 2373
	}

	if (counter->pending_wakeup) {
		counter->pending_wakeup = 0;
		perf_counter_wakeup(counter);
	}
}

2374
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2375

2376
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2377 2378 2379
	PENDING_TAIL,
};

2380 2381
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2382
{
2383
	struct perf_pending_entry **head;
2384

2385
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2386 2387
		return;

2388 2389 2390
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2391 2392

	do {
2393 2394
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2395 2396 2397

	set_perf_counter_pending();

2398
	put_cpu_var(perf_pending_head);
2399 2400 2401 2402
}

static int __perf_pending_run(void)
{
2403
	struct perf_pending_entry *list;
2404 2405
	int nr = 0;

2406
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2407
	while (list != PENDING_TAIL) {
2408 2409
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2410 2411 2412

		list = list->next;

2413 2414
		func = entry->func;
		entry->next = NULL;
2415 2416 2417 2418 2419 2420 2421
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2422
		func(entry);
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
		nr++;
	}

	return nr;
}

static inline int perf_not_pending(struct perf_counter *counter)
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2444
	return counter->pending.next == NULL;
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
}

static void perf_pending_sync(struct perf_counter *counter)
{
	wait_event(counter->waitq, perf_not_pending(counter));
}

void perf_counter_do_pending(void)
{
	__perf_pending_run();
}

2457 2458 2459 2460
/*
 * Callchain support -- arch specific
 */

2461
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2462 2463 2464 2465
{
	return NULL;
}

2466 2467 2468 2469
/*
 * Output
 */

2470 2471 2472
struct perf_output_handle {
	struct perf_counter	*counter;
	struct perf_mmap_data	*data;
2473 2474
	unsigned long		head;
	unsigned long		offset;
2475
	int			nmi;
2476
	int			sample;
2477 2478
	int			locked;
	unsigned long		flags;
2479 2480
};

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
static bool perf_output_space(struct perf_mmap_data *data,
			      unsigned int offset, unsigned int head)
{
	unsigned long tail;
	unsigned long mask;

	if (!data->writable)
		return true;

	mask = (data->nr_pages << PAGE_SHIFT) - 1;
	/*
	 * Userspace could choose to issue a mb() before updating the tail
	 * pointer. So that all reads will be completed before the write is
	 * issued.
	 */
	tail = ACCESS_ONCE(data->user_page->data_tail);
	smp_rmb();

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2508
static void perf_output_wakeup(struct perf_output_handle *handle)
2509
{
2510 2511
	atomic_set(&handle->data->poll, POLL_IN);

2512
	if (handle->nmi) {
2513
		handle->counter->pending_wakeup = 1;
2514
		perf_pending_queue(&handle->counter->pending,
2515
				   perf_pending_counter);
2516
	} else
2517 2518 2519
		perf_counter_wakeup(handle->counter);
}

2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
/*
 * Curious locking construct.
 *
 * We need to ensure a later event doesn't publish a head when a former
 * event isn't done writing. However since we need to deal with NMIs we
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
 * event completes.
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
	int cpu;

	handle->locked = 0;

	local_irq_save(handle->flags);
	cpu = smp_processor_id();

	if (in_nmi() && atomic_read(&data->lock) == cpu)
		return;

2546
	while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2547 2548 2549 2550 2551 2552 2553 2554
		cpu_relax();

	handle->locked = 1;
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2555 2556
	unsigned long head;
	int cpu;
2557

2558
	data->done_head = data->head;
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2569
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2570 2571 2572
		data->user_page->data_head = head;

	/*
2573
	 * NMI can happen here, which means we can miss a done_head update.
2574 2575
	 */

2576
	cpu = atomic_xchg(&data->lock, -1);
2577 2578 2579 2580 2581
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2582
	if (unlikely(atomic_long_read(&data->done_head))) {
2583 2584 2585
		/*
		 * Since we had it locked, we can lock it again.
		 */
2586
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2587 2588 2589 2590 2591
			cpu_relax();

		goto again;
	}

2592
	if (atomic_xchg(&data->wakeup, 0))
2593 2594 2595 2596 2597
		perf_output_wakeup(handle);
out:
	local_irq_restore(handle->flags);
}

2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
static void perf_output_copy(struct perf_output_handle *handle,
			     const void *buf, unsigned int len)
{
	unsigned int pages_mask;
	unsigned int offset;
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
		unsigned int page_offset;
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
		page_offset = offset & (PAGE_SIZE - 1);
		size	    = min_t(unsigned int, PAGE_SIZE - page_offset, len);

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

#define perf_output_put(handle, x) \
	perf_output_copy((handle), &(x), sizeof(x))

2637
static int perf_output_begin(struct perf_output_handle *handle,
2638
			     struct perf_counter *counter, unsigned int size,
2639
			     int nmi, int sample)
2640
{
2641
	struct perf_mmap_data *data;
2642
	unsigned int offset, head;
2643 2644 2645 2646 2647 2648
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
2649

2650 2651 2652 2653 2654 2655
	/*
	 * For inherited counters we send all the output towards the parent.
	 */
	if (counter->parent)
		counter = counter->parent;

2656 2657 2658 2659 2660
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto out;

2661 2662 2663 2664
	handle->data	= data;
	handle->counter	= counter;
	handle->nmi	= nmi;
	handle->sample	= sample;
2665

2666
	if (!data->nr_pages)
2667
		goto fail;
2668

2669 2670 2671 2672
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

2673 2674
	perf_output_lock(handle);

2675
	do {
2676
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
2677
		head += size;
2678 2679
		if (unlikely(!perf_output_space(data, offset, head)))
			goto fail;
2680
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2681

2682
	handle->offset	= offset;
2683
	handle->head	= head;
2684 2685 2686

	if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
		atomic_set(&data->wakeup, 1);
2687

2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
	if (have_lost) {
		lost_event.header.type = PERF_EVENT_LOST;
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
		lost_event.id          = counter->id;
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

2698
	return 0;
2699

2700
fail:
2701 2702
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
2703 2704
out:
	rcu_read_unlock();
2705

2706 2707
	return -ENOSPC;
}
2708

2709
static void perf_output_end(struct perf_output_handle *handle)
2710
{
2711 2712 2713
	struct perf_counter *counter = handle->counter;
	struct perf_mmap_data *data = handle->data;

