operator.h 10.9 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
Q
Qiao Longfei 已提交
18 19 20 21
#include <string>
#include <unordered_map>
#include <vector>

Y
Yi Wang 已提交
22
#include "paddle/framework/attribute.h"
Y
Yu Yang 已提交
23
#include "paddle/framework/framework.pb.h"
Q
qijun 已提交
24 25 26 27
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
28
#include "paddle/platform/variant.h"
Q
qijun 已提交
29
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
30 31 32 33

namespace paddle {
namespace framework {

34
/// If a variable is a empty variable, that name will be used.
35
constexpr char kEmptyVarName[] = "@EMPTY@";
36 37 38

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
39
constexpr char kTempVarName[] = "@TEMP@";
40 41 42 43

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
44
constexpr char kGradVarSuffix[] = "@GRAD";
45 46

/// Variables with this suffix are supposed to be filled up with zeros.
47
constexpr char kZeroVarSuffix[] = "@ZERO";
48 49 50 51 52

inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

53 54
extern std::unordered_map<std::string, OpProto>& OpProtos();

Q
Qiao Longfei 已提交
55
class OperatorBase;
56 57
class InferShapeContext;
class ExecutionContext;
58

Q
Qiao Longfei 已提交
59 60 61 62 63 64 65 66
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
67 68 69 70 71 72 73 74 75 76 77
  using VarNameMap = std::map<std::string, std::vector<std::string>>;

  OperatorBase() = default;
  OperatorBase(const std::string& type, const VarNameMap& inputs,
               const VarNameMap& outputs, const AttributeMap& attrs)
      : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {}

  OperatorBase(const OperatorBase& o) = delete;
  OperatorBase& operator=(const OperatorBase& o) = delete;
  OperatorBase(OperatorBase&& o) = delete;

Q
Qiao Longfei 已提交
78 79 80 81 82 83 84 85 86
  virtual ~OperatorBase() {}

  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

87
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
88

Q
Qiao Longfei 已提交
89 90 91 92
  /// Init will be called after CreateOperator, you can put some initialization
  /// logic here.
  virtual void Init() {}

Q
Qiao Longfei 已提交
93 94
  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Y
Yu Yang 已提交
95
  virtual void InferShape(const Scope& scope) const = 0;
Q
Qiao Longfei 已提交
96 97

  /// Net will call this function to Run an op.
Y
Yu Yang 已提交
98
  virtual void Run(const Scope& scope,
Y
Yu Yang 已提交
99 100
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yu Yang 已提交
101 102
  virtual bool IsNetOp() const { return false; }

103 104
  virtual bool SupportGPU() const { return false; }

D
dongzhihong 已提交
105 106 107
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Y
Yu Yang 已提交
108
  //! Get a input with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
109
  const std::string& Input(const std::string& name) const;
Y
Yu Yang 已提交
110
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
111
  const std::vector<std::string>& Inputs(const std::string& name) const;
Y
Yi Wang 已提交
112

Y
Yu Yang 已提交
113
  //! Get a output with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
114
  const std::string& Output(const std::string& name) const;
Y
Yu Yang 已提交
115 116
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
117
  const std::vector<std::string>& Outputs(const std::string& name) const;
Y
Yan Chunwei 已提交
118

Y
Yu Yang 已提交
119
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
120

121
  std::string Type() const { return type_; }
Y
Yi Wang 已提交
122 123
  const AttributeMap& Attrs() const { return attrs_; }

Q
Qiao Longfei 已提交
124
 public:
Q
Qiao Longfei 已提交
125
  std::string type_;
D
dongzhihong 已提交
126 127 128 129
  // NOTE: in case of OpGrad, inputs_ contains:
  // I (Inputs)
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
130
  VarNameMap inputs_;
Y
Yu Yang 已提交
131

D
dongzhihong 已提交
132 133
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
134
  VarNameMap outputs_;
Q
Qiao Longfei 已提交
135
  AttributeMap attrs_;
Y
Yan Chunwei 已提交
136 137
};

138 139 140 141 142 143 144 145 146
#define DEFINE_OPERATOR_CTOR(Class, ParentClass)                               \
 public:                                                                       \
  Class() : ParentClass() { /* TODO(yi): This constructor is to be removed. */ \
  }                                                                            \
  Class(const std::string& type, const VarNameMap& inputs,                     \
        const VarNameMap& outputs,                                             \
        const paddle::framework::AttributeMap& attrs)                          \
      : ParentClass(type, inputs, outputs, attrs) {}

147
class InferShapeContext {
Y
Yan Chunwei 已提交
148
 public:
149 150
  InferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}
151

Y
Yu Yang 已提交
152
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
153
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
154 155
  }

Y
Yu Yang 已提交
156
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
157
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
158 159
  }

160
  const Variable* InputVar(const std::string& name) const {
Y
Yu Yang 已提交
161
    return scope_.FindVar(op_.Input(name));
Y
Yan Chunwei 已提交
162 163
  }

164
  Variable* OutputVar(const std::string& name) const {
Y
Yu Yang 已提交
165
    return scope_.FindVar(op_.Output(name));
Y
Yan Chunwei 已提交
166 167
  }

