operator.h 13.7 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
Q
Qiao Longfei 已提交
18 19 20 21
#include <string>
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
22
#include "op_info.h"
Y
Yi Wang 已提交
23
#include "paddle/framework/attribute.h"
Y
Yu Yang 已提交
24
#include "paddle/framework/framework.pb.h"
Q
qijun 已提交
25 26 27 28
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
29
#include "paddle/platform/variant.h"
Q
qijun 已提交
30
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
31 32 33 34

namespace paddle {
namespace framework {

35
/// If a variable is a empty variable, that name will be used.
36
constexpr char kEmptyVarName[] = "@EMPTY@";
37 38 39

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
40
constexpr char kTempVarName[] = "@TEMP@";
41 42 43 44

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
45
constexpr char kGradVarSuffix[] = "@GRAD";
46 47

/// Variables with this suffix are supposed to be filled up with zeros.
48
constexpr char kZeroVarSuffix[] = "@ZERO";
49 50 51 52 53

inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
Qiao Longfei 已提交
54
class OperatorBase;
55 56
class InferShapeContext;
class ExecutionContext;
57

Q
Qiao Longfei 已提交
58 59 60 61 62 63 64 65
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
66 67
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
68

Q
Qiao Longfei 已提交
69 70 71
  virtual ~OperatorBase() {}

  template <typename T>
Y
Yu Yang 已提交
72
  inline const T& Attr(const std::string& name) const {
Q
Qiao Longfei 已提交
73 74 75 76 77
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

78
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
79 80 81

  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Y
Yu Yang 已提交
82
  virtual void InferShape(const Scope& scope) const = 0;
Q
Qiao Longfei 已提交
83 84

  /// Net will call this function to Run an op.
Y
Yu Yang 已提交
85
  virtual void Run(const Scope& scope,
Y
Yu Yang 已提交
86 87
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yu Yang 已提交
88 89
  virtual bool IsNetOp() const { return false; }

90 91
  virtual bool SupportGPU() const { return false; }

D
dongzhihong 已提交
92 93 94
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Y
Yu Yang 已提交
95 96
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
97

Y
Yu Yang 已提交
98
  //! Get a input with argument's name described in `op_proto`
99
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
100
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
101
  const std::vector<std::string>& Inputs(const std::string& name) const;
Y
Yi Wang 已提交
102

Q
qijun 已提交
103 104
  std::vector<std::string> InputVars() const;

Y
Yu Yang 已提交
105
  //! Get a output with argument's name described in `op_proto`
106
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
107 108
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
109
  const std::vector<std::string>& Outputs(const std::string& name) const;
Y
Yan Chunwei 已提交
110

Y
Yu Yang 已提交
111
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
112

Q
qiaolongfei 已提交
113
  const std::string& Type() const { return type_; }
Q
qiaolongfei 已提交
114
  void SetType(const std::string& type) { type_ = type; }
Y
Yi Wang 已提交
115 116
  const AttributeMap& Attrs() const { return attrs_; }

Y
Yu Yang 已提交
117
  // Return a new operator instance, which is as same as this.
Y
Yu Yang 已提交
118 119
  // Use unique_ptr to prevent caller forget to delete this pointer.
  virtual std::unique_ptr<OperatorBase> Clone() const = 0;
Y
Yu Yang 已提交
120

Q
qiaolongfei 已提交
121
 protected:
Q
Qiao Longfei 已提交
122
  std::string type_;
D
dongzhihong 已提交
123
  // NOTE: in case of OpGrad, inputs_ contains:
Y
Yu Yang 已提交
124
  // I (Inputs)opear
D
dongzhihong 已提交
125 126
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
127
  VariableNameMap inputs_;
Y
Yu Yang 已提交
128

D
dongzhihong 已提交
129 130
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
131
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
132
  AttributeMap attrs_;
133 134 135 136

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
Y
Yan Chunwei 已提交
137 138
};

Y
Yu Yang 已提交
139 140
// Macro for define a clone method.
// If you are writing an kernel operator, `Clone` will be defined when you
141
// register it. i.e. `Clone` method is not needed to define by yourself.
Y
Yu Yang 已提交
142
#define DEFINE_OP_CLONE_METHOD(cls)                       \
Y
Yu Yang 已提交
143
  std::unique_ptr<OperatorBase> Clone() const final {     \
Y
Yu Yang 已提交
144
    return std::unique_ptr<OperatorBase>(new cls(*this)); \
Y
Yu Yang 已提交
145
  }
Y
Yu Yang 已提交
146