2714
	int wakeup_events = counter->attr.wakeup_events;
P
Peter Zijlstra 已提交
2715

2716
	if (handle->sample && wakeup_events) {
2717
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2718
		if (events >= wakeup_events) {
2719
			atomic_sub(wakeup_events, &data->events);
2720
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2721
		}
2722 2723 2724
	}

	perf_output_unlock(handle);
2725
	rcu_read_unlock();
2726 2727
}

2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
{
	/*
	 * only top level counters have the pid namespace they were created in
	 */
	if (counter->parent)
		counter = counter->parent;

	return task_tgid_nr_ns(p, counter->ns);
}

static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
{
	/*
	 * only top level counters have the pid namespace they were created in
	 */
	if (counter->parent)
		counter = counter->parent;

	return task_pid_nr_ns(p, counter->ns);
}

2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
static void perf_output_read_one(struct perf_output_handle *handle,
				 struct perf_counter *counter)
{
	u64 read_format = counter->attr.read_format;
	u64 values[4];
	int n = 0;

	values[n++] = atomic64_read(&counter->count);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);
	}
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_counter_id(counter);

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
 * XXX PERF_FORMAT_GROUP vs inherited counters seems difficult.
 */
static void perf_output_read_group(struct perf_output_handle *handle,
			    struct perf_counter *counter)
{
	struct perf_counter *leader = counter->group_leader, *sub;
	u64 read_format = counter->attr.read_format;
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

	if (leader != counter)
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_counter_id(leader);

	perf_output_copy(handle, values, n * sizeof(u64));

	list_for_each_entry(sub, &leader->sibling_list, list_entry) {
		n = 0;

		if (sub != counter)
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_counter_id(sub);

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
			     struct perf_counter *counter)
{
	if (counter->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, counter);
	else
		perf_output_read_one(handle, counter);
}

2823
void perf_counter_output(struct perf_counter *counter, int nmi,
2824
				struct perf_sample_data *data)
2825
{
2826
	int ret;
2827
	u64 sample_type = counter->attr.sample_type;
2828 2829 2830
	struct perf_output_handle handle;
	struct perf_event_header header;
	u64 ip;
P
Peter Zijlstra 已提交
2831
	struct {
2832
		u32 pid, tid;
2833
	} tid_entry;
2834 2835
	struct perf_callchain_entry *callchain = NULL;
	int callchain_size = 0;
P
Peter Zijlstra 已提交
2836
	u64 time;
2837 2838 2839
	struct {
		u32 cpu, reserved;
	} cpu_entry;
2840

2841
	header.type = PERF_EVENT_SAMPLE;
2842
	header.size = sizeof(header);
2843

2844
	header.misc = 0;
2845
	header.misc |= perf_misc_flags(data->regs);
2846

2847
	if (sample_type & PERF_SAMPLE_IP) {
2848
		ip = perf_instruction_pointer(data->regs);
2849 2850
		header.size += sizeof(ip);
	}
2851

2852
	if (sample_type & PERF_SAMPLE_TID) {
2853
		/* namespace issues */
2854 2855
		tid_entry.pid = perf_counter_pid(counter, current);
		tid_entry.tid = perf_counter_tid(counter, current);
2856 2857 2858 2859

		header.size += sizeof(tid_entry);
	}

2860
	if (sample_type & PERF_SAMPLE_TIME) {
2861 2862 2863 2864 2865 2866 2867 2868
		/*
		 * Maybe do better on x86 and provide cpu_clock_nmi()
		 */
		time = sched_clock();

		header.size += sizeof(u64);
	}

2869
	if (sample_type & PERF_SAMPLE_ADDR)
2870 2871
		header.size += sizeof(u64);

2872
	if (sample_type & PERF_SAMPLE_ID)
2873 2874
		header.size += sizeof(u64);

2875 2876 2877
	if (sample_type & PERF_SAMPLE_STREAM_ID)
		header.size += sizeof(u64);

2878
	if (sample_type & PERF_SAMPLE_CPU) {
2879 2880 2881
		header.size += sizeof(cpu_entry);

		cpu_entry.cpu = raw_smp_processor_id();
A
Arjan van de Ven 已提交
2882
		cpu_entry.reserved = 0;
2883 2884
	}

2885
	if (sample_type & PERF_SAMPLE_PERIOD)
2886 2887
		header.size += sizeof(u64);

2888 2889
	if (sample_type & PERF_SAMPLE_READ)
		header.size += perf_counter_read_size(counter);
2890

2891
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2892
		callchain = perf_callchain(data->regs);
2893 2894

		if (callchain) {
2895
			callchain_size = (1 + callchain->nr) * sizeof(u64);
2896
			header.size += callchain_size;
2897 2898
		} else
			header.size += sizeof(u64);
2899 2900
	}

2901
	if (sample_type & PERF_SAMPLE_RAW) {
2902 2903 2904 2905 2906 2907 2908 2909 2910
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
		header.size += size;
2911 2912
	}

2913
	ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2914 2915
	if (ret)
		return;
2916

2917
	perf_output_put(&handle, header);
P
Peter Zijlstra 已提交
2918

2919
	if (sample_type & PERF_SAMPLE_IP)
2920
		perf_output_put(&handle, ip);
P
Peter Zijlstra 已提交
2921

2922
	if (sample_type & PERF_SAMPLE_TID)
2923
		perf_output_put(&handle, tid_entry);
P
Peter Zijlstra 已提交
2924

2925
	if (sample_type & PERF_SAMPLE_TIME)
2926 2927
		perf_output_put(&handle, time);

2928
	if (sample_type & PERF_SAMPLE_ADDR)
2929
		perf_output_put(&handle, data->addr);
2930

2931 2932 2933 2934 2935 2936 2937
	if (sample_type & PERF_SAMPLE_ID) {
		u64 id = primary_counter_id(counter);

		perf_output_put(&handle, id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID)
2938
		perf_output_put(&handle, counter->id);
2939

2940
	if (sample_type & PERF_SAMPLE_CPU)
2941 2942
		perf_output_put(&handle, cpu_entry);

2943
	if (sample_type & PERF_SAMPLE_PERIOD)
2944
		perf_output_put(&handle, data->period);
2945

2946 2947
	if (sample_type & PERF_SAMPLE_READ)
		perf_output_read(&handle, counter);
P
Peter Zijlstra 已提交
2948

2949 2950 2951 2952 2953 2954 2955 2956
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (callchain)
			perf_output_copy(&handle, callchain, callchain_size);
		else {
			u64 nr = 0;
			perf_output_put(&handle, nr);
		}
	}
2957

2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(&handle, data->raw->size);
			perf_output_copy(&handle, data->raw->data, data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(&handle, raw);
		}
	}
2973

2974
	perf_output_end(&handle);
2975 2976
}

2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
/*
 * read event
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
perf_counter_read_event(struct perf_counter *counter,
			struct task_struct *task)
{
	struct perf_output_handle handle;
	struct perf_read_event event = {
		.header = {
			.type = PERF_EVENT_READ,
			.misc = 0,
2997
			.size = sizeof(event) + perf_counter_read_size(counter),
2998 2999 3000 3001
		},
		.pid = perf_counter_pid(counter, task),
		.tid = perf_counter_tid(counter, task),
	};
3002
	int ret;
3003 3004 3005 3006 3007

	ret = perf_output_begin(&handle, counter, event.header.size, 0, 0);
	if (ret)
		return;