168 169
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
170 171
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
172
    res.reserve(names.size());
Y
Yan Chunwei 已提交
173
    std::transform(
174
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
175
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
176 177 178
    return res;
  }

179
  std::vector<const Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
180 181
    auto names = op_.Outputs(name);
    std::vector<const Variable*> res;
182
    res.reserve(names.size());
Y
Yan Chunwei 已提交
183
    std::transform(
184
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
185
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
186 187 188
    return res;
  }

189 190
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
191
    auto* var = InputVar(name);
Y
Yan Chunwei 已提交
192
    PADDLE_ENFORCE_NOT_NULL(var, "Input(%s) should not be nullptr", name);
193
    return &var->Get<T>();
194 195 196 197
  }

  template <typename T>
  T* Output(const std::string& name) const {
198
    auto var = OutputVar(name);
Y
Yan Chunwei 已提交
199
    PADDLE_ENFORCE_NOT_NULL(var, "Output(%s) should not be nullptr", name);
200
    return var->GetMutable<T>();
201 202 203 204 205 206 207 208
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
209
                   [&](const std::string& sub_name) {
210
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
211 212 213
                     PADDLE_ENFORCE_NOT_NULL(
                         var, "MultiInput(%s:%s) should not be nullptr", name,
                         sub_name);
214
                     return &var->Get<T>();
215 216 217 218 219 220 221 222 223 224
                   });
    return res;
  }

  template <typename T>
  std::vector<const T*> MultiOutput(const std::string& name) const {
    auto names = op_.Outputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
225
                   [&](const std::string& sub_name) {
226
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
227 228 229
                     PADDLE_ENFORCE_NOT_NULL(
                         var, "MultiOutput(%s:%s) should not be nullptr", name,
                         sub_name);
230
                     return var->GetMutable<T>();
231 232 233 234 235
                   });
    return res;
  }

  const OperatorBase& op_;
236
  const Scope& scope_;
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
};

template <typename T>
struct EigenDeviceConverter;

template <>
struct EigenDeviceConverter<platform::CPUPlace> {
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
struct EigenDeviceConverter<platform::GPUPlace> {
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

254
class ExecutionContext : public InferShapeContext {
255
 public:
256
  ExecutionContext(const OperatorBase& op, const Scope& scope,
D
dongzhihong 已提交
257
                   const platform::DeviceContext* device_context)
258
      : InferShapeContext(op, scope), device_context_(device_context) {}
259

Q
qijun 已提交
260 261 262
  template <typename PlaceType,
            typename DeviceType =
                typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
263
  DeviceType& GetEigenDevice() const;
Q
qijun 已提交
264

D
dongzhihong 已提交
265
  platform::Place GetPlace() const { return device_context_->GetPlace(); }
Q
qijun 已提交
266

D
dongzhihong 已提交
267
  const platform::DeviceContext* device_context_;
Q
Qiao Longfei 已提交
268 269
};

Q
qijun 已提交
270 271
class OpKernel {
 public:
Q
qijun 已提交
272
  /**
273
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
274 275
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
276
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
277 278
   */

279
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
280 281 282 283

  virtual ~OpKernel() {}
};

Q
Qiao Longfei 已提交
284 285
class OperatorWithKernel : public OperatorBase {
 public:
286 287
  DEFINE_OPERATOR_CTOR(OperatorWithKernel, OperatorBase)

Y
Yu Yang 已提交
288 289
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
290

Y
Yu Yang 已提交
291
    OpKernelKey() = default;
L
liaogang 已提交
292
    explicit OpKernelKey(const platform::DeviceContext& dev_ctx) {
Y
Yu Yang 已提交
293 294 295
      place_ = dev_ctx.GetPlace();
    }

Q
qijun 已提交
296 297 298
    bool operator==(const OpKernelKey& o) const {
      return platform::places_are_same_class(place_, o.place_);
    }
Y
Yu Yang 已提交
299 300 301 302 303 304 305 306 307 308 309
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
310

311
  void InferShape(const Scope& scope) const override {
312
    InferShape(InferShapeContext(*this, scope));
313 314
  }

Y
Yu Yang 已提交
315
  void Run(const Scope& scope,
Y
Yu Yang 已提交
316
           const platform::DeviceContext& dev_ctx) const final {
Q
Qiao Longfei 已提交
317
    auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
318
    opKernel->Compute(ExecutionContext(*this, scope, &dev_ctx));
Q
Qiao Longfei 已提交
319 320
  }

Y
Yu Yang 已提交
321 322 323 324
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
325
  }
Y
Yan Chunwei 已提交
326

327 328 329 330 331 332
  bool SupportGPU() const override {
    OperatorWithKernel::OpKernelKey key;
    key.place_ = platform::GPUPlace();
    return OperatorWithKernel::AllOpKernels().at(type_).count(key) != 0;
  }

Y
Yu Yang 已提交
333
 protected:
334
  virtual void InferShape(const InferShapeContext& ctx) const = 0;
Q
Qiao Longfei 已提交
335 336 337 338
};

}  // namespace framework
}  // namespace paddle