Y
Yu Yang 已提交
147 148 149 150
// Macro for define a default constructor for Operator.
// You can also use
//   using PARENT_CLASS::PARENT_CLASS;
// to use parent's constructor.
Y
Yu Yang 已提交
151 152
#define DEFINE_OP_CONSTRUCTOR(cls, parent_cls)             \
  cls(const std::string& type,                             \
Y
Yu Yang 已提交
153 154 155
      const ::paddle::framework::VariableNameMap& inputs,  \
      const ::paddle::framework::VariableNameMap& outputs, \
      const paddle::framework::AttributeMap& attrs)        \
Y
Yu Yang 已提交
156
      : parent_cls(type, inputs, outputs, attrs) {}
Y
Yu Yang 已提交
157

158 159
class NOP : public OperatorBase {
 public:
160
  using OperatorBase::OperatorBase;
161 162 163
  void InferShape(const Scope& scope) const override {}
  void Run(const Scope& scope,
           const platform::DeviceContext& dev_ctx) const override {}
164 165 166
  std::unique_ptr<OperatorBase> Clone() const override {
    return std::unique_ptr<OperatorBase>(new NOP(*this));
  }
167 168
};

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
// this class not only make proto but also init attribute checkers.
class OpProtoAndCheckerMaker {
 public:
  OpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker)
      : proto_(proto), op_checker_(op_checker) {}

  ~OpProtoAndCheckerMaker() {
    PADDLE_ENFORCE(validated_, "should call Validate after build");
  }

  void Validate();

 protected:
  struct VariableBuilder {
    OpProto::Var* var_;

    VariableBuilder& AsDuplicable() {
      var_->set_duplicable(true);
      return *this;
    }

    VariableBuilder& AsIntermediate() {
      var_->set_intermediate(true);
      return *this;
    }

195 196
    VariableBuilder& NotInGradient() {
      var_->set_not_in_gradient(true);
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
      return *this;
    }
  };

  VariableBuilder AddInput(const std::string& name, const std::string& comment);

  VariableBuilder AddOutput(const std::string& name,
                            const std::string& comment);

  template <typename T>
  TypedAttrChecker<T>& AddAttr(const std::string& name,
                               const std::string& comment,
                               bool generated = false) {
    auto* attr = proto_->add_attrs();
    attr->set_name(name);
    attr->set_comment(comment);
    attr->set_generated(generated);
    attr->set_type(AttrTypeID<T>());
    return op_checker_->AddAttrChecker<T>(name);
  }

  void AddComment(const std::string& comment) { proto_->set_comment(comment); }

 private:
  void CheckNoDuplicatedInOutAttrs();

  OpProto* proto_;
  OpAttrChecker* op_checker_;
  bool validated_{false};
};

class NOPMaker : public OpProtoAndCheckerMaker {
 public:
  NOPMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {}
};

234
class InferShapeContext {
Y
Yan Chunwei 已提交
235
 public:
236 237
  InferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}
238

Q
qiaolongfei 已提交
239 240 241 242
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
243
  template <typename T>
Y
Yu Yang 已提交
244 245
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
246 247
  }

Y
Yu Yang 已提交
248
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
249
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
250 251
  }

Y
Yu Yang 已提交
252
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
253
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
254 255
  }

256
  const Variable* InputVar(const std::string& name) const {
257
    auto ipt = op_.Input(name);
Y
Yu Yang 已提交
258
    return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
Y
Yan Chunwei 已提交
259 260
  }

261
  Variable* OutputVar(const std::string& name) const {
262
    auto opt = op_.Output(name);
Y
Yu Yang 已提交
263
    return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
Y
Yan Chunwei 已提交
264 265
  }

266 267
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
268 269
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
270
    res.reserve(names.size());
271 272
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
273 274
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
275
                   });
Y
Yan Chunwei 已提交
276 277 278
    return res;
  }