3008 3009 3010
	perf_output_put(&handle, event);
	perf_output_read(&handle, counter);

3011 3012 3013
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3014
/*
P
Peter Zijlstra 已提交
3015 3016 3017
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
3018 3019
 */

P
Peter Zijlstra 已提交
3020
struct perf_task_event {
3021 3022
	struct task_struct		*task;
	struct perf_counter_context	*task_ctx;
P
Peter Zijlstra 已提交
3023 3024 3025 3026 3027 3028

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3029 3030
		u32				tid;
		u32				ptid;
P
Peter Zijlstra 已提交
3031 3032 3033
	} event;
};

P
Peter Zijlstra 已提交
3034 3035
static void perf_counter_task_output(struct perf_counter *counter,
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3036 3037
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
3038 3039
	int size = task_event->event.header.size;
	struct task_struct *task = task_event->task;
P
Peter Zijlstra 已提交
3040 3041 3042 3043 3044
	int ret = perf_output_begin(&handle, counter, size, 0, 0);

	if (ret)
		return;

P
Peter Zijlstra 已提交
3045
	task_event->event.pid = perf_counter_pid(counter, task);
3046
	task_event->event.ppid = perf_counter_pid(counter, current);
P
Peter Zijlstra 已提交
3047

P
Peter Zijlstra 已提交
3048
	task_event->event.tid = perf_counter_tid(counter, task);
3049
	task_event->event.ptid = perf_counter_tid(counter, current);
P
Peter Zijlstra 已提交
3050 3051

	perf_output_put(&handle, task_event->event);
P
Peter Zijlstra 已提交
3052 3053 3054
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3055
static int perf_counter_task_match(struct perf_counter *counter)
P
Peter Zijlstra 已提交
3056
{
P
Peter Zijlstra 已提交
3057
	if (counter->attr.comm || counter->attr.mmap || counter->attr.task)
P
Peter Zijlstra 已提交
3058 3059 3060 3061 3062
		return 1;

	return 0;
}

P
Peter Zijlstra 已提交
3063 3064
static void perf_counter_task_ctx(struct perf_counter_context *ctx,
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3065 3066 3067 3068 3069 3070 3071 3072
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
P
Peter Zijlstra 已提交
3073 3074
		if (perf_counter_task_match(counter))
			perf_counter_task_output(counter, task_event);
P
Peter Zijlstra 已提交
3075 3076 3077 3078
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
3079
static void perf_counter_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3080 3081
{
	struct perf_cpu_context *cpuctx;
3082
	struct perf_counter_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3083 3084

	cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3085
	perf_counter_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
3086 3087 3088
	put_cpu_var(perf_cpu_context);

	rcu_read_lock();
3089 3090
	if (!ctx)
		ctx = rcu_dereference(task_event->task->perf_counter_ctxp);
P
Peter Zijlstra 已提交
3091
	if (ctx)
P
Peter Zijlstra 已提交
3092
		perf_counter_task_ctx(ctx, task_event);
P
Peter Zijlstra 已提交
3093 3094 3095
	rcu_read_unlock();
}

3096 3097 3098
static void perf_counter_task(struct task_struct *task,
			      struct perf_counter_context *task_ctx,
			      int new)
P
Peter Zijlstra 已提交
3099
{
P
Peter Zijlstra 已提交
3100
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3101 3102

	if (!atomic_read(&nr_comm_counters) &&
P
Peter Zijlstra 已提交
3103 3104
	    !atomic_read(&nr_mmap_counters) &&
	    !atomic_read(&nr_task_counters))
P
Peter Zijlstra 已提交
3105 3106
		return;

P
Peter Zijlstra 已提交
3107
	task_event = (struct perf_task_event){
3108 3109 3110
		.task	  = task,
		.task_ctx = task_ctx,
		.event    = {
P
Peter Zijlstra 已提交
3111
			.header = {
P
Peter Zijlstra 已提交
3112
				.type = new ? PERF_EVENT_FORK : PERF_EVENT_EXIT,
3113
				.misc = 0,
P
Peter Zijlstra 已提交
3114
				.size = sizeof(task_event.event),
P
Peter Zijlstra 已提交
3115
			},
3116 3117
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3118 3119
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3120 3121 3122
		},
	};

P
Peter Zijlstra 已提交
3123 3124 3125 3126 3127
	perf_counter_task_event(&task_event);
}

void perf_counter_fork(struct task_struct *task)
{
3128
	perf_counter_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3129 3130
}

3131 3132 3133 3134 3135
/*
 * comm tracking
 */

struct perf_comm_event {
3136 3137
	struct task_struct	*task;
	char			*comm;
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
	} event;
};

static void perf_counter_comm_output(struct perf_counter *counter,
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
	int size = comm_event->event.header.size;
	int ret = perf_output_begin(&handle, counter, size, 0, 0);

	if (ret)
		return;

3158 3159 3160
	comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
	comm_event->event.tid = perf_counter_tid(counter, comm_event->task);

3161 3162 3163 3164 3165 3166
	perf_output_put(&handle, comm_event->event);
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3167
static int perf_counter_comm_match(struct perf_counter *counter)
3168
{
P
Peter Zijlstra 已提交
3169
	if (counter->attr.comm)
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
		return 1;

	return 0;
}

static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
				  struct perf_comm_event *comm_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
P
Peter Zijlstra 已提交
3185
		if (perf_counter_comm_match(counter))
3186 3187 3188 3189 3190 3191 3192 3193
			perf_counter_comm_output(counter, comm_event);
	}
	rcu_read_unlock();
}

static void perf_counter_comm_event(struct perf_comm_event *comm_event)
{
	struct perf_cpu_context *cpuctx;
3194
	struct perf_counter_context *ctx;
3195
	unsigned int size;
3196
	char comm[TASK_COMM_LEN];
3197

3198 3199
	memset(comm, 0, sizeof(comm));
	strncpy(comm, comm_event->task->comm, sizeof(comm));
3200
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3201 3202 3203 3204 3205 3206 3207 3208 3209

	comm_event->comm = comm;
	comm_event->comm_size = size;

	comm_event->event.header.size = sizeof(comm_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
	put_cpu_var(perf_cpu_context);
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219

	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
		perf_counter_comm_ctx(ctx, comm_event);
	rcu_read_unlock();
3220 3221 3222 3223
}

void perf_counter_comm(struct task_struct *task)
{
3224 3225
	struct perf_comm_event comm_event;

3226 3227 3228
	if (task->perf_counter_ctxp)
		perf_counter_enable_on_exec(task);

P
Peter Zijlstra 已提交
3229
	if (!atomic_read(&nr_comm_counters))
3230
		return;
3231

3232
	comm_event = (struct perf_comm_event){
3233
		.task	= task,
3234 3235
		/* .comm      */
		/* .comm_size */
3236
		.event  = {
3237 3238 3239 3240 3241 3242 3243
			.header = {
				.type = PERF_EVENT_COMM,
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3244 3245 3246 3247 3248 3249
		},
	};

	perf_counter_comm_event(&comm_event);
}

3250 3251 3252 3253 3254
/*
 * mmap tracking
 */

struct perf_mmap_event {
3255 3256 3257 3258
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
	} event;
};

static void perf_counter_mmap_output(struct perf_counter *counter,
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
	int size = mmap_event->event.header.size;
3276
	int ret = perf_output_begin(&handle, counter, size, 0, 0);
3277 3278 3279 3280

	if (ret)
		return;

3281 3282 3283
	mmap_event->event.pid = perf_counter_pid(counter, current);
	mmap_event->event.tid = perf_counter_tid(counter, current);

3284 3285 3286
	perf_output_put(&handle, mmap_event->event);
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3287
	perf_output_end(&handle);
3288 3289 3290 3291 3292
}

static int perf_counter_mmap_match(struct perf_counter *counter,
				   struct perf_mmap_event *mmap_event)
{
3293
	if (counter->attr.mmap)
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
		return 1;

	return 0;
}

static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
				  struct perf_mmap_event *mmap_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_mmap_match(counter, mmap_event))
			perf_counter_mmap_output(counter, mmap_event);
	}
	rcu_read_unlock();
}

static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
{
	struct perf_cpu_context *cpuctx;
3318
	struct perf_counter_context *ctx;
3319 3320
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3321 3322 3323
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3324
	const char *name;
3325

3326 3327
	memset(tmp, 0, sizeof(tmp));

3328
	if (file) {
3329 3330 3331 3332 3333 3334
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3335 3336 3337 3338
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3339
		name = d_path(&file->f_path, buf, PATH_MAX);
3340 3341 3342 3343 3344
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3345 3346 3347
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3348
			goto got_name;
3349
		}
3350 3351 3352 3353 3354 3355

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3356 3357 3358 3359 3360
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3361
	size = ALIGN(strlen(name)+1, sizeof(u64));
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371

	mmap_event->file_name = name;
	mmap_event->file_size = size;

	mmap_event->event.header.size = sizeof(mmap_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
	put_cpu_var(perf_cpu_context);

3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
		perf_counter_mmap_ctx(ctx, mmap_event);
	rcu_read_unlock();

3382 3383 3384
	kfree(buf);
}

3385
void __perf_counter_mmap(struct vm_area_struct *vma)
3386
{
3387 3388
	struct perf_mmap_event mmap_event;

P
Peter Zijlstra 已提交
3389
	if (!atomic_read(&nr_mmap_counters))
3390 3391 3392
		return;

	mmap_event = (struct perf_mmap_event){
3393
		.vma	= vma,
3394 3395
		/* .file_name */
		/* .file_size */
3396
		.event  = {
3397 3398 3399 3400 3401 3402 3403
			.header = {
				.type = PERF_EVENT_MMAP,
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3404 3405 3406
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
			.pgoff  = vma->vm_pgoff,
3407 3408 3409 3410 3411 3412
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
/*
 * IRQ throttle logging
 */

static void perf_log_throttle(struct perf_counter *counter, int enable)
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3425
		u64				id;
3426
		u64				stream_id;
3427 3428
	} throttle_event = {
		.header = {
3429
			.type = PERF_EVENT_THROTTLE,
3430 3431 3432
			.misc = 0,
			.size = sizeof(throttle_event),
		},
3433 3434 3435
		.time		= sched_clock(),
		.id		= primary_counter_id(counter),
		.stream_id	= counter->id,
3436 3437
	};

3438 3439 3440
	if (enable)
		throttle_event.header.type = PERF_EVENT_UNTHROTTLE;

I
Ingo Molnar 已提交
3441
	ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
3442 3443 3444 3445 3446 3447 3448
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3449
/*
3450
 * Generic counter overflow handling, sampling.
3451 3452
 */

3453 3454
int perf_counter_overflow(struct perf_counter *counter, int nmi,
			  struct perf_sample_data *data)
3455
{
3456
	int events = atomic_read(&counter->event_limit);
3457
	int throttle = counter->pmu->unthrottle != NULL;
3458
	struct hw_perf_counter *hwc = &counter->hw;
3459 3460
	int ret = 0;

3461
	if (!throttle) {
3462
		hwc->interrupts++;
3463
	} else {
3464 3465
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3466 3467
			if (HZ * hwc->interrupts >
					(u64)sysctl_perf_counter_sample_rate) {
3468
				hwc->interrupts = MAX_INTERRUPTS;
3469 3470 3471 3472 3473 3474 3475 3476 3477
				perf_log_throttle(counter, 0);
				ret = 1;
			}
		} else {
			/*
			 * Keep re-disabling counters even though on the previous
			 * pass we disabled it - just in case we raced with a
			 * sched-in and the counter got enabled again:
			 */
3478 3479 3480
			ret = 1;
		}
	}
3481

3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
	if (counter->attr.freq) {
		u64 now = sched_clock();
		s64 delta = now - hwc->freq_stamp;

		hwc->freq_stamp = now;

		if (delta > 0 && delta < TICK_NSEC)
			perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
	}

3492 3493 3494 3495 3496
	/*
	 * XXX event_limit might not quite work as expected on inherited
	 * counters
	 */

3497
	counter->pending_kill = POLL_IN;
3498 3499
	if (events && atomic_dec_and_test(&counter->event_limit)) {
		ret = 1;
3500
		counter->pending_kill = POLL_HUP;
3501 3502 3503 3504 3505 3506 3507 3508
		if (nmi) {
			counter->pending_disable = 1;
			perf_pending_queue(&counter->pending,
					   perf_pending_counter);
		} else
			perf_counter_disable(counter);
	}

3509
	perf_counter_output(counter, nmi, data);
3510
	return ret;
3511 3512
}

3513 3514 3515 3516
/*
 * Generic software counter infrastructure
 */

3517 3518 3519 3520 3521 3522 3523 3524
/*
 * We directly increment counter->count and keep a second value in
 * counter->hw.period_left to count intervals. This period counter
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

static u64 perf_swcounter_set_period(struct perf_counter *counter)
3525 3526
{
	struct hw_perf_counter *hwc = &counter->hw;
3527 3528 3529 3530 3531
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
3532 3533

again:
3534 3535 3536
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
3537

3538 3539 3540 3541 3542
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
3543

3544
	return nr;
3545 3546
}

3547 3548
static void perf_swcounter_overflow(struct perf_counter *counter,
				    int nmi, struct perf_sample_data *data)
3549 3550
{
	struct hw_perf_counter *hwc = &counter->hw;
3551
	u64 overflow;
3552

3553 3554
	data->period = counter->hw.last_period;
	overflow = perf_swcounter_set_period(counter);
3555