279
  std::vector<const Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
280 281
    auto names = op_.Outputs(name);
    std::vector<const Variable*> res;
282
    res.reserve(names.size());
283 284
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
285 286
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
287
                   });
Y
Yan Chunwei 已提交
288 289 290
    return res;
  }

291 292
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
293
    auto* var = InputVar(name);
294
    return var == nullptr ? nullptr : &var->Get<T>();
295 296 297 298
  }

  template <typename T>
  T* Output(const std::string& name) const {
299
    auto var = OutputVar(name);
300
    return var == nullptr ? nullptr : var->GetMutable<T>();
301 302 303 304 305 306 307 308
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
309
                   [&](const std::string& sub_name) {
310
                     auto var = scope_.FindVar(sub_name);
311
                     return var == nullptr ? nullptr : &var->Get<T>();
312 313 314 315 316
                   });
    return res;
  }

  template <typename T>
317
  std::vector<T*> MultiOutput(const std::string& name) const {
318
    auto names = op_.Outputs(name);
319
    std::vector<T*> res;
320 321
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
322
                   [&](const std::string& sub_name) {
323
                     auto var = scope_.FindVar(sub_name);
324
                     return var == nullptr ? nullptr : var->GetMutable<T>();
325 326 327 328
                   });
    return res;
  }

Q
qiaolongfei 已提交
329
 private:
330
  const OperatorBase& op_;
331
  const Scope& scope_;
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
};

template <typename T>
struct EigenDeviceConverter;

template <>
struct EigenDeviceConverter<platform::CPUPlace> {
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
struct EigenDeviceConverter<platform::GPUPlace> {
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

349
class ExecutionContext : public InferShapeContext {
350
 public:
351
  ExecutionContext(const OperatorBase& op, const Scope& scope,
352
                   const platform::DeviceContext& device_context)
353
      : InferShapeContext(op, scope), device_context_(device_context) {}
354

Q
qijun 已提交
355 356 357
  template <typename PlaceType,
            typename DeviceType =
                typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
358
  DeviceType& GetEigenDevice() const;
Q
qijun 已提交
359

360
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
361

362
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
363
    return device_context_;
Q
qijun 已提交
364
  }
Q
qijun 已提交
365

366 367
 private:
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
368 369
};

Q
qijun 已提交
370 371
class OpKernel {
 public:
Q
qijun 已提交
372
  /**
373
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
374 375
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
376
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
377 378
   */

379
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
380 381 382 383

  virtual ~OpKernel() {}
};

Q
Qiao Longfei 已提交
384 385
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
386 387
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
388

Y
Yu Yang 已提交
389
    OpKernelKey() = default;
L
liaogang 已提交
390
    explicit OpKernelKey(const platform::DeviceContext& dev_ctx) {
Y
Yu Yang 已提交
391 392 393
      place_ = dev_ctx.GetPlace();
    }

Q
qijun 已提交
394 395 396
    bool operator==(const OpKernelKey& o) const {
      return platform::places_are_same_class(place_, o.place_);
    }
Y
Yu Yang 已提交
397 398 399 400 401 402 403 404 405 406 407
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
408

Y
Yu Yang 已提交
409 410
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
411 412
      : OperatorBase(type, inputs, outputs, attrs) {}

413
  void InferShape(const Scope& scope) const override {
414
    InferShape(InferShapeContext(*this, scope));
415 416
  }

Y
Yu Yang 已提交
417
  void Run(const Scope& scope,
Y
Yu Yang 已提交
418
           const platform::DeviceContext& dev_ctx) const final {
Q
Qiao Longfei 已提交
419
    auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
420
    opKernel->Compute(ExecutionContext(*this, scope, dev_ctx));
Q
Qiao Longfei 已提交
421 422
  }

Y
Yu Yang 已提交
423 424 425 426
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
427
  }
Y
Yan Chunwei 已提交
428

429 430 431 432 433 434
  bool SupportGPU() const override {
    OperatorWithKernel::OpKernelKey key;
    key.place_ = platform::GPUPlace();
    return OperatorWithKernel::AllOpKernels().at(type_).count(key) != 0;
  }

Y
Yu Yang 已提交
435
 protected:
436
  virtual void InferShape(const InferShapeContext& ctx) const = 0;
Q
Qiao Longfei 已提交
437 438 439 440
};

}  // namespace framework
}  // namespace paddle