3556 3557
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
3558

3559 3560 3561 3562 3563 3564 3565 3566 3567
	for (; overflow; overflow--) {
		if (perf_counter_overflow(counter, nmi, data)) {
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
	}
3568 3569
}

3570
static void perf_swcounter_unthrottle(struct perf_counter *counter)
3571 3572
{
	/*
3573
	 * Nothing to do, we already reset hwc->interrupts.
3574
	 */
3575
}
3576

3577 3578 3579 3580
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
			       int nmi, struct perf_sample_data *data)
{
	struct hw_perf_counter *hwc = &counter->hw;
3581

3582
	atomic64_add(nr, &counter->count);
3583

3584 3585
	if (!hwc->sample_period)
		return;
3586

3587 3588
	if (!data->regs)
		return;
3589

3590 3591
	if (!atomic64_add_negative(nr, &hwc->period_left))
		perf_swcounter_overflow(counter, nmi, data);
3592 3593
}

3594 3595
static int perf_swcounter_is_counting(struct perf_counter *counter)
{
3596 3597 3598
	/*
	 * The counter is active, we're good!
	 */
3599 3600 3601
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		return 1;

3602 3603 3604
	/*
	 * The counter is off/error, not counting.
	 */
3605 3606 3607 3608
	if (counter->state != PERF_COUNTER_STATE_INACTIVE)
		return 0;

	/*
3609 3610 3611
	 * The counter is inactive, if the context is active
	 * we're part of a group that didn't make it on the 'pmu',
	 * not counting.
3612
	 */
3613 3614 3615 3616 3617 3618 3619 3620 3621
	if (counter->ctx->is_active)
		return 0;

	/*
	 * We're inactive and the context is too, this means the
	 * task is scheduled out, we're counting events that happen
	 * to us, like migration events.
	 */
	return 1;
3622 3623
}

3624
static int perf_swcounter_match(struct perf_counter *counter,
P
Peter Zijlstra 已提交
3625
				enum perf_type_id type,
3626
				u32 event, struct pt_regs *regs)
3627
{
3628
	if (!perf_swcounter_is_counting(counter))
3629 3630
		return 0;

3631 3632 3633
	if (counter->attr.type != type)
		return 0;
	if (counter->attr.config != event)
3634 3635
		return 0;

3636
	if (regs) {
3637
		if (counter->attr.exclude_user && user_mode(regs))
3638
			return 0;
3639

3640
		if (counter->attr.exclude_kernel && !user_mode(regs))
3641 3642
			return 0;
	}
3643 3644 3645 3646 3647

	return 1;
}

static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3648 3649 3650
				     enum perf_type_id type,
				     u32 event, u64 nr, int nmi,
				     struct perf_sample_data *data)
3651 3652 3653
{
	struct perf_counter *counter;

3654
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3655 3656
		return;

P
Peter Zijlstra 已提交
3657 3658
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3659 3660
		if (perf_swcounter_match(counter, type, event, data->regs))
			perf_swcounter_add(counter, nr, nmi, data);
3661
	}
P
Peter Zijlstra 已提交
3662
	rcu_read_unlock();
3663 3664
}

P
Peter Zijlstra 已提交
3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

3679 3680 3681
static void do_perf_swcounter_event(enum perf_type_id type, u32 event,
				    u64 nr, int nmi,
				    struct perf_sample_data *data)
3682 3683
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3684
	int *recursion = perf_swcounter_recursion_context(cpuctx);
3685
	struct perf_counter_context *ctx;
P
Peter Zijlstra 已提交
3686 3687 3688 3689 3690 3691

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
3692

3693
	perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3694
				 nr, nmi, data);
3695 3696 3697 3698 3699 3700 3701
	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
3702
		perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data);
3703
	rcu_read_unlock();
3704

P
Peter Zijlstra 已提交
3705 3706 3707 3708
	barrier();
	(*recursion)--;

out:
3709 3710 3711
	put_cpu_var(perf_cpu_context);
}

3712 3713
void __perf_swcounter_event(u32 event, u64 nr, int nmi,
			    struct pt_regs *regs, u64 addr)
3714
{
3715 3716 3717 3718 3719 3720
	struct perf_sample_data data = {
		.regs = regs,
		.addr = addr,
	};

	do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data);
3721 3722
}

3723 3724 3725 3726 3727 3728
static void perf_swcounter_read(struct perf_counter *counter)
{
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
3729 3730 3731 3732 3733 3734
	struct hw_perf_counter *hwc = &counter->hw;

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
		perf_swcounter_set_period(counter);
	}
3735 3736 3737 3738 3739 3740 3741
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
}

3742
static const struct pmu perf_ops_generic = {
3743 3744 3745
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
3746
	.unthrottle	= perf_swcounter_unthrottle,
3747 3748
};

3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
/*
 * hrtimer based swcounter callback
 */

static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct perf_counter *counter;
	u64 period;

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
	counter->pmu->read(counter);

	data.addr = 0;
	data.regs = get_irq_regs();
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
	if ((counter->attr.exclude_kernel || !data.regs) &&
			!counter->attr.exclude_user)
		data.regs = task_pt_regs(current);

	if (data.regs) {
		if (perf_counter_overflow(counter, 0, &data))
			ret = HRTIMER_NORESTART;
	}

	period = max_t(u64, 10000, counter->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

3784 3785 3786 3787
/*
 * Software counter: cpu wall time clock
 */

3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

3800 3801 3802 3803 3804 3805
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3806 3807
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
3808 3809
	if (hwc->sample_period) {
		u64 period = max_t(u64, 10000, hwc->sample_period);
3810
		__hrtimer_start_range_ns(&hwc->hrtimer,
3811
				ns_to_ktime(period), 0,
3812 3813 3814 3815 3816 3817
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

3818 3819
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
3820
	if (counter->hw.sample_period)
3821
		hrtimer_cancel(&counter->hw.hrtimer);
3822
	cpu_clock_perf_counter_update(counter);
3823 3824 3825 3826
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
3827
	cpu_clock_perf_counter_update(counter);
3828 3829
}

3830
static const struct pmu perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
3831 3832 3833
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
3834 3835
};

3836 3837 3838 3839
/*
 * Software counter: task time clock
 */

3840
static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
I
Ingo Molnar 已提交
3841
{
3842
	u64 prev;
I
Ingo Molnar 已提交
3843 3844
	s64 delta;

3845
	prev = atomic64_xchg(&counter->hw.prev_count, now);
I
Ingo Molnar 已提交
3846 3847
	delta = now - prev;
	atomic64_add(delta, &counter->count);
3848 3849
}

3850
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
3851
{
3852
	struct hw_perf_counter *hwc = &counter->hw;
3853 3854 3855
	u64 now;

	now = counter->ctx->time;
3856

3857
	atomic64_set(&hwc->prev_count, now);
3858 3859
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
3860 3861
	if (hwc->sample_period) {
		u64 period = max_t(u64, 10000, hwc->sample_period);
3862
		__hrtimer_start_range_ns(&hwc->hrtimer,
3863
				ns_to_ktime(period), 0,
3864 3865
				HRTIMER_MODE_REL, 0);
	}
3866 3867

	return 0;
I
Ingo Molnar 已提交
3868 3869 3870
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
3871
{
3872
	if (counter->hw.sample_period)
3873
		hrtimer_cancel(&counter->hw.hrtimer);
3874 3875
	task_clock_perf_counter_update(counter, counter->ctx->time);

3876
}
I
Ingo Molnar 已提交
3877

3878 3879
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
	u64 time;

	if (!in_nmi()) {
		update_context_time(counter->ctx);
		time = counter->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - counter->ctx->timestamp;
		time = counter->ctx->time + delta;
	}

	task_clock_perf_counter_update(counter, time);
3892 3893
}

3894
static const struct pmu perf_ops_task_clock = {
I
Ingo Molnar 已提交
3895 3896 3897
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
3898 3899
};

3900
#ifdef CONFIG_EVENT_PROFILE
3901 3902
void perf_tpcounter_event(int event_id, u64 addr, u64 count, void *record,
			  int entry_size)
3903
{
3904
	struct perf_raw_record raw = {
3905
		.size = entry_size,
3906
		.data = record,
3907 3908
	};

3909
	struct perf_sample_data data = {
3910
		.regs = get_irq_regs(),
3911
		.addr = addr,
3912
		.raw = &raw,
3913
	};
3914

3915 3916
	if (!data.regs)
		data.regs = task_pt_regs(current);
3917

3918
	do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, &data);
3919
}
3920
EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3921 3922 3923 3924 3925 3926

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
3927
	ftrace_profile_disable(counter->attr.config);
3928 3929
}

3930
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3931
{
3932 3933 3934 3935 3936 3937 3938 3939
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
	if ((counter->attr.sample_type & PERF_SAMPLE_RAW) &&
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

3940
	if (ftrace_profile_enable(counter->attr.config))
3941 3942 3943 3944 3945 3946 3947
		return NULL;

	counter->destroy = tp_perf_counter_destroy;

	return &perf_ops_generic;
}
#else
3948
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3949 3950 3951 3952 3953
{
	return NULL;
}
#endif

3954 3955 3956 3957 3958 3959
atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX];

static void sw_perf_counter_destroy(struct perf_counter *counter)
{
	u64 event = counter->attr.config;

3960 3961
	WARN_ON(counter->parent);

3962 3963 3964
	atomic_dec(&perf_swcounter_enabled[event]);
}

3965
static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3966
{
3967
	const struct pmu *pmu = NULL;
3968
	u64 event = counter->attr.config;
3969

3970 3971 3972 3973 3974 3975 3976
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
3977
	switch (event) {
3978
	case PERF_COUNT_SW_CPU_CLOCK:
3979
		pmu = &perf_ops_cpu_clock;
3980

3981
		break;
3982
	case PERF_COUNT_SW_TASK_CLOCK:
3983 3984 3985 3986 3987
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
3988
			pmu = &perf_ops_task_clock;
3989
		else
3990
			pmu = &perf_ops_cpu_clock;
3991

3992
		break;
3993 3994 3995 3996 3997
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
3998 3999 4000 4001
		if (!counter->parent) {
			atomic_inc(&perf_swcounter_enabled[event]);
			counter->destroy = sw_perf_counter_destroy;
		}
4002
		pmu = &perf_ops_generic;
4003
		break;
4004
	}
4005

4006
	return pmu;
4007 4008
}

T
Thomas Gleixner 已提交
4009 4010 4011 4012
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
4013
perf_counter_alloc(struct perf_counter_attr *attr,
4014
		   int cpu,
4015
		   struct perf_counter_context *ctx,
4016
		   struct perf_counter *group_leader,
4017
		   struct perf_counter *parent_counter,
4018
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4019
{
4020
	const struct pmu *pmu;
I
Ingo Molnar 已提交
4021
	struct perf_counter *counter;
4022
	struct hw_perf_counter *hwc;
4023
	long err;
T
Thomas Gleixner 已提交
4024

4025
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
4026
	if (!counter)
4027
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4028

4029 4030 4031 4032 4033 4034 4035
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

4036 4037 4038
	mutex_init(&counter->child_mutex);
	INIT_LIST_HEAD(&counter->child_list);

4039
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
4040
	INIT_LIST_HEAD(&counter->event_entry);
4041
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
4042 4043
	init_waitqueue_head(&counter->waitq);

4044 4045
	mutex_init(&counter->mmap_mutex);

4046
	counter->cpu		= cpu;
4047
	counter->attr		= *attr;
4048 4049 4050 4051 4052
	counter->group_leader	= group_leader;
	counter->pmu		= NULL;
	counter->ctx		= ctx;
	counter->oncpu		= -1;

4053 4054
	counter->parent		= parent_counter;

4055 4056 4057 4058
	counter->ns		= get_pid_ns(current->nsproxy->pid_ns);
	counter->id		= atomic64_inc_return(&perf_counter_id);

	counter->state		= PERF_COUNTER_STATE_INACTIVE;
4059

4060
	if (attr->disabled)
4061 4062
		counter->state = PERF_COUNTER_STATE_OFF;

4063
	pmu = NULL;
4064

4065
	hwc = &counter->hw;
4066
	hwc->sample_period = attr->sample_period;
4067
	if (attr->freq && attr->sample_freq)
4068 4069 4070
		hwc->sample_period = 1;

	atomic64_set(&hwc->period_left, hwc->sample_period);
4071

4072
	/*
4073
	 * we currently do not support PERF_FORMAT_GROUP on inherited counters
4074
	 */
4075
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4076 4077
		goto done;

4078
	switch (attr->type) {
4079
	case PERF_TYPE_RAW:
4080
	case PERF_TYPE_HARDWARE:
4081
	case PERF_TYPE_HW_CACHE:
4082
		pmu = hw_perf_counter_init(counter);
4083 4084 4085
		break;

	case PERF_TYPE_SOFTWARE:
4086
		pmu = sw_perf_counter_init(counter);
4087 4088 4089
		break;

	case PERF_TYPE_TRACEPOINT:
4090
		pmu = tp_perf_counter_init(counter);
4091
		break;
4092 4093 4094

	default:
		break;
4095
	}
4096 4097
done:
	err = 0;
4098
	if (!pmu)
4099
		err = -EINVAL;
4100 4101
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4102

4103
	if (err) {
4104 4105
		if (counter->ns)
			put_pid_ns(counter->ns);
I
Ingo Molnar 已提交
4106
		kfree(counter);
4107
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4108
	}
4109

4110
	counter->pmu = pmu;
T
Thomas Gleixner 已提交
4111

4112 4113 4114 4115 4116 4117
	if (!counter->parent) {
		atomic_inc(&nr_counters);
		if (counter->attr.mmap)
			atomic_inc(&nr_mmap_counters);
		if (counter->attr.comm)
			atomic_inc(&nr_comm_counters);
P
Peter Zijlstra 已提交
4118 4119
		if (counter->attr.task)
			atomic_inc(&nr_task_counters);
4120
	}
4121

T
Thomas Gleixner 已提交
4122 4123 4124
	return counter;
}

4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
static int perf_copy_attr(struct perf_counter_attr __user *uattr,
			  struct perf_counter_attr *attr)
{
	int ret;
	u32 size;

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0.
	 */
	if (size > sizeof(*attr)) {
		unsigned long val;
		unsigned long __user *addr;
		unsigned long __user *end;

		addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr),
				sizeof(unsigned long));
		end  = PTR_ALIGN((void __user *)uattr + size,
				sizeof(unsigned long));

		for (; addr < end; addr += sizeof(unsigned long)) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

T
Thomas Gleixner 已提交
4204
/**
4205
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
4206
 *
4207
 * @attr_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
4208
 * @pid:		target pid
I
Ingo Molnar 已提交
4209 4210
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
4211
 */
4212
SYSCALL_DEFINE5(perf_counter_open,
4213
		struct perf_counter_attr __user *, attr_uptr,
4214
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
4215
{
4216
	struct perf_counter *counter, *group_leader;
4217
	struct perf_counter_attr attr;
4218
	struct perf_counter_context *ctx;
4219
	struct file *counter_file = NULL;
4220 4221
	struct file *group_file = NULL;
	int fput_needed = 0;
4222
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
4223 4224
	int ret;

4225 4226 4227 4228
	/* for future expandability... */
	if (flags)
		return -EINVAL;

4229 4230 4231
	ret = perf_copy_attr(attr_uptr, &attr);
	if (ret)
		return ret;
4232

4233 4234 4235 4236 4237
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

4238 4239 4240 4241 4242
	if (attr.freq) {
		if (attr.sample_freq > sysctl_perf_counter_sample_rate)
			return -EINVAL;
	}

4243
	/*
I
Ingo Molnar 已提交
4244 4245 4246 4247 4248 4249 4250 4251
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
4252 4253 4254 4255 4256 4257
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
4258
			goto err_put_context;
4259
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
4260
			goto err_put_context;
4261 4262 4263

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
4264 4265 4266 4267 4268 4269 4270 4271
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
4272
		 */
I
Ingo Molnar 已提交
4273 4274
		if (group_leader->ctx != ctx)
			goto err_put_context;
4275 4276 4277
		/*
		 * Only a group leader can be exclusive or pinned
		 */
4278
		if (attr.exclusive || attr.pinned)
4279
			goto err_put_context;
4280 4281
	}

4282
	counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
4283
				     NULL, GFP_KERNEL);
4284 4285
	ret = PTR_ERR(counter);
	if (IS_ERR(counter))
T
Thomas Gleixner 已提交
4286 4287 4288 4289
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
4290 4291 4292 4293 4294 4295 4296
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
4297
	WARN_ON_ONCE(ctx->parent_ctx);
4298
	mutex_lock(&ctx->mutex);
4299
	perf_install_in_context(ctx, counter, cpu);
4300
	++ctx->generation;
4301
	mutex_unlock(&ctx->mutex);
4302

4303 4304 4305 4306 4307 4308
	counter->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_counter_mutex);
	list_add_tail(&counter->owner_entry, &current->perf_counter_list);
	mutex_unlock(&current->perf_counter_mutex);

4309
	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
4310

4311 4312 4313
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
4314 4315
	return ret;

4316
err_free_put_context:
T
Thomas Gleixner 已提交
4317 4318 4319
	kfree(counter);

err_put_context:
4320
	put_ctx(ctx);
T
Thomas Gleixner 已提交
4321

4322
	goto out_fput;
T
Thomas Gleixner 已提交
4323 4324
}

4325 4326 4327
/*
 * inherit a counter from parent task to child task:
 */
4328
static struct perf_counter *
4329 4330 4331 4332
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
4333
	      struct perf_counter *group_leader,
4334 4335 4336 4337
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

4338 4339 4340 4341 4342 4343 4344 4345 4346
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

4347
	child_counter = perf_counter_alloc(&parent_counter->attr,
4348
					   parent_counter->cpu, child_ctx,
4349 4350
					   group_leader, parent_counter,
					   GFP_KERNEL);
4351 4352
	if (IS_ERR(child_counter))
		return child_counter;
4353
	get_ctx(child_ctx);
4354

4355 4356
	/*
	 * Make the child state follow the state of the parent counter,
4357
	 * not its attr.disabled bit.  We hold the parent's mutex,
4358
	 * so we won't race with perf_counter_{en, dis}able_family.
4359 4360 4361 4362 4363 4364
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

4365 4366 4367
	if (parent_counter->attr.freq)
		child_counter->hw.sample_period = parent_counter->hw.sample_period;

4368 4369 4370
	/*
	 * Link it up in the child's context:
	 */
4371
	add_counter_to_ctx(child_counter, child_ctx);
4372 4373 4374 4375 4376 4377 4378 4379 4380

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

4381 4382 4383
	/*
	 * Link this into the parent counter's child list
	 */
4384
	WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4385
	mutex_lock(&parent_counter->child_mutex);
4386
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);
4387
	mutex_unlock(&parent_counter->child_mutex);
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;
4400
	struct perf_counter *child_ctr;
4401 4402 4403

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
4404 4405
	if (IS_ERR(leader))
		return PTR_ERR(leader);
4406
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
4407 4408 4409 4410
		child_ctr = inherit_counter(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
4411
	}
4412 4413 4414
	return 0;
}

4415
static void sync_child_counter(struct perf_counter *child_counter,
4416
			       struct task_struct *child)
4417
{
4418
	struct perf_counter *parent_counter = child_counter->parent;
4419
	u64 child_val;
4420

4421 4422
	if (child_counter->attr.inherit_stat)
		perf_counter_read_event(child_counter, child);
4423

4424 4425 4426 4427 4428 4429
	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);
4430 4431 4432 4433
	atomic64_add(child_counter->total_time_enabled,
		     &parent_counter->child_total_time_enabled);
	atomic64_add(child_counter->total_time_running,
		     &parent_counter->child_total_time_running);
4434 4435 4436 4437

	/*
	 * Remove this counter from the parent's list
	 */
4438
	WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4439
	mutex_lock(&parent_counter->child_mutex);
4440
	list_del_init(&child_counter->child_list);
4441
	mutex_unlock(&parent_counter->child_mutex);
4442 4443 4444 4445 4446 4447 4448 4449

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

4450
static void
4451
__perf_counter_exit_task(struct perf_counter *child_counter,
4452 4453
			 struct perf_counter_context *child_ctx,
			 struct task_struct *child)
4454 4455 4456
{
	struct perf_counter *parent_counter;

4457
	update_counter_times(child_counter);
4458
	perf_counter_remove_from_context(child_counter);
4459

4460 4461 4462 4463 4464 4465
	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
4466
	if (parent_counter) {
4467
		sync_child_counter(child_counter, child);
4468
		free_counter(child_counter);
4469
	}
4470 4471 4472
}

/*
4473
 * When a child task exits, feed back counter values to parent counters.
4474 4475 4476 4477 4478
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;
4479
	unsigned long flags;
4480

P
Peter Zijlstra 已提交
4481
	if (likely(!child->perf_counter_ctxp)) {
4482
		perf_counter_task(child, NULL, 0);
4483
		return;
P
Peter Zijlstra 已提交
4484
	}
4485

4486
	local_irq_save(flags);
4487 4488 4489 4490 4491 4492 4493
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
	child_ctx = child->perf_counter_ctxp;
4494
	__perf_counter_task_sched_out(child_ctx);
4495 4496 4497 4498 4499 4500 4501

	/*
	 * Take the context lock here so that if find_get_context is
	 * reading child->perf_counter_ctxp, we wait until it has
	 * incremented the context's refcount before we do put_ctx below.
	 */
	spin_lock(&child_ctx->lock);
4502
	child->perf_counter_ctxp = NULL;
4503 4504 4505 4506 4507 4508
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
	 * the counters from it.
	 */
	unclone_ctx(child_ctx);
P
Peter Zijlstra 已提交
4509 4510 4511 4512 4513 4514 4515
	spin_unlock_irqrestore(&child_ctx->lock, flags);

	/*
	 * Report the task dead after unscheduling the counters so that we
	 * won't get any samples after PERF_EVENT_EXIT. We can however still
	 * get a few PERF_EVENT_READ events.
	 */
4516
	perf_counter_task(child, child_ctx, 0);
4517

4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
	/*
	 * We can recurse on the same lock type through:
	 *
	 *   __perf_counter_exit_task()
	 *     sync_child_counter()
	 *       fput(parent_counter->filp)
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4530

4531
again:
4532 4533
	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
4534
		__perf_counter_exit_task(child_counter, child_ctx, child);
4535 4536 4537 4538 4539 4540 4541 4542

	/*
	 * If the last counter was a group counter, it will have appended all
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
	if (!list_empty(&child_ctx->counter_list))
		goto again;
4543 4544 4545 4546

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
4547 4548
}

4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
void perf_counter_free_task(struct task_struct *task)
{
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
	struct perf_counter *counter, *tmp;

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
		struct perf_counter *parent = counter->parent;

		if (WARN_ON_ONCE(!parent))
			continue;

		mutex_lock(&parent->child_mutex);
		list_del_init(&counter->child_list);
		mutex_unlock(&parent->child_mutex);

		fput(parent->filp);

		list_del_counter(counter, ctx);
		free_counter(counter);
	}

	if (!list_empty(&ctx->counter_list))
		goto again;

	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

4587 4588 4589
/*
 * Initialize the perf_counter context in task_struct
 */
4590
int perf_counter_init_task(struct task_struct *child)
4591 4592
{
	struct perf_counter_context *child_ctx, *parent_ctx;
4593
	struct perf_counter_context *cloned_ctx;
4594
	struct perf_counter *counter;
4595
	struct task_struct *parent = current;
4596
	int inherited_all = 1;
4597
	int ret = 0;
4598

4599
	child->perf_counter_ctxp = NULL;
4600

4601 4602 4603
	mutex_init(&child->perf_counter_mutex);
	INIT_LIST_HEAD(&child->perf_counter_list);

4604
	if (likely(!parent->perf_counter_ctxp))
4605 4606
		return 0;

4607 4608
	/*
	 * This is executed from the parent task context, so inherit
4609 4610
	 * counters that have been marked for cloning.
	 * First allocate and initialize a context for the child.
4611 4612
	 */

4613 4614
	child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
	if (!child_ctx)
4615
		return -ENOMEM;
4616

4617 4618
	__perf_counter_init_context(child_ctx, child);
	child->perf_counter_ctxp = child_ctx;
4619
	get_task_struct(child);
4620

4621
	/*
4622 4623
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
4624
	 */
4625 4626
	parent_ctx = perf_pin_task_context(parent);

4627 4628 4629 4630 4631 4632 4633
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

4634 4635 4636 4637
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
4638
	mutex_lock(&parent_ctx->mutex);
4639 4640 4641 4642 4643

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
4644 4645 4646 4647
	list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
		if (counter != counter->group_leader)
			continue;

4648
		if (!counter->attr.inherit) {
4649
			inherited_all = 0;
4650
			continue;
4651
		}
4652

4653 4654 4655
		ret = inherit_group(counter, parent, parent_ctx,
					     child, child_ctx);
		if (ret) {
4656
			inherited_all = 0;
4657
			break;
4658 4659 4660 4661 4662 4663 4664
		}
	}

	if (inherited_all) {
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
4665 4666 4667 4668
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
		 * because the list of counters and the generation
		 * count can't have changed since we took the mutex.
4669
		 */
4670 4671 4672
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
4673
			child_ctx->parent_gen = parent_ctx->parent_gen;
4674 4675 4676 4677 4678
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
4679 4680
	}

4681
	mutex_unlock(&parent_ctx->mutex);
4682

4683
	perf_unpin_context(parent_ctx);
4684

4685
	return ret;
4686 4687
}

4688
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
4689
{
4690
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
4691

4692 4693
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
4694

4695
	spin_lock(&perf_resource_lock);
4696
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
4697
	spin_unlock(&perf_resource_lock);
4698

4699
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
4700 4701 4702
}

#ifdef CONFIG_HOTPLUG_CPU
4703
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
4704 4705 4706 4707 4708
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

4709 4710
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
4711
}
4712
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
4713
{
4714 4715 4716 4717
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
4718
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4719
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
4720 4721
}
#else
4722
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4734
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
4735 4736
		break;

4737 4738 4739 4740 4741
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		hw_perf_counter_setup_online(cpu);
		break;

T
Thomas Gleixner 已提交
4742 4743
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
4744
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
4745 4746 4747 4748 4749 4750 4751 4752 4753
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

4754 4755 4756
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
4757 4758
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
4759
	.priority		= 20,
T
Thomas Gleixner 已提交
4760 4761
};

4762
void __init perf_counter_init(void)
T
Thomas Gleixner 已提交
4763 4764 4765
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
4766 4767
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

4791
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4792 4793 4794 4795 4796 4797 4798 4799 4800
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
4801
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

4823
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4824
	perf_overcommit = val;
4825
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);